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Dynamic programming for optimal stopping via
pseudo-regression

Christian Bayer, Martin Redmann, John G. M. Schoenmakers

Abstract

We introduce new variants of classical regression-based algorithms for optimal stopping prob-
lems based on computation of regression coefficients by Monte Carlo approximation of the cor-
responding L2 inner products instead of the least-squares error functional. Coupled with new
proposals for simulation of the underlying samples, we call the approach “pseudo regression”.
We show that the approach leads to asymptotically smaller errors, as well as less computational
cost. The analysis is justified by numerical examples.

1 Introduction

Stochastic optimal stopping problems (in discrete time) play an important role in the theoretical as well
as in the numerical literature on stochastic optimal control, since they are both generally considered
difficult to solve and have many practical applications, in particular in energy and finance (where
American or Bermudan options can naturally be understood as stochastic optimal stopping problems).

Many numerical methods have been suggested, ranging from PDE techniques (based on the Hamilton-
Jacobi-Bellman equation of the associated continuous-time problem), to Monte Carlo (simulation)
based approaches involving regression techniques, policy iteration, duality, and more. For an overview,
see for instance [Gla04], [BS18b].

In this paper, we consider stochastic approaches based on the Bellman equation. A key ingredient of
the classical algorithms such as the ones proposed by Longstaff and Schwartz [LS01] or Tsitsiklis and
Van Roy [TVR01] is (global) regression, used to compute a conditional expectation of, say, u(z) :=
E[Y |Z = z] for some random variables Y and Z . Given basis functions ψ1, . . . , ψK , one thus looks
for the best approximation of the unknown function u in the linear span{ψ1, . . . , ψK} with respect to
the distribution of Z denoted by µ, i.e., we would ideally like to solve the minimization problem

β∗ := arg min
β∈RK

E

∣∣∣∣∣Y −
K∑
k=1

βkψk(Z)

∣∣∣∣∣
2
 ,

in order to find an approximation u(·) ≈
∑K

k=1 β
∗
kψk(·) =: uK(·). Classically, the above minimization

problem is directly translated into the corresponding least-squares problem based on Monte Carlo
approximation of the expectation, i.e., for i.i.d. samples (Y i, Zi), i = 1, . . . ,M , one solves

β̂ := arg min
β∈RK

M∑
i=1

∣∣∣∣∣Y i −
K∑
k=1

βkψk(Z
i)

∣∣∣∣∣
2

. (1)

While well-understood by now, it is worth-while to recall that the analysis of the convergence of β̂ as
M → ∞ is not trivial due to the reliance on random matrix theory, see, for instance, [GKKW02].
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C. Bayer, M. Redmann, J. G. M. Schoenmakers 2

Instead of approximating the minimization problem by Monte Carlo simulation it is also possible to
directly approximate the solution β∗. Indeed, note that uK is, of course, the linear projection of u to
span{ψ1, . . . , ψK} in theL2(µ)-sense. Hence, assuming for ease of notation that the basis functions
ψ1, . . . , ψK are orthonormal w.r.t. µ—the general case requires multiplication with the Gram matrix
formed by 〈ψk , ψl〉L2(µ)—we have

β∗k = 〈u , ψk〉L2(µ) = E [E[Y |Z]ψk(Z)] = E[Y ψk(Z)].

This formula, however, can be immediately approximated by Monte Carlo simulation giving

βk :=
1

M

M∑
i=1

Y iψk(Z
i), k = 1, . . . , K. (2)

From a technical point of view, convergence analysis of β is relatively straightforward and leads to
squared error terms of the order K

M
(see Theorem 4.1). On the other hand, the squared error due

to the solution β̂ of the least squares problem is of order (1+lnM)K
M

(see Theorem 4.2). At the same

time, computing β is also cheaper compared to computing β̂, as we avoid computing a system of linear
equations (see the discussions in Section 5). However, as we see in the later Section 3.1, computation
of β does rely on knowledge of the Gram matrix associated to the basis functions and the measure µ.

Another important detail of regression based algorithms, especially as consecutive regression steps
are required, is the choice of random variables (Y, Z). Clearly, the result of the regression procedure
(just as the conditional expectation) only depends on the conditional distribution of Y given Z , but not
on the distribution of Z itself, which gives us considerable freedom.

In the context of Bermudan options, let Xj denote the underlying process at time j (see Section 2 for
more details) and let vj denote the option value at time j. Then, in the simplest case of dynamical
programming, we need to evaluate conditional expectations E[vj(Xj)|Xj−1 = z]. Hence, a very
natural implementation of the regression procedure above will be based onM samples (X i

0, . . . , X
i
J )

of the whole trajectory until the expiry time J of the option, iteratively using slices Y i ≡ vj(X
i
j) and

X i ≡ X i
j−1 in the above notation, for j = 1, . . . ,J . Hence, the distribution µ of X will depend on j.

An alternative approach, especially advantageous when Xj is a homogeneous Markov process, i.e.,
when the conditional distribution of Xj given Xj−1 = z does not depend on j, is to fix an (carefully
chosen) probability measure µ for all j. Now sample r.v.s U i from µ and X i from the conditional
distribution of Xj given Xj−1 = U i. Hence, we obtain

E[vj(X)|U = z] = E[vj(Xj)|Xj−1 = z],

and we can use the same batch of samples for each of the consecutive regression steps for j =
1, . . . ,J , considerably reducing the computational time of the algorithm. As an added benefit, we are
now free to choose the probability measure µ. This allows us to specifically choose both µ and the
basis function ψ1, . . . , ψK such that the basis functions are already orthogonal w.r.t. µ, implying a
trivial Gram matrix.

In what follows, we call the combination of using a fixed set of sampled trajectories X i
0, . . . , X

i
J with

the least-squares estimator (1) standard regression, and we call a combination of samples (U i, X i)
based on a arbitrarily chosen measure µ together with the L2-projection estimator (2) pseudo regres-
sion. We argue that pseudo regression has both theoretical and numerical advantages compared with
standard regression for many Bermudan option problems. Indeed,

� the convergence rates for the number of samples M → ∞ are better due to the missing
ln(M)-term (see Theorems 4.1 and 4.2);
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Dynamic programming for optimal stopping via pseudo-regression 3

� the asymptotic number of floating point operations necessary is smaller (see Section 5);

� numerical examples indicate lower computational costs for fixed error tolerance, in line with the
theory, see Section 6.

Outline

In Section 2 we recapitulate some theory of optimal stopping in discrete time and recall the (classical)
Tsitsiklis–van Roy and Longstaff–Schwartz algorithms. In Section 3 we describe in detail the one-step
regression procedures involved for both standard and pseudo regression and provide a convergence
proof for the latter case. In Section 4 we give a proof of convergence for the full Longstaff–Schwartz
algorithm based on pseudo regression. We discuss the computational cost for the different variants of
the algorithms in Section 5 and give numerical examples in Section 6. We conclude with a summary
and an outline of future research in Section 7.

2 Recap of optimal stopping in discrete time

2.1 Theory of optimal stopping in discrete time

Let us recall some facts about the optimal stopping problem in discrete time. Suppose (Zj : j =
0, 1, . . . ,J ) is a nonnegative adapted stochastic process in discrete time on a filtered probability
space (Ω,Fj, 0 ≤ j ≤ J , P ), which satisfies

J∑
j=1

E [Zj] <∞.

In the context of a (discrete time) American or Bermudan option Z may be regarded as a (discounted)
cash-flow process that may be exercised once by the option holder. More specifically, one may think
of P as a pricing measure corresponding to some numéraire N (with N0 = 1 for simplicity), and
Z = R/N , where (Rj : j = 0, 1, . . . ,J ) is a real (not discounted) cash-flow process. Then, from
general no arbitrage principles it is well known that a fair price of the American option is given by

Y0 := sup
τ∈S0

E [Zτ ] , (3)

where S0 denotes the set of F -stopping times taking values in {0, . . . ,J }. The Snell envelope of Z
is defined as

Yj := ess supτ∈Sj EFj
[Zτ ] , j = 0, ...,J , (4)

where Sj denotes the set of F -stopping times taking values in {j, . . . ,J }. We recall the following
classical facts (e.g. see [Nev75]):

1 The Snell envelope Y of Z is the smallest super-martingale that dominates Z. It can be con-
structed recursively by the Backward Dynamic Program principle or Bellman principle:

YJ = ZJ (5)

Yj = max
(
Zj,EFj

[Yj+1]
)
, 0 ≤ j < J .
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2 An optimal stopping time for (3) is given by

τ ∗ = min{j : 0 ≤ j ≤ J , Zj ≥ EFj
[Yj+1]]}

with YJ+1 := 0. That is,
Y0 = sup

τ∈S0
E [Zτ ] = E [Zτ∗ ] .

Thus, in principle, one may arrive at the solution to (3) by carrying out (5) backwardly from j = J
down to j = 0. However, straightforwardly, this leads to a high degree nested expression of conditional
expectations that is virtually impossible to evaluate in practice.

Let us now assume the presence of an underlying Markovian process X := X0,x := (X0,x
j :

j = 0, 1, . . . ,J ), adapted to (Fj) , living in Rd, and starting at X0,x
0 = x a.s. More generally,

(Xj,z
r : r = j, ...,J ) denotes a random trajectory with Xj,z

j = z a.s. Let us further assume that the
cash-flow has the form

Zj (ω) = fj(Xj (ω)), 0 ≤ j ≤ J

for some functions fj(·) : Rd → R≥0. Then, due to Markovianity, there exist functions vj(·) : Rd →
R≥0, such that we may similarly write

Yj (ω) = vj(Xj (ω)), 0 ≤ j ≤ J .

The Bellman principle now simply says that

vj(Xj) = max (fj(Xj),E[vj+1(Xj+1)|Xj]) , j < J .

Henceforth
cj(x) := E[vj+1(Xj+1)|Xj = x]

is called the continuation value function. The numerically challenging task is, of course, the computa-
tion of the cj for 0 ≤ j < J .

2.2 Standard regression algorithms

For clarity, let us describe the classical Tsitsiklis–van Roy algorithm in full detail. Let (X
(m)
0 , . . . , X

(m)
J ),

m = 1, . . . ,M , denote M independent trajectories from the Markov process X . Initialize v̂J := fJ ,
ĉJ := 0. If v̂j and ĉj are already constructed, iteratively construct (backward in time)

β̂(j−1) := arg min
β∈RK

M∑
m=1

(
v̂j(X

(m)
j )−

K∑
k=1

βkψk(X
(m)
j−1)

)2

, (6)

ĉj−1(·) :=
K∑
k=1

β̂kψk(·), v̂j−1(·) := max(fj−1(·), ĉj−1(·)). (7)

After this construction, we can either simply return the approximate value v̂0(X0), or refine the esti-
mate by simulating the expected pay-off due to the nearly optimal stopping time,

τ̂ = min {j : 0 ≤ j ≤ J , fj(Xj) > ĉj(Xj)} ,

using newly generated independent samples from the process X.

DOI 10.20347/WIAS.PREPRINT.2532 Berlin 2018



Dynamic programming for optimal stopping via pseudo-regression 5

The Longstaff–Schwartz algorithm is defined similarly, except that the regression step (6) does not
use the previously constructed value function v̂j , but rather the nearly optimal stopping time induced
by ĉj, . . . , ĉJ . More precisely, the Longstaff–Schwartz algorithm goes as follows: Initialize for m =

1, ...,M, τ
(m)
J := J , ĉJ := 0. If the τ (m)

j and ĉj are already constructed, iteratively construct
(backward in time)

β̂(j−1) := arg min
β∈RK

M∑
m=1

(
f
τ
(m)
j

(X
(m)

τ
(m)
j

)−
K∑
k=1

βkψk(X
(m)
j−1)

)2

, (8)

ĉj−1(·) :=
K∑
k=1

β̂kψk(·), (9)

If fj−1(X
(m)
j−1) > ĉj−1(X

(m)
j−1) then τ

(m)
j−1 = j − 1 else τ

(m)
j−1 = τ

(m)
j . (10)

In both algorithms, the regression step itself only relies on two random variables, which we might as
well denote by (X, Y ) ∈ Rd × R, living on some probability space (Ω,F ,P). Consider the problem
of estimating the function u : Rd → R, satisfying

u(X) = E [Y |X] . (11)

As indicated, we solve the least squares minimization problem

β̂ := arg inf
β∈RK

M∑
m=1

(
Y (m) −

K∑
k=1

βkψk
(
X(m)

))2

, (12)

and consider the estimation

û (x) =
K∑
k=1

β̂kψk (x) . (13)

It is well-known that by defining the design matrixN ∈ RM×K by

Nmk := ψk
(
X(m)

)
, m = 1, ...,M, k = 1, ..., K,

and the vector Y ∈ RM by
Ym = Y (m), m = 1, ...,M,

that the solution to (12) may be written as

β̂ =
1

M

(
1

M
N>N

)−1
N>Y , (14)

provided that N has full rank K. The latter is typically almost surely the case when K ≤ M. Note
that,

1

M

[
N>N

]
k,l=1,...,K

=
1

M

M∑
m=1

ψk
(
X(m)

)
ψl
(
X(m)

)
(15)

≈ E [ψk (X)ψl (X)] .

In general, the marginal distribution of X is not explicitly known and the inversion of the matrix
1
M
N>N in (14) is a main delicate issue since it has random nonnegative eigenvalues that can be

arbitrary close to zero by chance. Furthermore, the computation of N requires about KM function
calls and the computation of (14) requires about K2M elementary operations.

DOI 10.20347/WIAS.PREPRINT.2532 Berlin 2018
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3 The pseudo regression approach

As an alternative to the well-known methods in [LS01] and [TVR01] we now propose a backward
algorithm for approximating the continuation functions cj (respectively vj) by functions cj, (respectively
vj,) j = J , ..., 0, in the present setup that is based on pseudo regression. Let us assume that we
have chosen a set of basis functions ψk : Rd → R, k = 1, ..., K, and a measure µ concentrated on
D ⊂ Rd, such that the Gram matrix G defined by

Gkl := 〈ψk, ψl〉 :=

∫
ψk(z)ψl(z)µ(dz) (16)

together with its inverse G−1 is explicitly known, or can be efficiently computed. In the algorithm spelled
out below we construct a set of approximative continuation functions cj, j = J , ..., 0, which satisfy

cj(z) ≈ cj(z) := E
[
vj+1(X

j,z
j+1)

]
= E

[
vj+1(X

0,·
j+1) |X

0,·
j = z

]
.

Moreover, it is assumed (for simplicity) that we are able to sample trajectories X0,x
· exactly.

The probability measure µ is used to measure the regression error, cf. (2), i.e., we try to minimize the
difference between cj and cj in the sense of the L2(µ)-norm. From that perspective, a natural choice
of µ as induced by the problem at hand would be the distribution of XJ+1, but that choice runs afoul
of the requirement that the Gram matrix is known explicitly. We shall see in Section 6 that the problem
is not very sensitive to the choice of µ, such that we can often even choose a uniform (and simple)
reference measure µ for all j without significant sacrifice in overall accuracy.

3.1 Pseudo regression variant of Tsitsiklis–van Roy

We start with vJ = vJ = fJ and cJ = cJ = 0. The backward iteration step j → j − 1
works as follows: First generate M i.i.d. copies U (m), m = 1, . . . ,M with U (1) ∼ µ. Simulate for

m = 1, . . . ,M, the r.v. Xj−1,U(m)

j , and consider the M ×K matrixM(j) defined by

M(j)
mk := ψk

(
U (m)

)
. (17)

Define the vector Y(j) ∈ RM by

Y(j)
m := vj

(
Xj−1,U(m)

j

)
. (18)

Following (2), the coefficients of the basis functions are given by

β
(j)

:=
1

M
G−1

(
M(j)

)> Y(j) (19)

and then we obtain the approximate continuation value and solution, respectively, by

cj−1(z) :=
K∑
k=1

β
(j)

k ψk(z) and vj−1(z) := max (fj−1(z), cj−1(z)) . (20)

A pseudo-code representation of the algorithm is given in Algorithm 1.

The pseudo regression algorithm for Bermudan options is related to the well-known Tsitsiklis–van Roy
algorithm (see [TVR01]), but differs essentially because of the pseudo regression step (19). In contrast,
Tsitsiklis–van Roy compute the coefficients (19) by using standard global regression. Another striking
difference is that in Algorithm 1 the basis functionsψk have to be evaluated much less times, since only
one sample ofM drawings from the distribution µ serves for all exercise dates. The merits of standard
versus pseudo regression in a general setting are explained and discussed in detail in Section 4 below.

DOI 10.20347/WIAS.PREPRINT.2532 Berlin 2018



Dynamic programming for optimal stopping via pseudo-regression 7

Data: µ,M,ψ1, . . . , ψK ,G, f0, . . . , fJ .
Result: Value function vj and continuation value cj , j = 0, . . . ,J .

1begin
2vJ ←− vJ = fJ
3cJ ←− cJ = 0
4for m←− 1 to M do
5Generate U (m) ∼ µ
6end
7M←−

(
ψk(U (m))

)
m=1,...,M
k=1,...,K

∈ RM×K

8for j ←− J to 1 do
9for m←− 1 to M do

10Generate Xj−1,U(m)

j

11// These r.v. are understood to be independent
conditional U (m)

12end

13Y(j) ←−
(
vj

(
Xj−1,U(m)

j

))
m=1,...,M

∈ RM

14β
(j) ←− 1

M
G−1M>Y(j)

15cj−1(·)←−
K∑
k=1

β
(j)

k ψk(·)

16vj−1(·)←− max (fj−1(·), cj−1(·))
17end
18end

Algorithm 1: Pseudo regression variant of TV for Bermudan options

DOI 10.20347/WIAS.PREPRINT.2532 Berlin 2018



C. Bayer, M. Redmann, J. G. M. Schoenmakers 8

3.2 Pseudo regression variant of Longstaff–Schwartz

In order to obtain a pseudo regression variant of the Longstaff–Schwartz algorithm we modify the
backward construction of the approximative continuation functions cj, j = J , ..., 0 (initialized with
cJ = 0 again) in the following way. Let us assume that cj, ..., cJ are constructed. Simulate for
m = 1, ...,M at time j − 1 the trajectory

Xj−1,U(m)

r , r = j, ...,J , (21)

and modify (18) to

Y(j)
m :=fτ (X

j−1,U(m)

τ ), where

τ ≡ min
{
r : r ≥ j, fr(X

j−1,U(m)

r ) ≥ cr

(
Xj−1,U(m)

r

)}
.

Then compute (19) and set cj−1(z) according to (20). The corresponding modification of Algorithm 1
is obvious.

At the first glance this procedure is significantly more costly. However, if the chain X is autonomous,
which we may assume w.l.o.g. in fact, we simulate first

X0,U(m)

r , r = 0, ...,J ,

and then take in (21)

Xj−1,U(m)

r = X0,U(m)

r−j+1 , r = j, ...,J . (22)

So, for the autonomous case, one set of full trajectories, just as in the standard LS algorithm, is
sufficient for this algorithm as well.

4 Accuracy analysis of pseudo regression

In the next section we analyze an alternative and potentially more efficient pseudo regression proce-
dure for computing E [Y |X] , i.e. (11), given that we may sample Y from its conditional distribution
given X (although we generally do not know E [Y |X] explicitly of course).

4.1 A general framework

Suppose that in (11) it is possible to sample Y from its conditional distribution givenX, say ν (dy|X) .
A canonical example is the setup in Section 3 where

X = X0,x
j and Y = g

(
X0,x
j+1

)
= g

(
X
j,X0,x

j

j+1

)
,

for some arbitrary x. Let us consider a random variable U with values in some domain D ⊂ Rd,
distributed according to some probability measure µ(dz) concentrated on D. We then generate i.i.d.
copies U (m), m = 1, ...,M of U , and sample for each m = 1, ...,M, independently Y (m) from
ν
(
dy|U (m)

)
. Then define the vector Y ∈RM as

Y :=
[
Y (1), ..., Y (M)

]>
.

DOI 10.20347/WIAS.PREPRINT.2532 Berlin 2018



Dynamic programming for optimal stopping via pseudo-regression 9

Now for a linearly independent system (ψk : k = 1, 2, ...) , with∫
ψ2
k(z)µ(dz) <∞,

consider the M ×K matrix
Mmk := ψk

(
U (m)

)
.

Assuming that we know explicitly the matrix G defined by the scalar products Gkl := 〈ψk, ψl〉 (cf.
(16)), we now compute the pseudo regression coefficients

β =
1

M
G−1M>Y , (23)

and consider the pseudo regression approximation

u(z) =
K∑
k=1

βkψk (z) ≈ E [Y | U = z] , z ∈ D. (24)

Clearly, the difference with standard regression is that the random matrix 1
M
N>N in (14) is replaced

by G in view of (15). In general G−1 can be pre-computed outside the Monte Carlo simulation with
arbitrary accuracy or is explicitly known due to a suitable choice of the system (ψk : k = 1, 2, ...)
and the measure µ. So the computation of (23) only involves KM elementary operations and no
random matrix inversion is required. Moreover, naturally, we may assume w.l.o.g. that the system
(ψk : k = 1, 2, ...) is an orthonormal system with respect to L2 (D, µ) and then (23) simplifies to

β =
1

M
N>Y .

4.2 Accuracy analysis of the regression

For the convergence properties of the pseudo-regression method we could basically refer to [ABE+17,
BBR+18], where pseudo regression is applied in the context of global solutions for random PDEs. For
the convenience of the reader, however, let us here recap the analysis in condensed form, consistent
with the present terminology and a somewhat less involved setup.

Theorem 4.1. (Accuracy pseudo regression) Suppose that in (11)

|u(z)| ≤ D and Var [Y |X = z] < σ2, for all z ∈ D,
0 < λmin ≤ λmin

(
GK
)
≤ λmax

(
GK
)
≤ λmax, for all K = 1, 2, ...,

where λmin

(
GK
)
, and λmax

(
GK
)
, denote the smallest, respectively largest, eigenvalue of the pos-

itive symmetric matrix G. Then it holds,

E
∫
D
|u(z)− u(z)|2 µ(dz) (25)

≤ λmax

λmin

(
σ2 +D2

) K
M

+ inf
w∈ span{ψ1,...,ψK}

∫
D
|w(z)− u(z)|2 µ(dz).

DOI 10.20347/WIAS.PREPRINT.2532 Berlin 2018



C. Bayer, M. Redmann, J. G. M. Schoenmakers 10

The proof of Theorem 4.1 is provided in Appendix A.1.

It is interesting to compare Theorem 4.1 with a corresponding theorem that holds for the standard
regression estimate (13):

Theorem 4.2. (Accuracy standard regression) Suppose that,

|u(x)| ≤ D and Var [Y |X = x] < σ2, for all x ∈ Rd,

then for

ũD(x) =


ũ(x) if |ũ(x)| ≤ D
D if ũ(x) > D
−D if ũ(x) < −D

and some universal constant c > 0, it holds that

E
∫
|ũD(x)− u(x)|2 µX(dx) (26)

≤ cmax
(
σ2, D2

) (1 + lnM)K

M
+ 8 inf

w∈ span{ψ1,...,ψK}

∫
D
|w(x)− u(x)|2 µX(dx),

where µX denotes the distribution of X in (11).

The proof of Theorem 4.2 is much more complicated than the proof of Theorem 4.1 and relies heavily
on uniform laws of large numbers from the theory of empirical processes. For details see [GKKW02].

4.3 Convergence of the pseudo Longstaff–Schwartz algorithm

In this section we investigate the convergence properties of the pseudo Longstaff–Schwartz algorithm
in the spirit of [BS18a] and [Zan13]. More specifically, we adapt the proof in the paper [BS18a] on
optimal stopping in the context of interacting particle systems. The proof for the Tsitsiklis–van Roy
algorithm is very similar and, hence, omitted.

Let us consider the algorithm based on (21), that is, for every exercise date the sample (21) is simu-
lated independently, and consider the information set

Gj := σ
{
Xj;M , . . . ,XJ−1;M

}
with Xj;M :=

(
Xj,U(m),m
r , r = j, ...,J , m = 1, ...,M

)
.

Let us define for a generic dummy trajectory (Xl)l=0,...,J corresponding to the (exact) solution inde-
pendent of Gj,

c̃j(x) := EGj+1

[
fτ j+1

(
Xτ j+1

)∣∣Xj = x
]
, (27)

where τJ = J , and

τ j := j 1{
fj(Xj)≥cj(Xj)

} + τ j+11{
fj(Xj)<cj(Xj)

}.
It is important to note that, in (27), c̃j (·) is a Gj+1-measurable random function while the estima-
tion cj (·) is a Gj-measurable one as the construction of cj also depends on Xj;M , see (20). After
proceeding backwardly from j = J down to j = 1, we thus have a sequence of approximative
continuation functions cj (·) , and a sequence of corresponding conditional expectations c̃j (·) . The
convergence analysis is based on the following lemma (cf. Lemma 5 in [BS18a]).
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Lemma 4.3. For the conditional expectations (27) we have that,

‖c̃j − cj‖Lp(µ)
≤
J−1∑
l=j+1

‖cl − cl‖Lp(µj,l)
(28)

with p ≥ 1, µj,l being the distribution of Xj,U
l , 1 ≤ j ≤ l ≤ J , U ∼ µ, and cj, being the true

continuation functions.

The proof is almost identical with the proof of the similar Lemma 5 in [BS18a]. For the convenience of
the reader, it is given in Appendix A.2.

Remark 4.4. Note that the inequality (28) involves Gj+1-measurable objects. It is also interesting to
compare (28) with similar (though different) inequalities in [Zan13].

We now state our convergence theorem connected with the pseudo Longstaff–Schwartz algorithm (cf.
Theorem 7 in [BS18a]).

Theorem 4.5. Assume that the conditions of Theorem 4.1 are fulfilled. In particular assume that the
cash-flows fj are uniformly bounded in j = 1, . . . ,J . Let us define, for a generic measure ν, the
norm

‖·‖2L2(ν⊗P) := E
[
‖·‖2L2(ν)

]
,

due to the unconditional expectation with respect to the “all in” probability measure P. One then has
for j = 1, . . . ,J − 1 and Xj,U

l ∼ µj,l, j ≤ l ≤ J ,

‖cj − cj‖L2(µ⊗P) ≤ εj,M,Kη(2 + η)J−j−1, with (29)

εj,M,K =

√
K

M
+ max

j≤l<J
inf

w∈ span{ψ1,...,ψK}
‖cl − w‖L2(µj,l)

,

for some constant η > 0 not depending on K and M.

The proof follows similar lines as the one in [BS18a] (although there are some differences due to the
different setup) and is given in the present context and terminology in Appendix A.3.

5 Computational cost

We will now discuss the advantages and disadvantages of the two different approaches for various
use-cases, both in the context of the Tsitsiklis–van Roy algorithm and the Longstaff–Schwartz algo-
rithm. The main issue is, of course, the relation between computational work and accuracy. Comparing
Theorems 4.1 and 4.2, we see that the error as function of the number of basis functionsK , the choice
of basis functions ψ1, . . . , ψK and the number of samples M is roughly equivalent for both methods.

Remark 5.1. We ignore the different constants as well as the additional lnM term in Theorem 4.2.
In practice, different constants may, of course, have drastic effects ion run-time, which is why the
numerical experiments presented in Section 6 are crucial. A more subtle difference is related to the
choice of the measure with respect to which the error is calculated. Also we note that we only focus on
the cost of computing the functions cj, respectively vj, as the other aspects of the computation have
negligible cost, independent of the chosen regression method.
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Let us recall our general setting: we are given a cash-flow process Zj = fj(Xj), j = 0, . . . ,J ,
which is based on an Rd-valued Markov process Xj , j = 0, . . . ,J , and we would like to compute
the corresponding Bermudan option price. In the following, we need to make certain assumptions on
the simulation.

Assumption 5.2. We can exactly simulate the Markov process X . More precisely, given a sample of
Xj , we can simulate a sample of Xj+1, j = 0, . . . ,J − 1, exactly at cost normalized to one.

Assumption 5.2 seems to restrict us to simple models such as Black-Scholes or Bachelier, for which
exact simulation is easily possible, but note that any discretization error would be expected to effect
both regression algorithms in the same way, both with respect to accuracy and with respect to compu-
tational cost. Therefore, we think that Assumption 5.2 is justified.

Remark 5.3 (Cost model). In the discussions of computational cost, all estimates shall be understood
as counting the number of function evaluations. More precisely, each of the following operations incurs
one unit cost:

� Generating one sample of Xj+1 conditional on Xj ;

� Evaluating a basis function ψk at one point x;

� An elementary floating point calculation such as a product between two floating point numbers.

Of course, these operations incur very different computational costs in practice. However, note that it
is very difficult to realistically bound true computational times any way. These may heavily depend on
hardware features (e.g., cache misses), and, in particular, on the implementation details.

5.1 Tsitsiklis–van Roy algorithm

With Assumption 5.2, we can already describe the computational work of the standard regression
algorithm.

Proposition 5.4 (Computational cost of standard regression). The computational cost of the standard
regression satisfies

Creg = O
(
J (MK2 +K3)

)
.

Proof. This result is, of course, very well known. The dominating terms for the computational cost
the computation of the random matrix N>N and the computation of the coefficient β̃ by, e.g., LU
or Cholesky decomposition. Both operations have to be recomputed for each exercise time j =
0, . . . ,J − 1.

For the pseudo regression approach we will operate under

Assumption 5.5. The basis functionsψ1, . . . , ψK are chosen such that the matrix G is given explicitly.

The assumption is most easily satisfied by choosing the basis function to be orthonormal polynomials
w.r.t. µ. Then we obtain
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Proposition 5.6 (Computational cost of pseudo regression). The computational cost of pseudo re-
gression under Assumptions 5.2 and 5.5 satisfies

Cpseudo = O
(
JMK + JK2 +K3

)
.

If, in addition, the basis functions are orthonormal w.r.t. µ, then the cost instead satisfies

Cpseudo = O (JMK) .

Proof. First we need to compute the LU decomposition of the matrix G, at cost proportional to K3—
independent of J . We also need to simulate the random variables U and set up the matrixM at cost
O(MK). In each iteration of the algorithm, we then need to simulate the vector Y and multiplyM>Y
at cost proportional to MK . Finally, assembling the solution of the linear system Gβ = 1

M
M>Y

incurs costs proportional to K2.

In the orthonormal case, we have G = G−1 = IdK , and the cost of setting upM and multiplying
M>Y becomes dominant.

In practice, even better cost savings are possible under

Assumption 5.7. The Markov process X is homogeneous in time, i.e., the conditional distribution of
Xj+1 given Xj does not depend on j.

This condition is very often satisfied in financial models, and it has drastic implications for the pseudo
regression algorithm (but not for the standard regression). Indeed, since the conditional distribution
does not depend on j, and we always re-sample the starting points (at step j) from the same distribu-
tion µ—instead of the distribution of Xj—, we can simply use the same samples for setting up Y for
each time-step in (23). Formally, the asymptotic cost does not change compared to Proposition 5.6,
but in practice we do observe major effects due to decreasing constants.

Remark 5.8. It is well-understood in practice that it is generally beneficial to add the payoff function
itself to the set of basis functions. This may cause problems for the pseudo regression, as the inner
products of the payoff function with the other (typically polynomial) basis functions cannot be expected
to be given in closed form, thereby violating Assumption 5.5. However, we can compute those scalar
products numerically, by quadrature, quasi Monte Carlo or even standard Monte Carlo, at negligible
extra cost, especially in the setting of Assumption 5.7. With some additional work, we can still achieve
orthonormality by Gram-Schmidt.

Let us summarize the findings of this section by looking at the most typical case. Arguably, this is the
case when M � K,J . We may always choose basis functions to be orthonormal, hence we con-
sider the second case in Proposition 5.6. For standard regression, the computational costs are, hence,
asymptotically proportional to JMK2, whereas the pseudo regression only incurs costs proportional
to JMK . This will lead to a computational advantage, especially when K is large.

5.2 Longstaff–Schwartz algorithm

Asymptotically, the Longstaff–Schwartz algorithm based on standard regression usually incurs the
same cost as the Tsitsiklis–van Roy algorithm based on standard regression (Proposition 5.4).
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Proposition 5.9. The computational cost of the Longstaff–Schwartz algorithm due to (8)–(10), using
standard regression, is

Creg = O
(
JMK2 + JK3

)
.

Proof. First we simulate all trajectories at cost O(JM) and evaluate the basis functions along all
simulated values at cost O(JMK). For each step j in the backward iteration we need to set up the
matrix N>N at (individual) cost O(MK2). Then we need to compute the right hand side Y(j) at
costO(JM), which assumes that the values of the continuation function at times j+ 1, . . . ,J have
been pre-computed in the earlier stages of the backward iteration. Finally, compute the coefficients at
costO(MK2 +K3).

If we apply the Longstaff–Schwartz algorithm with pseudo-regression we note an important difference
compared to Tsitsiklis–van Roy: in the standard case of the algorithm (presented in Section 3.2) we
potentially have to evaluate the basis functions ψ1, . . . , ψK for each sampleXj−1,Um

r , r = j, . . . ,J .
In the worst case, this incurs costs proportional to J 2KM on top. Hence, we obtain

Proposition 5.10. The computational cost of the Longstaff–Schwartz algorithm based on pseudo
regression is

Cpseudo = O
(
JK2 +K3 + J 2MK

)
.

If the basis functions are orthonormal w.r.t. µ, then the costs reduce to

Cpseudo = O
(
J 2MK

)
.

Suppose that we are actually in the setting of Assumption 5.7. Then we may once again duplicate the
samples. In this case, we still need to simulate full trajectories starting from the sampled initial points
at j = 0, but we can then “shift” those samples in time. In this case, we only need to evaluate the
basis functions at X0,Um

r , r = j, . . . ,J , which incurs an additional cost O(JMK). On the other
hand, we will get a cost component O(J 2M) simply from assembling Y(j) for each j. In total, we
obtain

Proposition 5.11. If Assumption 5.7 holds and we duplicate samples, then the computational cost of
the Longstaff–Schwartz algorithm based on pseudo regression is

Cpseudo = O
(
JK2 +K3 + JMK + J 2M

)
.

If the basis functions are orthonormal w.r.t. µ, then the costs reduce to

Cpseudo = O
(
JMK + J 2M

)
.

Let us, once again, summarize the discussion on the computational costs by looking at a typical case.
For true Bermudan options,J is, of course, fixed, whileM andK need to be increased in order to im-
prove the accuracy of the estimator. Hence, the typical case for asymptotic considerations is probably
M � K � J . Once again, we may very well assume to have chosen orthonormal basis functions
together with Assumption 5.7. Hence, regarding pseudo regression, we are in the second case of
Proposition 5.11. Under these conditions, the computational cost of the Longstaff–Schwartz algorithm
with standard regression is asymptotically proportional toJMK2, while the pseudo regression incurs
cost asymptotically proportional to JMK . Again, the costs of the standard regression dominate in
the long run.
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6 Numerical experiments

Unless otherwise stated, the numerical experiments below are run on a laptop computer with an
Intel R© CoreTM i7-6500U processor and 8GB RAM. All algorithms are implemented and executed in
GNU Octave version 4.0.3 running on openSUSE Leap 42.3. Moreover, all the codes are single-
threaded.

We consider a Bermudan Max-Call option on n assets which, for instance, has already been consid-
ered in [AB04]. The assets X i are identically distributed and yield dividends with rate δ. They are
given as the solutions to

dX i
t = (r − δ)X i

tdt+ σX i
tdW

i
t , X i

0 = x0, t ∈ [0, T ], i = 1, . . . , n, (30)

where W i are independent scalar Brownian motions. The interest rate r as well as σ are constant.
We assume to have J + 1 exercise dates 0 ≤ t0 < t1, . . . < tJ ≤ T in which the option holder
may exercise to obtain the payoff

h(Xt) =
(
max(X1

t , . . . , X
n
t )− κ

)+
, (31)

where κ > 0. Moreover, we introduce the discounted payoff function by ft(Xt) = e−rt h(Xt).

Throughout the remainder of this section, it is assumed that T = 3, r = 0.05, δ = 0.1, σ = 0.2 and
κ = 100. We further choose tj = j TJ for j = 0, . . . ,J .

6.1 Option pricing using Tsitsiklis–van Roy

We aim to determine an approximation v̄0 of the value Y0 of the Bermudan Max-Call option above. To
do so, we use the algorithm of Tsitsiklis–van Roy [TVR01], where the computation of the continuation
functions c̄j (j = 0, . . . ,J − 1) is based on the standard regression (SR). On the other hand we use
the algorithm explained in Section 3.1 (see also Algorithm 1), in which SR is replaced by a pseudo
regression (PR) method.

In this section, we set J = 9. We choose random initial values U ∼ µ within the PR for each
component X i given by (30). In fact, we set

U = emn +σ̂nZ ,

where Z ∼ N (0, 1), i.e., U is log-normal distributed. We choose different mean parameter mn and a
variance parameter σ̂n depending on n. This is because we observe that we obtain somewhat better
results if these parameter are slightly modified with the number of assets n.

We choose orthonormal polynomials (ψk)k=1,...,K with respect to µ. To be more precise, we introduce
Hermite polynomials on R of degree i which we denote by Hi. We then define ψ1, . . . , ψK via a
suitable ordering of the functions

n∏
j=1

Hij

(
ln(yj)−mn

σ̂n

)
with i1 + i2 + . . . + in ≤ p, where p ∈ N is the largest polynomial degree and ij ∈ N for all

j. Thus, the total number of basis functions is K = (p+n)!
p!n!

. In fact, we just pick all the products of
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Hermite polynomials with total degree up to p, and use some bijection to assign them to an index
k = 1, . . . , K . In the following, the above orthonormal functions are not just used for the PR but also
within the SR ansatz.

We now determine v̄0 of the Bermudan option for the initial values x0 = 90, 100, 110. Moreover, we
conduct the numerical experiments for n = 2, 3, 4 assets and we set p = 5. We aim to achieve
the same accuracy for both the PR and the SR based algorithm in order to be able to compare both
schemes. This can be done by using a different number of samples for PR than for SR. However, it
is hard to find these numbers of samples such that both algorithms yield exactly the same output v̄0.
Therefore, for both methods, M = 2e+06 samples are used to derive the continuation functions,
since we observe that in this case the PR and the SR based method lead to approximately the same
output. Notice that the algorithm with a slightly lower number for v̄0 can always be improved by using
more samples.

We start with the case n = 2. We observe that X i
t has a different mean and a different variance over

time t. Consequently, we choose m2 and σ̂2 such that U approximately covers the important areas
of the range of X i

t regardless of the particular time t ∈ [0, T ] chosen. We see that both PR and SR
perform almost equally well for the case n = 2, see first block of Table 1. It seems that PR even yields
slightly better results for v̄0. The respective computational times can be found in Figure 1a. It turns out
that the PR algorithm is more than three times faster.

It is possible to also take the same mean and variance parameter for n > 2. However, enlarging the
variance slightly for n = 3 leads to results which are a little bit better. The mean parameter remains
the same as for n = 2. From the second block in Table 1, it can be seen that both algorithms lead to
approximately the same value v̄0. The advantage of using PR is the much lower computational time.
We know from Figure 1b that we save a factor of more than five compared to SR.

In the case of n = 4, the variance parameter is again enlarged compared to the case of having
n = 3 assets. We modify the mean parameter as well, for details see Table 1. Again, SR and PR yield
results of the same quality, see third block of Table 1, whereas the PR based algorithm is extremely
fast compared to the SR. Figure 1c shows that a factor of more than nine can be saved.

x0 v̄0(x0) based on PR v̄0(x0) based on SR Parameter used
n = 2

90 8.046 (0.006) 8.030 (0.006) K = 21, σ̂n = 0.26
100 13.884 (0.008) 13.868 (0.008) and
110 21.322 (0.009) 21.314 (0.009) mn = ln(x0)− 0.105
n = 3

90 11.238 (0.007) 11.234 (0.007) K = 56, σ̂n = 0.29
100 18.640 (0.009) 18.640 (0.009) and
110 27.533 (0.010) 27.520 (0.010) mn = ln(x0)− 0.105
n = 4

90 14.045 (0.008) 14.049 (0.008) K = 126, σ̂n = 0.32
100 22.638 (0.009) 22.638 (0.010) and
110 32.527 (0.011) 32.531 (0.011) mn = ln(x0)− 0.179

Table 1: Approximative value v̄0 of the Bermudan option based on SR and PR for J = 9 using
Tsitsiklis–van Roy. The computation of the continuation functions is based on M = 2e+06 samples.
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PR

SR 18.42

5.18

Time [s]

(a) Computational times for n = 2.
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(b) Computational times for n = 3.
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(c) Computational times for n = 4.

Figure 1: Time to compute continuation functions using Tsitsiklis–van Roy andM = 2e+06 samples;
standard versus pseudo regression for n = 2, 3, 4 and J = 9.

We conclude this section by considering the case n = 5 separately. The reason is that in this case 8
GB RAM are not sufficient such that this experiment cannot be run on the laptop computer. Therefore,
we use a computer with an HP BL460c Gen8 2xXeon Eight-Core processor with 128GB RAM. Again,
the same version of Octave is used.

Notice that the experiments for n = 2, 3, 4 have a different relative computational time on this com-
puter when comparing PR and SR. The relative computational gain of using PR is then 15 to 25
percent lower than the factors obtained in Figure 1. This indicates that the computational gain also
depends on the architecture of the underlying computer.

Another reason to investigate this case separately is that we use a larger number of samples for the PR
based algorithm in order to achieve the same value v̄0 for both methods. In fact, we use M = 8e+06
samples for PR and M = 2e+06 samples for SR. It can be seen from Table 2 that both algorithms
yield the same value for v̄0. Although four times more samples are used for PR, the algorithm is still
more than two times faster, see Figure 2. Notice that the absolute computational time on the 128GB
RAM computer is much larger than the one on the 8GB RAM laptop computer. This explains the large
values in Figure 2.

Remark 6.1. Comparing the values v̄0 from the PR variant of the Tsitsiklis–van Roy algorithm in Tables
1 and 2 with the lower bounds in [AB04, Table 2], it can be seen that these values are very close to
each other. To be more precise, we achieve 99.76%−99.94% (n = 2), 99.63%−100.01% (n = 3)
and 99.71% − 99.98% (n = 5) of the values in [AB04] depending on the particular initial value. For
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x0 v̄0(x0) based on PR v̄0(x0) based on SR Parameter used
n = 5

90 16.569 (0.008) 16.570 (0.008) K = 252, σ̂n = 0.34
100 26.090 (0.010) 26.088 (0.010) and
110 36.718 (0.011) 36.715 (0.011) mn = ln(x0)− 0.21

Table 2: Approximative value v̄0 of the Bermudan option based on SR and PR for J = 9 and n = 5
using Tsitsiklis–van Roy. The computation of the continuation functions is based on M = 2e+06
samples for SR and on M = 8e+06 samples for PR.

0 400 800 1,200 1,600

PR

SR 1597.19

743.88

Time [s]

Figure 2: Time to compute continuation functions using Tsitsiklis–van Roy on a computer with 128GB
RAM; standard (M = 2e+06) versus pseudo (M = 8e+06) regression for n = 5 and J = 9.

the case n = 4 no reference value is known to us.

6.2 Option pricing using Longstaff–Schwartz

In this section, we study the same problem as in Section 6.1. However, we now determine the ap-
proximation v̄0 for the value of the Bermudan Max-Call option based on Longstaff–Schwartz. Again,
we investigate a PR based version (see Section 3.2) and a SR based method (see [LS01]) for this
approach in order to derive the continuation functions c̄j .

We observe from the simulations that PR is clearly faster than SR for Longstaff–Schwartz for n > 2 us-
ing the same parameter as in Section 6.1. Instead of presenting the same experiments for Longstaff–
Schwartz again, we only point out one case in which we see a very large gain in terms of computational
time. For that reason, we study the case n = 4 only and modify the number of exercise dates to five,
i.e., J = 4. All other parameter remain as before. Table 3 shows us that both types of regression
provide a similar value for v̄0 but using SR is more than two times more expensive, compare Figure 3.

x0 v̄0(x0) based on PR v̄0(x0) based on SR Parameter used
n = 4

90 13.719 (0.008) 13.708 (0.008) K = 126, σ̂n = 0.32
100 22.170 (0.010) 22.163 (0.010) and
110 31.914 (0.011) 31.915 (0.011) mn = ln(x0)− 0.179

Table 3: Approximative value v̄0 of the Bermudan option based on SR and PR for J = 4 using
Longstaff–Schwartz.
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Figure 3: Time to compute continuation functions using Longstaff–Schwartz; standard versus pseudo
regression for n = 4 and J = 4.

Remark 6.2. The gain of the pseudo-regression version of the Longstaff–Schwartz algorithm with re-
spect to the standard one is generally smaller than the gain in Section 6.1, in the context of Tsitsiklis–
van Roy. The reason is clear: The backward steps (8)–(10) in the standard algorithm cannot be
straightforwardly modified to a pseudo-regression based setting. Therefore in order to construct a vec-
tor Y(j) of stopped cash-flows in a pseudo-regression based setup analogue to the standard method,
new trajectories are simulated for each exercise date starting from an initial state simulated under
µ. Of course, this makes the procedure more costly, however, the generally expensive inversion of a
random matrix at each exercise date is avoided this way.

7 Conclusions

We compare the classical regression method for solving Bermudan options in the form of either the
Tsitsiklis–van Roy or the Longstaff–Schwartz algorithm with a new variant based on pseudo regres-
sion, i.e., Monte Carlo simulation of L2 inner products based on samples simulated from an artificial
base measure µ (not directly related to the distribution of the underlying stock price at any point in
time).

As a key issue, setting up and inverting a random matrix at every exercise date, can be avoided in
the pseudo-regression approach. Therefore, the computational cost can be considerably lower for a
similar level of accuracy, as verified in numerical examples in Section 6. This is also motivated from
an asymptotic cost analysis, see Section 5. Furthermore, the pseudo-regression based algorithms
are much easier to analyze theoretically, and leads to shorter and clearer convergence proofs (see
Section 4). At the same time, convergence rates are slightly improved as the logarithmic error terms
seen in classical regression error analysis (due to inversion of a random matrix) can be omitted.

The choice of the probability measure µ turns out to be crucial for the success of the pseudo regression
algorithm. On the other hand, the procedure is insensitive enough w.r.t. µ that one single measure can
in many cases be chosen for each time step. However, µ has to be chosen in an appropriate way since
bad choices can lead to vastly increased errors of the ultimately computed option prices. As a rule, µ
should be chosen such thatU ∼ µ covers the important areas of the underlying stochastic processXj

for all j. These areas can usually be estimated roughly from the dynamics of the underlying process.

In some sense, the particular choice of µ can be compared to importance sampling, as it allows to
change the distribution of the actual sampled points, without inducing bias. As such we expect that
the flexibility in the choice of µ could be advantageous in particular in situations like deep out-of-the-
money options, when the payoff is positive only on a rare event. We will study these aspects in more
details in future work.
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A Proofs

A.1 Proof of Theorem 4.1

Let uK be the projection of u on to the linear span of ψ1, ..., ψK , i.e.,

uK = arg inf
w∈ span{ψ1,...,ψK}

∫
D
|w(z)− u(z)|2 µ(dz). (32)

Then, with γ := (γ1, ..., γK)> ∈ RK defined by

uK =
K∑
k=1

γkψk, (33)

and α ∈ RK defined by αk := 〈ψk , u〉L2(µ) , it follows straightforwardly by taking scalar products
that

γ = G−1α. (34)

By the rule of Pythagoras it follows that,

E
∫
D
|u(z)− u(z)|2 µ(dz) = (35)

E
∫
D

∣∣u(z))− uK(z)
∣∣2 µ(dz) +

∫
D

∣∣uK(z)− u(z)
∣∣2 µ(dz).

Hence, the second term in (25) is clear due to (32) and (35). With ψ(z) := (ψ1(z), ..., ψK(z))> we
obtain for the first term in (35) that

E
∫
D

∣∣u(z)− uK(z)
∣∣2 µ(dz) =

∫
D
E
∣∣∣β>ψ(z)− γ>ψ(z)

∣∣∣2 µ(dz)

=

∫
D
E
∣∣∣∣( 1

M
Y>M− α>

)
G−1ψ(z)

∣∣∣∣2 µ(dz)

=

∫
D
E
[(

1

M
Y>M− α>

)
G−1ψ(z)ψ>(z)G−1

(
1

M
M>Y − α

)]
µ(dz)

= E
[(

1

M
Y>M− α>

)
G−1

(
1

M
M>Y − α

)]
,

using (23), (24), (33), (34), and∫
D

[
ψ(z)ψ>(z)

]
kl
µ(dz) = 〈ψk, ψl〉 = Gkl.

We thus have

0 ≤ E
∫
D

∣∣u(z)− uK(z)
∣∣2 µ(dz)

≤ 1

λmin

E
∣∣∣∣ 1

M
N>Y − α

∣∣∣∣2 =
1

λmin

K∑
k=1

Var

[
1

M
M>Y

]
k

,
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since

E
[

1

M
M>Y

]
k

=
1

M
E

M∑
m=1

ψk(U (m))Y (m) (36)

= E
(
ψk(U (1))Y (1)

)
= E

(
ψk(U (1))E

[
Y (1) | U (1)

])
= 〈ψk, u〉 = αk.

Now, by observing that

Var

[
1

M
M>Y

]
k

= Var

(
1

M

M∑
m=1

ψk(U (m))Y (m)

)
(37)

=
1

M
Var

(
ψk(U (1))Y (1)

)
=

1

M
EVar

[
ψk(U (1))Y (1)| U (1)

]
+

1

M
VarE

[
ψk(U (1))Y (1)| U (1)

]
=

1

M
E
(
ψ2
k(U (1)) Var

[
Y (1)| U (1)

])
+

1

M
Varψk(U (1))u

(
U (1)

)
≤ σ2 +D2

M
GKkk,

one has

1

λmin

K∑
k=1

Var

[
1

M
M>Y

]
k

≤ σ2 +D2

Mλmin

tr
(
GK
)
≤ σ2 +D2

Mλmin

Kλmax,

and then (25) follows.

Remark A.1. From (36) we see that we are essentially approximating the inner products 〈ψk , u〉L2(µ)

by a simple Monte Carlo simulation. At a first glance one may estimate the squared error due to (37) as
being proportional to K2/M (up to the projection error itself). Thus, Theorem 4.1 states that actually
this error is proportional to K/M , even when the basis functions are not orthogonal.

A.2 Proof of Lemma 4.3

Let X be a generic trajectory independent of Gj+1, and let us represent a family of optimal stopping
times τ ∗j , j = 1, ...,J , by τ ∗J = J , and for j < J ,

τ ∗j := j 1{
fj(Xj)≥cj(Xj)

} + τ ∗j+11
{
fj(Xj)<cj(Xj)

}.
For j < J we then have,

fτ∗j+1
(Xτ∗j+1

)− fτ j+1
(Xτ j+1

) =
(
fj+1(Xj+1)− fτ j+1

(Xτ j+1
)
)

1{τ∗j+1=j+1,τ j+1>j+1}

+
(
fτ∗j+1

(Xτ∗j+1
)− fj(Xj+1)

)
1{τ∗j+1>j+1,τ j+1=j+1}

+
(
fτ∗j+1

(Xτ∗j+1
)− fτ j+1

(Xτ j+1
)
)

1{τ∗j+1>j+1,τ j+1>j+1}.
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By denoting temporarily E :=EGj+1
, and denoting Rj := E

[
fτ∗j+1

(Xτ∗j+1
)− fτ j+1

(Xτ j+1
)
∣∣∣Xj

]
,

we haveRj ≥ 0 almost surely, and

Rj = E
[(
fj+1(Xj+1)− E

[
fτ j+2

(Xτ j+2
)
∣∣Xj+1

])
1{τ∗j+1=j+1,τ j+1>j+1}

∣∣∣Xj

]
+ E

[(
E
[
fτ∗j+2

(Xτ∗j+2
)
∣∣∣Xj+1

]
− fj+1(Xj+1)

)
1{τ∗j+1>j+1,τ j+1=j+1}

∣∣∣Xj

]
+ E

[
E
[
fτ∗j+2

(Xτ∗j+2
)− fτ j+2

(Xτ j+2
)
∣∣∣Xj+1

]
1{τ∗j+1>j+1,τ j+1>j+1}

∣∣∣Xj

]
=: T1 + T2 + E

[
Rj+11{τ∗j+1>j+1,τ j+1>j+1}

∣∣∣Xj

]
. (38)

For T1 we have

T1 = E
[(
fj+1(Xj+1)− E

[
fτ∗j+2

(Xτ∗j+2
)
∣∣∣Xj+1

])
1{τ∗j+1=j+1,τ j+1>j+1}

∣∣∣Xj

]
+ E

[(
E
[
fτ∗j+2

(Xτ∗j+2
)
∣∣∣Xj+1

]
− E

[
fτ j+2

(Xτ j+2
)
∣∣Xj+1

])
1{τ∗j+1=j+1,τ j+1>j+1}

∣∣∣Xj

]
,

and since

c̃j+1(Xj+1) ≥ fj+1(Xj+1) ≥ E
[
fτ∗j+2

(Xτ∗j+2
)
∣∣∣Xj+1

]
= cj+1(Xj+1) ≥ E

[
fτ j+2

(Xτ j+2
)
∣∣Xj+1

]
on {τ ∗j+1 = j + 1, τ j+1 > j + 1}, we get

0 ≤ T1 ≤ E
[

(c̃j+1(Xj+1)− cj+1(Xj+1)) 1{τ∗j+1=j+1,τ j+1>j+1}

∣∣∣Xj

]
+ E

[
Rj+11{τ∗j+1=j+1,τ j+1>j+1}

∣∣∣Xj

]
. (39)

Similarly, for T2, we find

0 ≤ T2 ≤ E
[

(cj+1(Xj+1)− c̃j+1(Xj+1)) 1{τ∗j+1>j+1,τ j+1=j+1}

∣∣∣Xj

]
. (40)

Combining (38), (39), and (40), yields

Rj ≤ E [ |c̃j+1(Xj+1)− cj+1(Xj+1)||Xj] + E [Rj+1|Xj] .

By straightforward induction, using the tower property and the final condition RJ−1 = 0, we then
obtain

0 ≤ cj (Xj)− cj (Xj) ≤
J−1∑
l=j+1

E [ |c̃l(Xl)− cl(Xl)||Xj] .

By now taking Xl = Xj,U
l independent of Gj+1, and then on both sides the Lp-norm due to the

distribution of Xj,U
j ∼ µ, applying the triangle inequality, and by using that

E [E [ |c̃l(Xl)− cl(Xl)||Xj]
p] ≤ E [|c̃l(Xl)− cl(Xl)|p] ,

we finally obtain (28).
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A.3 Proof of Theorem 4.5

The theorem is proven by induction. Due to Theorem 4.1 we have (noting that cj and c̃j are random
functions) that

EGj+1

[
‖cj − c̃j‖2L2(µ)

]
≤ C2

1

K

M
+ C2

2 inf
w∈ span{ψ1,...,ψK}

‖c̃j − w‖2L2(µ)
, hence

‖cj − c̃j‖L2(µ⊗P) ≤ C1

√
K

M
+ C2 inf

w∈ span{ψ1,...,ψK}
‖c̃j − w‖L2(µ⊗P) (41)

almost surely, for some C1, C2 > 0, which do not depend on j,K, and N. We now prove the state-
ment (29) for η := max(C1, C2). Since c̃J−1 = cJ−1 for time J − 1, (29) is implied by (41) with
j = J − 1. Suppose the statement is proved for 0 < j + 1 ≤ J − 1. Let us write,

inf
w∈ span{ψ1,...,ψK}

‖c̃j − w‖L2(µ⊗P) ≤ ‖c̃j − cj‖L2(µ⊗P) + inf
w∈ span{ψ1,...,ψK}

‖cj − w‖L2(µ)
. (42)

By using (41), (42), and the unconditional expectation applied to Lemma 4.3 with p = 2 we get

‖cj − cj‖L2(µ⊗P) ≤ ‖cj − c̃j‖L2(µ⊗P) + ‖c̃j − cj‖L2(µ⊗P)

≤ C1

√
K

M
+ C2 inf

w∈ span{ψ1,...,ψK}
‖cj − w‖L2(µ)

+ (C2 + 1) ‖c̃j − cj‖L2(µ⊗P)

≤ ηεj,M,K + (η + 1)
J−1∑
l=j+1

‖cl − cl‖L2(µj,l⊗P) . (43)

Using the induction hypothesis we have,

J−1∑
l=j+1

‖cl − cl‖L2(µj,l⊗P) ≤
J−1∑
l=j+1

η(η + 2)J−1−lεl,M,K

≤ ηεj,M,K
(2 + η)J−1−j − 1

η + 1
.

Combining the latter with (43) yields (29).
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