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Eigenvector localization in the heavy-tailed random conductance
model

Franziska Flegel

Abstract

We generalize our former localization result about the principal Dirichlet eigenvector of the
i.i.d. heavy-tailed random conductance Laplacian to the first k eigenvectors. We overcome the
complication that the higher eigenvectors have fluctuating signs by invoking the Bauer-Fike theo-
rem to show that the kth eigenvector is close to the principal eigenvector of an auxiliary spectral
problem.

1 Introduction

Let us consider the random conductance Laplacian Lw acting on real-valued functions f ∈ `2(Zd)
as

(Lwf)(x) =
∑

y : |x−y|1=1

wxy(f(y)− f(x)) (x ∈ Zd) (1.1)

with positive independent and identically distributed random conductances wxy. As usual, we further
assume that the operator Lw is self-adjoint, i.e. wxy = wyx. Our goal is to describe the almost-sure
behavior of the solution to the spectral problem

−Lwψ = λψ on Bn = [−n, n]2 ∩ Zd ,
ψ = 0 else.

(1.2)

as the box size n tends to infinity. This means that we are interested in the Dirichlet eigenfunctions
and eigenvalues of the operator −Lw in the box Bn with zero Dirichlet conditions.

In the recent paper [Fle16], we have shown that if γ := sup{q ≥ 0: E[w−q] < ∞} < 1/4 and

certain regularity assumptions apply, then the principal Dirichlet eigenvector ψ(n)
1 of Problem (1.2)

concentrates in a single site as n tends to infinity. To be more precise, let πz =
∑

x : x∼z wxz be the
local speed measure, i.e., the inverse mean waiting time of the random walk generated by Lw. Then
the principal Dirichlet eigenvector ψ(n)

1 approaches the δ-function in the site z(1,n) that minimizes

the local speed measure π over the box Bn. Furthermore, the principal Dirichlet eigenvalue λ(n)1 is
asymptotically equivalent to the minimum π1,Bn = minz∈Bn πz.

If, on the other hand, γ > 1/4, then the authors of [FHS17] have proved that the top of the Dirichlet
spectrum of Lw homogenizes. The spectrum of the random conductance Laplacian thus displays a
dichotomy between a localized and a homgenized phase.

In the present paper we generalize our findings for γ < 1/4 to the first k Dirichlet eigenvectors and

eigenvalues. More precisely, we show that the kth Dirichlet eigenvector ψ(n)
k concentrates in the site

that attains the kth minimum of π. Consequently, the kth Dirichlet eigenvalue λ(n)k is asymptotically
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F. Flegel 2

equivalent to the kth minimum of π. If the conductances vary regularly at zero with positive index, then
despite the dependence structure of the random field {πx}x∈Zd , this kth minimum converges weakly
as if {πx}x∈Zd was an independent field, see the proof of Corollary 2.3. It follows that, in this case, the

properly rescaled kth eigenvalue λ(n)k converges in distribution to a non-degenerate random variable.
This relates to a similar result in dimension d = 1, see [Fag12, Theorem 2.5(i)].

Note that the only reason why we have not generalized our findings to the first k eigenvectors in
[Fle16], is that in [Fle16, Lemma 5.6] we rely on the property that the principal Dirichlet eigenvector
does not change its sign, according to the Perron-Frobenius theorem. This is no longer true for the
higher order eigenvectors. To overcome this difficulty, we now approximate the first k eigenvectors to
(1.2) by auxiliary principal eigenvectors using the Bauer-Fike theorem, see Lemma 3.14.

Our results for the random conductance Laplacian compare well to similar results of the random
Schrödinger operator ∆ + ξ with random potential ξ : Zd → R, see [BK16] and [Ast16, Ch. 6].
To keep the present paper as short as possible, we refer the reader to our first article [Fle16] for more
heuristics and references. However, we kept the present paper mostly self-contained.

Model and main objects

We consider the lattice with vertex setZd (d ≥ 2) and edge set Ed = {{x, y} : x, y ∈ Zd, |x−y|1 =
1}. If two sites x, y ∈ Zd are neighbors according to Ed, we also write x ∼ y. To each edge e ∈ Ed
we assign a positive random variablewe. In analogy to a d-dimensional resistor network, we call these
random weights we conductances. We take (Ω,F) =

(
(0,∞)Ed ,B((0,∞))⊗Ed

)
as the underlying

measurable space and assume that an environment w = (we)e∈Ed ∈ Ω is a family of i.i.d. positive
random variables with law P. We denote the expectation with respect to P by E.

If e is the edge between the sites x, y ∈ Zd, we also write wxy or wx,y instead of we. Note that by
definition of the edge set Ed, the edges are undirected, whence wxy = wyx. If we want to refer to an
arbitrary copy of the conductances in general, we simply write w, i.e., for a set A ∈ B((0,∞)), the
expression P[w ∈ A] equals P[we ∈ A] for an arbitrary edge e.

We call

F : [0,∞)→ [0, 1] : u 7→ P[w ≤ u] (1.3)

the distribution function of the conductances.

For an arbitrary k ∈ N, our goal is to study the behavior of the first k Dirichlet eigenvalues λ(n)1 ≤
. . . ≤ λ

(n)
k and eigenvectors ψ(n)

1 , . . . , ψ
(n)
k of the sign-inverted generator −Lw in the ball

Bn :=
{
x ∈ Zd : |x|∞ ≤ n

}
= [−n, n]d ∩ Zd (1.4)

with zero Dirichlet conditions at the boundary.

For a subset A ⊂ Zd we define the function space

`2(A) :=

{
f : Zd → R such that supp f ⊆ A and

∑
x∈A

f(x)2 <∞

}
⊂ `2(Zd) , (1.5)

where we let “supp f ” denote the support of the function f . Accordingly, for functions f1, f2 ∈ `2(Zd)
we define the scalar product

〈f1, f2〉`2(A) =
∑
x∈A

f1(x)f2(x) .
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Eigenvector localization in the RCM 3

For a real-valued function f ∈ `2(Zd) let us define the Dirichlet energy Ew(f) with respect to the
operator −Lw by

Ew(f) = 〈f,−Lwf〉`2(Zd) . (1.6)

Then, according to the Courant-Fischer theorem, the kth Dirichlet eigenvalue is given by the variational
formula

λ
(n)
k = inf

M≤`2(Bn),
dimM=k

sup
f∈M,
‖f‖2=1

Ew(f) (1.7)

whereM≤ `2(Bn) means thatM is a linear subspace of `2(Bn). Note that λ(n)k = Ew
(
ψ

(n)
k

)
.

Definition 1.1 (Local speed measure and its order statistics). We define the local speed measure π
by

πz =
∑
x : x∼z

wxz (z ∈ Zd) (1.8)

and we label the order statistics of the set {πz}z∈Bn by

π1,Bn ≤ π2,Bn ≤ . . . ≤ π|Bn|,Bn . (1.9)

Furthermore, for k, n ∈ N let z(k,n) be the site where π attains its kth minimum overBn, i.e., πz(k,n) =
πk,Bn .

Remark 1.2. If F is continuous, then π1,Bn < π2,Bn < . . . < π|Bn|,Bn P-a.s. and therefore the
minimizers z(k,n) are P-a.s. unique.

2 Main result

In what follows we let

g : [0,∞)→ [0,∞) : u 7→ sup
{
s ≥ 0: F (s) = u−1/2

}
. (2.1)

Assumption 2.1. Let F be continuous and vary regularly at zero with index γ ∈ [0, 1/4). Assume
that there exists a∗ > 0 such that F (ab) ≥ bF (a) for all a ≤ a∗ and all 0 ≤ b ≤ 1. In the case
where γ = 0, we assume additionally that there exists ε1 ∈ (0, 1) such that the product n2+ε1g(n)
converges monotonically to zero as n grows to infinity.

Remark 2.2. In the case where γ > 0, it follows that (1/F (1/s))2 varies regularly at infinity with
index 2γ. Further, (1/F (1/s))2 diverges as s→∞. It follows by virtue of [Res87, Prop. 0.8(v)] that
1/g(u) = inf {s ≥ 0: (1/F (1/s))2 = u} varies regularly at infinity with index 1/(2γ) and thus g
varies regularly at infinity with index −1/(2γ). Since in addition γ < 1/4, there exists ε1 ∈ (0, 1)
such that −1/(2γ) < −(2 + ε1).

Theorem. Let k ∈ N. If Assumption 2.1 holds, then the kth Dirichlet eigenvalue λ(n)k with zero
Dirichlet conditions outside the box Bn fulfills

P

[
lim
n→∞

λ
(n)
k

πk,Bn
= 1

]
= 1 (2.2)
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F. Flegel 4

and the mass of the kth Dirichlet eigenvector ψ(n)
k asymptotically concentrates in the site z(k,n). More

precisely, if ε1 > 0 is as in Assumption 2.1 or Remark 2.2, then P-a.s. for n large enough

1− n−ε/8 ≤ λ
(n)
k

πk,Bn
≤ 1 for all ε < ε1 (2.3)

and

ψ
(n)
k

(
z(k,n)

)
≥
√

1− n−ε/4 for all ε < ε1 . (2.4)

We prove this theorem in Section 4.

Similar to [Fle16, Corollary 1.11], we can now infer the weak convergence of the eigenvalues. Let Fπ
be the distribution function of the random variable π, i.e., the distribution function of the sum of 2d
independent copies of the conductance w. Note that since F is continuous, Fπ is continuous as well.
As in [Fle16, (1.18)], we define

h : (0,∞)→ (0,∞) : u 7→ inf

{
s :

1

Fπ(1/s)
= u

}
. (2.5)

Let F vary regularly at zero with index γ > 0. Then by virtue of [Fle16, Lemma 5.8], it follows that Fπ
varies regularly at zero with index 2dγ. It thus follows by virtue of [Res87, Proposition 0.8(v)] that h
varies regularly at infinity with index 1/(2dγ). Therefore there exists a function L∗ that varies slowly
at infinity such that

h(|Bn|) = n
1
2γL∗(n) . (2.6)

Corollary 2.3. Assume that F fulfills Assumption 2.1 with γ > 0 and let L∗ be as in (2.6). Let k ∈ N.

Then as n tends to infinity, the product L∗(n)n
1
2γ λ

(n)
k converges in distribution to a non-degenerate

random variable. More precisely,

lim
n→∞

P
[
L∗(n)n

1
2γ λ

(n)
k > ζ

]
= exp

(
−ζ2dγ

) k−1∑
j=0

ζ2dγj

j!
for all ζ ∈ [0,∞) . (2.7)

This corollary extends [Fle16, Corollary 1.11] to general k ∈ N. We prove it at the end of Section 5.

3 Auxiliary spectral problems

Definition 3.1 (Auxiliary lattice and Laplacian). We define the set

B(n)
l = Bn\

{
z(1,n), . . . , z(l−1,n)

}
(3.1)

and abbreviate the operator Lw with zero Dirichlet conditions outside B(n)
l as Lw(l,n), i.e., we define

Lw(l,n) := 1
B

(n)
l
Lw 1

B
(n)
l
, (3.2)

where the operator 1
B

(n)
l

is the identity on B(n)
l and zero otherwise.

DOI 10.20347/WIAS.PREPRINT.2472 Berlin 2018



Eigenvector localization in the RCM 5

Since the operator −Lw is self-adjoint, the operator −Lw(l,n) is self-adjoint as well. This justifies the
next definition.

Definition 3.2 (Auxiliary eigenvectors and values). We define the eigenvalues of the operator−Lw(l,n)
restricted to `2

(
B(n)
l

)
by

µ
(n)
l,1 ≤ µ

(n)
l,2 ≤ . . . ≤ µ

(n)

l,|B(n)
l |

(3.3)

and its eigenvectors by

φ
(n)
l,1 , φ

(n)
l,2 , . . . , φ

(n)

l,|B(n)
l |
∈ `2

(
B(n)
l

)
with

〈
φ
(n)
l,i , φ

(n)
l,j

〉
= δij . (3.4)

Note that B(n)
1 = Bn and thus µ(n)

1,k = λ
(n)
k and φ(n)

1,k = ψ
(n)
k . Moreover the variational formula for the

auxiliary eigenvalues reads

µ
(n)
l,m = inf

M≤`2(B(n)
l

),

dimM=m

sup
f∈M,
‖f‖2=1

Ew(f) . (3.5)

Remark 3.3 (Perron-Frobenius). For a given box Bn the operator Lw(l,n) can be written as a (|Bn| −
l + 1) × (|Bn| − l + 1)-matrix with non-negative entries everywhere except on the diagonal. Since
the matrix is finite-dimensional, we can add a multiple of the identity to obtain a non-negative primitive
matrix without changing the matrix’ spectrum. By the Perron-Frobenius theorem (see e.g. [Sen81, Ch.
1]) it follows that its principal eigenvalue−µ(n)

l,1 is simple and we can assume without loss of generality

that its principal eigenvector is positive, which implies that φ(n)
l,1 is nonnegative.

Lemma 3.4. For any l ∈ N and m ∈ {1, . . . , |Bn| − l + 1} the eigenvalue µ(n)
l,m is bounded from

above by

µ
(n)
l,m ≤ πl+m−1,Bn . (3.6)

Proof. We choose

M = span
{
δz(l,n) , δz(l+1,n)

, . . . , δz(l+m−1,n)

}
and insert it as a test space into the variational formula (3.5).

3.1 Principal eigenvectors

The following lemma is the analogue of [Fle16, Lemma 5.6], where we need the Perron-Frobenius
property.

Lemma 3.5. Let k ∈ N and let y, z ∈ Bn ∩ B(n)
k with πz < πy and y � z. Assume that φ(n)

k,1

is nonnegative. Further, define my = 2 maxx : x∼y φ
(n)
k,1(x). Then the mass φ(n)

k,1(y) is bounded from
above by

φ
(n)
k,1(y) ≤ my

1− πz
πy

. (3.7)
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F. Flegel 6

The proof of this lemma is analogous to the proof of [Fle16, Lemma 5.6] and therefore we omit it here.

For the convenience of the reader, we now repeat some definitions from [Fle16]. For a function g :
(0,∞)→ (0,∞) and n ∈ N we define a percolation environment w̃g(n) by setting

w̃g(n)(e) := we1{we>g(n)} (e ∈ Ed) . (3.8)

Thus, edges with conductance less than or equal to g(n) are considered to be closed and all others
keep their original conductance. With this terminology we can now define the following clusters.

Definition 3.6. For a fixed function g and a fixed ε > 0, let D (n) be the unique infinite open cluster of
the environment w̃g(n1−ε) and let I (n) = Bn\D (n) be its set of holes in Bn.

Definition 3.7. We call a set I ⊂ Zd sparse if the set I does not contain any neighboring sites.
Further, a set I ⊂ Zd is b-sparse if for any z ∈ Zd the boxBb(z) :=

{
x ∈ Zd : |x− z|∞ ≤ b

}
⊂

Zd contains at most one site of the set I .

Remark 3.8. Let b1 < b2 be natural numbers. If a set I ⊂ Zd is b2-sparse, it is also b1-sparse and
sparse.

Let us collect some facts that we already know about the cluster D (n) and the set I (n) from [Fle16].

Remark 3.9. Let us recall that in Assumption 2.1 we assume that one of the two following cases
occurs: γ ∈ (0, 1/4) or γ = 0 and there exists ε1 ∈ (0, 1) such that the product n2+ε1g(n)
converges monotonically to zero as n grows to infinity. In the case where γ ∈ (0, 1/4), we define ε1
as in Remark 2.2.

In both cases we define D (n) and I (n) as in Definition 3.6 with ε = ε2 := 7ε1
8(2+ε1)

. By virtue of [Fle16,

Lemma 5.4] and Remark 3.8 we know that for any fixed b ∈ N the set I (n) is b-sparse and therefore
sparse P-a.s. for n large enough in the sense of Definition 3.7. Moreover, [Fle16, Lemma 5.4] implies
that for any k ∈ N we have P-a.s. for n large enough z(1,n), . . . , z(k+1,n) ∈ I (n) and thus P-a.s.
for n large enough there is no pair of neighbors among the the sites z(1,n), . . . , z(k+1,n). Since F is
continuous, the sites z(1,n), . . . , z(k+1,n) are P-a.s. unique.

The next lemma about the principal Dirichlet eigenvector φ(n)
k,1 of the auxiliary operator −Lw(k,n) is

very similar to [Fle16, Lemma 5.5]. Indeed, we can nearly copy the proof since the deleted sites
z(1,n), . . . , z(k−1,n) are in I (n), see Remark 3.9.

Lemma 3.10. Let the function g be as in (2.1). Assume that there exists ε1 ∈ (0, 1) such that one of
the two cases occurs: g varies regularly at infinity with index ρ < −(2 + ε1) or the product n2+ε1g(n)
converges monotonically to zero as n grows to infinity. Further, let ε = ε2 := 7ε1

8(2+ε1)
and D (n) be as

in Definition 3.6. Then P-a.s. for n large enough∥∥φ(n)
k,1

∥∥2
`2(D(n))

≤ n−ε1/2 . (3.9)

Proof. The proof follows the lines of the proof of [Fle16, Lemma 5.5] until right before (5.8). Here, we
then apply Lemma 3.4 to infer that

πk,Bn ≥ µ
(n)
k,1 = Ew

(
φ
(n)
k,1

)
.

Moreover, by virtue of [Fle16, Lemma 2.6] there exists c1 <∞ such that P-a.s. for n large enough

c1g(n1−ε3) ≥ πk,Bn

with ε3 = ε1(8(2 + ε1))
−1. The rest of the proof follows again the lines of the proof of [Fle16, Lemma

5.5].
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Eigenvector localization in the RCM 7

From Lemma 3.10 to localization in a single site, the main two ingredients are Lemma 3.5 and the
following result about the order statistics of {πx}x∈Bn .

Lemma 3.11 ([Fle16, Lemma 5.10]). Let Assumption 2.1 be true and let ε > 0 and k ∈ N. Then
P-a.s. for n large enough

1− πk,Bn
πk+1,Bn

> n−ε . (3.10)

The next lemma therefore follows.

Lemma 3.12. Let k ∈ N. Under Assumption 2.1, it follows that P-a.s. for n large enough

φ
(n)
k,1

(
z(k,n)

)
≥
√

1− n−ε1/4 . (3.11)

This implies that P-a.s. for n large enough

µ
(n)
k,1 ≥

(
1− 2n−ε1/8

)
πk,Bn . (3.12)

Proof. In view of Remark 3.9, Lemma 3.5 and the extreme value result Lemma 3.11, the proof of
(3.11) is completely analogous to the proof of [Fle16, Theorem 1.8] and thus we omit it here. For
(3.12) we observe that since µ(n)

k,1 = 〈φ(n)
k,1 ,Lwφ

(n)
k,1〉 it follows that P-a.s. for n large enough

µ
(n)
k,1 ≥

∑
x : x∼z(k,n)

wxz(k,n)

(
φ
(n)
k,1(z(k,n))− φ(n)

k,1(x)
)2
≥
(
n−ε1/8 −

√
1− n−ε1/4

)2
πz(k,n) .

3.2 Orthogonality of eigenvectors

The next very simple ingredient of our proof is due to the orthogonality of the eigenvectors.

Lemma 3.13. Let ε > 0, let j, l,m, n ∈ N with j < m and let φ(n)
l,j (z) ≥

√
1− n−ε/4.∣∣∣φ(n)

l,m(z)
∣∣∣ ≤ n−ε/8 . (3.13)

Proof. For n = 1 the claim is immediate. For n ≥ 2 we observe that since the eigenvectors φ(n)
l,j and

φ
(n)
l,m are orthogonal to each other, it follows that

φ
(n)
l,m(z) = −

∑
x 6=z φ

(n)
l,j (x)φ

(n)
l,m(x)

φ
(n)
l,j (z)

.

By the Cauchy-Schwarz inequality it follows that for n greater than one

(
φ
(n)
l,m(z)

)2
≤

(∑
x6=z

(
φ
(n)
l,j (x)

)2)(
1−

(
φ
(n)
l,m(z)

)2)
(
φ
(n)
l,j (z)

)2 ≤ n−ε/4

1− n−ε/4

(
1−

(
φ
(n)
l,m(z)

)2)

where we have also used that the assumption implies that
∑

x 6=z

(
φ
(n)
l,j (x)

)2
≤ n−ε/4. The claim

follows.
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F. Flegel 8

3.3 Higher eigenvalues and -vectors

We establish the connection to the original eigenvalues and -vectors via the Bauer-Fike theorem
[BF60], which we cite below from [JKO94, Lemma 11.2].

Lemma 3.14 ([JKO94, Lemma 11.2]). Let A : H → H be a linear self-adjoint compact operator in a
Hilbert space H . Let µ ∈ R, and let u ∈ H be such that ‖u‖H = 1 and

‖Au− µu‖H ≤ α , α > 0 . (3.14)

Then there exists an eigenvalue µi of the operator A such that

|µi − µ| ≤ α . (3.15)

Moreover, for any β > α, there exists a vector u such that

‖u− u‖H ≤ 2αβ−1 , ‖u‖H = 1 (3.16)

and u is a linear combination of the eigenvectors of operatorA corresponding to the eigenvalues from
the interval [µ− β, µ+ β].

Here comes the first application of Lemma 3.14.

Lemma 3.15. Let l ∈ N and m ∈ {1, . . . , |Bn| − l + 1}. Under Assumption 2.1 there exists
i ∈ {1, . . . , |Bn| − l + 1} such that∣∣∣µ(n)

l,i − µ
(n)
l+m,1

∣∣∣ ≤ n−ε1/4 · πl+m−1,Bn . (3.17)

Proof. We aim to apply Lemma 3.14 with the operatorA = −Lw(l,n), the Hilbert spaceH = `2(B(n)
l ),

the value µ = µl+m,1 and the vector u = φ
(n)
l+m,1. First, we note that ‖φ(n)

l+m,1‖`2(B(n)
l )

= 1. Next, we

recall that φ(n)
l+m,1 is an eigenvector of the operator −Lw(l+m,n) to the eigenvalue µ(n)

l+m,1 and therefore∥∥∥Lw(l,n)φ(n)
l+m,1+ µ

(n)
l+m,1φ

(n)
l+m,1

∥∥∥2
`2(B

(n)
l )

=
∑

z∈B
(n)
l \B

(n)
l+m

(
Lw(l,n)φ

(n)
l+m,1(z) + µ

(n)
l+m,1φ

(n)
l+m,1(z)

)2
,

where all other summands vanish. Note that B(n)
l \B

(n)
l+m =

{
z(l,n), . . . z(l+m−1,n)

}
and by definition

we have φ(n)
l+m,1(z) = 0 for all z ∈

{
z(l,n), . . . z(l+m−1,n)

}
. It follows that for all z ∈ B(n)

l \B
(n)
l+m we

have

Lw(l,n)φ
(n)
l+m,1(z) =

∑
x : x∼z

wxz

(
φ
(n)
l+m,1(x)− φ(n)

l+m,1(z)
)

=
∑
x : x∼z

wxzφ
(n)
l+m,1(x) .

Since πl+m−1,Bn ≥ πl+m−2,Bn ≥ . . . ≥ πl,Bn , it follows that∥∥∥Lw(l,n)φ(n)
l+m,1 + µ

(n)
l+m,1φ

(n)
l+m,1

∥∥∥2
`2(B

(n)
l )
≤ π2

l+m−1,Bn

∑
z∈B

(n)
l \B

(n)
l+m

max
x : x∼z

(
φ
(n)
l+m,1(x)

)2
.

Since by virtue of Remark 3.9 the sites z(1,n), . . . , z(l+m−1,n) are in I (n) and are neither neighbors
nor do they share a common neighbor P-a.s. for n large enough, it follows that P-a.s. for n large
enough ∑

z∈B
(n)
l \B

(n)
l+m

max
x : x∼z

(
φ
(n)
l+m,1(x)

)2
≤
∑
x∈D(n)

(
φ
(n)
l+m,1(x)

)2
≤ n−ε1/2 ,

where the last bound is due to Lemma 3.10. The claim follows by virtue of Lemma 3.14.
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Here comes the second application of Lemma 3.14.

Lemma 3.16. Let ε > 0, l,m ∈ N. If Assumption 2.1 holds and P-a.s. for n large enough

φ
(n)
l,j

(
z(l+j−1,n)

)
≥
√

1− n−ε/4 for all 1 ≤ j ≤ m, (3.18)

then P-a.s. for n large enough there exists j ∈ {1, . . . , |Bn| − l −m+ 1} such that

∣∣∣µ(n)
l,m+1 − µ

(n)
l+m,j

∣∣∣ ≤ πl+m−1,Bn

√
mn−ε/4

1−mn−ε/4
. (3.19)

Proof. We aim to apply Lemma 3.14 with the operator A = −Lw(l+m,n), the Hilbert space H =

`2(B(n)
l+m), the value µ = µ

(n)
l,m+1 and the vector u = φ

(n)
l,m+1/‖φ

(n)
l,m+1‖`2(B(n)

l+m)
. First, we note that

by definition ‖u‖
`2(B

(n)
l+m)

= 1 and P-a.s. for n large enough

‖φ(n)
l,m+1‖

2

`2(B
(n)
l+m)

= 1−
∑

z∈B
(n)
l \B

(n)
l+m

(
φ
(n)
l,m+1(z)

)2
≥ 1−mn−ε/4 (3.20)

by virtue of Condition (3.18) and Lemma 3.13.

Next, as we show in detail in (A.1), we can estimate∥∥∥Lw(l+m,n)φ(n)
l,m+1 + µ

(n)
l,m+1φ

(n)
l,m+1

∥∥∥2
`2(B

(n)
l+m)

≤ max
z∈B

(n)
l \B

(n)
l+m

(
φ
(n)
l,m+1(z)

)2 ∑
x∈Bn

( ∑
z : z∼x

z∈B
(n)
l
\B(n)

l+m

wxz

)2

. (3.21)

Since by virtue of Remark 3.9 we have P-a.s. for n large enough

B(n)
l \B

(n)
l+m = {zl,n, . . . , zl+m−1,n} ⊂ I (n)

and I (n) is 1-sparse, it follows that on the RHS of (3.21) for each x ∈ Bn the sum over all z ∈
B(n)
l \B

(n)
l+m with z ∼ x contains at most one summand. Therefore P-a.s. for n large enough we

can pull the square into the inner sum. Then we rearrange both sums and use that for all z we have∑
x : x∼z w

2
xz ≤ π2

z to infer that P-a.s. for n large enough∥∥∥Lw(l+m,n)φ(n)
l,m+1 + µ

(n)
l,m+1φ

(n)
l,m+1

∥∥∥2
`2(B

(n)
l+m)
≤ max

z∈B
(n)
l \B

(n)
l+m

(
φ
(n)
l,m+1(z)

)2 ∑
z∈B

(n)
l \B

(n)
l+m

π2
z .

By virtue of Lemma 3.13 and Assumption (3.18), for all z ∈ {z(l,n), . . . , z(l+m−1,n)} we know that
P-a.s. for n large enough ∣∣∣φ(n)

l,m+1(z)
∣∣∣ ≤ n−ε/8 .

Furthermore,
∑

z∈B
(n)
l \B

(n)
l+m

π2
z ≤ mπ2

l+m−1,Bn . It follows that P-a.s. for n large enough∥∥∥Lw(l+m,n)φ(n)
l,m+1 − µ

(n)
l,m+1φ

(n)
l,m+1

∥∥∥2
`2(B

(n)
l+m)
≤ mn−ε/4π2

l+m−1,Bn .
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Together with (3.20) it follows that P-a.s. for n large enough∥∥∥Lw(l+m,n)u− µ(n)
l,m+1u

∥∥∥2
`2(B

(n)
l+m)
≤ mn−ε/4

1−mn−ε/4
π2
l+m−1,Bn . (3.22)

and therefore the claim follows by virtue of Lemma 3.14.

Both Lemmas 3.15 and 3.16 imply the following lemma.

Lemma 3.17. Let ε ∈ (0, ε1) and l,m ∈ N. If Assumption 2.1 holds and P-a.s. for n large enough

φ
(n)
l,j

(
z(l+j−1,n)

)
≥
√

1− n−ε/4 for all 1 ≤ j ≤ m, (3.23)

then

µ
(n)
l,m+1 ≥

(
1− (2 +

√
m)n−ε/8

)
πl+m,Bn . (3.24)

Proof. Let us first assume that µ(n)
l,m+1 ≤ µ

(n)
l+m,1. Due to Assumption (3.23) we can apply Lemma

3.16. Because of the ordering µ(n)
l+m,1 ≤ µ

(n)
l+m,2 ≤ . . . , it follows that Relation (3.19) holds with j = 1

and ε = ε. On the other hand, if µ(n)
l,m+1 > µ

(n)
l+m,1, then (3.17) holds with an index i ≤ m + 1. Let

us now argue why (3.17) holds with exactly i = m + 1 P-a.s. for n large enough. We assume the
contrary, i.e., that i ≤ m infinitely often as n tends to infinity. Then (3.17) together with (3.12) implies
that

µ
(n)
l,i ≥ µ

(n)
l+m,1 − n

−ε1/4πl+m−1,Bn ≥
(
1− 2n−ε1/8 − n−ε1/4

)
πl+m,Bn

Note that (3.6) implies that µ(n)
l,i ≤ πl+i−1,Bn , which we assumed to be less than or equal to πl+m−1,Bn

infinitely often as n tends to infinity. Thus

πl+m−1,Bn
πl+m,Bn

≥ 1− 3n−ε1/8

infinitely often as n tends to infinity. This is a contradiction to Lemma 3.11.

Thus, since ε < ε1, it follows regardless of whether µ(n)
l,m+1 ≤ µ

(n)
l+m,1 or µ(n)

l,m+1 > µ
(n)
l+m,1 that P-a.s.

for n large enough

∣∣∣µ(n)
l,m+1 − µ

(n)
l+m,1

∣∣∣ ≤
√

mn−ε/4

1−mn−ε/4
πl+m−1,Bn ≤

√
mn−ε/8 · πl+m,Bn . (3.25)

Therefore P-a.s. for n large enough µ(n)
l,m+1 is bounded from below by

µ
(n)
l,m+1 ≥ µ

(n)
l+m,1 −

√
mn−ε/8 · πl+m,Bn

(3.12)
≥

(
1− (2 +

√
m)n−ε/8

)
πl+m,Bn . (3.26)

Now we have the ingredients to prove the main theorem by induction.
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4 Proof of the main theorem

By virtue of Lemma 3.4, we already know that

λ
(n)
k ≤ πk,Bn for all k ∈ N .

In what follows, we further prove (2.4) and that P-a.s. for n large enough

λ
(n)
k ≥

(
1− n−ε/8

)
πk,Bn for all ε < ε1 .

We prove the claim by induction over k.

Base case: k = 1. P-a.s. for n large enough we have

ψ
(n)
1

(
z(1,n)

)2 ≥ 1− n−ε1/4 , (4.1)

by virtue of [Fle16, Theorem 1.8] and

λ
(n)
1 ≥

(
1− 2n−ε1/8

)
π1,Bn >

(
1− n−ε/8

)
π1,Bn for all ε < ε1 (4.2)

by virtue of [Fle16, Equation (5.30)].

Inductive step: (k − 1)  k. Suppose that the claims (2.3) and (2.4) hold for some k − 1 ∈ N.
We now show that this implies that the claims also hold for k instead of k − 1.

For (2.3) this already follows by Lemma 3.17 with l = 1 and m = k − 1. Note that here Condition
(3.23) holds for all ε < ε1 and therefore (3.24) holds even without the multiplicative constants. For
(2.4) we apply the second part of Lemma 3.14: Let 0 < δ < ε1/16 and

β
(n)
k = 2

√
k − 1n−δπk,Bn . (4.3)

Since πk−1,Bn ≤ πk,Bn , it follows that β(n)
k > α

(n)
k with

α
(n)
k :=

√
k − 1n−ε1/8πk−1,Bn .

Therefore Lemma 3.14 and (3.22) with l = 1 and m = k − 1 imply that there exists a function
u : Zd → R such that ∥∥∥ψ(n)

k − u
∥∥∥
`2(Bn)

≤ 2
√
k − 1n−ε1/8πk−1,Bn

β
(n)
k

(4.4)

where u is a linear combination of the eigenvectors {φk,j}j≥1 corresponding to the eigenvalues from

the interval
[
λ
(n)
k − β

(n)
k , λ

(n)
k + β

(n)
k

]
of the operator −Lw(k,n). We now show that P-a.s. for n large

enough u = φ
(n)
k,1 , i.e., that P-a.s. for n large enough

specLw(k,n) ∩
[
λ
(n)
k − β

(n)
k , λ

(n)
k + β

(n)
k

]
=
{
µ
(n)
k,1

}
. (4.5)
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It suffices to show that P-a.s. for n large enough µ(n)
k,2 > λ

(n)
k +β

(n)
k . We note that Lemma 3.4 implies

that

λ
(n)
k + β

(n)
k ≤

(
1 + 2

√
k − 1n−δ

)
πk,Bn . (4.6)

By virtue of Lemma 3.11 we have P-a.s. for n large enough πk,Bn
πk+1,Bn

< 1− 2
√
k − 1n−δ, whence it

follows that P-a.s. for n large enough

λ
(n)
k + β

(n)
k <

(
1− 4(k − 1)n−2δ

)
πk+1,Bn ≤ µ

(n)
k,2 ,

where the last inequality follows since by the inductive assumption the relation (3.23) holds for all
ε < ε1 and therefore (3.24) holds for all ε < ε1 with l = k and m = 1. Therefore (4.5) is true.

It follows that for any 0 < δ < ε1/16 we have P-a.s. for n large enough∣∣∣ψ(n)
k (z(k,n))− φ(n)

k,1(z(k,n))
∣∣∣ ≤ nδ−ε1/8πk−1,Bn

πk,Bn
< nδ−ε1/8 .

By virtue of Lemma 3.12, we already know that
∣∣∣φ(n)
k,1

(
z(k,n)

)∣∣∣ ≥ √1− n−ε1/4 P-a.s. for n large

enough. It follows that(
ψ

(n)
k (z(k,n))

)2
≥ 1− n−ε1/4 + n2δ−ε1/4 − 2nδ−ε1/8 ≥ 1− 2nδ−ε1/8 .

The claim follows since we can choose δ arbitrarily small.

5 Asymptotics of the eigenvalues

The proof of Corollary 2.3 extends the proof of [Fle16, Corollary 1.11], which uses the ideas of [Wat54].
To keep the present paper self-contained, we repeat the initial definitions and statements. We define

an :=
(
n

1
2γL∗(n)

)−1
=

1

h(|Bn|)
= sup

{
t : Fπ(t) = |Bn|−1

}
with h as in (2.5) and L∗(n) as in (2.6). Then |Bn| = (P[π0 ≤ an])−1 and therefore

lim
n→∞

|Bn|P[π0 ≤ anζ] = lim
n→∞

Fπ(anζ)

Fπ(an)
= ζ2dγ for all ζ ≥ 0 (5.1)

since an → 0 as n → ∞ and Fπ varies regularly at zero with index 2dγ. We further note that
if e1 ∈ Zd is a neighbor of the origin, then P[{π0 ≤ anζ} ∩ {πe1 ≤ anζ}] ≤ F (anζ)4d−1 since
for the event {π0 ≤ anζ} ∩ {πe1 ≤ anζ} at least 4d − 1 independent conductances w have to be
smaller than or equal to anζ . Since F varies regularly at zero with index γ, it follows that

|Bn|P[{π0 ≤ anζ} ∩ {πe1 ≤ anζ}]→ 0 as n→∞ . (5.2)

We start with the auxiliary Lemma 5.2, for which we need some further definitions. For a set A ⊂ Zd
we define CC(A) as the set of connected components of A. Furthermore, we define the outer site
boundary of the set A as

∂A :=
{
z ∈ Zd\A : ∃x ∈ A with x ∼ z

}
. (5.3)

For the natural numbers q ≤ m we further define the number

C(n)
m,q(A) :=

∣∣{M ⊂ Bn\(A ∩ ∂A) : |M | = m, |CC(M)| = q}
∣∣ . (5.4)
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Remark 5.1. Note that if we fix a k ∈ N, then as n tends to infinity we have C(n)
m,m(An) = |Bn|m/m!

+O(|Bn|m−1) for all sequences of subsets An ∈ Bn with the constraint |An| = k − 1. Moreover,
for q ≤ m− 1 there exists a constant cq < ∞ such that for all n ∈ N and all sequences of subsets

An ⊂ Bn with |An| = k − 1, we have C(n)
m,q(An) < cq|Bn|q. Note that this cq is independent of the

specific choice of An.

Lemma 5.2. For any fixed k, l ∈ N the relations (5.1) and (5.2) imply that

lim
n→∞

sup
An⊂Bn,
|An|=k−1

l∑
m=1

m−1∑
q=1

∑
M⊂Bn\(An∩∂An),

|M|=m,
|CC(M)|=q

P

[ ⋂
x∈M

{πx ≤ anζ}

]
= 0 for all ζ ≥ 0 . (5.5)

Proof. We are summing over sets M with the constraint |CC(M)| = q < m = |M |. This means
that here all the sets M contain at least one connected component C with a neighboring pair of sites,
i.e., P

[⋂
x∈C {πx ≤ anζ}

]
≤ P[{π0 ≤ anζ} ∩ {πe1 ≤ anζ}]. Since πx and πy are independent if

the sites x and y are in two different connected components of M , it follows that

l∑
m=1

m−1∑
q=1

∑
M⊂Bn\(An∩∂An),

|M|=m,
|CC(M)|=q

P

[ ⋂
x∈M

{πx ≤ anζ}

]

≤
l∑

m=1

m−1∑
q=1

C(n)
m,q(An)P[π0 ≤ anζ]q−1P[{π0 ≤ anζ} ∩ {πe1 ≤ anζ}] .

By Remark 5.1 there exists a constant cq < ∞ such that C(n)
m,q(An) ≤ cq|Bn|q for all sequences of

subsets An ⊂ Bn with the constraint that |An| = k − 1. Therefore the claim follows by (5.1) and
(5.2).

Proof of Corollary 2.3. Because of the main theorem it remains to show that

lim
n→∞

P

[
πk,Bn >

ζ

n
1
2γL∗(n)

]
= exp

(
−ζ2dγ

) k−1∑
j=0

ζ2dγj

j!
for all ζ ≥ 0 . (5.6)

The proof extends the proof of [Fle16, Corollary 1.11], where we have already shown that

lim
n→∞

P
[

min
x∈Bn

πx > anζ

]
= exp

(
−ζ2dγ

)
for all ζ ≥ 0 (5.7)

by extending the ideas of [Wat54] from d = 1 to d ≥ 2. We will use (5.7) for the inductive base case
k = 1.

In what follows all the statements hold for all ζ ≥ 0. For the inductive step we consider

P[πk,Bn > anζ] = P[πk−1,Bn > anζ] + P[{πk,Bn > anζ} ∩ {πk−1,Bn ≤ anζ}] .

Let us now assume that the claim (5.6) holds for some k − 1. It follows that it remains to show that

lim
n→∞

P[πk,Bn > anζ, πk−1,Bn ≤ anζ] =
ζ2(k−1)dγ

(k − 1)!
exp
(
−ζ2dγ

)
.
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Let us start with the decomposition

P[πk,Bn > anζ, πk−1,Bn ≤ anζ] =
∑
A⊂Bn,
|A|=k−1

P

⋂
x∈A

{πx ≤ anζ} ∩
⋂

y∈Bn\A

{πy > anζ}


=

∑
A⊂Bn,
|A|=k−1

P

⋂
x∈A

{πx ≤ anζ} ∩
⋂

y∈Bn\(A∩∂A)

{πy > anζ}


−

∑
A⊂Bn,
|A|=k−1

P

[⋂
x∈A

{πx ≤ anζ} ∩

( ⋃
y∈∂A

{πy ≤ anζ}

)]
. (5.8)

Let us argue that the second term on the above RHS converges to zero. We observe that

∑
A⊂Bn,
|A|=k−1

P

[⋂
x∈A

{πx ≤ anζ} ∩

( ⋃
y∈∂A

{y ≤ anζ}

)]

≤
∑
A⊂Bn,
|A|=k−1

∑
y∈∂A

P

[
{πy ≤ anζ} ∩

⋂
x∈A

{πx ≤ anζ}

]
≤

∑
A⊂Bn,
|A|=k,

|CC(A)|≤k−1

P

[⋂
x∈A

{πx ≤ anζ}

]

which converges to zero by virtue of Lemma 5.2.

Let us now consider the first term on the RHS of (5.8). Since for any y ∈ Bn\(A ∩ ∂A) the random
variable πy is independent of {πx}x∈A, the first sum on the RHS of (5.8) is

∑
A⊂Bn,
|A|=k−1

P

[⋂
x∈A

{πx ≤ anζ}

]
P
[

min
y∈Bn\(A∩∂A)

πy > anζ

]

≥ P
[

min
y∈Bn

πy > anζ

] ∑
A⊂Bn,
|A|=k−1

P

[⋂
x∈A

{πx ≤ anζ}

]
. (5.9)

Due to (5.7), the first factor in the above RHS converges to exp
(
−ζ2dγ

)
. As a part of the proof for

(5.7), we have also shown that the second factor converges to ζ2(k−1)dγ/(k − 1)!. It thus remains to
find an upper bound for the LHS of (5.9). Similar to the proof of (5.7), we let l be an even integer and
estimate for all sequences of subsets An ⊂ Bn with the constraint |An| = k − 1 that

P
[

min
y∈Bn\(An∩∂An)

πy > anζ

]
≤ 1 +

l∑
m=1

(−1)m
∑

M⊂Bn\(An∩∂An),
|M|=m

P

[ ⋂
x∈M

{πx ≤ anζ}

]

= 1 +
l∑

m=1

(−1)m
∑

M⊂Bn\(An∩∂An),
|M|=m,

CC(M)=m

P

[ ⋂
x∈M

{πx ≤ anζ}

]

+
l∑

m=1

m−1∑
q=1

∑
M⊂Bn\(An∩∂An),

|M|=m,
CC(M)=q

P

[ ⋂
x∈M

{πx ≤ anζ}

]

DOI 10.20347/WIAS.PREPRINT.2472 Berlin 2018



Eigenvector localization in the RCM 15

According to Lemma 5.2, the supremum of the last sum on the above RHS taken over all sequences
An ⊂ Bn with |An| = k− 1 converges to zero. For the first sum we observe that since |CC(M)| =
|M |, the set M is sparse and therefore {πx}x∈M is a set of independent random variables. It follows
that

l∑
m=1

(−1)m
∑

M⊂Bn\(An∩∂An),
|M|=m,

CC(M)=m

P

[ ⋂
x∈M

{πx ≤ anζ}

]
=

l∑
m=1

(−1)mC(n)
m,m(A)P[π0 ≤ anζ]m

=
l∑

m=1

(−1)m
(
|Bn|m/m! +O

(
|Bn|m−1

))
P[π0 ≤ anζ]m

by Remark 5.1. Taking the supremum over all sequences of subsets An ⊂ Bn with the constraint
|An| = k − 1, this still converges to

∑l
m=0 ζ

2dγm/m!. Since this holds for every l ∈ 2N and we
already have the lower bound (5.9), the claim follows.

A Appendix

For better readability we have shifted a rather lengthy computation in the proof of Lemma 3.16 to this
appendix. We start by inserting the definition of the Laplacian, i.e.,∑
x∈B

(n)
l+m

(
Lw(l+m,n)φ

(n)
l,m+1(x) + µ

(n)
l,m+1φ

(n)
l,m+1(x)

)2

=
∑

x∈B
(n)
l+m

( ∑
z : z∼x

wxz

((
φ
(n)
l,m+11B

(n)
l+m

)
(z)− φ(n)

l,m+1(x)
)

+ µ
(n)
l,m+1φ

(n)
l,m+1(x)

)2

Now we rearrange the terms in order to cancel µ(n)
l,m+1φ

(n)
l,m+1(x), i.e.,

LHS =
∑

x∈B
(n)
l+m

( ∑
z : z∼x

wxz

((
φ
(n)
l,m+11B

(n)
l

)
(z)− φ(n)

l,m+1(x)
)

+ µ
(n)
l,m+1φ

(n)
l,m+1(x)

−
∑
z : z∼x

wxz

(
φ
(n)
l,m+11B

(n)
l \B

(n)
l+m

)
(z)

)2

,

where the first two terms cancel. The last term simplifies to

LHS =
∑

x∈B
(n)
l+m

 ∑
z∈B

(n)
l \B

(n)
l+m : z∼x

wxzφ
(n)
l,m+1(z)


2

≤ max
z∈B

(n)
l \B

(n)
l+m

(
φ
(n)
l,m+1(z)

)2 ∑
x∈Bn

( ∑
z∈B

(n)
l \B

(n)
l+m : z∼x

wxz

)2

. (A.1)

Acknowledgement. I am grateful to Wolfgang König for his very useful suggestions.

DOI 10.20347/WIAS.PREPRINT.2472 Berlin 2018



F. Flegel 16

References

[Ast16] A. Astrauskas. From extreme values of i.i.d. random fields to extreme eigenvalues of
finite-volume Anderson Hamiltonian. Probability Surveys, 13:pp. 156–244, 2016.

[BF60] F. L. Bauer, C. T. Fike. Norms and exclusion theorems. Numerische Mathematik, 2(1): pp.
137–141, 1960.

[BK16] M. Biskup, W. König. Eigenvalue Order Statistics for Random Schrödinger Operators with
Doubly-Exponential Tails. Communications in Mathematical Physics, 341(1):pp. 179–218,
2016.

[Fag12] A. Faggionato. Spectral analysis of 1d nearest-neighbor random walks and applications
to subdiffusive trap and barrier models. Electron. J. Probab., 17:no. 15, 1–36, 2012.

[FHS17] F. Flegel, M. Heida, and M. Slowik. Homogenization theory for the random conductance
model with degenerate ergodic weights and unbounded-range jumps. Preprint, available
at dx.doi.org/10.20347/WIAS.PREPRINT.2371, 2017.

[Fle16] F. Flegel. Localization of the principal Dirichlet eigenvector in the heavy-tailed random
conductance model. Preprint, available at dx.doi.org/10.20347/WIAS.PREPRINT.2290,
2016 (revision: January 19, 2018).

[JKO94] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of differential operators and
integral functionals. Springer Berlin Heidelberg, 1994.

[Res87] S. I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer New
York, 1987.

[Sen81] E. Seneta. Non-negative Matrices and Markov Chains. Springer Series in Statistics.
Springer-Verlag New York, 1981.

[Wat54] G. S. Watson. Extreme Values in Samples from m-Dependent Stationary Stochastic Pro-
cesses. The Annals of Mathematical Statistics, 25(4):pp. 798–800, 1954.

DOI 10.20347/WIAS.PREPRINT.2472 Berlin 2018


	Introduction
	Main result
	Auxiliary spectral problems
	Principal eigenvectors
	Orthogonality of eigenvectors
	Higher eigenvalues and -vectors

	Proof of the main theorem
	Asymptotics of the eigenvalues
	Appendix

