Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e.V.

Eigenvector localization in the heavy-tailed random conductance model

Franziska Flegel
submitted: January 19, 2018

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: franziska.flegel@wias-berlin.de

No. 2472
Berlin 2018

[^0]Key words and phrases. Random conductance model; Dirichlet spectrum; eigenfunction localization; heavy tails; extreme value analysis.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: $\quad+4930$ 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Eigenvector localization in the heavy-tailed random conductance model

Franziska Flegel

Abstract

We generalize our former localization result about the principal Dirichlet eigenvector of the i.i.d. heavy-tailed random conductance Laplacian to the first k eigenvectors. We overcome the complication that the higher eigenvectors have fluctuating signs by invoking the Bauer-Fike theorem to show that the k th eigenvector is close to the principal eigenvector of an auxiliary spectral problem.

1 Introduction

Let us consider the random conductance Laplacian \mathcal{L}^{w} acting on real-valued functions $f \in \ell^{2}\left(\mathbb{Z}^{d}\right)$ as

$$
\begin{equation*}
\left(\mathcal{L}^{w} f\right)(x)=\sum_{y:|x-y|_{1}=1} w_{x y}(f(y)-f(x)) \quad\left(x \in \mathbb{Z}^{d}\right) \tag{1.1}
\end{equation*}
$$

with positive independent and identically distributed random conductances $w_{x y}$. As usual, we further assume that the operator \mathcal{L}^{w} is self-adjoint, i.e. $w_{x y}=w_{y x}$. Our goal is to describe the almost-sure behavior of the solution to the spectral problem

$$
\begin{align*}
-\mathcal{L}^{w} \psi & =\lambda \psi & & \text { on } B_{n}=[-n, n]^{2} \cap \mathbb{Z}^{d} \\
\psi & =0 & & \text { else. } \tag{1.2}
\end{align*}
$$

as the box size n tends to infinity. This means that we are interested in the Dirichlet eigenfunctions and eigenvalues of the operator $-\mathcal{L}^{w}$ in the box B_{n} with zero Dirichlet conditions.

In the recent paper [Fle16], we have shown that if $\gamma:=\sup \left\{q \geq 0: \mathbb{E}\left[w^{-q}\right]<\infty\right\}<1 / 4$ and certain regularity assumptions apply, then the principal Dirichlet eigenvector $\psi_{1}^{(n)}$ of Problem (1.2) concentrates in a single site as n tends to infinity. To be more precise, let $\pi_{z}=\sum_{x: x \sim z} w_{x z}$ be the local speed measure, i.e., the inverse mean waiting time of the random walk generated by \mathcal{L}^{w}. Then the principal Dirichlet eigenvector $\psi_{1}^{(n)}$ approaches the δ-function in the site $z_{(1, n)}$ that minimizes the local speed measure π over the box B_{n}. Furthermore, the principal Dirichlet eigenvalue $\lambda_{1}^{(n)}$ is asymptotically equivalent to the minimum $\pi_{1, B_{n}}=\min _{z \in B_{n}} \pi_{z}$.

If, on the other hand, $\gamma>1 / 4$, then the authors of [FHS17] have proved that the top of the Dirichlet spectrum of \mathcal{L}^{w} homogenizes. The spectrum of the random conductance Laplacian thus displays a dichotomy between a localized and a homgenized phase.

In the present paper we generalize our findings for $\gamma<1 / 4$ to the first k Dirichlet eigenvectors and eigenvalues. More precisely, we show that the k th Dirichlet eigenvector $\psi_{k}^{(n)}$ concentrates in the site that attains the k th minimum of π. Consequently, the k th Dirichlet eigenvalue $\lambda_{k}^{(n)}$ is asymptotically
equivalent to the k th minimum of π. If the conductances vary regularly at zero with positive index, then despite the dependence structure of the random field $\left\{\pi_{x}\right\}_{x \in \mathbb{Z}^{d}}$, this k th minimum converges weakly as if $\left\{\pi_{x}\right\}_{x \in \mathbb{Z}^{d}}$ was an independent field, see the proof of Corollary 2.3. It follows that, in this case, the properly rescaled k th eigenvalue $\lambda_{k}^{(n)}$ converges in distribution to a non-degenerate random variable. This relates to a similar result in dimension $d=1$, see [Fag12, Theorem 2.5(i)].
Note that the only reason why we have not generalized our findings to the first k eigenvectors in [Fle16], is that in [Fle16, Lemma 5.6] we rely on the property that the principal Dirichlet eigenvector does not change its sign, according to the Perron-Frobenius theorem. This is no longer true for the higher order eigenvectors. To overcome this difficulty, we now approximate the first k eigenvectors to (1.2) by auxiliary principal eigenvectors using the Bauer-Fike theorem, see Lemma 3.14.

Our results for the random conductance Laplacian compare well to similar results of the random Schrödinger operator $\Delta+\xi$ with random potential $\xi: \mathbb{Z}^{d} \rightarrow \mathbb{R}$, see [BK16] and [Ast16, Ch. 6]. To keep the present paper as short as possible, we refer the reader to our first article [Fle16] for more heuristics and references. However, we kept the present paper mostly self-contained.

Model and main objects

We consider the lattice with vertex set $\mathbb{Z}^{d}(d \geq 2)$ and edge set $\mathfrak{E}_{d}=\left\{\{x, y\}: x, y \in \mathbb{Z}^{d},|x-y|_{1}=\right.$ $1\}$. If two sites $x, y \in \mathbb{Z}^{d}$ are neighbors according to \mathfrak{E}_{d}, we also write $x \sim y$. To each edge $e \in \mathfrak{E}_{d}$ we assign a positive random variable w_{e}. In analogy to a d-dimensional resistor network, we call these random weights w_{e} conductances. We take $(\Omega, \mathcal{F})=\left((0, \infty)^{\mathfrak{E}_{d}}, \mathcal{B}((0, \infty))^{\otimes \mathfrak{E}_{d}}\right)$ as the underlying measurable space and assume that an environment $\boldsymbol{w}=\left(w_{e}\right)_{e \in \mathfrak{E}_{d}} \in \Omega$ is a family of i.i.d. positive random variables with law \mathbb{P}. We denote the expectation with respect to \mathbb{P} by \mathbb{E}.
If e is the edge between the sites $x, y \in \mathbb{Z}^{d}$, we also write $w_{x y}$ or $w_{x, y}$ instead of w_{e}. Note that by definition of the edge set \mathfrak{E}_{d}, the edges are undirected, whence $w_{x y}=w_{y x}$. If we want to refer to an arbitrary copy of the conductances in general, we simply write w, i.e., for a set $A \in \mathcal{B}((0, \infty))$, the expression $\mathbb{P}[w \in A]$ equals $\mathbb{P}\left[w_{e} \in A\right]$ for an arbitrary edge e.
We call

$$
\begin{equation*}
F:[0, \infty) \rightarrow[0,1]: u \mapsto \mathbb{P}[w \leq u] \tag{1.3}
\end{equation*}
$$

the distribution function of the conductances.
For an arbitrary $k \in \mathbb{N}$, our goal is to study the behavior of the first k Dirichlet eigenvalues $\lambda_{1}^{(n)} \leq$ $\ldots \leq \lambda_{k}^{(n)}$ and eigenvectors $\psi_{1}^{(n)}, \ldots, \psi_{k}^{(n)}$ of the sign-inverted generator $-\mathcal{L}_{\boldsymbol{w}}$ in the ball

$$
\begin{equation*}
B_{n}:=\left\{x \in \mathbb{Z}^{d}:|x|_{\infty} \leq n\right\}=[-n, n]^{d} \cap \mathbb{Z}^{d} \tag{1.4}
\end{equation*}
$$

with zero Dirichlet conditions at the boundary.
For a subset $A \subset \mathbb{Z}^{d}$ we define the function space

$$
\begin{equation*}
\ell^{2}(A):=\left\{f: \mathbb{Z}^{d} \rightarrow \mathbb{R} \text { such that supp } f \subseteq A \text { and } \sum_{x \in A} f(x)^{2}<\infty\right\} \subset \ell^{2}\left(\mathbb{Z}^{d}\right) \tag{1.5}
\end{equation*}
$$

where we let "supp f " denote the support of the function f. Accordingly, for functions $f_{1}, f_{2} \in \ell^{2}\left(\mathbb{Z}^{d}\right)$ we define the scalar product

$$
\left\langle f_{1}, f_{2}\right\rangle_{\ell^{2}(A)}=\sum_{x \in A} f_{1}(x) f_{2}(x) .
$$

For a real-valued function $f \in \ell^{2}\left(\mathbb{Z}^{d}\right)$ let us define the Dirichlet energy $\mathcal{E}^{\boldsymbol{w}}(f)$ with respect to the operator $-\mathcal{L}_{w}$ by

$$
\begin{equation*}
\mathcal{E}^{w}(f)=\left\langle f,-\mathcal{L}_{\boldsymbol{w}} f\right\rangle_{\ell^{2}\left(\mathbb{Z}^{d}\right)} . \tag{1.6}
\end{equation*}
$$

Then, according to the Courant-Fischer theorem, the k th Dirichlet eigenvalue is given by the variational formula

$$
\begin{equation*}
\lambda_{k}^{(n)}=\inf _{\substack { \mathcal{M} \leq \ell^{2}\left(B_{n}\right),{c}{f \in \mathcal{M}, \operatorname{din} \mathcal{M}=k{ \mathcal { M } \leq \ell ^ { 2 } (B _ { n }) , \begin{subarray} { c } { f \in \mathcal { M } , \\
\operatorname { d i n } \mathcal { M } = k } }\end{subarray}} \sup _{\substack{f \in \|_{2}=1}} \mathcal{E}^{\boldsymbol{w}}(f) \tag{1.7}
\end{equation*}
$$

where $\mathcal{M} \leq \ell^{2}\left(B_{n}\right)$ means that \mathcal{M} is a linear subspace of $\ell^{2}\left(B_{n}\right)$. Note that $\lambda_{k}^{(n)}=\mathcal{E}^{\boldsymbol{w}}\left(\psi_{k}^{(n)}\right)$.
Definition 1.1 (Local speed measure and its order statistics). We define the local speed measure π by

$$
\begin{equation*}
\pi_{z}=\sum_{x: x \sim z} w_{x z} \quad\left(z \in \mathbb{Z}^{d}\right) \tag{1.8}
\end{equation*}
$$

and we label the order statistics of the set $\left\{\pi_{z}\right\}_{z \in B_{n}}$ by

$$
\begin{equation*}
\pi_{1, B_{n}} \leq \pi_{2, B_{n}} \leq \ldots \leq \pi_{\left|B_{n}\right|, B_{n}} \tag{1.9}
\end{equation*}
$$

Furthermore, for $k, n \in \mathbb{N}$ let $z_{(k, n)}$ be the site where π attains its k th minimum over B_{n}, i.e., $\pi_{z_{(k, n)}}=$ $\pi_{k, B_{n}}$.

Remark 1.2. If F is continuous, then $\pi_{1, B_{n}}<\pi_{2, B_{n}}<\ldots<\pi_{\left|B_{n}\right|, B_{n}} \mathbb{P}$-a.s. and therefore the minimizers $z_{(k, n)}$ are \mathbb{P}-a.s. unique.

2 Main result

In what follows we let

$$
\begin{equation*}
g:[0, \infty) \rightarrow[0, \infty): u \mapsto \sup \left\{s \geq 0: F(s)=u^{-1 / 2}\right\} \tag{2.1}
\end{equation*}
$$

Assumption 2.1. Let F be continuous and vary regularly at zero with index $\gamma \in[0,1 / 4)$. Assume that there exists $a^{*}>0$ such that $F(a b) \geq b F(a)$ for all $a \leq a^{*}$ and all $0 \leq b \leq 1$. In the case where $\gamma=0$, we assume additionally that there exists $\epsilon_{1} \in(0,1)$ such that the product $n^{2+\epsilon_{1}} g(n)$ converges monotonically to zero as n grows to infinity.

Remark 2.2. In the case where $\gamma>0$, it follows that $(1 / F(1 / s))^{2}$ varies regularly at infinity with index 2γ. Further, $(1 / F(1 / s))^{2}$ diverges as $s \rightarrow \infty$. It follows by virtue of [Res87, Prop. 0.8(v)] that $1 / g(u)=\inf \left\{s \geq 0:(1 / F(1 / s))^{2}=u\right\}$ varies regularly at infinity with index $1 /(2 \gamma)$ and thus g varies regularly at infinity with index $-1 /(2 \gamma)$. Since in addition $\gamma<1 / 4$, there exists $\epsilon_{1} \in(0,1)$ such that $-1 /(2 \gamma)<-\left(2+\epsilon_{1}\right)$.

Theorem. Let $k \in \mathbb{N}$. If Assumption 2.1 holds, then the k th Dirichlet eigenvalue $\lambda_{k}^{(n)}$ with zero Dirichlet conditions outside the box B_{n} fulfills

$$
\begin{equation*}
\mathbb{P}\left[\lim _{n \rightarrow \infty} \frac{\lambda_{k}^{(n)}}{\pi_{k, B_{n}}}=1\right]=1 \tag{2.2}
\end{equation*}
$$

and the mass of the k th Dirichlet eigenvector $\psi_{k}^{(n)}$ asymptotically concentrates in the site $z_{(k, n)}$. More precisely, if $\epsilon_{1}>0$ is as in Assumption 2.1 or Remark 2.2, then \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
1-n^{-\epsilon / 8} \leq \frac{\lambda_{k}^{(n)}}{\pi_{k, B_{n}}} \leq 1 \quad \text { for all } \epsilon<\epsilon_{1} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{k}^{(n)}\left(z_{(k, n)}\right) \geq \sqrt{1-n^{-\epsilon / 4}} \quad \text { for all } \epsilon<\epsilon_{1} \tag{2.4}
\end{equation*}
$$

We prove this theorem in Section 4.
Similar to [Fle16, Corollary 1.11], we can now infer the weak convergence of the eigenvalues. Let F_{π} be the distribution function of the random variable π, i.e., the distribution function of the sum of $2 d$ independent copies of the conductance w. Note that since F is continuous, F_{π} is continuous as well. As in [Fle16, (1.18)], we define

$$
\begin{equation*}
h:(0, \infty) \rightarrow(0, \infty): u \mapsto \inf \left\{s: \frac{1}{F_{\pi}(1 / s)}=u\right\} \tag{2.5}
\end{equation*}
$$

Let F vary regularly at zero with index $\gamma>0$. Then by virtue of [Fle16, Lemma 5.8], it follows that F_{π} varies regularly at zero with index $2 d \gamma$. It thus follows by virtue of [Res87, Proposition $0.8(\mathrm{v})$] that h varies regularly at infinity with index $1 /(2 d \gamma)$. Therefore there exists a function L^{*} that varies slowly at infinity such that

$$
\begin{equation*}
h\left(\left|B_{n}\right|\right)=n^{\frac{1}{2 \gamma}} L^{*}(n) . \tag{2.6}
\end{equation*}
$$

Corollary 2.3. Assume that F fulfills Assumption 2.1 with $\gamma>0$ and let L^{*} be as in (2.6). Let $k \in \mathbb{N}$. Then as n tends to infinity, the product $L^{*}(n) n^{\frac{1}{2 \gamma}} \lambda_{k}^{(n)}$ converges in distribution to a non-degenerate random variable. More precisely,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left[L^{*}(n) n^{\frac{1}{2 \gamma}} \lambda_{k}^{(n)}>\zeta\right]=\exp \left(-\zeta^{2 d \gamma}\right) \sum_{j=0}^{k-1} \frac{\zeta^{2 d \gamma j}}{j!} \quad \text { for all } \zeta \in[0, \infty) \tag{2.7}
\end{equation*}
$$

This corollary extends [Fle16, Corollary 1.11] to general $k \in \mathbb{N}$. We prove it at the end of Section 5 .

3 Auxiliary spectral problems

Definition 3.1 (Auxiliary lattice and Laplacian). We define the set

$$
\begin{equation*}
\mathscr{B}_{l}^{(n)}=B_{n} \backslash\left\{z_{(1, n)}, \ldots, z_{(l-1, n)}\right\} \tag{3.1}
\end{equation*}
$$

and abbreviate the operator \mathcal{L}^{w} with zero Dirichlet conditions outside $\mathscr{B}_{l}^{(n)}$ as $\mathcal{L}_{(l, n)}^{w}$, i.e., we define

$$
\begin{equation*}
\mathcal{L}_{(l, n)}^{w}:=\mathbb{1}_{\mathscr{B}_{l}^{(n)}} \mathcal{L}^{w} \mathbb{1}_{\mathscr{B}_{l}^{(n)}} \tag{3.2}
\end{equation*}
$$

where the operator $\mathbb{1}_{\mathscr{B}_{l}^{(n)}}$ is the identity on $\mathscr{B}_{l}^{(n)}$ and zero otherwise.

Since the operator $-\mathcal{L}^{w}$ is self-adjoint, the operator $-\mathcal{L}_{(l, n)}^{w}$ is self-adjoint as well. This justifies the next definition.

Definition 3.2 (Auxiliary eigenvectors and values). We define the eigenvalues of the operator $-\mathcal{L}_{(l, n)}^{w}$ restricted to $\ell^{2}\left(\mathscr{B}_{l}^{(n)}\right)$ by

$$
\begin{equation*}
\mu_{l, 1}^{(n)} \leq \mu_{l, 2}^{(n)} \leq \ldots \leq \mu_{l,\left|\mathscr{B}_{l}^{(n)}\right|}^{(n)} \tag{3.3}
\end{equation*}
$$

and its eigenvectors by

$$
\begin{equation*}
\phi_{l, 1}^{(n)}, \phi_{l, 2}^{(n)}, \ldots, \phi_{l,\left|\mathscr{B}_{l}^{(n)}\right|}^{(n)} \in \ell^{2}\left(\mathscr{B}_{l}^{(n)}\right) \quad \text { with } \quad\left\langle\phi_{l, i}^{(n)}, \phi_{l, j}^{(n)}\right\rangle=\delta_{i j} \tag{3.4}
\end{equation*}
$$

Note that $\mathscr{B}_{1}^{(n)}=B_{n}$ and thus $\mu_{1, k}^{(n)}=\lambda_{k}^{(n)}$ and $\phi_{1, k}^{(n)}=\psi_{k}^{(n)}$. Moreover the variational formula for the auxiliary eigenvalues reads

$$
\begin{equation*}
\mu_{l, m}^{(n)}=\inf _{\substack{\mathcal{M} \leq \ell^{2}\left(\mathscr{B}_{l}^{(n)}\right), \operatorname{dim} \mathcal{M}=m}} \sup _{\substack{f \in \mathcal{M},\|f\|_{2}=1}} \mathcal{E}^{\boldsymbol{w}}(f) \tag{3.5}
\end{equation*}
$$

Remark 3.3 (Perron-Frobenius). For a given box B_{n} the operator $\mathcal{L}_{(l, n)}^{w}$ can be written as a $\left(\left|B_{n}\right|-\right.$ $l+1) \times\left(\left|B_{n}\right|-l+1\right)$-matrix with non-negative entries everywhere except on the diagonal. Since the matrix is finite-dimensional, we can add a multiple of the identity to obtain a non-negative primitive matrix without changing the matrix' spectrum. By the Perron-Frobenius theorem (see e.g. [Sen81, Ch. 1]) it follows that its principal eigenvalue $-\mu_{l, 1}^{(n)}$ is simple and we can assume without loss of generality that its principal eigenvector is positive, which implies that $\phi_{l, 1}^{(n)}$ is nonnegative.

Lemma 3.4. For any $l \in \mathbb{N}$ and $m \in\left\{1, \ldots,\left|B_{n}\right|-l+1\right\}$ the eigenvalue $\mu_{l, m}^{(n)}$ is bounded from above by

$$
\begin{equation*}
\mu_{l, m}^{(n)} \leq \pi_{l+m-1, B_{n}} \tag{3.6}
\end{equation*}
$$

Proof. We choose

$$
\mathcal{M}=\operatorname{span}\left\{\delta_{z_{(l, n)}}, \delta_{z_{(l+1, n)}}, \ldots, \delta_{z_{(l+m-1, n)}}\right\}
$$

and insert it as a test space into the variational formula (3.5).

3.1 Principal eigenvectors

The following lemma is the analogue of [Fle16, Lemma 5.6], where we need the Perron-Frobenius property.

Lemma 3.5. Let $k \in \mathbb{N}$ and let $y, z \in B_{n} \cap \mathscr{B}_{k}^{(n)}$ with $\pi_{z}<\pi_{y}$ and $y \nsim z$. Assume that $\phi_{k, 1}^{(n)}$ is nonnegative. Further, define $m_{y}=2 \max _{x: x \sim y} \phi_{k, 1}^{(n)}(x)$. Then the mass $\phi_{k, 1}^{(n)}(y)$ is bounded from above by

$$
\begin{equation*}
\phi_{k, 1}^{(n)}(y) \leq \frac{m_{y}}{1-\frac{\pi_{z}}{\pi_{y}}} \tag{3.7}
\end{equation*}
$$

The proof of this lemma is analogous to the proof of [Fle16, Lemma 5.6] and therefore we omit it here. For the convenience of the reader, we now repeat some definitions from [Fle16]. For a function g : $(0, \infty) \rightarrow(0, \infty)$ and $n \in \mathbb{N}$ we define a percolation environment $\tilde{\boldsymbol{w}}_{g(n)}$ by setting

$$
\begin{equation*}
\tilde{w}_{g(n)}(e):=w_{e} \mathbb{1}_{\left\{w_{e}>g(n)\right\}} \quad\left(e \in \mathfrak{E}_{d}\right) . \tag{3.8}
\end{equation*}
$$

Thus, edges with conductance less than or equal to $g(n)$ are considered to be closed and all others keep their original conductance. With this terminology we can now define the following clusters.
Definition 3.6. For a fixed function g and a fixed $\epsilon>0$, let $\mathscr{D}^{(n)}$ be the unique infinite open cluster of the environment $\tilde{\boldsymbol{w}}_{g\left(n^{1-\epsilon)}\right.}$ and let $\mathscr{I}^{(n)}=B_{n} \backslash \mathscr{D}^{(n)}$ be its set of holes in B_{n}.
Definition 3.7. We call a set $\mathscr{I} \subset \mathbb{Z}^{d}$ sparse if the set \mathscr{I} does not contain any neighboring sites. Further, a set $\mathscr{I} \subset \mathbb{Z}^{d}$ is \mathbf{b}-sparse iffor any $z \in \mathbb{Z}^{d}$ the box $B_{b}(z):=\left\{x \in \mathbb{Z}^{d}:|x-z|_{\infty} \leq b\right\} \subset$ \mathbb{Z}^{d} contains at most one site of the set \mathscr{I}.
Remark 3.8. Let $b_{1}<b_{2}$ be natural numbers. If a set $\mathscr{I} \subset \mathbb{Z}^{d}$ is b_{2}-sparse, it is also b_{1}-sparse and sparse.

Let us collect some facts that we already know about the cluster $\mathscr{D}^{(n)}$ and the set $\mathscr{I}^{(n)}$ from [Fle16].
Remark 3.9. Let us recall that in Assumption 2.1 we assume that one of the two following cases occurs: $\gamma \in(0,1 / 4)$ or $\gamma=0$ and there exists $\epsilon_{1} \in(0,1)$ such that the product $n^{2+\epsilon_{1}} g(n)$ converges monotonically to zero as n grows to infinity. In the case where $\gamma \in(0,1 / 4)$, we define ϵ_{1} as in Remark 2.2.
In both cases we define $\mathscr{D}^{(n)}$ and $\mathscr{I}^{(n)}$ as in Definition 3.6 with $\epsilon=\epsilon_{2}:=\frac{7 \epsilon_{1}}{8\left(2+\epsilon_{1}\right)}$. By virtue of [Fle16, Lemma 5.4] and Remark 3.8 we know that for any fixed $b \in \mathbb{N}$ the set $\mathscr{I}^{(n)}$ is b-sparse and therefore sparse \mathbb{P}-a.s. for n large enough in the sense of Definition 3.7. Moreover, [Fle16, Lemma 5.4] implies that for any $k \in \mathbb{N}$ we have \mathbb{P}-a.s. for n large enough $z_{(1, n)}, \ldots, z_{(k+1, n)} \in \mathscr{I}^{(n)}$ and thus \mathbb{P}-a.s. for n large enough there is no pair of neighbors among the the sites $z_{(1, n)}, \ldots, z_{(k+1, n)}$. Since F is continuous, the sites $z_{(1, n)}, \ldots, z_{(k+1, n)}$ are \mathbb{P}-a.s. unique.

The next lemma about the principal Dirichlet eigenvector $\phi_{k, 1}^{(n)}$ of the auxiliary operator $-\mathcal{L}_{(k, n)}^{w}$ is very similar to [Fle16, Lemma 5.5]. Indeed, we can nearly copy the proof since the deleted sites $z_{(1, n)}, \ldots, z_{(k-1, n)}$ are in $\mathscr{I}^{(n)}$, see Remark 3.9.
Lemma 3.10. Let the function g be as in (2.1). Assume that there exists $\epsilon_{1} \in(0,1)$ such that one of the two cases occurs: g varies regularly at infinity with index $\rho<-\left(2+\epsilon_{1}\right)$ or the product $n^{2+\epsilon_{1}} g(n)$ converges monotonically to zero as n grows to infinity. Further, let $\epsilon=\epsilon_{2}:=\frac{7 \epsilon_{1}}{8\left(2+\epsilon_{1}\right)}$ and $\mathscr{D}^{(n)}$ be as in Definition 3.6. Then \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\left\|\phi_{k, 1}^{(n)}\right\|_{\ell^{2}(\mathscr{D}(n))}^{2} \leq n^{-\epsilon_{1} / 2} . \tag{3.9}
\end{equation*}
$$

Proof. The proof follows the lines of the proof of [Fle16, Lemma 5.5] until right before (5.8). Here, we then apply Lemma 3.4 to infer that

$$
\pi_{k, B_{n}} \geq \mu_{k, 1}^{(n)}=\mathcal{E}^{\boldsymbol{w}}\left(\phi_{k, 1}^{(n)}\right)
$$

Moreover, by virtue of [Fle16, Lemma 2.6] there exists $c_{1}<\infty$ such that \mathbb{P}-a.s. for n large enough

$$
c_{1} g\left(n^{1-\epsilon_{3}}\right) \geq \pi_{k, B_{n}}
$$

with $\epsilon_{3}=\epsilon_{1}\left(8\left(2+\epsilon_{1}\right)\right)^{-1}$. The rest of the proof follows again the lines of the proof of [Fle16, Lemma 5.5].

From Lemma 3.10 to localization in a single site, the main two ingredients are Lemma 3.5 and the following result about the order statistics of $\left\{\pi_{x}\right\}_{x \in B_{n}}$.
Lemma 3.11 ([Fle16, Lemma 5.10]). Let Assumption 2.1 be true and let $\varepsilon>0$ and $k \in \mathbb{N}$. Then \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
1-\frac{\pi_{k, B_{n}}}{\pi_{k+1, B_{n}}}>n^{-\varepsilon} . \tag{3.10}
\end{equation*}
$$

The next lemma therefore follows.
Lemma 3.12. Let $k \in \mathbb{N}$. Under Assumption 2.1, it follows that \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\phi_{k, 1}^{(n)}\left(z_{(k, n)}\right) \geq \sqrt{1-n^{-\epsilon_{1} / 4}} \tag{3.11}
\end{equation*}
$$

This implies that \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\mu_{k, 1}^{(n)} \geq\left(1-2 n^{-\epsilon_{1} / 8}\right) \pi_{k, B_{n}} \tag{3.12}
\end{equation*}
$$

Proof. In view of Remark 3.9, Lemma 3.5 and the extreme value result Lemma 3.11, the proof of (3.11) is completely analogous to the proof of [Fle16, Theorem 1.8] and thus we omit it here. For (3.12) we observe that since $\mu_{k, 1}^{(n)}=\left\langle\phi_{k, 1}^{(n)}, \mathcal{L}^{w} \phi_{k, 1}^{(n)}\right\rangle$ it follows that \mathbb{P}-a.s. for n large enough

$$
\mu_{k, 1}^{(n)} \geq \sum_{x: x \sim z_{(k, n)}} w_{x z_{(k, n)}}\left(\phi_{k, 1}^{(n)}\left(z_{(k, n)}\right)-\phi_{k, 1}^{(n)}(x)\right)^{2} \geq\left(n^{-\epsilon_{1} / 8}-\sqrt{1-n^{-\epsilon_{1} / 4}}\right)^{2} \pi_{z_{(k, n)}}
$$

3.2 Orthogonality of eigenvectors

The next very simple ingredient of our proof is due to the orthogonality of the eigenvectors.
Lemma 3.13. Let $\varepsilon>0$, let $j, l, m, n \in \mathbb{N}$ with $j<m$ and let $\phi_{l, j}^{(n)}(z) \geq \sqrt{1-n^{-\varepsilon / 4}}$.

$$
\begin{equation*}
\left|\phi_{l, m}^{(n)}(z)\right| \leq n^{-\varepsilon / 8} \tag{3.13}
\end{equation*}
$$

Proof. For $n=1$ the claim is immediate. For $n \geq 2$ we observe that since the eigenvectors $\phi_{l, j}^{(n)}$ and $\phi_{l, m}^{(n)}$ are orthogonal to each other, it follows that

$$
\phi_{l, m}^{(n)}(z)=-\frac{\sum_{x \neq z} \phi_{l, j}^{(n)}(x) \phi_{l, m}^{(n)}(x)}{\phi_{l, j}^{(n)}(z)} .
$$

By the Cauchy-Schwarz inequality it follows that for n greater than one

$$
\left(\phi_{l, m}^{(n)}(z)\right)^{2} \leq \frac{\left(\sum_{x \neq z}\left(\phi_{l, j}^{(n)}(x)\right)^{2}\right)\left(1-\left(\phi_{l, m}^{(n)}(z)\right)^{2}\right)}{\left(\phi_{l, j}^{(n)}(z)\right)^{2}} \leq \frac{n^{-\varepsilon / 4}}{1-n^{-\varepsilon / 4}}\left(1-\left(\phi_{l, m}^{(n)}(z)\right)^{2}\right)
$$

where we have also used that the assumption implies that $\sum_{x \neq z}\left(\phi_{l, j}^{(n)}(x)\right)^{2} \leq n^{-\varepsilon / 4}$. The claim follows.

3.3 Higher eigenvalues and -vectors

We establish the connection to the original eigenvalues and -vectors via the Bauer-Fike theorem [BF60], which we cite below from [JKO94, Lemma 11.2].
Lemma 3.14 ([JKO94, Lemma 11.2]). Let $A: H \rightarrow H$ be a linear self-adjoint compact operator in a Hilbert space H. Let $\mu \in \mathbb{R}$, and let $u \in H$ be such that $\|u\|_{H}=1$ and

$$
\begin{equation*}
\|A u-\mu u\|_{H} \leq \alpha, \quad \alpha>0 \tag{3.14}
\end{equation*}
$$

Then there exists an eigenvalue μ_{i} of the operator A such that

$$
\begin{equation*}
\left|\mu_{i}-\mu\right| \leq \alpha \tag{3.15}
\end{equation*}
$$

Moreover, for any $\beta>\alpha$, there exists a vector \bar{u} such that

$$
\begin{equation*}
\|u-\bar{u}\|_{H} \leq 2 \alpha \beta^{-1}, \quad\|\bar{u}\|_{H}=1 \tag{3.16}
\end{equation*}
$$

and \bar{u} is a linear combination of the eigenvectors of operator A corresponding to the eigenvalues from the interval $[\mu-\beta, \mu+\beta]$.

Here comes the first application of Lemma 3.14.
Lemma 3.15. Let $l \in \mathbb{N}$ and $m \in\left\{1, \ldots,\left|B_{n}\right|-l+1\right\}$. Under Assumption 2.1 there exists $i \in\left\{1, \ldots,\left|B_{n}\right|-l+1\right\}$ such that

$$
\begin{equation*}
\left|\mu_{l, i}^{(n)}-\mu_{l+m, 1}^{(n)}\right| \leq n^{-\epsilon_{1} / 4} \cdot \pi_{l+m-1, B_{n}} . \tag{3.17}
\end{equation*}
$$

Proof. We aim to apply Lemma 3.14 with the operator $A=-\mathcal{L}_{(l, n)}^{w}$, the Hilbert space $H=\ell^{2}\left(\mathscr{B}_{l}^{(n)}\right)$, the value $\mu=\mu_{l+m, 1}$ and the vector $u=\phi_{l+m, 1}^{(n)}$. First, we note that $\left\|\phi_{l+m, 1}^{(n)}\right\|_{\ell^{2}\left(\mathscr{B}_{l}^{(n)}\right)}=1$. Next, we recall that $\phi_{l+m, 1}^{(n)}$ is an eigenvector of the operator $-\mathcal{L}_{(l+m, n)}^{w}$ to the eigenvalue $\mu_{l+m, 1}^{(n)}$ and therefore

$$
\left\|\mathcal{L}_{(l, n)}^{w} \phi_{l+m, 1}^{(n)}+\mu_{l+m, 1}^{(n)} \phi_{l+m, 1}^{(n)}\right\|_{\ell^{2}\left(\mathscr{B}_{l}^{(n)}\right)}^{2}=\sum_{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}}\left(\mathcal{L}_{(l, n)}^{w} \phi_{l+m, 1}^{(n)}(z)+\mu_{l+m, 1}^{(n)} \phi_{l+m, 1}^{(n)}(z)\right)^{2},
$$

where all other summands vanish. Note that $\mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}=\left\{z_{(l, n)}, \ldots z_{(l+m-1, n)}\right\}$ and by definition we have $\phi_{l+m, 1}^{(n)}(z)=0$ for all $z \in\left\{z_{(l, n)}, \ldots z_{(l+m-1, n)}\right\}$. It follows that for all $z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}$ we have

$$
\mathcal{L}_{(l, n)}^{w} \phi_{l+m, 1}^{(n)}(z)=\sum_{x: x \sim z} w_{x z}\left(\phi_{l+m, 1}^{(n)}(x)-\phi_{l+m, 1}^{(n)}(z)\right)=\sum_{x: x \sim z} w_{x z} \phi_{l+m, 1}^{(n)}(x) .
$$

Since $\pi_{l+m-1, B_{n}} \geq \pi_{l+m-2, B_{n}} \geq \ldots \geq \pi_{l, B_{n}}$, it follows that

$$
\left\|\mathcal{L}_{(l, n)}^{w} \phi_{l+m, 1}^{(n)}+\mu_{l+m, 1}^{(n)} \phi_{l+m, 1}^{(n)}\right\|_{\ell^{2}\left(\mathscr{B}_{l}^{(n)}\right)}^{2} \leq \pi_{l+m-1, B_{n}}^{2} \sum_{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}} \max _{x: x \sim z}\left(\phi_{l+m, 1}^{(n)}(x)\right)^{2} .
$$

Since by virtue of Remark 3.9 the sites $z_{(1, n)}, \ldots, z_{(l+m-1, n)}$ are in $\mathscr{I}^{(n)}$ and are neither neighbors nor do they share a common neighbor \mathbb{P}-a.s. for n large enough, it follows that \mathbb{P}-a.s. for n large enough

$$
\sum_{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{R}_{l+m}^{(n)}} \max _{x: x \sim z}\left(\phi_{l+m, 1}^{(n)}(x)\right)^{2} \leq \sum_{x \in \mathscr{P}^{(n)}}\left(\phi_{l+m, 1}^{(n)}(x)\right)^{2} \leq n^{-\epsilon_{1} / 2},
$$

where the last bound is due to Lemma 3.10. The claim follows by virtue of Lemma 3.14.

Here comes the second application of Lemma 3.14.
Lemma 3.16. Let $\varepsilon>0, l, m \in \mathbb{N}$. If Assumption 2.1 holds and \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\phi_{l, j}^{(n)}\left(z_{(l+j-1, n)}\right) \geq \sqrt{1-n^{-\varepsilon / 4}} \quad \text { for all } 1 \leq j \leq m \tag{3.18}
\end{equation*}
$$

then \mathbb{P}-a.s. for n large enough there exists $j \in\left\{1, \ldots,\left|B_{n}\right|-l-m+1\right\}$ such that

$$
\begin{equation*}
\left|\mu_{l, m+1}^{(n)}-\mu_{l+m, j}^{(n)}\right| \leq \pi_{l+m-1, B_{n}} \sqrt{\frac{m n^{-\varepsilon / 4}}{1-m n^{-\varepsilon / 4}}} \tag{3.19}
\end{equation*}
$$

Proof. We aim to apply Lemma 3.14 with the operator $A=-\mathcal{L}_{(l+m, n)}^{w}$, the Hilbert space $H=$ $\ell^{2}\left(\mathscr{B}_{l+m}^{(n)}\right)$, the value $\mu=\mu_{l, m+1}^{(n)}$ and the vector $u=\phi_{l, m+1}^{(n)} /\left\|\phi_{l, m+1}^{(n)}\right\|_{\ell^{2}\left(\mathscr{B}_{l+m}^{(n)}\right)}$. First, we note that by definition $\|u\|_{\ell^{2}\left(\mathscr{B}_{l+m}^{(n)}\right)}=1$ and \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\left\|\phi_{l, m+1}^{(n)}\right\|_{\ell^{2}\left(\mathscr{B}_{l+m}^{(n)}\right)}^{2}=1-\sum_{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}}\left(\phi_{l, m+1}^{(n)}(z)\right)^{2} \geq 1-m n^{-\varepsilon / 4} \tag{3.20}
\end{equation*}
$$

by virtue of Condition (3.18) and Lemma 3.13.
Next, as we show in detail in (A.1), we can estimate

$$
\begin{align*}
& \left\|\mathcal{L}_{(l+m, n)}^{w} \phi_{l, m+1}^{(n)}+\mu_{l, m+1}^{(n)} \phi_{l, m+1}^{(n)}\right\|_{\ell^{2}\left(\mathscr{B}_{l+m}^{(n)}\right)}^{2} \\
& \quad \leq \max _{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}}\left(\phi_{l, m+1}^{(n)}(z)\right)^{2} \sum_{x \in B_{n}}\left(\sum_{\substack{z: z \sim x \\
z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}}} w_{x z}\right)^{2} \tag{3.21}
\end{align*}
$$

Since by virtue of Remark 3.9 we have \mathbb{P}-a.s. for n large enough

$$
\mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}=\left\{z_{l, n}, \ldots, z_{l+m-1, n}\right\} \subset \mathscr{I}^{(n)}
$$

and $\mathscr{I}^{(n)}$ is 1 -sparse, it follows that on the RHS of (3.21) for each $x \in B_{n}$ the sum over all $z \in$ $\mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}$ with $z \sim x$ contains at most one summand. Therefore \mathbb{P}-a.s. for n large enough we can pull the square into the inner sum. Then we rearrange both sums and use that for all z we have $\sum_{x: x \sim z} w_{x z}^{2} \leq \pi_{z}^{2}$ to infer that \mathbb{P}-a.s. for n large enough

$$
\left\|\mathcal{L}_{(l+m, n)}^{w} \phi_{l, m+1}^{(n)}+\mu_{l, m+1}^{(n)} \phi_{l, m+1}^{(n)}\right\|_{\ell^{2}\left(\mathscr{B}_{l+m}^{(n)}\right)}^{2} \leq \max _{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}}\left(\phi_{l, m+1}^{(n)}(z)\right)^{2} \sum_{z \in \mathscr{B}_{l}^{(n) \backslash \mathscr{B}_{l+m}^{(n)}}} \pi_{z}^{2}
$$

By virtue of Lemma 3.13 and Assumption (3.18), for all $z \in\left\{z_{(l, n)}, \ldots, z_{(l+m-1, n)}\right\}$ we know that \mathbb{P}-a.s. for n large enough

$$
\left|\phi_{l, m+1}^{(n)}(z)\right| \leq n^{-\varepsilon / 8}
$$

Furthermore, $\sum_{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}} \pi_{z}^{2} \leq m \pi_{l+m-1, B_{n}}^{2}$. It follows that \mathbb{P}-a.s. for n large enough

$$
\left\|\mathcal{L}_{(l+m, n)}^{w} \phi_{l, m+1}^{(n)}-\mu_{l, m+1}^{(n)} \phi_{l, m+1}^{(n)}\right\|_{\ell^{2}\left(\mathscr{B}_{l+m}^{(n)}\right)}^{2} \leq m n^{-\varepsilon / 4} \pi_{l+m-1, B_{n}}^{2}
$$

Together with (3.20) it follows that \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\left\|\mathcal{L}_{(l+m, n)}^{w} u-\mu_{l, m+1}^{(n)} u\right\|_{\ell^{2}\left(\mathscr{B}_{l+m}^{(n)}\right)}^{2} \leq \frac{m n^{-\varepsilon / 4}}{1-m n^{-\varepsilon / 4}} \pi_{l+m-1, B_{n}}^{2} \tag{3.22}
\end{equation*}
$$

and therefore the claim follows by virtue of Lemma 3.14.

Both Lemmas 3.15 and 3.16 imply the following lemma.
Lemma 3.17. Let $\epsilon \in\left(0, \epsilon_{1}\right)$ and $l, m \in \mathbb{N}$. If Assumption 2.1 holds and \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\phi_{l, j}^{(n)}\left(z_{(l+j-1, n)}\right) \geq \sqrt{1-n^{-\epsilon / 4}} \quad \text { for all } 1 \leq j \leq m \tag{3.23}
\end{equation*}
$$

then

$$
\begin{equation*}
\mu_{l, m+1}^{(n)} \geq\left(1-(2+\sqrt{m}) n^{-\epsilon / 8}\right) \pi_{l+m, B_{n}} \tag{3.24}
\end{equation*}
$$

Proof. Let us first assume that $\mu_{l, m+1}^{(n)} \leq \mu_{l+m, 1}^{(n)}$. Due to Assumption (3.23) we can apply Lemma 3.16. Because of the ordering $\mu_{l+m, 1}^{(n)} \leq \mu_{l+m, 2}^{(n)} \leq \ldots$, it follows that Relation (3.19) holds with $j=1$ and $\varepsilon=\epsilon$. On the other hand, if $\mu_{l, m+1}^{(n)}>\mu_{l+m, 1}^{(n)}$, then (3.17) holds with an index $i \leq m+1$. Let us now argue why (3.17) holds with exactly $i=m+1 \mathbb{P}$-a.s. for n large enough. We assume the contrary, i.e., that $i \leq m$ infinitely often as n tends to infinity. Then (3.17) together with (3.12) implies that

$$
\mu_{l, i}^{(n)} \geq \mu_{l+m, 1}^{(n)}-n^{-\epsilon_{1} / 4} \pi_{l+m-1, B_{n}} \geq\left(1-2 n^{-\epsilon_{1} / 8}-n^{-\epsilon_{1} / 4}\right) \pi_{l+m, B_{n}}
$$

Note that (3.6) implies that $\mu_{l, i}^{(n)} \leq \pi_{l+i-1, B_{n}}$, which we assumed to be less than or equal to $\pi_{l+m-1, B_{n}}$ infinitely often as n tends to infinity. Thus

$$
\frac{\pi_{l+m-1, B_{n}}}{\pi_{l+m, B_{n}}} \geq 1-3 n^{-\epsilon_{1} / 8}
$$

infinitely often as n tends to infinity. This is a contradiction to Lemma 3.11.
Thus, since $\epsilon<\epsilon_{1}$, it follows regardless of whether $\mu_{l, m+1}^{(n)} \leq \mu_{l+m, 1}^{(n)}$ or $\mu_{l, m+1}^{(n)}>\mu_{l+m, 1}^{(n)}$ that \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\left|\mu_{l, m+1}^{(n)}-\mu_{l+m, 1}^{(n)}\right| \leq \sqrt{\frac{m n^{-\epsilon / 4}}{1-m n^{-\epsilon / 4}}} \pi_{l+m-1, B_{n}} \leq \sqrt{m} n^{-\epsilon / 8} \cdot \pi_{l+m, B_{n}} \tag{3.25}
\end{equation*}
$$

Therefore \mathbb{P}-a.s. for n large enough $\mu_{l, m+1}^{(n)}$ is bounded from below by

$$
\begin{equation*}
\mu_{l, m+1}^{(n)} \geq \mu_{l+m, 1}^{(n)}-\sqrt{m} n^{-\epsilon / 8} \cdot \pi_{l+m, B_{n}} \stackrel{(3.12)}{\geq}\left(1-(2+\sqrt{m}) n^{-\epsilon / 8}\right) \pi_{l+m, B_{n}} \tag{3.26}
\end{equation*}
$$

Now we have the ingredients to prove the main theorem by induction.

4 Proof of the main theorem

By virtue of Lemma 3.4, we already know that

$$
\lambda_{k}^{(n)} \leq \pi_{k, B_{n}} \quad \text { for all } k \in \mathbb{N}
$$

In what follows, we further prove (2.4) and that \mathbb{P}-a.s. for n large enough

$$
\lambda_{k}^{(n)} \geq\left(1-n^{-\epsilon / 8}\right) \pi_{k, B_{n}} \quad \text { for all } \epsilon<\epsilon_{1}
$$

We prove the claim by induction over k.

Base case: $\boldsymbol{k}=1$. \mathbb{P}-a.s. for n large enough we have

$$
\begin{equation*}
\psi_{1}^{(n)}\left(z_{(1, n)}\right)^{2} \geq 1-n^{-\epsilon_{1} / 4} \tag{4.1}
\end{equation*}
$$

by virtue of [Fle16, Theorem 1.8] and

$$
\begin{equation*}
\lambda_{1}^{(n)} \geq\left(1-2 n^{-\epsilon_{1} / 8}\right) \pi_{1, B_{n}}>\left(1-n^{-\epsilon / 8}\right) \pi_{1, B_{n}} \quad \text { for all } \epsilon<\epsilon_{1} \tag{4.2}
\end{equation*}
$$

by virtue of [Fle16, Equation (5.30)].

Inductive step: $(\boldsymbol{k}-\mathbf{1}) \rightsquigarrow \boldsymbol{k}$. Suppose that the claims (2.3) and (2.4) hold for some $k-1 \in \mathbb{N}$. We now show that this implies that the claims also hold for k instead of $k-1$.
For (2.3) this already follows by Lemma 3.17 with $l=1$ and $m=k-1$. Note that here Condition (3.23) holds for all $\epsilon<\epsilon_{1}$ and therefore (3.24) holds even without the multiplicative constants. For (2.4) we apply the second part of Lemma 3.14: Let $0<\delta<\epsilon_{1} / 16$ and

$$
\begin{equation*}
\beta_{k}^{(n)}=2 \sqrt{k-1} n^{-\delta} \pi_{k, B_{n}} \tag{4.3}
\end{equation*}
$$

Since $\pi_{k-1, B_{n}} \leq \pi_{k, B_{n}}$, it follows that $\beta_{k}^{(n)}>\alpha_{k}^{(n)}$ with

$$
\alpha_{k}^{(n)}:=\sqrt{k-1} n^{-\epsilon_{1} / 8} \pi_{k-1, B_{n}}
$$

Therefore Lemma 3.14 and (3.22) with $l=1$ and $m=k-1$ imply that there exists a function $\bar{u}: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left\|\psi_{k}^{(n)}-\bar{u}\right\|_{\ell^{2}\left(B_{n}\right)} \leq \frac{2 \sqrt{k-1} n^{-\epsilon_{1} / 8} \pi_{k-1, B_{n}}}{\beta_{k}^{(n)}} \tag{4.4}
\end{equation*}
$$

where \bar{u} is a linear combination of the eigenvectors $\left\{\phi_{k, j}\right\}_{j \geq 1}$ corresponding to the eigenvalues from the interval $\left[\lambda_{k}^{(n)}-\beta_{k}^{(n)}, \lambda_{k}^{(n)}+\beta_{k}^{(n)}\right]$ of the operator $-\mathcal{L}_{(k, n)}^{w}$. We now show that \mathbb{P}-a.s. for n large enough $\bar{u}=\phi_{k, 1}^{(n)}$, i.e., that \mathbb{P}-a.s. for n large enough

$$
\begin{equation*}
\operatorname{spec} \mathcal{L}_{(k, n)}^{w} \cap\left[\lambda_{k}^{(n)}-\beta_{k}^{(n)}, \lambda_{k}^{(n)}+\beta_{k}^{(n)}\right]=\left\{\mu_{k, 1}^{(n)}\right\} \tag{4.5}
\end{equation*}
$$

It suffices to show that \mathbb{P}-a.s. for n large enough $\mu_{k, 2}^{(n)}>\lambda_{k}^{(n)}+\beta_{k}^{(n)}$. We note that Lemma 3.4 implies that

$$
\begin{equation*}
\lambda_{k}^{(n)}+\beta_{k}^{(n)} \leq\left(1+2 \sqrt{k-1} n^{-\delta}\right) \pi_{k, B_{n}} \tag{4.6}
\end{equation*}
$$

By virtue of Lemma 3.11 we have \mathbb{P}-a.s. for n large enough $\frac{\pi_{k, B_{n}}}{\pi_{k+1, B_{n}}}<1-2 \sqrt{k-1} n^{-\delta}$, whence it follows that \mathbb{P}-a.s. for n large enough

$$
\lambda_{k}^{(n)}+\beta_{k}^{(n)}<\left(1-4(k-1) n^{-2 \delta}\right) \pi_{k+1, B_{n}} \leq \mu_{k, 2}^{(n)}
$$

where the last inequality follows since by the inductive assumption the relation (3.23) holds for all $\epsilon<\epsilon_{1}$ and therefore (3.24) holds for all $\epsilon<\epsilon_{1}$ with $l=k$ and $m=1$. Therefore (4.5) is true.

It follows that for any $0<\delta<\epsilon_{1} / 16$ we have \mathbb{P}-a.s. for n large enough

$$
\left|\psi_{k}^{(n)}\left(z_{(k, n)}\right)-\phi_{k, 1}^{(n)}\left(z_{(k, n)}\right)\right| \leq \frac{n^{\delta-\epsilon_{1} / 8} \pi_{k-1, B_{n}}}{\pi_{k, B_{n}}}<n^{\delta-\epsilon_{1} / 8}
$$

By virtue of Lemma 3.12, we already know that $\left|\phi_{k, 1}^{(n)}\left(z_{(k, n)}\right)\right| \geq \sqrt{1-n^{-\epsilon_{1} / 4}} \mathbb{P}$-a.s. for n large enough. It follows that

$$
\left(\psi_{k}^{(n)}\left(z_{(k, n)}\right)\right)^{2} \geq 1-n^{-\epsilon_{1} / 4}+n^{2 \delta-\epsilon_{1} / 4}-2 n^{\delta-\epsilon_{1} / 8} \geq 1-2 n^{\delta-\epsilon_{1} / 8}
$$

The claim follows since we can choose δ arbitrarily small.

5 Asymptotics of the eigenvalues

The proof of Corollary 2.3 extends the proof of [Fle16, Corollary 1.11], which uses the ideas of [Wat54]. To keep the present paper self-contained, we repeat the initial definitions and statements. We define

$$
a_{n}:=\left(n^{\frac{1}{2 \gamma}} L^{*}(n)\right)^{-1}=\frac{1}{h\left(\left|B_{n}\right|\right)}=\sup \left\{t: F_{\pi}(t)=\left|B_{n}\right|^{-1}\right\}
$$

with h as in (2.5) and $L^{*}(n)$ as in (2.6). Then $\left|B_{n}\right|=\left(\mathbb{P}\left[\pi_{0} \leq a_{n}\right]\right)^{-1}$ and therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|B_{n}\right| \mathbb{P}\left[\pi_{0} \leq a_{n} \zeta\right]=\lim _{n \rightarrow \infty} \frac{F_{\pi}\left(a_{n} \zeta\right)}{F_{\pi}\left(a_{n}\right)}=\zeta^{2 d \gamma} \quad \text { for all } \zeta \geq 0 \tag{5.1}
\end{equation*}
$$

since $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and F_{π} varies regularly at zero with index $2 d \gamma$. We further note that if $\boldsymbol{e}_{1} \in \mathbb{Z}^{d}$ is a neighbor of the origin, then $\mathbb{P}\left[\left\{\pi_{0} \leq a_{n} \zeta\right\} \cap\left\{\pi_{\boldsymbol{e}_{1}} \leq a_{n} \zeta\right\}\right] \leq F\left(a_{n} \zeta\right)^{4 d-1}$ since for the event $\left\{\pi_{0} \leq a_{n} \zeta\right\} \cap\left\{\pi_{e_{1}} \leq a_{n} \zeta\right\}$ at least $4 d-1$ independent conductances w have to be smaller than or equal to $a_{n} \zeta$. Since F varies regularly at zero with index γ, it follows that

$$
\begin{equation*}
\left|B_{n}\right| \mathbb{P}\left[\left\{\pi_{0} \leq a_{n} \zeta\right\} \cap\left\{\pi_{e_{1}} \leq a_{n} \zeta\right\}\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{5.2}
\end{equation*}
$$

We start with the auxiliary Lemma 5.2, for which we need some further definitions. For a set $A \subset \mathbb{Z}^{d}$ we define $C C(A)$ as the set of connected components of A. Furthermore, we define the outer site boundary of the set A as

$$
\begin{equation*}
\partial A:=\left\{z \in \mathbb{Z}^{d} \backslash A: \exists x \in A \text { with } x \sim z\right\} \tag{5.3}
\end{equation*}
$$

For the natural numbers $q \leq m$ we further define the number

$$
\begin{equation*}
C_{m, q}^{(n)}(A):=\left|\left\{M \subset B_{n} \backslash(A \cap \partial A):|M|=m,|C C(M)|=q\right\}\right| \tag{5.4}
\end{equation*}
$$

Remark 5.1. Note that if we fix a $k \in \mathbb{N}$, then as n tends to infinity we have $C_{m, m}^{(n)}\left(A_{n}\right)=\left|B_{n}\right|^{m} / m$! $+O\left(\left|B_{n}\right|^{m-1}\right)$ for all sequences of subsets $A_{n} \in B_{n}$ with the constraint $\left|A_{n}\right|=k-1$. Moreover, for $q \leq m-1$ there exists a constant $c_{q}<\infty$ such that for all $n \in \mathbb{N}$ and all sequences of subsets $A_{n} \subset B_{n}$ with $\left|A_{n}\right|=k-1$, we have $C_{m, q}^{(n)}\left(A_{n}\right)<c_{q}\left|B_{n}\right|^{q}$. Note that this c_{q} is independent of the specific choice of A_{n}.

Lemma 5.2. For any fixed $k, l \in \mathbb{N}$ the relations (5.1) and (5.2) imply that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\substack{A_{n} \subset B_{n},\left|A_{n}\right|=k-1}} \sum_{m=1}^{l} \sum_{\substack{ \\q=1}} \sum_{\substack{M \subset B_{n} \backslash\left(A_{n} \cap \partial A_{n}\right),|M|=m \\|C C(M)|=q}} \mathbb{P}\left[\bigcap_{\substack{x \in M}}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right]=0 \text { for all } \zeta \geq 0 \text {. } \tag{5.5}
\end{equation*}
$$

Proof. We are summing over sets M with the constraint $|C C(M)|=q<m=|M|$. This means that here all the sets M contain at least one connected component \mathscr{C} with a neighboring pair of sites, i.e., $\mathbb{P}\left[\bigcap_{x \in \mathscr{C}}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right] \leq \mathbb{P}\left[\left\{\pi_{0} \leq a_{n} \zeta\right\} \cap\left\{\pi_{e_{1}} \leq a_{n} \zeta\right\}\right]$. Since π_{x} and π_{y} are independent if the sites x and y are in two different connected components of M, it follows that

$$
\begin{aligned}
& \sum_{m=1}^{l} \sum_{\substack{q=1}}^{m-1} \sum_{\substack{M \subset B_{n} \backslash\left(A_{n} \cap \partial A_{n}\right),|M|=m,|C C(M)|=q}} \mathbb{P}\left[\bigcap_{x \in M}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right] \\
& \quad \leq \sum_{m=1}^{l} \sum_{q=1}^{m-1} C_{m, q}^{(n)}\left(A_{n}\right) \mathbb{P}\left[\pi_{0} \leq a_{n} \zeta\right]^{q-1} \mathbb{P}\left[\left\{\pi_{0} \leq a_{n} \zeta\right\} \cap\left\{\pi_{e_{1}} \leq a_{n} \zeta\right\}\right]
\end{aligned}
$$

By Remark 5.1 there exists a constant $c_{q}<\infty$ such that $C_{m, q}^{(n)}\left(A_{n}\right) \leq c_{q}\left|B_{n}\right|^{q}$ for all sequences of subsets $A_{n} \subset B_{n}$ with the constraint that $\left|A_{n}\right|=k-1$. Therefore the claim follows by (5.1) and (5.2).

Proof of Corollary 2.3. Because of the main theorem it remains to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left[\pi_{k, B_{n}}>\frac{\zeta}{n^{\frac{1}{2 \gamma}} L^{*}(n)}\right]=\exp \left(-\zeta^{2 d \gamma}\right) \sum_{j=0}^{k-1} \frac{\zeta^{2 d \gamma j}}{j!} \quad \text { for all } \zeta \geq 0 \tag{5.6}
\end{equation*}
$$

The proof extends the proof of [Fle16, Corollary 1.11], where we have already shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left[\min _{x \in B_{n}} \pi_{x}>a_{n} \zeta\right]=\exp \left(-\zeta^{2 d \gamma}\right) \quad \text { for all } \zeta \geq 0 \tag{5.7}
\end{equation*}
$$

by extending the ideas of [Wat54] from $d=1$ to $d \geq 2$. We will use (5.7) for the inductive base case $k=1$.

In what follows all the statements hold for all $\zeta \geq 0$. For the inductive step we consider

$$
\mathbb{P}\left[\pi_{k, B_{n}}>a_{n} \zeta\right]=\mathbb{P}\left[\pi_{k-1, B_{n}}>a_{n} \zeta\right]+\mathbb{P}\left[\left\{\pi_{k, B_{n}}>a_{n} \zeta\right\} \cap\left\{\pi_{k-1, B_{n}} \leq a_{n} \zeta\right\}\right]
$$

Let us now assume that the claim (5.6) holds for some $k-1$. It follows that it remains to show that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\pi_{k, B_{n}}>a_{n} \zeta, \pi_{k-1, B_{n}} \leq a_{n} \zeta\right]=\frac{\zeta^{2(k-1) d \gamma}}{(k-1)!} \exp \left(-\zeta^{2 d \gamma}\right)
$$

Let us start with the decomposition

$$
\begin{align*}
& \mathbb{P}\left[\pi_{k, B_{n}}>a_{n} \zeta, \pi_{k-1, B_{n}} \leq a_{n} \zeta\right]=\sum_{\substack{A \subset B_{n},|A|=k-1}} \mathbb{P}\left[\bigcap_{x \in A}\left\{\pi_{x} \leq a_{n} \zeta\right\} \cap \bigcap_{y \in B_{n} \backslash A}\left\{\pi_{y}>a_{n} \zeta\right\}\right] \\
&=\sum_{\substack{A \subset B_{n},|A|=k-1}} \mathbb{P}\left[\bigcap_{x \in A}\left\{\pi_{x} \leq a_{n} \zeta\right\} \cap \bigcap_{y \in B_{n} \backslash(A \cap \partial A)}\left\{\pi_{y}>a_{n} \zeta\right\}\right] \\
&-\sum_{\substack{A \subset B_{n},|A|=k-1}} \mathbb{P}\left[\bigcap_{x \in A}\left\{\pi_{x} \leq a_{n} \zeta\right\} \cap\left(\bigcup_{y \in \partial A}\left\{\pi_{y} \leq a_{n} \zeta\right\}\right)\right] \tag{5.8}
\end{align*}
$$

Let us argue that the second term on the above RHS converges to zero. We observe that

$$
\begin{aligned}
& \sum_{\substack{A \subset B_{n},|A|=k-1}} \mathbb{P}\left[\bigcap_{x \in A}\left\{\pi_{x} \leq a_{n} \zeta\right\} \cap\left(\bigcup_{y \in \partial A}\left\{y \leq a_{n} \zeta\right\}\right)\right] \\
& \leq \sum_{\substack{A \subset B_{n},|A|=k-1}} \sum_{y \in \partial A} \mathbb{P}\left[\left\{\pi_{y} \leq a_{n} \zeta\right\} \cap \bigcap_{x \in A}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right] \leq \sum_{\substack{A \subset B_{n},|A|=k,|C C(A)| \leq k-1}} \mathbb{P}\left[\bigcap_{x \in A}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right]
\end{aligned}
$$

which converges to zero by virtue of Lemma 5.2.
Let us now consider the first term on the RHS of (5.8). Since for any $y \in B_{n} \backslash(A \cap \partial A)$ the random variable π_{y} is independent of $\left\{\pi_{x}\right\}_{x \in A}$, the first sum on the RHS of (5.8) is

$$
\begin{align*}
& \sum_{\substack{A \subset B_{n},|A|=k-1}} \mathbb{P}\left[\bigcap_{x \in A}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right] \mathbb{P}\left[\min _{y \in B_{n} \backslash(A \cap \partial A)} \pi_{y}>a_{n} \zeta\right] \\
& \geq \mathbb{P}\left[\min _{y \in B_{n}} \pi_{y}>a_{n} \zeta\right] \sum_{\substack{A \subset B_{n},|A|=k-1}} \mathbb{P}\left[\bigcap_{x \in A}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right] \tag{5.9}
\end{align*}
$$

Due to (5.7), the first factor in the above RHS converges to $\exp \left(-\zeta^{2 d \gamma}\right)$. As a part of the proof for (5.7), we have also shown that the second factor converges to $\zeta^{2(k-1) d \gamma} /(k-1)$!. It thus remains to find an upper bound for the LHS of (5.9). Similar to the proof of (5.7), we let l be an even integer and estimate for all sequences of subsets $A_{n} \subset B_{n}$ with the constraint $\left|A_{n}\right|=k-1$ that

$$
\begin{aligned}
& \mathbb{P}\left[\min _{y \in B_{n} \backslash\left(A_{n} \cap \partial A_{n}\right)} \pi_{y}>a_{n} \zeta\right] \leq 1+\sum_{m=1}^{l}(-1)^{m} \sum_{\substack{M \subset B_{n} \backslash\left(A_{n} \cap \partial A_{n}\right),|M|=m}} \mathbb{P}\left[\bigcap_{x \in M}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right] \\
& =1+\sum_{m=1}^{l}(-1)^{m} \sum_{\substack{M \subset B_{n} \backslash\left(A_{n} \cap \partial A_{n}\right),|M|=m, C C(M)=m}} \mathbb{P}\left[\bigcap_{x \in M}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right] \\
& +\sum_{m=1}^{l} \sum_{q=1}^{m-1} \sum_{\substack{M \subset B n \backslash\left(A_{n} \cap \partial A_{n}\right),|M|=m, C C(M)=q}} \mathbb{P}\left[\bigcap_{x \in M}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right]
\end{aligned}
$$

According to Lemma 5.2, the supremum of the last sum on the above RHS taken over all sequences $A_{n} \subset B_{n}$ with $\left|A_{n}\right|=k-1$ converges to zero. For the first sum we observe that since $|C C(M)|=$ $|M|$, the set M is sparse and therefore $\left\{\pi_{x}\right\}_{x \in M}$ is a set of independent random variables. It follows that

$$
\begin{aligned}
& \sum_{m=1}^{l}(-1)^{m} \sum_{\begin{array}{r}
M \subset B_{n} \backslash\left(A_{n} \cap \partial A_{n}\right), \\
|M|=m, \\
C C(M)=m
\end{array}} \mathbb{P}\left[\bigcap_{x \in M}\left\{\pi_{x} \leq a_{n} \zeta\right\}\right]=\sum_{m=1}^{l}(-1)^{m} C_{m, m}^{(n)}(A) \mathbb{P}\left[\pi_{0} \leq a_{n} \zeta\right]^{m} \\
&=\sum_{m=1}^{l}(-1)^{m}\left(\left|B_{n}\right|^{m} / m!+O\left(\left|B_{n}\right|^{m-1}\right)\right) \mathbb{P}\left[\pi_{0} \leq a_{n} \zeta\right]^{m}
\end{aligned}
$$

by Remark 5.1. Taking the supremum over all sequences of subsets $A_{n} \subset B_{n}$ with the constraint $\left|A_{n}\right|=k-1$, this still converges to $\sum_{m=0}^{l} \zeta^{2 d \gamma m} / m$!. Since this holds for every $l \in 2 \mathbb{N}$ and we already have the lower bound (5.9), the claim follows.

A Appendix

For better readability we have shifted a rather lengthy computation in the proof of Lemma 3.16 to this appendix. We start by inserting the definition of the Laplacian, i.e.,

$$
\begin{aligned}
& \sum_{x \in \mathscr{B}_{l+m}^{(n)}}\left(\mathcal{L}_{(l+m, n)}^{w} \phi_{l, m+1}^{(n)}(x)+\mu_{l, m+1}^{(n)} \phi_{l, m+1}^{(n)}(x)\right)^{2} \\
&=\sum_{x \in \mathscr{B}_{l+m}^{(n)}}\left(\sum_{z: z \sim x} w_{x z}\left(\left(\phi_{l, m+1}^{(n)} \mathbb{1}_{\mathscr{B}_{l+m}^{(n)}}\right)(z)-\phi_{l, m+1}^{(n)}(x)\right)+\mu_{l, m+1}^{(n)} \phi_{l, m+1}^{(n)}(x)\right)^{2}
\end{aligned}
$$

Now we rearrange the terms in order to cancel $\mu_{l, m+1}^{(n)} \phi_{l, m+1}^{(n)}(x)$, i.e.,

$$
\begin{aligned}
\mathrm{LHS}= & \sum_{x \in \mathscr{B}_{l+m}^{(n)}}\left(\sum_{z: z \sim x} w_{x z}\left(\left(\phi_{l, m+1}^{(n)} \mathbb{1}_{\mathscr{B}_{l}^{(n)}}\right)(z)-\phi_{l, m+1}^{(n)}(x)\right)+\mu_{l, m+1}^{(n)} \phi_{l, m+1}^{(n)}(x)\right. \\
& \left.-\sum_{z: z \sim x} w_{x z}\left(\phi_{l, m+1}^{(n)} \mathbb{1}_{\mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}}\right)(z)\right)^{2}
\end{aligned}
$$

where the first two terms cancel. The last term simplifies to

$$
\begin{align*}
\mathrm{LHS} & =\sum_{x \in \mathscr{B}_{l+m}^{(n)}}\left(\sum_{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}: z \sim x} w_{x z} \phi_{l, m+1}^{(n)}(z)\right)^{2} \\
& \leq \max _{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}}\left(\phi_{l, m+1}^{(n)}(z)\right)^{2} \sum_{x \in B_{n}}\left(\sum_{z \in \mathscr{B}_{l}^{(n)} \backslash \mathscr{B}_{l+m}^{(n)}: z \sim x} w_{x z}\right)^{2} . \tag{A.1}
\end{align*}
$$

Acknowledgement. I am grateful to Wolfgang König for his very useful suggestions.

References

[Ast16] A. Astrauskas. From extreme values of i.i.d. random fields to extreme eigenvalues of finite-volume Anderson Hamiltonian. Probability Surveys, 13:pp. 156-244, 2016.
[BF60] F. L. Bauer, C. T. Fike. Norms and exclusion theorems. Numerische Mathematik, 2(1): pp. 137-141, 1960.
[BK16] M. Biskup, W. König. Eigenvalue Order Statistics for Random Schrödinger Operators with Doubly-Exponential Tails. Communications in Mathematical Physics, 341(1):pp. 179-218, 2016.
[Fag12] A. Faggionato. Spectral analysis of 1d nearest-neighbor random walks and applications to subdiffusive trap and barrier models. Electron. J. Probab., 17:no. 15, 1-36, 2012.
[FHS17] F. Flegel, M. Heida, and M. Slowik. Homogenization theory for the random conductance model with degenerate ergodic weights and unbounded-range jumps. Preprint, available at dx.doi.org/10.20347/WIAS.PREPRINT.2371, 2017.
[Fle16] F. Flegel. Localization of the principal Dirichlet eigenvector in the heavy-tailed random conductance model. Preprint, available at dx.doi.org/10.20347/WIAS.PREPRINT.2290, 2016 (revision: January 19, 2018).
[JKO94] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of differential operators and integral functionals. Springer Berlin Heidelberg, 1994.
[Res87] S. I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer New York, 1987.
[Sen81] E. Seneta. Non-negative Matrices and Markov Chains. Springer Series in Statistics. Springer-Verlag New York, 1981.
[Wat54] G. S. Watson. Extreme Values in Samples from m-Dependent Stationary Stochastic Processes. The Annals of Mathematical Statistics, 25(4):pp. 798-800, 1954.

[^0]: 2010 Mathematics Subject Classification. 47B80, 47A75, 60K37.

