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A large-deviations approach to gelation

Luisa Andreis, Wolfgang König, Robert I. A. Patterson

Abstract

A large-deviations principle (LDP) is derived for the state, at fixed time, of the multiplicative coalescent

in the large particle number limit. The rate function is explicit and describes each of the three parts of

the state: microscopic, mesoscopic and macroscopic. In particular, it clearly captures the well known

gelation phase transition given by the formation of a particle containing a positive fraction of the system

mass at time t = 1. Via a standard map of the multiplicative coalescent onto a time-dependent version

of the Erdős-Rényi random graph, our results can also be rephrased as an LDP for the component sizes

in that graph. Our proofs rely on estimates and asymptotics for the probability that smaller Erdős-Rényi

graphs are connected.

1 Introduction

Smoluchowski introduced a (deterministic) ODE model for the concentrations of coagulating particles in the

course of his work on Brownian motion [vS16]. This was motivated by an underlying concept of microscopic

dynamics similar to the mean-field limit. Flory [Flo41a] investigated the distributions of polymer sizes and

connectivity structures in order to understand the physical properties of these (at that time relatively new)

materials. As is now well known the particle and random graph models are almost equivalent, but unlike

Smoluchowski, Flory was interested in the phase transition that occurs when a giant particle/connected

component of the graph forms, which he called a gel, terminology which we shall adopt.

In this paper, we study one of the simplest stochastic coagulation models and give a complete description

by means of a powerful mathematical theory, the large-deviations theory. This turns out to be equivalent to

the description, in the large-deviations framework of the statistics of connected components in the sparse

regime for the Erdős-Rényi random graph, i.e. G(N, p) when p ∼ 1
N
. We provide a new analysis to the

gelation phase transition via the large-deviations rate function. This then provides an alternative proof of the

uniqueness of the giant component in sparse Erdős-Rényi random graphs.

1.1 A non-spatial mean-field coagulation model

In this paper, we study a stochastic coagulation process, called the Marcus–Lushnikov process, see [Mar68,

Gil72, Lus78]. This is a continuous-time Markov process of vectors of particle masses M (N)

i (t) ∈ N at time

t ∈ [0,∞), arranged in descending order:

M (N)

1 (t) ≥M (N)

2 (t) ≥M (N)

3 (t) ≥ · · · ≥M (N)

n(t)(t) ≥ 1,

n(t)∑

i=1

M (N)

i (t) = N, (1.1)
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for some parameter N ∈ N. This process is specified by the initial configuration, which we take in the

monodisperse case, i.e. M (N)

i (0) = 1 for all i = 1, . . . , N = n(0), and by the transition mechanism,

which is given in terms of a symmetric, non-negative coagulation kernel KN : N × N → [0,∞). That is,

we start with N particles of unit mass at time 0, and in the course of the process, each (unordered) pair of

particles with respective masses m, m̃ ∈ N coagulate to a particle of mass m + m̃ with rate KN(m, m̃),

independently of all the other pairs of particles.

If the dependence of the coagulation kernel KN on N is chosen so that KN(m, m̃) ≍ 1/N for

fixed m, m̃ as N → ∞, then any given pair of finitely sized particles coagulates after a time ≍ N

and so each particle undergoes a coagulation with some other particle after an order 1 time, since it

is in contact with ≍ N other particles. This is a mean field interaction in which every particle in a

large population has contact with every other on an equal basis. In this limit it is reasonable to write

lk(t) = limN→∞
1
N
#{particles of size k at time t}, then under suitable conditions these limits satisfy

d

dt
lk(t) =

1

2

∑

m,m̃ :
m+m̃=k

lm(t)lm̃(t)K(m, m̃)− lk(t)
∑

m

lm(t)K(k,m) ∀k ∈ N (1.2)

where K(m, m̃) = limN→∞NKN(m, m̃). This is the Smoluchowski equation [vS16] referred to above.

In this paper, we exclusively study the case of the multiplicative kernel, KN(m, m̃) = mm̃/N . This choice

has the two interesting features: (1) it can be mapped onto a natural time-dependent version of the Erdős-

Rényi random graph [ER61], and (2) it exhibits an interesting phase transition in the limit N → ∞ at time

t = 1, because a gel, i.e., a particle of macroscopic size, appears. Our main goal in this paper is to recover

the gelation phenomenon in rather explicit terms through a large-deviations principle (LDP). Moreover, we

will be able to describe the large-deviations of all parts of the particle model, the microscopic, mesoscopic

and macroscopic parts. As a consequence, the above mentioned phase transition as well as the solution

of the Smoluchowski ODE will be clear from our formulas and will be given a new interpretation in terms of

combinatorial structures. Indeed, we will analyse the joint distribution of the microscopic and the macroscopic

empirical measure of the particle sizes, and we will also deduce interesting information about the mesoscopic

part of the configuration. We will keep the time t ∈ (0,∞) fixed and consider only the limit as N → ∞.

There is a well-known description of the distribution of the coagulation process that we study in the present

work at time t in terms of the well-known Erdős-Rényi random graph on N nodes with edge probability

1 − e−t/N , see the review [Ald99]. More precisely, the joint distribution of all the cluster sizes in this graph

is equal to the distribution of the particle sizes, (M (N)

i (t))i. Hence, the formation of a gel in the coagulation

process is equivalent to occurrence of percolation in the graph, i.e., formation of a giant component, see the

classic reference [Bél01]. The connection between the two models will be the starting point of our analysis

and will be recalled at the beginning of Section 2.1. Because of this connection, our results give a new

contribution to the theory of the Erdős-Rényi graph in terms of an LDP for connected component statistics in

the sparse regime. These kind of asymptotic results were not previously available in random graph theory,

even though there are large-deviations results of various types, see Section 1.5 for an overview.

1.2 Our results: Large-deviations principles

In this section, we present all our results on the exponential behaviour of distributions of the main charac-

teristics of the Marcus–Lushnikov model. In Section 1.3 we will draw conclusions about the gelation phase

transition from that.
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A large-deviations approach to gelation 3

For N ∈ N we consider the state space

SN =
{
(mi)i=1,...,n ∈ N

n : n ∈ N, n ≤ N,m1 ≥ m2 ≥ m3 ≥ · · · ≥ mn ≥ 1,
n∑

i=1

mi = N
}

(1.3)

of tuples of positive integers summing to N , ordered in a decreasing way. Starting from the initial configura-

tion M (N)(0) = (1, . . . , 1) ∈ SN , the Markov process (M (N)(t))t∈[0,∞) specified in the previous section

has the generator

LNf
(
(mi)i=1,...,n

)
=

1

2

n∑

i,j=1
i 6=j

KN(mi,mj)
[
f(m̃(i,j))− f

(
(mi)i=1,...,n

)]
,

where m̃(i,j) is the collection of the n− 1 numbers mk with k 6= i, j and mi +mj , properly ordered. Here

we restrict to the multiplicative kernel, i.e. KN(m, m̃) = mm̃/N . That is, each pair of distinct particles

coagulates after an exponential time with mean N/mm̃ where m and m̃ are the particle masses. Coagula-

tion means that the two particles are replaced by one particle of mass m + m̃. All the exponential waiting

times are independent. Then the number n(t) of particles at time t is a decreasing function of t, and with

probability one, it reaches the value one in finite time.

We denote the probability and expectation by PN and EN , respectively. We fix a time horizon t ∈ (0,∞)

and describe the distribution of the particle masses M (N)(t) in (1.1) in the limit N → ∞ in terms of a

large-deviations principle. It will be convenient to work with the empirical measures of the particle masses in

the microscopic and macroscopic size ranges:

Mi(N)(t) =
1

N

n(t)∑

i=1

δ
M

(N)
i (t)

and Ma(N)(t) =

n(t)∑

i=1

δ 1
N
M

(N)
i (t)

. (1.4)

Intuitively, while Mi(N)(t) registers the numbers of particles of “microscopic” sizes 1,2,3,... on the scale N ,

in contrast Ma(N)(t) registers the numbers of particles of “macroscopic” sizes of order N . Even though

each of the two measures admits a one-to-one map onto the vector (M (N)

i (t))i for fixed N ∈ N, in the

limit N → ∞, for topological reasons, they will be able to describe only the statistics of the microscopic,

respectively macroscopic, part of the particle configuration. For a full description, a kind of mesoscopic part

has to be considered, but this is a more complicated issue, which we defer.

Mi(N)(t) is a random element of the set N =
⋃

c∈[0,1] N (c) of measures on N that have an integral

against the identity not larger than one, where

N (c) =
{
λ ∈ [0,∞)N :

∑

k∈N
kλk = c

}
, c > 0. (1.5)

We equipN with the topology of coordinate-wise convergence, which is compact by the Bolzano-Weierstrass

theorem combined with Fatou’s lemma.

Ma(N)(t) is a random element of the set MN0 =
⋃

c∈[0,1] MN0(c), where

MN0(c) =
{
α ∈ MN0((0, 1]) :

∫

(0,1]

xα(dx) = c
}
, (1.6)
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and MN0((0, 1]) is the set of all measures on (0, 1] with values in N0 = {0} ∪ N. We equip MN0

with the topology that is induced by functionals of the form µ 7→
∫
(0,1]

f(x)µ(dx) where f : (0, 1] → R

is continuous and compactly supported. We always write the elements of MN0(c) as α =
∑

j δαj
with

1 ≥ α1 ≥ α2 ≥ · · · > 0 and
∑

j αj = c, where j extends over a finite subset of N or over N. Then

convergence is equivalent with the pointwise convergence of each of the atoms. By similar arguments as for

N , also MN0 is compact.

Note that the microscopic and the macroscopic total masses
∑

k kMi(N)

k (t) and
∫
(0,1]

xMa(N)(t)(dx)

are each equal to one, hence indeed Mi(N)(t) ∈ N (1) and Ma(N)(t) ∈ MN0(1). However the functions

λ 7→ cλ :=
∑

k∈N
kλk and α 7→ cα :=

∫

(0,1]

xα(dx)

are not continuous, but only lower semicontinuous in the respective topologies.

We equip the product of N and MN0 with the product topology, so that it is also compact.

Our main result is the following description of the two empirical measures in terms of a joint large-

deviations principle (LDP).

Theorem 1.1 (LDP for the empirical measures). Fix t ∈ [0,∞). Then, as N → ∞, the pair

(Mi(N)(t),Ma(N)(t)) satisfies a large-deviations principle with speed N and rate function

(λ, α) 7→ I(λ, α; t) =

{
IMi(λ; t) + IMa(α; t) + (1− cλ − cα)

(
t
2
− log t

)
, if cλ + cα ≤ 1,

∞ otherwise,

where

IMi(λ; t) =
∞∑

k=1

λk log
k!tλk
e kk−2

+ cλ

(
1 +

t

2
− log t

)
, cλ =

∞∑

k=1

kλk, (1.7)

IMa(α; t) =

∫ 1

0

[
x log

x

1− e−tx
+
t

2
x(1− x)

]
α(dx), cα =

∫

(0,1]

xα(dx). (1.8)

The proof of this theorem is in Section 3. Let us recall the notion of an LDP: Theorem 1.1 says that, for

any open set G ⊂ N ×MN0 respectively closed set F ⊂ N ×MN0 ,

lim inf
N→∞

1

N
logPN((Mi(N)(t),Ma(N)(t)) ∈ G) ≥ − inf

G
I(·; t),

lim sup
N→∞

1

N
logPN((Mi(N)(t),Ma(N)(t)) ∈ F ) ≤ − inf

F
I(·; t).

For the theory of large-deviations, see e.g. [DZ10]. It is not difficult to see that the rate function I(·, ·; t)
is lower semicontinuous. Since N × MN0 is compact, it is even a good rate function, i.e., its level sets

{(λ, α) : I(λ, α; t) ≤ r} are compact for any r.

From our main result, the LDP in Theorem 1.1, a number of other LDPs follow via the contraction principle

(which says that if a random variable satisfies an LDP, so does its image under a continuous transformation).

Let us begin with the particle size distribution of the microscopic part.

DOI 10.20347/WIAS.PREPRINT.2568 Berlin 2019
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Corollary 1.2 (LDP for particle size statistics). Fix t ∈ [0,∞). Then, as N → ∞, Mi(N)(t) satisfies an

LDP with rate function IMi(·; t) : N → [0,∞], given by

IMi(λ; t) = inf
α∈MN

I(λ, α; t) = IMi(λ; t)− (1− cλ)

(
log

1− e(cλ−1)t

1− cλ
− cλt

2

)
. (1.9)

The first equality is the contraction principle [DZ10]; the second equality is checked in Lemma 4.1.

In the same way one can investigate the macroscopic part of the system.

Corollary 1.3 (LDP for macroscopic particles). Fix t ∈ [0,∞). Then, as N → ∞, Ma(N)(t) satisfies an

LDP with rate function IMa(·; t) : MN0 → [0,∞], given by

IMa(α; t) = inf
λ∈N

I(λ, α; t)

= IMa(α; t) + (1− cα)
( t
2
− log t

)
+ Cα,t

(
log(tCα,t)−

t

2
Cα,t

)
,

(1.10)

where Cα,t = (1− cα) ∧ 1
t

(recall cα =
∫ 1

0
xα(dx)).

Only the second equality has to be checked; this is done in Lemma 4.2.

Hence, we can hope to derive a phase transition from non-existence to existence of a gel, i.e., to a

non-trivial macroscopic part, at t = 1, from the rate functions. However, even though it seems as if this

phenomenon is present only in the macroscopic rate function IMa, actually it has its origin in the discussion

of the existence of minimizers λ for the microscopic rate function IMi in Corollary 1.2; this is the content of

Theorem 1.5.

Now we come to the mesoscopic part of the particle configuration. Since this part comprises particle sizes

on all the scales between finite andO(N), it makes no sense to consider an empirical measure. Instead, we

consider only the total mass of the mesoscopic part. Let ε > 0 andR ∈ N, we define the (R, ε)-mesoscopic

total mass as

Me
(N)

R,ε(t) =
1

N

∑

i : R<M
(N)
i (t)<εN

M (N)

i (t). (1.11)

The mesoscopic total mass in a strict sense arises after taking the limits N → ∞, followed by ε ↓ 0 and

R → ∞, but this does not define a random variable. However, it is possible to calculate an LDP in the

N → ∞ limit and then to study the rate function, J (R,ε)

Me , as ε ↓ 0 and R → ∞. On the other hand,

the proof of Theorem 1.1 shows that it is possible to define a coupled mesoscopic total mass Me
(N)

RN ,εN
(t),

for any diverging sequence RN and vanishing sequence εN . This is a well-defined random variable and it

satisfies an LDP.

Corollary 1.4 (LDP for mesoscopic mass). Fix t ∈ [0,∞).

1 Then, for any R ∈ N and ε ∈ (0, 1), as N → ∞, Me
(N)

R,ε(t) satisfies an LDP with rate function

c 7→ J (R,ε)

Me (c; t), where

J (R,ε)

Me (c; t) = inf
{
I(λ, α; t) :

R∑

k=1

kλk + c+

∫ 1

ε

xα(dx) = 1
}
.

DOI 10.20347/WIAS.PREPRINT.2568 Berlin 2019
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2 For any RN ∈ N and εN ∈ (0, 1) such that 1 ≪ RN < εNN ≪ N , the coupled mesoscopic total

mass Me
(N)

RN ,εN
(t) satisfies an LDP with rate function

JMe(c; t) = (1− c)
(
log(1− c)t− (1− c)t

2

)
+
t

2
− log t. (1.12)

The function JMe(c; t) is strictly increasing in c, its minimum over [0, 1] is JMe(0; t) = 0.

Hence, JMe(·; t) can rightfully be called the rate function for the mesoscopic total mass. The probability

to have a non-trivial mesoscopic part decays exponentially towards zero. Interestingly, taking RN + 1 =

εnN ∈ N, we see that already just one mesoscopic particle alone satisfies the same LDP as the entire

(R, ε)-mesoscopic total mass in the limit R → ∞, ε ↓ 0.

Corollary 1.4 part (1) is a simple consequence of the contraction principle, as the maps λ 7→∑R
k=1 kλk

and α 7→
∫ 1

ε
xα(dx) are continuous. Assertion (2) follows as a byproduct of our proof of Theorem 1.1 in

Section 3.

1.3 Our results: Phase transitions

Now we proceed with the main phenomenon in the Marcus–Lushnikov model: the gelation phase transition.

We will deduce it from our large-deviations rate functions from Section 1.2. The LDPs and the identification

of their strict minimiser(s) lead to laws of large numbers for a number of random quantities.

Consider the following functions of the total masses of the microscopic and macroscopic particles respec-

tively:

JMi(c; t) = inf
λ∈N (c)

IMi(λ; t) and JMa(c; t) = inf
α∈MN0

(c)
IMa(α; t),

where c ∈ [0, 1]. Clearly, JMi(c; t) = JMa(1 − c; t). These two functions are not entirely analogous to

JMe(c; t) as rate functions for the total masses of the micro and the macro part, because the total masses

both of Mi(N)(t) and Ma(N)(t) are equal to one. This is consistent with the fact that the contraction principle

cannot be applied to total masses, as they are not continuous functions of the measures. However, they

contain rather interesting information about the gelation phase transition.

Theorem 1.5 (Microscopic total mass phase transition). Fix t ∈ [0,∞).

1 For any c ∈ [0, 1],

JMi(c; t) = tc+ (1− c) log
1− c

1− et(c−1)
+

{
c log c− tc2 for c < 1

t
,

− 1
2t
− t

2
c2 − c log t for c ≥ 1

t
.

(1.13)

2 For c ∈ (0, 1], the minimum of N (c) ∋ λ 7→ IMi(λ; t) is attained precisely at λ∗(c; t) ∈ N (c)

given by

λ∗k(c; t) =
kk−2cktk−1e−ctk

k!
, k ∈ N, (1.14)

and the minimum of the function c 7→ JMi(c; t) is attained precisely at c = 1 with value JMi(1; t) =

0. Therefore the infimum

inf
(λ,α)∈N×MN0

I(λ, α; t) (1.15)

is attained at (λ, α) = (λ∗(1; t),0), where 0 = (0, 0, . . . ).

DOI 10.20347/WIAS.PREPRINT.2568 Berlin 2019
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3 For t ∈ (1,∞), the minimum of the function c 7→ JMi(c; t) is attained at c = βt where βt ∈ (0, t)

is the smallest positive solution to

log βt = tβt − t. (1.16)

The infimum in (1.15) is attained precisely at (λ, α) = (λ∗(βt; t), (1− βt, 0, 0, . . . )).

The proof is found in Section 4.2.

Theorem 1.5 implies the well-known phase transition at t = 1 because the derivative of the minimiser

jumps at this point. Combining Theorem 1.5 with the LDP in Theorem 1.1 one has the following law of large

numbers:

(
Mi(N)(t),Ma(N)(t)

) N→∞
=⇒

{
(λ∗(1; t),0) if t ≤ 1,

(λ∗(βt; t), (1− βt, 0, . . . )) if t ≥ 1,

and can check for t ≤ 1 that λ∗(1; t) is the exact solution of (1.2), the Smoluchowski equation, also

given in [Ald99, Table 2]. One also sees that the cut-off versions of the total masses,
∑R

k=1 kMi(N)

k (t)

and
∫
[ε,1]

xMa(N)(t)(dx), converge towards the respective cut-off versions of the limits, and their limits as

R → ∞ and ε ↓ 0 are (1, 0) for t ≤ 1 and (βt, 1− βt) for t ≥ 1.

1.4 Literature remarks

It was expected for a long time that the empirical measure of the masses from the Marcus–Lushnikov pro-

cess converge in a weak sense to a solution of the Smoluchowski ODEs. The first rigorous convergence

result of this kind is due to Lang and Nguyen [LN80], but Lushnikov [Lus78] provided a more informal justifi-

cation. In the case of a multiplicative kernel, K(m, m̃) = cmm̃ for all m, m̃ and a proportionality factor c,

Smoluchowski’s ODEs exhibit mass loss after a critical time (which is equal to 1/c); a feature that cannot be

reproduced by any Marcus–Lushnikov process for finite N . Lushnikov however realised that at large enough

times M (N)

1 (t) ≍ N , that is: a macroscopic particle or gel forms and the Smoluchowski ODEs are not able

to describe it. On the other hand the Smouchowski ODEs can be augmented by an equation for the size of

the gel, this takes into account the gelation phase transition and convergence has been later proved for the

empirical measure plus the rescaled gel mass by Norris [Nor00].

In [HSES85], it is noted that the representation of the solutions of the master equation1 from Lush-

nikov [Lus78] can be written in product form as

P
(
M (N)

1 (t) = m1,M
(N)

2 (t) = m2, . . .
)
=

1

ZN

∏

i

ϕN(mi), (mi)i ∈ SN , (1.17)

for someZN > 0 and positive function ϕN . Actually, this is true for any coagulation kernel that can be written

as K(m, m̃) = mf(m̃) + f(m)m̃ for any m, m̃, for some positive function f ; see [BP90]. Necessary

conditions for (1.17) to hold are given by Granovsky and Kryvoshaev [GK12].

Building on the product structure in (1.17), Buffet and Pulé [BP90, BP91] make precise and rigorous the

insight of Lushnikov regarding the formation of a gel in the limit N → ∞. Their main result is the existence

of the gelation phase transition, for the kernel KN(m, m̃) = mm̃/N , somewhere in the time interval

1The master equation is the Kolmogorov forward equation, that is, the ODE for the time marginals ν(N)

t
of the law of M (N). It

is given by d

dt
ν(N)

t
= L†

N
ν(N)

t
, where L†

N
is the adjoint of LN .

DOI 10.20347/WIAS.PREPRINT.2568 Berlin 2019
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[log 2, 1], by exclusively looking at the macroscopic particles and deriving estimate for the expected values

of their sizes. In arriving at these estimates they use bounds on the solution of the master equation derived

from the recursive representation going back to Lushnikov [Lus78], which are equivalent to our limits derived

via random graph arguments in (2.5) below. They do not prove large-deviations upper bounds for the state of

the Marcus–Lushnikov process. In a later work, providing more precise characterisation of the gel, but still at

a formal level, Lushnikov [Lus04] picks up on this idea talking about a particular quantity playing the role of

a “free energy”. We also exploit this product structure in the present work along with connections to random

graph theory.

1.5 Large-deviations for Erdős-Rényi random graphs

As noted in the introduction, the distribution at time t of the Markus–Lushnikov process with multiplica-

tive kernel is closely related to that of the connected component sizes for the Erdős-Rényi random graph

G(N, 1 − e−t/N). This correspondence was not mentioned in [BP90], but was discussed one year later in

[BP91], which highlights the connection between gelation in the coagulation process and the phase transition

given by the formation of a giant connected component in the Erdős-Rényi random graph [ER60].

Our analysis and results are both closely connected to the study of Erdős-Rényi random graph G(N, 1−
e−t/N), more precisely with the large-deviation properties of the sizes of all the components as N → ∞.

The literature does not contain many results in this respect for sparse graphs, that is G(N, p) with p ∼
1/N . An LDP for the size of the largest component has been found [O’C98], some results dealing with

the macroscopic components [Puh05] and the degree distribution are available [BC15]. Under assumptions

that imply at a minimum p ≫ N− 1
2 recent progress has been made on the upper tails of sub-graph counts

[CD16, BCCL18, Aug18, CD18]. In the case of dense graphs (fixed p ∈ (0, 1)) there is a complete treatment

thanks to Chatterjee and Varadhan [CV11], see [Cha16] for an overview.

1.6 Pathwise large-deviations

In this work we focus on large-deviations for the coagulation process at a single time t starting with an initial

state composed entirely of monomers, that is, with no prior coagulation. One could seek to derive an LDP

for the paths of the coagulation process on a compact time interval. For this, one would have to extend the

combinatorial and asymptotical work of the present paper to general starting configurations, and use the

Markov property to prove LDPs for the finite dimensional distributions. One could then use a projective limit

argument augmented by a path space exponential tightness result (see for example [FK06, Chapter 4]). We

consider this programme doable, but cumbersome, and therefore decided to defer it to future work.

Such an LDP would be in the spirit of the well-known Wentsel–Freidlin theory, and there are already a

number of results of this type in the literature. For the coalescent process an LDP has been derived formally

[MPPR17, Thm 3.4] following the non-linear semi-group approach of [FK06]. This type of results yield a

formula for the rate function that is much less explicit and rather different from those that an extension of

the present work would yield. On the other hand the less explicit approach is applicable to a wide range of

Markov processes.

As in the classic Wentsel–Freidlin results, the formal path space calculations from [MPPR17] yield a rate
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function for the entire path of the microscopic part of the system [0, T ] ∋ t 7→ λ(t) that can be written as

IMi(λ) =

∫ T

0

L
(
λ(t), λ̇(t)

)
dt,

where L is the solution of variational problem. In order to derive, via the contraction principle, a formula for

the rate function for λ(t) at a fixed time t, one observes that all paths where the rate function is finite are

continuous (in fact a.e. differentiable), and obtains, for configurations λ,

IMi(λ; t) = inf
c : c(t)=λ

∫ T

0

L
(
c(s), ċ(s)

)
ds.

Solving this multilayered optimisation problem seems to require major work, and identifying the right-hand

side with our formula in (1.9) remains an intriguing problem.

1.7 Comparison to Bose-Einstein condensation without interaction

Our large-deviations approach to the Marcus–Lushnikov models shows remarkable similarities to another

well-known phase transition in a non-spatial model, the non-interacting Bose gas. Here the situation is sim-

ilar in that the gas can be conceived as a joint distribution of N particles that are randomly grouped into

smaller units, called cycles, which can become arbitrarily large. The natural question is then, under what

circumstances do macroscopic cycles arise. An explicit answer in terms of a large-deviations analysis has

been given in [Ada08], where the transition, the famous Bose-Einstein Condensation (BEC) in dimensions

d ≥ 3, is derived from the minimization of the rate function, in a way analogous to that in our Theorem 1.5.

The two phase transitions differ in that the BEC transition is of saturation type, while the gelation transition

is not.

For the non-interacting Bose gas in the thermodynamic limit at temperature 1/β ∈ (0,∞) with particle

density ρ ∈ (0,∞) the partition function is given by

Z(β)

ΛN
=

∑

(ℓk)k∈N∈NN

0 :
∑

k kℓk=N

∏

k

N ℓk

ℓk! kℓk
[ρ(4πβk)

d
2 ]−ℓk ,

where ΛN is the centred box in R
d with volume N/ρ. The free energy per particle is then

f(β, ρ) = lim
N→∞

1

N
logZ(β)

ΛN
= − inf

λ∈N (ρ)
I(λ), where I(λ) =

∑

k

λk log
λkk

(4πβk)
d
2 e
.

For the Marcus–Lushnikov model the equivalent quantity is the rate function IMi from (1.9). The key differ-

ence between the rate functions is that only IMi contains terms in the total mass of microscopic particles,

cλ. This reflects the fact that the giant particle makes a significant contribution to the rate function in the

Marcus–Lushnikov model, but the condensate in the non-interacting Bose gas does not.

The respective minimisers of IMi and I are

kλ(ML)

k (c; t) =
1

t

(cte−ct)k

k1−k k!
∼ 1√

2πt

(cte−ct+1)
k

k3/2
and kλ(BEC)

k (α; β) =
1

ρ(4πβ)
d
2

e−αk

k
d
2

,
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where c and α control the values of
∑

k kλk.

The crucial parameters are the time t for the Marcus–Lushnikov model and the inverse temperature β for

the Bose gas. Both models have a trivial upper bound for the total microscopic mass,
∑

k kλk, namely one.

One additional upper bound arises in each model from the optimisation of the rate function with respect to the

λk, but these are not relevant, until t respectively β rises to its critical value. For the Marcus–Lushnikov model

this bound is 1/t, because
∑

k
(cte−ct)k

k1−k k!
≤ 1 for all ct ∈ (0,∞), and the summands take their maxima at

ct = 1, when they correspond to the Borel probability distribution with parameter 1. For λ(BEC) this bound

is ρ−1(4πβ)−d/2
∑

k k
− d

2 . At this point we see a difference between the two models, because the total

microscopic mass in the Bose gas remains on this bound as β rises further, while for the Marcus–Lushnikov

model it immediately drops strictly below the bound. This explains why BEC is known as a saturation phase

transition, but this description cannot be applied to gelation.

2 The distribution of the particle sizes

We fix the parameter t ∈ (0,∞). In Section 2.1, we derive, for fixed N ∈ N, an explicit formula for the

distribution of the empirical measure of the particle sizes M (N)

i (t) in terms of connectivity probabilities for

Erdős-Rényi random graphs. Furthermore, we prepare in Section 2.2 for the asymptotic analysis by giving

some estimates and asymptotics for the most crucial object, the probability that a graph is connected.

2.1 The connection with random graphs

Let us explain the connection between the Marcus–Lushnikov coagulation model with multiplicative kernel

and a time-dependent version of the well-known Erdős-Rényi graph, see [Ald99]. This will be our starting

point for the identification of the joint distribution of Mi(N)(t) and Ma(N)(t).

Equip each unordered pair {i, j} of distinct numbers in {1, . . . , N} with an exponentially distributed

random time ei,j with parameter N , i.e., with expected value 1/N . All these N(N − 1)/2 random times

are assumed to be independent. At time ei,j a bond is created between i and j so the probability of a

bond between i and j forming by time t is 1 − e−t/N . By independence, an Erdős-Rényi graph G(N, p)
with parameter pN(t) = 1 − e−t/N arises. If now m(N)

i (t) denotes the size of the i-th largest connected

component (cluster) of this graph, then we have that (m(N)

i (t))i and (M (N)

i (t))i are identical in distribution.

(This equality is even true process-wise in t, but we are here not interested in that.) In this way, we can

see the coagulation process as a function of G(N, pN(t)). The fact that this description of the distribution is

correct comes from the two characteristic properties of the exponential distribution: (1) it has no memory, and

(2) the minimum of two independent exponential times is an exponential random time with parameter equal

to the sum of the two parameters. Two particles in the coagulation process of cardinalities m and m̃ at a

given time have precisely mm̃ independent exponential times with parameter N that have not yet elapsed;

any elapsure of any of them would connect the two particles. Altogether, this means that these two particles

coagulate with rate mm̃/N = KN(m, m̃).

Hence, an important quantity is

µ(N)

t (k) = P

(
G(k, 1− e−

t
N ) is connected

)
, (2.1)

where we wrote P for the probability on the graphs.
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We denote by PN the set of all partitions of {1, . . . , N}. We writeBi(π) for the number of sets in π ∈ PN

with cardinality i. Then we can describe the distribution of the coagulation process at time t as follows.

Lemma 2.1. For any N ∈ N and every (mi)i ∈ SN ,

PN

(
(M (N)

i (t))i = (mi)i
)
= #{π ∈ PN : Bi(π) = mi ∀i} ×

(∏

i

µ(N)

t (mi)
)
×
(∏

i 6=j

e−
t

2N
mi mj

)
.

(2.2)

Proof. A set A ⊂ {1, . . . , N} of indices is a connected component in the graph G(N, pN(t)) if and

only if (1) no bond between any index in A and any index outside has been connected by time t, and (2)

the subgraph formed out of the vertices in A and all the bonds between any two vertices in A that have

been created by time t is connected. This is the case precisely if any only if ei,j > t for all i ∈ A and

j ∈ Ac = {1, . . . , N}\A, andA is connected. This has probability e−|A| |Ac|t/N ×µ(N)

t (|A|). Applying this

reasoning to Ac and describing the next cluster, and iterating this argument, shows that the product of the

two products on the right-hand side of (2.2) is equal to the probability, for a given partition π with mi sets of

size i for any i, that the clusters of G(N, pN(t)) are precisely the sets of π. Since this probability depends

only on the cardinalities, the counting term completes the formula.

Now we rewrite the right-hand side of (2.2) in terms of the empirical measure of (mi)i, i.e., of the numbers

ℓk of indices i such that mi = k. Introduce the event

AN,t(ℓ) =
⋂

k∈N
{#{i : M (N)

i (t) = k} = ℓk}, ℓ = (ℓk)k∈N ∈ N
N

0 , (2.3)

Corollary 2.2. For any N and any ℓ = (ℓk)k ∈ N
N

0 satisfying
∑

k kℓk = N ,

PN(AN,t(ℓ)) = N !
∏

k

µ(N)

t (k)ℓke−
t

2N
k(N−k)ℓk

k!ℓk ℓk!
. (2.4)

Proof. Note that the last product on the right-hand side of (2.2) can also be written as
∏

i e
− t

2
mi(N−mi).

Hence, if ℓk is equal to the number of i such that mi = k for any k, then the product of the last two product

can be written as ∏

k

(
µ(N)

t (k)ℓke−
t

2N
k(N−k)ℓk

)
.

The counting term is easily identified as

#{π ∈ PN : #{A ∈ π : |A| = k} = ℓk ∀k} =
N !∏

k k!
ℓk ℓk!

.

Substituting ends the proof.

(To avoid confusion, we note that there is a typographical error in Section 4.5 of [Ald99], where the formula

(2.4) appears with e−
t
2 replaced by e−t.)
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2.2 The probability of being connected

Our analysis of (2.4) will depend crucially on an analysis of µ(N)

t (k). The next two lemmas collect results

from [Ste70, Lemma1&2, Theorem 1].

Lemma 2.3 (Bounds and asymptotics for µ(N)

t , [Ste70]). For any N ∈ N and any k ≤ N ,

e−
t

2N
(k − 1)(k − 2) ≤ µ(N)

t (k)

kk−2(1− e−
t
N )k−1

≤ 1. (2.5)

In particular, if k = o(
√
N),

µ(N)

t (k) = kk−2
( t
N

)k−1

(1 + o(1)), N → ∞.

The expression for the upper bound in (2.5) appears to be present (using somewhat applied chemical

language) in [Flo41b, equation (5)]. The following is an alternative upper bound to µ(N)

t (k), which will be

useful in the macroscopic setting, together with an asymptotic result for the connection probability in the

so-called sparse case, where the bond probability is proportional to the inverse of the size of the graph.

Lemma 2.4 ([Ste70]). For all t > 0 and k ∈ N

µ
(N)
t (k) ≤

(
1− e

−kt
N

)k−1
.

Fix α ∈ (0, 1). Then, for N → ∞,

µ(N)

t (⌊αN⌋) =
(
1− αt

eαt − 1

)(
1− e−tα

)αN
(1 + o(1)).

The assertion remains true if the bond probability 1−e−t/N is replaced by any sequence tN = t
N
(1+o(1)).

3 Proof of the LDP

In this section we prove the main result of this paper, the large-deviations principle in Theorem 1.1.

Recall the topological remarks on the two state spaces N and MN0 at the beginning of Section 1.2. The

metrics d on N and D on MN ((0, 1]), defined by

d(λ, λ̃) =
∞∑

k=1

2−k |λk − λ̃k| and D(α, α̃) =
∞∑

i=1

2−i|αi − α̃i|, (3.1)

induce the respective topologies of pointwise and vague convergence. We write Bδ(λ) respectively Bρ(α)

for the δ-ball around λ respectively for the ρ-ball around α. Our main result, the LDP in Theorem 1.1, follows

from the following.

Proposition 3.1. Fix t ∈ [0,∞). Then, for any λ ∈ N and α ∈ MN((0, 1]),

lim
δ,ρ↓0

lim
N→∞

1

N
logPN

(
Mi(N)(t) ∈ Bδ(λ), Ma(N)(t) ∈ Bρ(α)

)
= −I(λ, α; t). (3.2)

DOI 10.20347/WIAS.PREPRINT.2568 Berlin 2019



A large-deviations approach to gelation 13

Proof. To each element (mi)i of the state space SN defined in (1.3), we associate a unique element of the

space

NN =
{
ℓ = (ℓk)k ∈ N

N

0 :
∑

k

kℓk = N
}
, (3.3)

where for each k, ℓk is the number of indices i such that mi = k. The map (mi)i 7→ ℓ is a bijection and in

the following we refer to configurations equally in terms of (mi)i or ℓ.

Fix δ, ρ > 0 and N ∈ N and recall the definition of AN,t(ℓ) in (2.3), then we see that

PN

(
Mi(N)(t) ∈ Bδ(λ), Ma(N)(t) ∈ Bρ(α)

)

=
∑

ℓ∈NN

1l{d( 1
N
ℓ, λ) < δ} 1l{D(ℓ⌊·N⌋, α) < ρ}PN(AN,t(ℓ)).

(3.4)

Step 1: Cardinality of NN : First we note that |NN | = eo(N) because the following argument (which is due

to an argument in [Ada08]). For any ℓ ∈ NN , the set H(ℓ) = {k ∈ N : ℓk > 0} has no more than 2
√
N

elements, since

N =
∑

k∈H(ℓ)

kℓk ≥
∑

k∈H(ℓ)

k ≥
|H(ℓ)|∑

k=1

k = |H(ℓ)|1
2
(|H(ℓ)| − 1).

Hence,

|NN | ≤
∣∣∣
{
(ℓk)k ∈ N

N

0 :
∑

k

kℓk = N, |H(ℓ)| ≤ 2
√
N
}∣∣∣ ≤

∑

H⊂N : |H|≤2
√
N

∣∣∣{(ℓk)k∈H ∈ N
H :

∑

k∈H
kℓk = N

}∣∣∣

≤
∑

H⊂N : |H|≤2
√
N

∣∣∣{(Lk)k∈H ∈ N
H :

∑

k∈H
Lk = N

}∣∣∣ ≤
(

N

⌊2
√
N⌋

)(
N + ⌊2

√
N⌋

⌊2
√
N⌋

)

= eo(N).

Hence, we only have to give asymptotic estimates on the single summands on the right-hand side of (3.4).

Step 2: Splitting PN(AN,t(ℓ)). The strategy is to divide the terms in the product representation from Corol-

lary 2.2 into three groups, which we call micro-, meso-, and macroscopic. We fix two increasing sequences

RN and εNN in N such that RN ր ∞, εN ↓ 0 and RN < εNN . We write

PN(AN,t(ℓ)) = N !× FMi(ℓ)× FMe(ℓ)× FMa(ℓ), (3.5)

where

FMi(ℓ) =

RN∏

k=1

zk(ℓ), FMe(ℓ) =
∏

RN<k≤εNN

zk(ℓ), FMa(ℓ) =
∏

εNN<k≤N

zk(ℓ),

and

zk(ℓ) =
µN
t (k)

ℓke−
t

2N
k(N−k)ℓk

k!ℓk ℓk!
.

Let us set

cMi(ℓ/N) =
1

N

RN∑

k=1

kℓk, cMe(ℓ/N) =
1

N

∑

RN<k≤εNN

kℓk, cMa(ℓ/N) =
1

N

∑

εNN<k≤N

kℓk.

(3.6)
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Note that the sum of these three terms is equal to one. For the factor N !, we use Stirling’s formula N ! =

(N
e
)Neo(N) so that uniformly in ℓ ∈ NN

N ! =

(
N

e

)NcMi(ℓ/N)(
N

e

)NcMe(ℓ/N)(
N

e

)NcMa(ℓ/N)

eo(N), N → ∞. (3.7)

Step 3: Upper bound in the case cλ + cα ≤ 1. We start by looking at the first term on the right-hand side,

i.e., the ‘microscopic’ term. We use the upper bound in (2.5), to obtain

zk(ℓ) ≤
k(k−2)ℓkt(k−1)ℓke−

t
2N

k(N−k)ℓk

k!ℓkN (k−1)ℓk (1
e
ℓk)ℓk

.

Using this in the first term of (3.5) (together with the first term in (3.7)), we obtain, uniformly for ℓ ∈ NN , also

using that
∑RN

k=1
t

2N
k2ℓk ≤ t

2
RNcMi(ℓ/N),

(
N

e

)NcMi(ℓ/N)

FMi(ℓ) ≤
RN∏

k=1

[(N
e

)kℓk k(k−2)ℓkt(k−1)ℓkeℓke−
t
2
kℓk e

t
2N

k2ℓk

k!ℓkN (k−1)ℓk(ℓk)ℓk

]

= exp
(
−N

RN∑

k=1

1

N
ℓk log

k!ek 1
N
ℓk

kk−2tk−1e1−
t
2
k

)
eo(N)

= exp
(
−NI (RN )

Mi ( 1
N
ℓ; t)

)
eo(N),

where

I
(RN )

Mi (λ̃; t) = f (RN )(λ̃; t) +

RN∑

k=1

kλ̃k

( t
2
− log t

)
with f (RN )(λ̃; t) : =

RN∑

k=1

λ̃k log
k!tek−1λ̃k
kk−2

,

is the cut-off version of the rate function defined in (1.7). Recall that d( 1
N
ℓ, λ) < δ and that cλ =∑

k∈N kλk ∈ [0, 1] and observe that limR→∞ I (R)

Mi (λ; t) = IMi(λ; t). Therefore we see that, for any

R ∈ N,
(
N

e

)NcMi(ℓ/N)

FMi(ℓ) ≤ exp (−NIMi(λ; t)) e
N(CR(δ)+γR)+o(N) e−N( t

2
−log t)(cMi(ℓ/N)−cλ) , N → ∞,

(3.8)

where limR→∞ γR = 0 and limδ↓0CR(δ) = 0. Indeed, since f (R)(·; t) is continuous, it is clear that

supℓ : d( 1
N
ℓ,λ)<δ |f (R)( 1

N
ℓ; t) − f (R)(λ; t)| vanishes as δ ↓ 0 and can therefore be estimated against such

a CR(δ). Moreover, we estimate (substituting 1
N
ℓ by λ̃), for any N such that RN > R, with the help of the

Stirling bound k!ekk−k ≥ 1 and Jensen’s inequality for ϕ(x) = x log x, as follows:

f (RN )(λ̃; t)− f (R)(λ̃; t) =

RN∑

k=R+1

λ̃k log
k!tek−1λ̃k
kk−2

≥
RN∑

k=R+1

λ̃k log
k2tλ̃k
e

≥
RN∑

k=R+1

e

tk2
ϕ
( RN∑

k=R+1

λ̃k

/ RN∑

k=R+1

e

tk2

)

=

RN∑

k=R+1

λ̃k log
( RN∑

k=R+1

λ̃k

/ RN∑

k=R+1

e

tk2

)
≥

RN∑

k=R+1

λ̃k log
(
cR

RN∑

k=R+1

λ̃k

)

≥ −γR,
(3.9)
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for some c > 0, where we used that the remainder sum
∑

k>R
1
k2

is of order 1/R as R → ∞ and that∑RN

k=R+1 λ̃k ≤ 1/R since
∑

k kλ̃k ≤ 1 and that the map x 7→ x log(cRx) is decreasing in (0, 1/eRc),

introducing some −γR that vanishes as R → ∞. In this way, we arrived at the estimate in (3.8). Notice that

the last term on the right-hand side cannot be further estimated with the help of continuity (since λ 7→ cλ
is not continuous), but will be jointly handled together with the correspondent macroscopic and mesoscopic

terms.

For handling the third term in (3.5), we proceed analogously, but use the upper bound in Lemma 2.4, to

obtain, for k ∈ {εNN, . . . , N},

zk(ℓ) ≤
(1− e−t k

N )(k−1)ℓke−
t

2N
k(N−k)ℓk

k!ℓk (1
e
ℓk)ℓk

and consequently

(
N

e

)NcMa(ℓ/N)

FMa(ℓ) ≤
∏

εNN≤k≤N

[(N
e

)kℓk (1− e−t k
N )kℓke−

t
2
kℓke

t
2
k2ℓk/N

k!ℓk ℓk!

]

≤
∏

εNN≤k≤N

[(N
k

)kℓk
(1− e−t k

N )kℓke−
t
2
kℓke

t
2
k2ℓk/N

]

= exp
(
−NI

(εN )

Ma (ℓ⌊·N⌋; t)
)

(3.10)

where

I
(εN )

Ma (α̃; t) = g(εN )(α̃; t) +

∫

[εN ,1]

x α̃(dx)
( t
2
− log t

)

with

g(εN )(α̃; t) =

∫

[εN ,1]

[
x log

tx

1− e−tx
− t

2
x2
]
α̃(dx),

denotes the cut-off version of the rate function IMa defined in (1.7). Recall that D(ℓ⌊·N⌋, α) < ρ and

cα =
∫
(0,1]

xα(dx) ≤ 1 and observe that limε↓0 I
(ε)

Ma(α; t) = IMa(α; t), then we see that, for any ε > 0,

(
N

e

)NcMa(ℓ/N)

FMa(ℓ) ≤ exp
(
−NIMa(α; t)

)
eN(Cε(ρ)+γε+

t
2
ε)+o(N) e−N( t

2
−log t)(cMa(ℓ/N)−cα),

N → ∞, (3.11)

for some Cε(ρ) and γε that satisfy limε↓0 γε = 0 and limρ↓0Cε(ρ) = 0. Indeed, first observe that g(ε)(·; t)
is continuous and hence |g(ε)(ℓ⌈·N⌉; t) − g(ε)(α; t)| can be estimated against such a Cε(ρ), uniformly in

N ∈ N and ℓ such that D(ℓ⌊·N⌋, α) < ρ. Furthermore, for any ε > 0 and any N ∈ N such that εN < ε,

g(εN )(ℓ⌈·N⌉; t)− g(ε)(ℓ⌈·N⌉; t) =
εN∑

k=εNN

ℓk
k

N

(
log

k
N
t

1− e−t k
N

− t

2

k

N

)
≥ − t

2
ε,

since log x
1−e−x ≥ 0 for all x > 0. Hence, we arrived at the bound in (3.11). Notice that again we refrain

from estimating the term e−N( t
2
−log t)(cMa(ℓ/N)−cα), which needs to be coupled with the microscopic and the

mesoscopic part.
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Then we are left to handle the middle term in (3.5), for which we use again the upper bound in (2.5) and

Stirling’s formula, to see that

(
N

e

)NcMe(ℓ/N)

FMe(ℓ) ≤
⌊εNN⌋∏

k=RN+1

[(N
e

)kℓk k(k−2)ℓk(1− e−t/N)(k−1)ℓke−
t

2N
k(N−k)ℓk

k!ℓk ℓk!

]

≤
( ⌊εNN⌋∏

k=RN+1

[ Ne

k2ℓkt

]ℓk)( ⌊εNN⌋∏

k=RN+1

e
t

2N
k2ℓk
) (
te−t/2

)NcMe(ℓ/N)
.

We claim that the right-hand side is equal to (te−t/2)NcMe(ℓ/N)eNLN (ℓ) for some LN(ℓ) that vanishes, uni-

formly in ℓ, as N → ∞. First note that the one-but-last term is such a term, since t
2N

∑⌊εNN⌋
k=RN+1 k

2ℓk ≤
t
2
εNNcMe(ℓ/N). Furthermore,

∑⌊εNN⌋
k=RN+1 ℓk ≤ N/RN , which shows that the terms containing t and e in

the first product are as small. With the same approach as in (3.9), we see the lower bound

lim inf
N→∞

⌊εNN⌋∑

k=RN+1

ℓk
N

log
k2ℓk
N

≥ 0.

Therefore, uniformly in ℓ such that D(ℓ⌈·N⌉, α) < ρ, we have arrived at the estimate

(
N

e

)NcMe(ℓ/N)

FMe(ℓ) ≤
(
te−t/2

)NcMe(ℓ/N))+o(N)
= exp

(
−N

( t
2
− log t

)
cMe(ℓ/N)

)
eo(N), N → ∞.

(3.12)

Now we collect (3.8), (3.11) and (3.12) and substitute them in (3.5), also using (3.7), then we obtain,

uniformly in ℓ such that d( 1
N
ℓ, λ) < δ) and D(ℓ⌊·N⌋, α) < ρ, for any R ∈ N and any ε > 0, as N → ∞,

1

N
logPN(AN,t(ℓ)) ≤ −IMi(λ; t)− IMa(α; t) + CR(δ) + γR + Cε(ρ) + γε +

t

2
ε

−
( t
2
− log t

)
(1− cλ − cα) + o(1)

= −I(λ, α; t) +KR,ε(δ, ρ) + o(1),

where KR,ε(δ, ρ) vanishes as δ ↓ 0 and ρ ↓ 0, followed by R → ∞ and ε ↓ 0, and we recall that

cMe(ℓ/N) = 1−cMi(ℓ/N)−cMa(ℓ/N). This implies the upper bound in (3.2) in the case where cλ+cα ≤
1.

Step 4: Upper bound in the case cλ + cα > 1. In this case, we implicitly use the lower semicontinuity of

the maps λ 7→ cλ and α 7→ cα to show that the event AN,t(ℓ) is empty for any ℓ such that d( 1
N
ℓ, λ) < δ

and D(ℓ⌊·N⌋, α) < ρ, if δ and ρ are small enough. This will give the right super-exponential upper bound for

PN(AN,t(ℓ)), since I(λ, α; t) = ∞.

Indeed, first pick R ∈ N so large and ε ∈ (0, 1) so small that
∑R

k=1 kλk +
∫
[ε,1]

xα(dx) are larger than

one, say equal to 1 + η for some η > 0. Then choose δ and ρ in (0, 1) so small that, for any ℓ such that

d( 1
N
ℓ, λ) < δ) and D(ℓ⌊·N⌋, α) < ρ, we have

∣∣∣ 1
N

R∑

k=1

kℓk +
1

N

∑

εN≤k≤N

kℓk −
R∑

k=1

kλk +

∫

[ε,1]

xα(dx)
∣∣∣ < η

2
.
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A large-deviations approach to gelation 17

For such ℓ, we then have that, using the notation in (3.6),

cMi(ℓ/N) + cMa(ℓ/N) ≥ 1 +
η

2
,

which contradicts the fact that cMi(ℓ/N), cMe(ℓ/N) and cMa(ℓ/N) sum up to one.

Step 5: Logarithmic asymptotics of the lower bound. For the lower bound we only need to consider the

case I(λ, α; t) < ∞, and here we construct a “recovery sequence”, that is, a sequence (ℓ(N))N∈N such

that

lim
N→∞

d( 1
N
ℓ(N), λ) = 0, (3.13)

lim
N→∞

D(ℓ(N)

⌊·N⌋, α) = 0, (3.14)

lim inf
N→∞

1

N
logPN(AN,t(ℓ

(N))) ≥ −I(λ, α; t). (3.15)

For N large enough define ℓ(N) ∈ NN by

ℓ(N)

k =





⌊λkN⌋ for k = 2, . . . , RN ;

⌊ (1−cλ−cα)N
RN+1

⌋ for k = RN + 1;

α
(
k−1
N
, k
N

]
for k = RN + 2, . . . , N ;

N −∑N
j≥2 jℓ

(N)

j for k = 1,

(3.16)

where RN is an arbitrary diverging sequence in N such that logN ≪ RN . It is clear by construction that

(3.13) and (3.14) hold.

Using Lemma 2.3, a calculation similar to that for the upper bound shows that

(
N

e

)NcMi(ℓ
(N)/N)

FMi(ℓ
(N)) ≥ exp

(
−NI (RN )

Mi (λ; t)
)
eo(N),

and in the same way, one checks that for k = RN + 1

lim inf
N→∞

1

N

[
log zk

(
ℓ(N)

k

)
+ kℓ(N)

k

logN !

N

]
≥ (1− cλ − cα)

(
log t− t

2

)
.

Now, fix δ ∈ (0, 1). One can see that

α
(
RN+2

N
, δ
]
≤ N

RN + 2

∫ δ

RN+2

N

xα(dx) ≤ N

RN + 2
cα(δ), (3.17)

where cα(δ) vanishes as δ ↓ 0 whenever α ∈ MN0 . Then we use Lemma 2.3 and Stirling’s upper bound

to see that, for N large

1

N

⌊δN⌋∑

k=RN+2

[
log zk(ℓ

(N)) + kℓ(N)

k

logN !

N

]

≥
(
log t− t

2

)∑δN
k=RN+2

k
N
α
(

k
N
, k+1

N
]
)
!− 1

N

∑δN
k=RN+2 logα

(
( k
N
, k+1

N
]
)

−
δN∑

k=RN+2

2 log k + log
√
2πk

N
α
(
( k
N
, k+1

N
]
)
+ o(1).

DOI 10.20347/WIAS.PREPRINT.2568 Berlin 2019
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By using (3.17), log k ≤ k and that

δN∏

k=RN+2

α
(
( k
N
, k+1

N
]
)
! ≤

(∑δN
k=RN+2 α

(
k
N
, k+1

N

])
! ≤

(
N

RN+2

)
!

we see that, whenever logN ≪ RN , there exist a finite εδ, vanishing as δ ց 0 such that

lim inf
N→∞

1

N

⌊δN⌋∑

k=RN+2

[
log zk(ℓ

(N)) + kℓ(N)

k

logN !

N

]
≥ εδ.

For the remaining terms one calculates that

1

N

N∑

⌊δN⌋+1

[
log zk

(
ℓ(N)

k

)
+ kℓ(N)

k

logN !

N

]

=
1

N

N∑

⌊δN⌋+1

kℓ(N)

k

[
log

(
µ(N)

t (k)
1
k

k/N

)
− t

2N
(N − k)

]
+ o(1)

=

∫

(δ,1]

x

[
log

(
µ(N)

t (⌊Nx⌋) 1
⌊Nx⌋

x

)
− t

2
(1− x)

]
α(dx) + o(1). (3.18)

Now by Lemma 2.4 the integrand converges pointwise to

x

[
log

(
1− e−tx

x

)
− t

2
(1− x)

]
.

Since, for N large enough,

x log

(
x

µ(N)

t (⌊Nx⌋) 1
⌊Nx⌋

)
≤ x

[
log

(
x

1− e−tx

)
+ 1

]
,

which is clearly integrable over x ∈ (δ, 1] with respect to α, we can apply the dominated convergence

theorem.

Combining the above estimates we see that for any δ ∈ (0, 1) we have aδ with limδց0 aδ = 0 and

lim inf
N→∞

1

N
logPN(AN,t(ℓ

(N))) ≥ −I(λ, α; t)− aδ (3.19)

so (3.15) follows on taking the limit δ ց 0.

4 Corollaries and study of the rate functions

In this section we analyse, for fixed t ∈ [0,∞), the minima of the rate function, I(λ, α; t), over the config-

urations λ respectively α, and afterwards the minimima of the rate functions for the total masses, JMi, JMe

and JMa. In particular, we find analytical characterisations for the gelation phase transition at 1/t if t > 1.
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A large-deviations approach to gelation 19

4.1 Rate functions for the microscopic part

We start by minimizing I(λ, α; t), for a fixed λ ∈ N over all compatible α ∈ MN0 . We will obtain the rate

function for the microscopic part, and we will see that this minimum is attained for α of the form α = δcα .

Informally speaking, the following in particular implies that, with probability tending to one, there is at most

one macroscopic particle.

Lemma 4.1 (Analysis of the microscopic rate function). Fix λ ∈ N and recall that cλ =
∑

k∈N kλk ∈ [0, 1],

then

inf
α∈MN

I(λ, α; t) =
∞∑

k=1

λk log
k!ek−1tλk
kk−2

− (1− cλ)

(
log

1− e(cλ−1)t

(1− cλ)
− cλt

2

)
+ cλ

( t
2
− log t

)
.

Moreover, the minimum is attained precisely at α = δ1−cλ .

Proof. Clearly

inf
α∈MN

I(λ, α; t) = inf
c∈[0,1−cλ]

inf
α∈MN0

(c)
I(λ, α; t)

= IMi(λ; t) + inf
c∈[0,1−cλ]

(
inf

α∈MN0
(c)
IMa(α; t) + (1− cλ − c)

( t
2
− log t

))
.

Fix c ∈ [0, 1] and α ∈ MN0(c). Note that α((c, 1]) = 0 since α is a point measure with
∫
(0,1]

xα(dx) = c.

We have, denoting ft(x) = log x
1−e−tx + t

2
(1− x),

IMa(α; t) =

∫

(0,c]

xft(x)α(dx) ≥
∫
xft(c)α(dx) = cft(c) = c log

c

1− e−tc
+
t

2
c(1−c) = IMa(δc; t),

(4.1)

since ft is strictly decreasing in [0,∞). Indeed,

f ′
t(x) =

1

x
− te−tx

1− e−tx
− t

2
=

t(1 + y)

2y(1− e−2y)

[1− y

1 + y
− e−2y

]
, y =

tx

2
.

We want to prove that f ′(x) < 0 for x ∈ [0,∞). For y ≥ 1, this is obvious from above, and for y ∈ [0, 1),

this is easily seen as follows.

e2y = 1 +
∞∑

k=1

(2y)k

k!
< 1 +

∞∑

k=1

2yk = (1 + y)
∞∑

k=0

yk =
1 + y

1− y
,

since 2k

k!
< 2 for all k ≥ 3. Hence, we see that f ′

t(x) ≤ 0 for x ∈ [0,∞), and (4.1) follows.

Furthermore, it is immediate that c log c
1−e−tc +

t
2
c(1− c) + (1− cλ − c)( t

2
− log t) is decreasing in c,

and hence the optimal value of c is c = 1− cλ.

Now the proof of Corollary 1.2 directly follows from Theorem 1.1, Lemma 4.1 and the contraction principle

since the projection (λ, α) 7→ λ is continuous in the product topology.

Let us analyse the minimising statistics of the macroscopic part.
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Lemma 4.2 (Analysis of the macroscopic rate function). Fix α ∈ MN0 and recall that cα =
∫
(0,1]

xα(dx) ∈
[0, 1], then

inf
λ∈N

I(λ, α; t) = IMa(α; t) + Cα,t

(
log(tCα,t)−

t

2
Cα,t

)
+ (1− cα)

( t
2
− log t

)
, (4.2)

where Cα,t = (1 − cα) ∧ 1
t
. Furthermore, for 1 − cα ≤ 1

t
, the unique minimizer is equal to λ∗(1 − cα; t)

defined in (1.14), and for 1 − cα > 1
t
, there is no minimizer, but there are approximating sequences that

approach λ∗(1
t
; t).

Proof. As in the proof of Lemma 4.1, we see that

inf
λ∈N

I(λ, α; t) = inf
c∈[0,1−cα]

inf
λ∈N (c)

I(λ, α; t)

= IMa(α; t) + inf
c∈[0,1−cα]

(
inf

λ∈N (c)
IMi(λ; t) + (1− cα − c)

( t
2
− log t

))

= IMa(α; t) + (1− cα)
( t
2
− log t

)
+ inf

c∈[0,1−cα]
inf

λ∈N (c)
Î(λ),

(4.3)

where

Î(λ) =
∞∑

k=1

λk log
k!tek−1λk
kk−2

.

We always interpret 0 log 0 as 0. Fix c ∈ [0, 1]. Since Î is strictly convex on the convex set N (c), we see

by evaluating the variational equations that the only candidate for a minimiser in the interior is

λ∗k(c; t) =
ek(ρ−1)kk−2

k!t
, k ∈ N,

with ρ ∈ R such that
∑∞

k=1 kλ
∗
k(c; t) = c. Interestingly, we can identify kλ∗k(c; t) = Boµρ

(k)µρ/t, where

µρ is determined by µρ − log µρ = 1− ρ, and

Boµ(k) =
e−µk(µk)k−1

k!
, k ∈ N,

are the probabilities of the Borel distribution with parameter µ ∈ [0, 1]. Note that Boµ(k) is not summable

for µ > 1. Hence, ρ must be picked such that c = µρ/t. The largest value c that can be realised in this way

is c = 1/t by picking ρ = 0. Hence, the preceding is possible at most for c ∈ [0, 1 ∧ 1
t
]. By continuity and

strict monotonicity of
∑∞

k=1 kλ
∗
k(c; t) in ρ, indeed, any c ∈ [0, 1 ∧ 1

t
] can be uniquely realized, by picking

ρ = −tc + log tc + 1 ≤ 0 such that
∑∞

k=1 kλ
∗
k(c; t) = c... In this case, it is clear that the minimizer of Î

in the interior of N (c) is equal to

λ∗k(c; t) =
kk−2cktk−1e−ctk

k!
, k ∈ N,

as claimed in (1.14), with value

Î(λ∗(c; t)) = c
(
log tc− tc

2

)
. (4.4)
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Now give an argument why λ∗(c; t) realises the minimum of Î over N (c). We show that any such minimiser

must be positive in every component. Indeed, if λk∗ = 0 for some k∗ ∈ N, then we consider λ̂ ∈ N (c),

defined by

λ̂k =





ε, if k = k∗,

−εC, if k = k̂,

λk otherwise,

with k̂ ∈ N \ {k∗} such that λk̂ > 0 and C > 0 such that λ̂ ∈ N (c) for any sufficiently small ε > 0. Now

a simple insertion shows that Î(λ̂) < Î(λ), if ε > 0 is small enough, since the slope of ε 7→ ε log ε at zero

is −∞. Hence, λ cannot be a minimizer. On the other hand, λ∗(c; t) has the property that all directional

derivatives of Î in all admissible directions with compact support are zero; hence it is the minimizer of Î over

N (c) for c ∈ [0, 1
t
].

When c > 1
t
, it is possible to pick a sequence of λ(n) ∈ N (c) such that limn→∞ Î(λ(n)) = − 1

2t
(pick

λ(n)

k as λ∗k(
1
t
; t) + εnδn(k) for some suitable εn > 0). Furthermore, we now show that

inf
λ∈N

Î(λ) ≥ − 1

2t
.

Minimising in x for each k ∈ N independently shows

x log
k!tek−1x

kk−2
≥ −1

t

1

k

kk−1e−k

k!
= −1

t

1

k
Bo1(k), (4.5)

and so

Î(λ) ≥ −1

t
E

[
1

X

]
,

where X is Borel distributed with parameter 1. Now this expectation [AP98, §4.5] is precisely 1
2
, which is

equal to the value of the right-hand side of (4.4) for the critical value c = 1
t
. Hence, the infimum of Î over

λ ∈ N (c) for c ≥ 1
t

is equal to − 1
2t

. This shows that the infimum over λ ∈ N (c) in the last line of (4.3) is

equal to (c ∧ 1
t
)(log(t(c ∧ 1

t
))− t

2
(c ∧ 1

t
), and (4.2) follows.

Then, the proof of Corollary 1.3 directly follows from Theorem 1.1, Lemma 4.2 and the contraction

principle, since the projection is continuous.

Finally, let us draw some conclusions regarding the mesoscopic mass. As stated after Corollary 1.4, it

is not possible to apply the contraction principle, if we want to derive an LDP for the sequence of random

variables Me
(N)

RN ,εN
(t), however we can still identify the rate function by minimizing I over all pairs (λ, α)

such that cλ + cα = 1− c. Even if the contraction principle cannot be applied directly, the following lemma

proves that the rate function JMe(c; t) has exactly the expected form, given by (4.7).

Lemma 4.3. Fix t ∈ [0,∞). Then, for any c ∈ [0, 1] and any RN ∈ N and εN ∈ (0, 1) such that

1 ≪ RN < εNN ≪ N ,

lim
δ↓0

lim
N→∞

1

N
logPN

(∣∣Me
(N)

RN ,εN
(t)− c

∣∣ ≤ δ
)
= −JMe(c; t). (4.6)
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Proof. First we have to prove that, for a fixed c ∈ [0, 1],

inf
λ∈N

α∈MN0
cλ+cα=1−c

I(λ, α; t) = JMe(c; t)
(
= (1− c)

(
log(1− c)t− (1− c)t

2

)
+
t

2
− log t.

)
(4.7)

Fix x ∈ [0, 1− c], then for a fixed λ ∈ N (x)

inf
α∈MN0

(1−c−x)
I(λ, α; t) = IMi(λ; t)

+ c
( t
2
− log t

)
+
[
(1− c− x) log

1− c− x

1− e−t(1−c−x)
+

t

2
(1− c− x)(c+ x)

]
,

since the infimum is attained in α = δ1−c−x, as proved in Lemma 4.1. Then, with the same procedure of

Lemma 4.2, we see that the infimum over λ ∈ N (x), when xt ≤ 1 is attained in

λ∗(x; t) = x
e−xtk(xt)k−1kk−2

k!
,

giving

inf
α∈MN0

(1−c−x)

λ∈N (x)

I(λ, α; t) = x log(xte−tx)− x(1− xt

2
) + c

( t
2
− log t

)

+
[
(1− c− x) log

1− c− x

1− e−t(1−c−x)
+
t

2
(1− c− x)(c+ x)

]
,

while if xt > 1, for any λ ∈ N (x),

inf
α∈MN0

(1−c−x)
I(λ, α; t) ≥ − 3

2t
+c
( t
2
−log t

)
+
[
(1−c− 1

t
) log

1− c− 1
t

1− e−t(1−c− 1
t
)
+
t

2
(1−c− 1

t
)(c+

1

t
)
]
.

Minimizing then for x ∈ [0, 1− c], we see that the infimum is attained in x∗ smallest solution to

x∗ = (1− c)e−t(1−c−x∗),

which is x∗ = 1− c, for all t ≥ 1
1−c

and x∗ < 1− c otherwise. By substitution, we see that (4.7) holds.

Now, notice that procedure to get the upper bound in the proof of Proposition 3.1 implies in a straightfor-

ward way that

lim
δ↓0

lim sup
N→∞

PN

(∣∣Me
(N)

RN ,εN
(t)− c

∣∣ ≤ δ
)
≤ −JMe(c; t).

In the same way, from the proof of Proposition 3.1, we borrow the strategy of constructing a “recovery

sequence”, this time using λ∗(x∗; t) and α∗ = δ1−c−x∗ to construct ℓ(N) as in (3.16). This gives

lim
δ↓0

lim inf
N→∞

PN

(∣∣Me
(N)

RN ,εN
(t)− c

∣∣ ≤ δ
)
≥ −JMe(c; t).

Notice that in the lower bound part of the proof of Proposition 3.1 we see a restriction on RN (i.e. logN ≪
RN ). However, in this case, we construct the “recovery sequence” in such a way that this is not needed.

Indeed, the macroscopic part of the sequence ℓ(N) puts all the mass in k = N(1 − c − x∗) and the

condition on RN is superfluous.

The proof of the second point in Corollary 1.4 follows as a direct consequence of Lemma 4.3.
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4.2 Proof of Theorem 1.5

Item (1) follows by Lemma 4.1 and 4.2. Following the approach of those proofs, one can easily see that

JMi(c; t) = inf
λ∈N (c)

IMi(λ; t) = inf
α∈MN0

(1−c)
IMa(α; t) = JMa(1− c; t).

Let us now prove assertion (2). The form of the minimizing λ follows from Lemma 4.2. Fix t ∈ [0, 1]. Then

JMi(c; t) = c log c− tc2 + tc+ (1− c) log 1−c
1−et(c−1) is strictly decreasing in c ∈ [0, 1]. Indeed

d

dc
JMi(c; t) = log tc− tc+

t(1− c)e−t(1−c)

1− e−t(1−c)
− log

t(1− c)e−t(1−c)

1− e−t(1−c)
= F

(t(1− c)e−t(1−c)

1− e−t(1−c)

)
−F (tc),

where we introduced the function F (x) = x− log x, which is decreasing in x ∈ (0, 1]. Hence, monotonicity

of JMi(·; t) in [0, 1] follows from

tc ≤ t(1− c)e−t(1−c)

1− e−t(1−c)
≤ 1. (4.8)

The first inequality follows by observing that the function φt(c) = e−t(1−c) − c is nonnegative for all c ∈
[0, 1 ∧ 1

t
], since φt(0) = e−t > 0, φt(1) = 0, and φt is strictly decreasing in [0, 1], since t ≤ 1. The

second inequality follows from the fact that ψ(z) : = 1 − e−z − ze−z ≥ 0 for all z ∈ [0, 1] (substitute

z = t(1 − c)), since ψ(0) = 0, ψ(1) = 1 − 2e−1 ≥ 0 and ψ is strictly increasing in [0, 1]. Therefore,

JMi(·; t) is minimized in c = 1, which implies the conclusion.

Now we turn to assertion (3). For t ∈ (1,∞), the derivative of JMi(c; t) writes as follows

d

dc
JMi(c; t) =

t(1− c)e−t(1−c)

1− e−t(1−c)
− log

t(1− c)e−t(1−c)

1− e−t(1−c)
+

{
log tc− tc for c ≤ 1

t
,

−1 for c > 1
t
.

It is clear that JMi(c; t) is strictly increasing in c ∈ (1
t
, 1], while for c ∈ [0, 1

t
], we need to go back to (4.8).

The right inequality there is still true for any c < 1
t
. Since the quotient in (4.8) is strictly increasing in c and

since F (x) = x− lg x is strictly convex in x, the unique zero of d
dc
JMi(c; t) is given by the unique solution

c of

tc =
t(1− c)e−t(1−c)

1− e−t(1−c)
,

which is precisely the solution c = βt of (1.16). The remaining assertions follow.
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