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Change-point detection in high-dimensional covariance structure
Valeriy Avanesov, Nazar Buzun

Abstract

In this paper we introduce a novel approach for an important problem of break detection.
Specifically, we are interested in detection of an abrupt change in the covariance structure of a
high-dimensional random process – a problem, which has applications in many areas e.g., neu-
roimaging and finance. The developed approach is essentially a testing procedure involving a
choice of a critical level. To that end a non-standard bootstrap scheme is proposed and theoret-
ically justified under mild assumptions. Theoretical study features a result providing guaranties
for break detection. All the theoretical results are established in a high-dimensional setting (di-
mensionality p� n). Multiscale nature of the approach allows for a trade-off between sensitivity
of break detection and localization. The approach can be naturally employed in an on-line set-
ting. Simulation study demonstrates that the approach matches the nominal level of false alarm
probability and exhibits high power, outperforming a recent approach.

1 Introduction

The analysis of high dimensional time series is crucial for many fields including neuroimaging and
financial engineering. There, one often has to deal with processes involving abrupt structural changes
which necessitate a corresponding adaptation of a model and/or a strategy. Structural break analy-
sis comprises determining if an abrupt change is present in the given sample and if so, estimating
the change-point, namely the moment in time when it takes place. In literature both problems may
be referred to as change-point or break detection. In this study we will be using terms break detec-
tion and change-point localization respectively in order to distinguish between them. The majority of
approaches to the problem consider only a univariate process [13] [1]. However, in recent years the
interest for multi-dimensional approaches has increased. Most of them cover the case of fixed di-
mensionality [28] [26] [2] [36] [37]. Some approaches [10, 25, 11] feature high-dimensional theoretical
guaranties but only the case of dimensionality polynomially growing in sample size is covered. The
case of exponential growth has not been considered so far.

In order to detect a break, a test statistic is usually computed for each point t (e.g. [28]). The break
is detected if the maximum of these values exceeds a certain threshold. A proper choice of the latter
may be a tricky issue. Consider a pair of plots (Figure 1) of the statistic A(t) defined in Section 2. It is
rather difficult to see how many breaks are there, if any. The classic approach to the problem is based
on the asymptotic behaviour of the statistic [13] [1] [2] [25] [6] [37]. As an alternative, permutation [25]
[28] or parametric bootstrap may be used [25]. Clearly, it seems attractive to choose the threshold in
a solely data-driven way as it is suggested in the recent paper [10], but a careful bootstrap validation
is still an open question.

In the current study we are interested in a particular kind of a break – an abrupt transformation in
the covariance matrix – which is motivated by applications to neuroimaging. The covariance structure
of data in functional Magnetic Resonance Imaging has recently drawn a lot of interest, as it encodes

DOI 10.20347/WIAS.PREPRINT.2404 Berlin 2017



V. Avanesov, N. Buzun 2

so-called functional connectivity networks [35] which refer to the explicit influence among neural sys-
tems [19]. A rather popular approach to inferencing these networks is based on estimating inverse
covariance or precision matrices [18]. The technique generally makes use of the observation that func-
tional connectivity networks are of small-world type [35], which makes sparsity assumptions feasible.
Analysing the dynamics of these networks is particularly important for the research on neural diseases
and also in the context of brain development with emphasis on characterizing the re-configuration of
the brain during learning [4].

A similar problem is found in finance: the dynamics of the covariance structure of a high-dimensional
process modelling exchange rates and market indexes is crucial for a proper asset allocation in a
portfolio [12, 5, 14, 30].

One approach to the change-point localization is developed in [26], the corresponding significance
testing problem is considered in [2]. However, neither of these papers address the high-dimensional
case.

A widely used break detection approach (named CUSUM) [11, 2, 25] suggests to compute a statistic
at a point t as a distance of estimators of some parameter of the underlying distributions obtained
using all the data before and after that point. This technique requires the whole sample to be known in
advance, which prevents it from being used in online setting. In order to overcome this drawback we
propose the following augmentation: choose a window size n ∈ N and compute parameter estimators
using only n points before and n points after the central point t (see Section 2 for formal definition).
Window size n is an important parameter and its choice is case-specific (see Section 4 for theoretical
treatment of this issue). Using a small window results in high variability and low sensitivity, while a
large window implies higher uncertainty in change-point localization yielding the issue of a proper
choice of window size. The multiscale nature of the proposed method enables us to incorporate the
advantages of narrower and wider windows by considering multiple window sizes at once in order for
wider windows to provide higher sensitivity while narrower ones improve change-point localization.

The contribution of our study is the development of a novel break detection approach which is

� high-dimensional, allowing for up to exponential growth of the dimensionality with the window
size

� suitable for on-line setting

� multiscale, attaining trade-off between break detection sensitivity and change-point localization
accuracy

� using a fully data-driven threshold selection algorithm rigorously justified under mild assump-
tions

� featuring formal sensitivity guaranties in high-dimensional setting

We consider the following setup. Let X1, ... XN ∈ Rp denote an independent sample of zero-mean
vectors (the on-line setting is discussed in Section 3) and we want to test a hypothesis

H0 := {∀i : Var [Xi] = Var [Xi+1]}

versus an alternative suggesting the existence of a break:
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Figure 1: Plots of test statstics A(t) computed on synthetically generated data without (left) and with
a single change-point at t = 150 (right). Clearly, the choice of a threshold is not obvious.

H1 := {∃τ : Var [X1] = Var [X2] = ... = Var [Xτ ] 6= Var [Xτ+1] = ... = Var [XN ]}

and localize the change-point τ as precisely as possible or (in online setting) to detect a break as soon
as possible.

The approach proposed in the paper focuses on applications in neuroimagin

In the current study it is also assumed that some subset of indices Is ⊆ 1..N of size s (possibly,
s = N ) is chosen. The threshold is chosen relying on the sub-sample {Xi}i∈Is while the test-statistic
is computed based on the whole sample.

To this end we define a family of test statistics in Section 2.1 which is followed by Section 2.2 describ-
ing a data-driven (bootstrap) calibration scheme and Section 2.3 describing change-point localization
procedure. The theoretical part of the paper justifies the proposed procedure in a high-dimensional
setting. The result justifying the validity of the proposed calibration scheme is stated in Section 3. Sec-
tion 4 is devoted to the sensitivity result yielding a bound for the window size n necessary to reliably
detect a break of a given extent and hence bounding the uncertainty of the change-point localization
(or the delay of detection in online setting). The theoretical study is supported by a comparative simu-
lation study (described in Section 5) demonstrating conservativeness of the proposed test and higher
sensitivity compared to the other algorithms. Appendix A contains a finite-sample version of sensitiv-
ity result along with the proofs. Appendix B provides a a finite-sample version of bootstrap sensitivity
result which is followed by the proofs. Finally, Appendix H lists results which were essential for our
theoretical study.

2 Proposed approach

This section describes the proposed approach along with a data-driven calibration scheme. Informally
the proposed statistic can be described as follows. Provided that the break may happen only at mo-
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ment t, one could estimate some parameter of the distribution using n data-points to the left of t,
estimate it again using n data-points to the right and use the norm of their difference as a test-statistic
An(t). Yet, in practice one does not usually possess such knowledge, therefore we propose to max-
imize these statistics over all possible locations t yielding An. Finally, in order to attain a trade-off
between break detection sensitivity and change-point localization accuracy we build a multiscale ap-
proach: consider a family of test statistics {An}n∈N for multiple window sizes n ∈ N ⊂ N at once.

2.1 Definition of the test statistic

Now we present a formal definition of the test statistic. In order to detect a break we consider a
set of window sizes N ⊂ N. Denote the size of the widest window as n+ and of the narrowest
as n−. Given a sample of length N , for each window size n ∈ N define a set of central points
Tn := {n+ 1, ..., N −n+ 1}. Next, for all n ∈ N define a set of indices which belong to the window
on the left side of the central point t ∈ Tn as I ln(t) := {t− n, ..., t− 1} and correspondingly for the
window on the right side define Irn(t) := {t, ..., t + n − 1}. Denote the sum of numbers of central
points for all window sizes n ∈ N as

T :=
∑
n∈N

|Tn| .

For each window size n ∈ N, each central point t ∈ Tn and each side S ∈ {l, r} we define a
de-sparsified estimator of precision matrix [24] [23] as

T̂S
n (t) := Θ̂S

n (t) + Θ̂S
n (t)T − Θ̂S

n (t)T Σ̂S
n (t)Θ̂S

n (t)

where

Σ̂S
n (t) =

1

n

∑
i∈ISn (t)

XiX
T
i

and Θ̂S
n (t) is a consistent estimator of precision matrix which can be obtained by graphical lasso [32]

or node-wise procedure [23] (see Definition 3.1 and Appendix H.5 for details).

Now define a matrix of size p× p with elements

Zi,uv := Θ∗uXiΘ
∗
vXi −Θ∗uv (2.1)

where Θ∗ := E
[
XiX

T
i

]−1
for i ≤ τ , Θ∗u stands for the u-th row of Θ∗. Denote their variances as

σ2
uv := Var [Z1,uv] and introduce the diagonal matrix S = diag(σ1,1, σ1,2...σp,p−1σp,p). Denote a

consistent estimator (see Definition 3.1 for details) of the precision matrix Θ∗ obtained based on the
sub-sample {Xi}i∈Is as Θ̂ . In practice, the variances σ2

uv are unknown, but under normality assump-
tion one can plug in σ̂2

uv := Θ̂uuΘ̂vv + Θ̂2
uv which have been proven to be consistent (uniformly for all

u and v) estimators of σ2
uv [24] [3]. If the node-wise procedure is employed, the uniform consistency of

an empirical estimate of σ2
uv has been shown under some mild assumptions (not including normality)

[23].

For each window size n ∈ N and a central point t ∈ Tn we define a statistic
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Change-point detection in high-dimensional covariance structure 5

An(t) :=

∣∣∣∣∣∣∣∣√n

2
S−1(T̂ ln(t)− T̂ rn(t))

∣∣∣∣∣∣∣∣
∞

(2.2)

where we writeM for a vector composed of stacked columns of matrixM . Finally we define our family
of test statistics for all n ∈ N as

An = max
t∈Tn

An(t).

Our approach heavily relies on the following expansion under H0

√
n(T̂S

n (t)−Θ∗) =
1√
n

∑
i∈ISn (t)

Zi + rSn (t)
√
n, (2.3)

where the residual term

rSn (t) := T̂S
n (t)−

(
Θ∗ −Θ∗

(
Σ̂S
n (t)− Σ∗

)
Θ∗
)

can be controlled under mild assumptions [24] [23] [3].

This expansion might have been used in order to investigate the asymptotic properties of An and
obtain the threshold, however we propose a data-driven scheme.

Remark 2.1. A different test statistic An(t) can be defined as the maximum distance between el-
ements of empirical covariance matrices Σ̂(t)ln and Σ̂(t)rn. However, application to neuroimaging
motivates the search for a structural change in a functional connectivity network which is encoded
by the structure of the corresponding precision matrix. Clearly, a change in the precision matrix also
means a change in the covariance matrix, though we believe that the definition (2.2) increases the
sensitivity to this kind of alternative.

2.2 Bootstrap calibration

Our approach rejects H0 in favor of H1 if at least one of statistics An exceeds the corresponding
threshold x[n(α) or formally if ∃n ∈ N : An > x[n(α).

In order to properly choose the thresholds, we define bootstrap statistics A[n in the following non-
standard way. Note, that we cannot use an ordinary scheme with replacement or weighted bootstrap
since in a high-dimensional case (|Is| ≤ p) the covariance matrix of bootstrap distribution would be
singular which would made inverse covariance matrix estimation procedures meaningless.

First, draw with replacement a sequence {κi}Ni=1 of indices from Is and denote

X[
i

= Xκi
− EIs [Xj]

whereEIs [·] stands for averaging over values of index belonging to Is e.g.,EIs [Xj] = 1
|Is|
∑

j∈Is Xj .

Denote the measure X[
i are distributed with respect to as P[. In accordance with (2.1) define

Z[
i,uv := Θ̂uX

[
i Θ̂vX

[
i − Θ̂uv

and for technical purposes define
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Ẑi,uv := Θ̂uXiΘ̂vXi − Θ̂uv.

Now for all central point t define a bootstrap counterpart of An(t)

A[n(t) :=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1√
2n
S−1

 ∑
i∈Iln(t)

Z[
i −

∑
i∈Irn(t)

Z[
i


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

(2.4)

which is intuitively reasonable due to expansion (2.3). And finally we define the bootstrap counterpart
of An as

A[n = max
t∈Tn

A[n(t).

Now for each given x ∈ [0, 1] we can define quantile functions z[n(x) such that

z[n(x) := inf
{
z : P[

{
A[n > z

}
≤ x
}
.

Next for a given significance level α we apply multiplicity correction choosing α∗ as

α∗ := sup
{

x : P[
{
∃n ∈ N : A[n > z[n(x)

}
≤ α

}
and finally choose thresholds as x[n(α) := z[n(α∗).

Remark 2.2. One can choose Is = 1, 2, ..., N and use the whole given sample for calibration as
well as for detection. In fact, it would improve the bounds in Theorem 3.1 and Theorem 4.1, since it
effectively means s = N . However, in practise such a decision might lead to reduction of sensitivity
due to overestimation of the thresholds.

2.3 Change-point localization

In order to localize a change-point we have to assume that Is ⊆ 1..τ . Consider the narrowest window
detecting a change-point as n̂:

n̂ := min
{
n ∈ N : An > x[n(α)

}
(2.5)

and the central point where this window detects a break for the first time as

τ̂ := min
{
t ∈ Tn̂ : An̂(t) > x[n̂(α)

}
.

By construction of the family of test statistics we conclude (up to the confidence level α) that the
change-point τ is localized in the interval

[τ̂ − n̂; τ̂ + n̂− 1] .

Clearly, if a non-multiscale version of the approach is employed, i.e. |N| = {n}, n = n̂ and the
precision of localization (delay of the detection in online setting) equals n.

DOI 10.20347/WIAS.PREPRINT.2404 Berlin 2017



Change-point detection in high-dimensional covariance structure 7

3 Bootstrap validity

This section states and discusses the theoretical result demonstrating the validity of the proposed
bootstrap scheme i.e.

P
{
∀n ∈ N : An ≤ x[n(α)

}
≈ 1− α.

Our theoretical results require the tails of the underlying distributions to be light. Specifically, we impose
Sub-Gaussianity vector condition.

Assumption 3.1 (Sub-Gaussianity vector condition).

∃L : ∀i ∈ 1..N sup
a∈Rp

||a||2≤1

E

[
exp

((
aTXi

L

)2
)]
≤ 2.

Naturally, in order to establish a theoretical result we have to assume that a method featuring the-
oretical guaranties was used for estimating the precision matrices. Such methods include graphical
lasso [32], adaptive graphical lasso [38] and thresholded de-sparsified estimator based on node-wise
procedure [23]. These approaches overcome the high dimensionality of the problem by imposing
a sparsity assumption, specifically bounding the maximum number of non-zero elements in a row:
d := maxi

∣∣{j|Θ∗ij 6= 0}
∣∣. These approaches are guaranteed to yield a root-n consistent estimate

revealing the sparsity pattern of the precision matrix [32, 3, 23] or formally

Definition 3.1. Consider an i.i.d. sample x1, x2, ...xn ∈ Rp. Denote their precision matrix as Θ∗ =
E [X1]−1. Let p and d grow with n. A positive-definite matrix Θ̂n is a consistent estimator of the
high-dimensional precision matrix if

∣∣∣∣∣∣Θ∗ − Θ̂n
∣∣∣∣∣∣
∞

= Op

(√
log p

n

)
and

∀i, j ∈ 1..p and Θ∗ij = 0⇒ Θ̂n
ij = 0.

Graphical lasso and its adaptive versions impose an assumption, common for `1-penalized approaches.

Assumption 3.2 (Irrepresentability condition). Denote an active set

S :=
{

(i, j) ∈ 1..p× 1..p : Θ∗ij 6= 0
}

and define a p2 × p2 matrix Γ∗ := Θ∗ ⊗ Θ∗ where ⊗ denotes Kronecker product. Irrepresentability
condition holds if there exists ψ ∈ (0, 1] such that

max
e/∈S

∣∣∣∣Γ∗eS(Γ∗SS)−1
∣∣∣∣

1
≤ 1− ψ.

The interpretation of irrepresentability condition under normality assumption is given in [24] [32]. Par-
ticularly, Assumption 3.2 requires low correlation between the elements of empirical covariance matrix
from the active set S and from its complement. The higher the constant ψ is, the stricter upper bound
is assumed.

These observations give rise to the two following assumptions.
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Assumption 3.3.A. Suppose, either graphical lasso or its adaptive version was used with regulariza-
tion parameter λn �

√
log p/n and also impose Assumption 3.2.

Assumption 3.3.B. Suppose, thresholded de-sparsified estimator based on node-wise procedure
was used with regularization parameter λn �

√
log p/n.

Now we are ready to establish a result which guarantees that the suggested bootstrap procedure
yields proper thresholds.

Theorem 3.1. Assume H0 holds and furthermore, let X1, X2, ...XN ∈ Rp be i.i.d. Let Assump-
tion 3.1 and either Assumption 3.3.A or Assumption 3.3.B hold. Also assume, the spectrum of Θ∗ is
bounded. Allow the parameters d, s, p, |N| , n−, n+ grow with N . Further let N > 2n+, n+ ≥ n−
and also impose the sparsity assumption

d = o

(
4
√

min {s, n2
−}

|N|3 log10(pN)

)
.

Then

∣∣∣∣P{∀n ∈ N : An ≤ x[n(α)
}
− (1− α)

∣∣∣∣ = oP (1).

The finite-sample version of this result, namely, Theorem B.1, is given in Appendix B along with the
proofs.

Bootstrap validity result discussion Theorem 3.1 guarantees under mild assumptions (Assump-
tion 3.2 seems to be the most restrictive one, yet it may be dropped if the node-wise procedure is
employed) that the first-type error rate meets the nominal level α if the narrowest window size n− and
the set Is are large enough. Clearly, the dependence on dimensionality p is logarithmic which estab-
lishes applicability of the approach in a high-dimensional setting. It is worth noticing that, unusually, the
sparsity bound gets stricter with N but the dependence is only logarithmic. Indeed, we gain nothing
from longer samples, since we use only 2n data points each time.

On-line setting As one can easily see, the theoretical result is stated in off-line setting, when the
whole sample of size N is acquired in advance. In on-line setting we suggest to control the probability
α to raise a false alarm for at least one central point t among N data points (which differs from the
classical techniques controlling the mean distance between false alarms [33]). Having α and N cho-
sen one should acquire s data-points (the set Is), use the proposed bootstrap scheme with bootstrap
samples of length N in order to obtain the thresholds. Next the approach can be naturally applied
in on-line setting and Theorem 3.1 guarantees the capability of the proposed bootstrap scheme to
control the aforementioned probability to raise a false alarm.

Proofs The proof of the bootstrap validity result, presented in Appendix B, mostly relies on the high-
dimensional central limit theorems obtained in [9], [8]. These papers also present bootstrap justification
results, yet do not include a comprehensive bootstrap validity result. The theoretical treatment is com-
plicated by the randomness of x[n(α). We overcome it by applying the so-called “sandwiching” proof
technique (see Lemma C.1), initially used in [34].
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Change-point detection in high-dimensional covariance structure 9

4 Sensitivity result

Consider the following setting. Let there be index τ , such that {Xi}i≤τ are i.i.d. and {Xi}i>τ are
i.i.d. as well. Denote precision matrices Θ−1

1 := E
[
X1X

T
1

]
and Θ−1

2 := E
[
Xτ+1X

T
τ+1

]
. Define the

break extent ∆ as
∆ := ||Θ1 −Θ2||∞ .

The question is, how large the window size n should be in order to reliably reject H0 and how firmly
can we localize the change-point.

Theorem 4.1. Let Assumption 3.1 and either Assumption 3.3.A or Assumption 3.3.B hold. Also as-
sume, the spectrums of Θ1 and Θ2 are bounded. Allow the parameters d, s, p, |N| , n−, n+ grow with
N and let ∆ decay with N . Further let N > 2n+, n+ ≥ n−,

d = o

( √
max{s, n−}

d log7(pN |N|n+)

)
(4.1)

and
log2(pN |N|)

n+∆
= o(1). (4.2)

Then H0 will be rejected with probability approaching 1.

This result is a direct corollary of the finite-sample sensitivity result established and discussed in
Appendix A.

The assumption Is ⊆ 1..τ is only technical. The result may be proven without relying on it by method-
ologically the same argument.

Sensitivity result discussion Assumptions (4.1) and (4.2) are essentially a sparsity bound and a
bound for the largest window size n+. Clearly, they do not yield a particular value n+ necessary to de-
tect a break, since it depends on the underlying distributions, however, the result includes dimensional-
ity p only under the sign of logarithm, which guarantees high sensitivity of the test in high-dimensional
setting.

Online setting Theorem 4.1 is established in offline setting as well. In online setting it guarantees
that the proposed approach can reliably detect a break of an extent not less than ∆ with a delay at
most n+ bounded by (4.2).

Change-point localization guaranties Theorem 4.1 implies by construction of statistic An that the
change-point can be localized with precision up to n+. Hence condition (4.2) provides the bound for
change-point localization accuracy.

5 Simulation study

5.1 Design

In our simulation we test
H0 =

{
{Xi}Ni=1 ∼ N (0, I)

}
DOI 10.20347/WIAS.PREPRINT.2404 Berlin 2017
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Figure 2: Pie charts representing distribution of narrowest detecting window n̂ and the precision of
localization in cases of |N| = {70, 140}, |N| = {100, 140} and |N| = {70, 100, 140} respectively

70

140

100

140

70

100

140

versus an alternative

H1 =
{
∃τ : {Xi}τi=1 ∼ N (0, I) and {Xi}Ni=τ+1 ∼ N (0,Σ1)

}
The alternative covariance matrix Σ1 was generated in the following way. First we draw k ∼ Poiss(3).
The matrix Σ1 is composed as a block-diagonal matrix of k matrices of size 2 × 2 with ones on
their diagonals and their off-diagonal element drawn uniformly from [−0.6;−0.3] ∪ [0.3; 0.6] and an
identity matrix of size (p− 2k)× (p− 2k). The dimensionality of the problem is chosen as p = 50,
the length of the sample N = 1000 and we choose the set Is = [1, 2, ..100], e.g. τ > 100. The
absence of positive effect of large sample size N is discussed in Sections 3 and 4. Moreover, in
all the simulations under alternative the sample was generated with the change point in the middle:
τ = N/2 but the algorithm was oblivious about this as well as about either of the covariance matrices.
The significance level α = 0.05 was chosen. In all the experiments graphical lasso with penalization

parameter λn =
√

log p
n

was used in order to obtain Θ̂S
n (t). In the same way, graphical lasso with

penalization parameter λs was used in order to obtain Θ̂.

We have also come up with an approach to the same problem not involving bootstrap. The paper
[27] defines a high-dimensional two-sample test for equality of matrices. Moreover, the authors prove
asymptotic normality of their statistic which makes computing p-value possible. We suggest to run this
test for every t ∈ Tn and every n ∈ N, adjust the obtained p-values using Holm method [20] and
eventually compare them against α.

The paper [28] suggests an approach based on comparing characteristic functions of random vari-
ables. The critical values were chosen with permutation test as proposed by the authors. In our ex-
periments the method was allowed to consider all the sample at once. The R-package ecp [22] was
used.

The first type error rate and power for our approach are reported in Table 1. As one can see, our
approach allows to properly control first type error rate. As expected, its power is higher for larger
windows and it is decreased by adding narrower windows into consideration which is the price to be
paid for better localization of a change point.

In our study the approach proposed in [28] and the one based on the two sample test [27] turned out
to be conservative, but neither of them exhibited power above 0.1.

Also, in order to justify application of multiscale approach (i. e. |N| > 1) for the sake of better change-
point localization we report the distribution of the narrowest detecting window n̂ (defined by (2.5))
over N in Figure 2. The Table 1 represents average precision of change-point localization for various
choices of set of window sizes N. One can see, that multiscale approach significantly improves the
precision of localization.

DOI 10.20347/WIAS.PREPRINT.2404 Berlin 2017



Change-point detection in high-dimensional covariance structure 11

Table 1: First type error rate, power and precision of change-point localization of the proposed ap-
proach for various sets of window sizes N

N I type error rate Power Localization precision
{70} 0.02 0.09 70
{100} 0.00 0.37 100
{140} 0.01 0.81 140
{70, 140} 0.01 0.76 135
{100, 140} 0.01 0.75 124
{70, 100, 140} 0.01 0.74 123

A Proof of sensitivity result

Proof of Theorem 4.1. Proof consists in applying of the finite-sample Theorem A.1. Its applicability is
guaranteed by the consistency results given in papers [32, 3, 23] and by the results from [24, 23, 3]
bounding the term RT̂ . High probability of set T↔ is ensured by Lemma G.1.

Theorem A.1. Let Is ⊆ 1..τ . Let Θ̂ denote a symmetric estimator of Θ1 s.t. for some r ∈ R it holds
that

∣∣∣∣∣∣Θ1 − Θ̂
∣∣∣∣∣∣
∞
< r

and (Θ1)ij = 0 ⇒ Θ̂ij = 0. Suppose Assumption 3.1 holds and there exists RT̂ such that∣∣∣∣rSn+
(t)
∣∣∣∣
∞ ≤ RT̂ for all S ∈ {l, r} and t ∈ Tn+ on some set

T↔ :=
{
∀t ≤ τ − n+ :

∣∣∣∣∣∣Σ̂S
n (t)− Σ∗1

∣∣∣∣∣∣
∞
≤ δn+

}
⋂{
∀t ≥ τ + n+ :

∣∣∣∣∣∣Σ̂S
n (t)− Σ∗2

∣∣∣∣∣∣
∞
≤ δn+

}
.

Moreover, let the residual RAb defined in Lemma F.2 be bounded:

RAb ≤ α

6 |N|
.

Also let √
n+

2
||S||∞ (∆− 2RT̂ ) ≥ q, (A.1)

where

q :=

√
2 (1 + ∆Y (r)) log

(
2N |N| p2

α− 3 |N|RAb

)
(A.2)

and ∆Y is defined in Lemma G.2. Then on set T↔ with probability at least

1− pΣY
s (x, q),

where pΣY
s (x, q) is defined in Lemma G.2, H0 will be rejected.
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Discussion of finite-sample sensitivity result The assumption (A.1) is rather complicated. Here
we note that if either graphical lasso [32], adaptive graphical lasso [38] or thresholded de-sparsified es-
timator based on node-wise procedure [23] with penalization parameter chosen as λs � o(

√
log p/n)

was used, given d, s, p,N, n−, n+ → ∞, N > 2n+, n+ ≥ n−, s ≥ n− and d = o(
√
n+) it boils

down to

n+ ≥ D6
1

∆

(∣∣∣∣S−1
∣∣∣∣
∞ log(N |N| p2)

)2

for some positive constant D6 independent of N,N, p, d, S while the parameters q, γ and x may be
chosen as in (B.5), (B.4), (B.3) (high probability of T↔ is ensured by Lemma G.1). At the same time
the remainder RAb can be bounded by (B.2).

As expected, the bound for sufficient window size decreases with growth of the break extent ∆ and the
size of the set Is, but increases with dimensionality p. It is worth noticing, that the latter dependence
is only logarithmic. And again, in the same way as with Theorem 3.1, the bound increases with the
sample size N (only logarithmically) since we use only 2n data points.

Proof of Theorem A.1. Consider a pair of centered normal vectors

η :=
(
η1 η2 ... η|N|

)
∼ N (0,Σ∗Y ),

ζ :=
(
ζ1 ζ2 ... ζ |N|

)
∼ N (0, Σ̂Y ),

Σ∗Y :=
1

2n+

2n+∑
j=1

Var
[
Y n
·j
]
,

Σ̂Y :=
1

2n+

2n+∑
j=1

Var
[
Y n[
·j
]
,

where vectors Y n
·j and Y n[

·j are defined in proofs of Lemma E.2 and Lemma F.1 respectively. Lemma
A.2 applies here and yields for all positive q

P {||ζn+||∞ ≥ q} ≤ 2
∣∣Tn+

∣∣ p2 exp

− q2

2
∣∣∣∣∣∣Σ̂Y

∣∣∣∣∣∣
∞

 ,

where Σ̂Y = Var [ζ] and
∣∣Tn+

∣∣ is the number of central points for window of size n+. Applying

Lemma G.2 on a set of probability at least 1 − pΣY
s (x, q) yields

∣∣∣∣∣∣Σ∗Y − Σ̂Y

∣∣∣∣∣∣
∞
≤ ∆Y , and hence,

due to the fact that ||Σ∗Y ||∞ = 1 by construction,

P {||ζn+ ||∞ ≥ q} ≤ 2
∣∣Tn+

∣∣ p2 exp

(
− q2

2 (1 + ∆Y )

)
.

Due to Lemma F.2 and continuity of Gaussian c.d.f.

P[
{
A[n+
≥ x[n+

(α)
}
≥ α/ |N| − 2RAb

and due to Lemma F.2 along with the fact that
∣∣Tn+

∣∣ < N , choosing q as proposed by equation (A.2)
we ensure that x[n+

(α) ≤ q.

Now by assumption of the theorem and by construction of the test statistics An
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An+ ≥
√
n+

2
||S||∞ (∆− 2RT̂ ) .

Finally, we notice that due to assumption (A.1) An+ > q and therefore, H0 will be rejected.

Lemma A.1. Consider a centered random Gaussian vector ξ ∈ Rp with arbitrary covariance matrix
Σ. For any positive q it holds that

P
{

max
i
ξi ≥ q

}
≤ p exp

(
− q2

2 ||Σ||∞

)
.

Proof. By convexity we obtain the following chain of inequalities for any t

etE[tmaxi ξi] ≤ E
[
etmaxi ξi

]
≤ E

[
et

∑
i ξi
]
≤ pet

2||Σ||∞/2.

Chernoff bound yields for any t

P
{

max
i
ξi ≥ q

}
≤ pet

2||Σ||∞/2

etq
.

Finally, optimization over t yields the claim.

As a trivial corollary, one obtains

Lemma A.2. Consider a centered random Gaussian vector ξ ∈ Rp with arbitrary covariance matrix
Σ. For any positive q it holds that

P {||ξ||∞ ≥ q} ≤ 2p exp

(
− q2

2 ||Σ||∞

)
.

B Proof of bootstrap validity result

Proof of Theorem 3.1. Proof consists in applying of the finite-sample Theorem B.1. Its applicability is
guaranteed by the consistency results given in papers [32, 3, 23] and by the results from [24, 23, 3]
bounding the term RT̂ . High probability of set TT is ensured by Lemma G.1.

Theorem B.1. Assume H0 holds and furthermore, let X1, X2, ...XN be i.i.d. Let Θ̂ denote a sym-
metric estimator of Θ∗ s.t. for some positive r∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣
∞
< r

and Θ∗ij = 0⇒ Θ̂ij = 0. Suppose Assumption 3.1 holds and there existsRT̂ such that
√
n
∣∣∣∣rSn (t)

∣∣∣∣
∞ ≤

RT̂ for all S ∈ {l, r}, n ∈ N and t ∈ Tn on set

TT :=
{
∀S ∈ {l, r}, n ∈ N, t ∈ Tn :

∣∣∣∣∣∣Σ̂S
n (t)− E

[
X1X

T
1

]∣∣∣∣∣∣
∞
≤ δn

}
.

Moreover, let

R := (3 + 2 |N|)
(
2RA(RT̂ ) + 2RAb +R±Σ(r)

)
≤ α

2
,
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where the remainders RA, RAb , R±Σ are defined in Lemma E.1, Lemma F.2 and Lemma C.1 respec-
tively and the mis-tie ∆Y involved in the definition of R±Σ comes from Lemma G.2. Then on set TT it
holds that ∣∣P{∀n ∈ N : An ≤ x[n(α)

}
− (1− α)

∣∣ ≤ R + 2(1− q).
where

q = 1− pΣY
s (x, q)− pΣ(γ)− pMs (x) (B.1)

and the terms pΣY
s (x, q), pΣ(γ) and pMs (x) are defined in Lemma G.2, Lemma G.1 and Lemma F.2

respectively.

Discussion of finite-sample bootstrap validity result The terms ∆Y , RA, RAb and R±Σ involved
in the statement of Theorem B.1 are rather complicated. The exact expressions for them are provided
by Lemma G.2, Lemma E.1, Lemma F.2 and Lemma C.1 respectively, 3rd and 4th moments M3

3 and
M4

4 involved therein are bounded by Lemma E.4 and Lemma G.3 while asymptotic bounds for RT̂

are provided in [23] (for node-wise procedure) and [24] (for graphical lasso). For the case of graphical
lasso an explicit form of RT̂ is given in [3].

Here we just note that if Θ̂ is a root-n consistent estimator, recovering sparsity pattern (graphical
lasso [32], adaptive graphical lasso [38] or thresholded de-sparsified estimator based on node-wise
procedure [23]), then for d, s, p,N, n−, n+ → ∞, N > 2n+, n+ ≥ n−, s ≥ n− and d2

n−
= o(1)

given the spectrum of Θ∗ is bounded

RAb ≤ D1

(
L4d log7(2p2Tn+)

n−

)1/6

log2(ps). (B.2)

If either graphical lasso, adaptive graphical lasso or node-wise procedure [29] is used with λn �√
log p
n

in order to obtain Θ̂S
n (t), then on set TT it holds that

RA ≤ D2

(
L4d log7(2p2Tn+)

n−

)1/6

+D3

√
log 2p2T

n−
d log p.

The high probability of TT may be ensured by means of Lemma G.1 e.g., choosing γ = log(500T )
for P {TT} ≥ 0.99. Further

∆Y ≤ D4
L4d2

√
s
,

R±Σ ≤ D5

(
L4d2

√
s

)1/3

log2/3(2p2T ).

HereD1, ..., D5 are positive constants independent ofN , N, d, p and s. We also note that the proper
choice of x, γ and q in (B.1) is

x = 6, (B.3)

γ = log(500T ), (B.4)

q = 7 + 4 log(p) (B.5)
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which ensures the probability defined by (B.1) to be above 0.99. For exact expression of pΣY
s (x, q),

pΣ(γ) and pMs (x) see Lemma G.2, Lemma G.1 and Lemma F.2.

Proof of Theorem B.1. The proof consists in application of Lemma F.1, Lemma E.2 and Lemma D.1
justifying applicability of Lemma C.1.

C Sandwiching lemma

Lemma C.1. Consider a normal multivariate vector η with a deterministic covariance matrix and a
normal multivariate vector ζ with a possibly random covariance matrix such that

sup
{xn}n∈N⊂R

|P {∀n ∈ N : An ≤ xn} − P {∀n ∈ N : ||ηn||∞ ≤ xn}| ≤ RA, (C.1)

sup
{xn}n∈N⊂R

∣∣P[ {∀n ∈ N : A[n ≤ xn
}
− P[ {∀n ∈ N : ||ζn||∞ ≤ xn}

∣∣ ≤ RAb , (C.2)

sup
{xn}n∈N⊂R

∣∣P {∀n ∈ N : An ≤ xn} − P[
{
∀n ∈ N : A[n ≤ xn

}∣∣ ≤ R. (C.3)

where ηn and ζn are sub-vectors of η and ζ respectively. Then

∣∣P{∀n ∈ N : An ≤ x[n(α)
}
− (1− α)

∣∣ ≤ (3 + 2 |N|) (R +RA +RAb) .

Proof. Let us introduce some notation. Denote multivariate cumulative distribution function ofAn, A[n,
||ηn||∞ , ||ζn||∞ as P, P [,N ,N [ : R|N| → [0, 1] respectively. Define the following sets for all δ ∈
[0, α]

Z+(δ) := {z : N (z) ≥ 1− α− δ} ,

Z−(δ) := {z : N (z) ≤ 1− α + δ}
and their boundaries

∂Z+(δ) := {z : N (z) = 1− α− δ} , (C.4)

∂Z−(δ) := {z : N (z) = 1− α + δ} .
Consider δ = R+RA+RAb and denote setsZ+ = Z+(δ), Z− = Z−(δ), ∂Z− = ∂Z−(δ), ∂Z+ =
∂Z+(δ) Define a set of thresholds satisfying the confidence level

Z[ :=
{
z : P [(z) ≥ 1− α & ∀z1 < z : P [(z1) < 1− α

}
here and below comparison of vectors should be understood element-wise. Notice that due to conti-
nuity of multivariate normal distribution and assumption (C.2) ∀z[ ∈ Z[∣∣P [(z[)− (1− α)

∣∣ ≤ RAb . (C.5)
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Now for all z− ∈ ∂Z− and for all z[ ∈ Z[ it holds that

P [(z−) ≤ P (z−) +R

≤ N (z−) +R +RA

≤ 1− α−RAb

≤ P [(z[)

where we have consequently used (C.3), (C.1), (C.4) and (C.5). In the same way one obtains for all
z+ ∈ ∂Z+ and for all z[ ∈ Z[

P [(z+) ≥ P [(z[)

which implies that Z[ ⊂ Z− ∩ Z+.

Now denote quantile functions of ||ηn||∞ as zN : [0, 1]→ R|N|:

∀n ∈ N : P
{
||ηn||∞ ≥ zNn (x)

}
= x.

In exactly the same way define quantile functions zN
[

: [0, 1] → R|N| of ||ζn||∞. Clearly for all
x ∈ [0, 1],

zN(x + δ) ≤ z[(x) ≤ zN(x− δ)

and hence
z[(α∗) ≤ zN(α∗ − δ) ≤ z[(α∗ − 2δ),

1− α ≤ P [(zN(α∗ − δ)) ≤ P [(z[(α∗ − 2δ)).

Using Taylor expansion with Lagrange remainder term we obtain for some 0 ≤ κ ≤ 2δ

N [
(
z[(α∗ − 2δ)

)
≤ N [

(
zN

[

(α∗ − 2δ)
)

+ δ

= N [
(
zN

[

(α∗)
)

+
∑
n∈N

∂z[nN
[(zN

[

(α∗))∂αz
N[

n (α∗)κ+ δ

≤ 1− α +
∑
n∈N

∂z[nN
[(zN

[

(α∗))∂αz
N[

n (α∗)κ+ 3δ.

Next successively using Lemma C.2 and the fact that the quantile function is an inverse function of
c.d.f. we obtain

N [
(
z[(α∗ − 2δ)

)
≤ 1− α + 3δ + 2δ |N|

and therefore
1− α ≤ P [

(
z[(α∗ − 2δ)

)
≤ 1− α + δ (3 + 2 |N|) ,

1− α ≤ P [
(
zN(α∗ − δ)

)
≤ 1− α + δ (3 + 2 |N|) .

In the same way one obtains

1− α− δ (3 + 2 |N|) ≤ P [
(
zN(α∗ + δ)

)
≤ 1− α.

Next, by the argument used in the beginning of the proof we obtain

zN(α∗ + δ), zN(α∗ − δ) ∈ Z−(δ (3 + 2 |N|)) ∩ Z+ (δ (3 + 2 |N|)) .

DOI 10.20347/WIAS.PREPRINT.2404 Berlin 2017



Change-point detection in high-dimensional covariance structure 17

As the final ingredient, we need to choose deterministic α+ and α− such that

N(zN(α− + δ)) = 1− α− δ (3 + 2 |N|) ,

N(zN(α+ − δ)) = 1− α + δ (3 + 2 |N|)

(which is possible due to continuity), so α− ≤ α∗ ≤ α+ and hence by monotonicity

zN(α− + δ) ≤ zN(α∗ + δ) ≤ z[(α∗) ≤ zN(α∗ − δ) ≤ zN(α+ − δ)

and finally

1− α− δ (3 + 2 |N|) ≤ P (zN(α− + δ))

≤ P (z[(α∗))

≤ P (zN(α+ − δ))
≤ 1− α + δ (3 + 2 |N|) .

Lemma C.2. Consider a random variable ξ and an event A defined on the same probability space.
Let c.d.f. P {ξ ≤ x} and P {ξ ≤ x&A} be differentiable. Then

∂xP {ξ ≤ x&A}
∂xP {ξ ≤ x}

≤ 1

Proof. Indeed, denoting the complement of set A as A we obtain,

∂xP {ξ ≤ x&A}
∂xP {ξ ≤ x}

=
∂xP {ξ ≤ x&A}

∂x
(
P {ξ ≤ x&A}+ P

{
ξ ≤ x&A

})
=

∂xP {ξ ≤ x&A}
∂xP {ξ ≤ x&A}+ ∂xP

{
ξ ≤ x&A

}
=

1

1 +
∂xP{ξ≤x&A}
∂xP{ξ≤x&A}

Using the fact that derivative of c.d.f. is non-negative we finalize the proof.

D Similarity of joint distributions of {An}n∈N and {A[
n}n∈N

Lemma D.1. Under assumptions of Theorem 3.1 it holds that on set T with probability at least

1− pΣY
s (x, q)− pΣ(γ)− pMs (x)

that

sup
{xn}n∈N⊂R

∣∣P {∀n ∈ N : An ≤ xn} − P[
{
∀n ∈ N : A[n ≤ xn

}∣∣ ≤ RA +RAb +R±Σ .

Proof. The proof consists in applying Lemma F.1, Lemma E.2, Lemma G.2 and Lemma H.3.
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E Gaussian approximation result for An

Lemma E.1. Suppose there exists RT̂ such that
√
n
∣∣∣∣rS(t)

∣∣∣∣
∞ ≤ RT̂ for all S and t on some set

T . Then on set T it holds that

sup
x
|P {∀n ∈ N : An ≤ xn} − P {∀n ∈ N : ||ηn||∞ ≤ xn}| ≤ RA

:= CA

((
F log7(p2Tn+)

)1/6
+ 4RT̂

√
log(2p2T )

)
.

where F is defined by (E.2) and ηn by (E.1).

Proof. Substituting (2.3) to (2.2) yields

An(t) =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
1√
2n
S−1

 ∑
i∈Iln(t)

Zi −
∑
i∈Irn(t)

Zi


︸ ︷︷ ︸

Sn
Z(t)

+
1√
2

(rln − rrn)

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
∞

.

Now denote stacked SnZ(t) for all n ∈ N and as SnZ and for all n as SZ . Lemma E.2 bounds the c.d.f.
of ||SZ ||∞ as

sup
x
|P {∀n ∈ N : ||SnZ ||∞ ≤ xn} − P {∀n ∈ N : ||ηn||∞ ≤ xn}| ≤ CA

(
F log7(p2Tn+)

)1/6
.

But clearly on set T

|An − ||SnZ ||∞| ≤
√

2RT̂

And hence for all {xn}n∈N ⊂ R

|P {∀n ∈ N : An < xn|T } − P {∀n ∈ N : ||ηn||∞ ≤ xn}| ≤ CA
(
F log7(p2Tn+)

)1/6

+ P
{
∀n ∈ N : ||ηn||∞ ≤ xn +

√
2RT̂

}
− P

{
∀n ∈ N : ||ηn||∞ ≤ xn −

√
2RT̂

}
.

Now notice that ∀i : (Σ∗Y )ii = 1 and bound the latter two terms by means of Lemma H.2:

sup
{xn}n∈N⊂R|N|

|P {∀n ∈ N : An < xn|T } − P {∀n ∈ N : ||ηn||∞ ≤ xn}| ≤ CA
(
F log7(p2Tn+)

)1/6

+ 4RT̂ (
√

log(2p2T ))
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Lemma E.2. Let Assumption 3.1 hold. Then

sup
x
|P {∀n ∈ N : ||SnZ ||∞ ≤ xn} − P {∀n ∈ N : ||ηn||∞ ≤ xn}| ≤ CA

(
F log7(2p2Tn+)

)1/6

Where (
η1 η2 ... η|N|

)
∼ N (0,Σ∗Y ), (E.1)

Σ∗Y =
1

N

N∑
i=1

Var [Y·i] ,

F =
1

2n−

(
β log 2 ∨

√
2√

2− 1
γ

)2

∨ 1

2n+

(
n+

n−

)1/3

M2
3 ∨

√
1

2n+n−
M2

4 (E.2)

with γ defined by (E.5), β by (E.6) and Y by (E.3) and an independent constant CA .

Proof. Consider a matrix Yn with 2n+ columns

Y T
n :=

√
n+

n
×

ZS
1 O ... O −ZS

2n++1 ...

ZS
2 ZS

2 ... ... ... ...
... ZS

3 ... ... ... ...
ZS
n ... ... ... ... ...

−ZS
n+1 ZS

n+1 ... ... ... ...
−ZS

n+2 −ZS
n+2 ... ... ... ...

... −ZS
n+3 ... O ... ...

−ZS
2n ... ... ZS

2n+−2n+1 O ...

O −ZS
2n+1 ... ZS

2n+−2n+2 ZS
2n+−2n+2 ...

O O ... ... ... ...
... ... ... −ZS

2n+−1 −ZS
2n+−1 ...

O O ... −ZS
2n+

−ZS
2n+

...


where ZS

i := (S−1Zi)
T . Clearly, columns of the matrix are independent and

SnZ =
1√
2n+

2n+∑
l=0

(Yn)·l

Next define a block matrix composed of Yn matrices:

Y :=


Y1

Y2

...
Y|N|

 (E.3)

Clearly vectors Y·l are independent and

DOI 10.20347/WIAS.PREPRINT.2404 Berlin 2017



V. Avanesov, N. Buzun 20

SZ =
1√
2n+

2n+∑
l=0

Y·l

In order to complete the proof we make use of Lemma H.1. Denote

Bn+ =

√
n+

n−

(
β log 2 ∨

√
2√

2− 1
γ

)
∨
(
n+

n−

)1/6

M3 ∨
(
n+

n−

)1/4

M4 (E.4)

By means of Lemma G.3 one shows that the assumptions of Lemma E.3 hold for components of ZS
i

with

γ := 12L2
√
dΛ (Θ∗) ||Θ∗||∞

∣∣∣∣S−1
∣∣∣∣
∞ (E.5)

β :=

(
9

2
L2
√
dΛ (Θ∗) + 1

)
||Θ∗||∞

∣∣∣∣S−1
∣∣∣∣
∞ (E.6)

where Λ (Θ∗) denotes the maximal eigen value of Θ∗. Therefore condition (H.1) holds withBn defined
by equation (E.4).

1

N

N∑
i=1

E
[
(Y n

ij )
2
]
≥ min

j
Var

[
ZS

1j

]
= 1

Hence, Assumption H.1 is fulfilled with b = 1. Next notice that for some k-th component of ZS
i and

central point t (both defined by j):

1

2n+

2n+∑
i=1

E
[∣∣Y n

ij

∣∣3] =
1

2n+

∑
i∈Iln(t)∪Irn(t)

E

[(√
n+

n

∣∣ZS
ik

∣∣)3
]

=
1

2n+

∑
i∈Iln(t)∪Irn(t)

(n+

n

)3/2

E
[∣∣ZS

ik

∣∣3]
=

2n

2n+

(n+

n

)3/2

E
[∣∣ZS

ik

∣∣3]
=

√
n+

n
E
[∣∣ZS

ik

∣∣3]
≤
√
n+

n−
M3

3

and in the same way:

1

2n+

N∑
i=1

E
[∣∣Y n

ij

∣∣4] ≤ n+

n−
M4

4

Therefore Assumption H.2 holds with Bn+ so Lemma H.1 applies here and provides us with the
claimed bound. Moreover, CA depends only on b which equals one which implies that the constant
CA depends on nothing.
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Lemma E.3. Consider a random variable ξ. Suppose the following bound holds ∀x ≥ 0:

P {|ξ| ≥ γx+ β} ≤ e−x

Then

E
[
exp

(
|ξ|
B

)]
≤ 2

for

B = β log 2 ∨
√

2√
2− 1

γ

Proof. Integration by parts yields

E
[
exp

(
|ξ|
B

)]
≤ exp

(
β

B

)
+
γ

B

∫ +∞

0

exp

(
γx+ β

B

)
e−xdx

∫ +∞

0

exp

(
γx+ β

B

)
e−xdx =

B

B − γ
exp

(
β

B

)

E
[
exp

(
|ξ|
B

)]
≤ B

B − γ
exp

(
β

B

)
≤ 2

By the same technique the following lemma can be proven

Lemma E.4. Under assumptions of Lemma E.3

E
[
|ξ|3
]
≤ β3 + 3γβ2 + 6βγ2 + 2γ3,

E
[
ξ4
]
≤ β4 + 4γβ3 + 12β2γ26βγ3 + 24γ4.

F Gaussian approximation result for A[
n

Lemma F.1.

sup
{xn}n∈N⊂R

∣∣P[ {∀n ∈ N : A[ ≤ xn
}
− P[ {∀n ∈ N : ||ζn||∞ ≤ xn}

∣∣ ≤ ĈA[

(
F [ log7(2p2Tn+)

)1/6
.

Where
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(
ζ1 ζ2 ... ζ |N|

)
∼ N (0, Σ̂Y ),

Σ̂Y =
1

N

N∑
i=1

Var
[
Y [
·i
]
,

F [ =

(
1

2n− log2 2
∨ 1

2n+

(
n+

n−

)1/3

∨

√
1

2n+n−

)∣∣∣∣S−1
∣∣∣∣2
∞ (M [)2

M [ = max
i∈Is

∣∣∣∣∣∣Ẑi∣∣∣∣∣∣
∞

Y [
n are defined by (F.1), and ĈA[ depends only on min1≤k≤p(Σ̂Y )kk

Proof. Denote the term under the sign of ||·||∞ in (2.4) as Sn[Z

Sn[Z :=
1√
2n

 ∑
i∈Iln(t)

ZS[
i −

∑
i∈Irn(t)

ZS[
i

T

where ZS[
i := (S−1Z[

i )
T and let S[Z be a vector composed of stacked vectors Sn[Z for all n ∈ N.

Consider a matrix

(Y [
n)T :=

√
n+

n
×

ZS[
1 O ... O −ZS[

2n++1 ...

ZS[
2 ZS[

2 ... ... ... ...
... ZS[

3 ... ... ... ...
ZS[
n ... ... ... ... ...

−ZS[
n+1 ZS[

n+1 ... ... ... ...
−ZS[

n+2 −ZS[
n+2 ... ... ... ...

... −ZS[
n+3 ... O ... ...

−ZS[
2n ... ... ZS[

2n+−2n+1 O ...

O −ZS[
2n+1 ... ZS[

2n+−2n+2 ZS[
2n+−2n+2 ...

O O ... ... ... ...
... ... ... −ZS[

2n+−1 −ZS[
2n+−1 ...

O O ... −ZS[
2n+

−ZS[
2n+

...



(F.1)

which is a bootstrap counterpart of Yn from the proof of Lemma E.2 and construct a block matrix Y [ :

Y [ =


Y [

1

Y [
2

...

Y [
|N|


Clearly vectors Y [

·l are independent and
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S[Z =
1√
2n+

N∑
l=0

Y [
·l

Now notice

1

2n+

N∑
i=1

E
[
|Yij|3

]
≤
√
n+

n−
max
i∈Is

∣∣∣∣∣∣Ẑi∣∣∣∣∣∣3
∞

∣∣∣∣S−1
∣∣∣∣3
∞

1

2n+

N∑
i=1

E
[
|Yij|4

]
≤ n+

n−
max
i∈Is

∣∣∣∣∣∣Ẑi∣∣∣∣∣∣4
∞

∣∣∣∣S−1
∣∣∣∣4
∞

And finally apply Lemma H.1.

Lemma F.2. Let Θ̂ denote an estimator of Θ∗ s.t. for some positive r∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣
∞
< r

and Θ∗ij = 0⇒ Θ̂ij = 0, furthermore, let ∆Y (r) < 1/2, also suppose Assumption 3.1 holds. Then
at least with probability 1− pMs (x)− pΣY

s (x, q)

sup
{xn}n∈N⊂R

∣∣P[ {∀n ∈ N : A[ ≤ xn
}
− P[ {∀n ∈ N : ||ζn||∞ ≤ xn}

∣∣ ≤ RAb := CA[

(
F̂ log7(2p2Tn+)

)1/6

where

F̂ =

(
1

2n− log2 2
∨ 1

2n+

(
n+

n−

)1/3

∨

√
1

2n+n−

)∣∣∣∣S−1
∣∣∣∣2
∞ (C[)2

C[ := Zs(x) + (3(dx)2 + 1)r

and constant CA[ depends only on ∆Y .

Proof. The proof consists in subsequently applying Lemma F.1 and Lemma F.3 ensuring C[ ≥
M [ = maxi∈Is

∣∣∣∣∣∣Ẑi∣∣∣∣∣∣
∞

with probability at least 1 − pMs (x) and applying Lemma G.2 providing

that
∣∣∣∣∣∣Σ∗Y − Σ̂Y

∣∣∣∣∣∣
∞
≤ ∆Y ≤ 1 = min1≤k≤p(Σ

∗
Y )kk with probability at least 1 − pΣY

s (x, q) which

implies the existence of a deterministic constant CA[ > ĈA[ .

Lemma F.3. Let Θ̂ denote an estimator of Θ∗ s.t. for some positive r∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣
∞
< r

and Θ∗ij = 0⇒ Θ̂ij = 0. Also let Assumption 3.1 hold. Then with probability at least 1− pMs (x)

M [ ≤ Zs(x) + ∆Z(x) (F.2)

where pMs (x) := pZs(x) + pXs (x).
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Proof. Direct application of Lemma G.4 yields

P {∀i ∈ Is : ||Zi||∞ ≤ Zs(x)} ≥ 1− pZs(x)

which in combination with the fact (provided by Lemma G.6) that
∣∣∣∣∣∣Ẑi − Zi∣∣∣∣∣∣

∞
≤ ∆Z(x) implies

(F.2).

G Σ̂Y ≈ Σ∗Y

First of all, if Σ∗Z := Var
[
Zi
]
≈ Var[

[
Z[
i

]
, then Σ∗Y ≈ Σ̂Y as well (Lemma G.2). The idea is to

notice that

Cov
[
Z[
i

]
= Σ̂Ẑ := EIs

[(
Ẑi − EIs

[
Ẑi

])(
Ẑi − EIs

[
Ẑi

])T]
due to the choice of the bootstrap scheme. Next we show that

Σ∗Z ≈ Σ̂Z := EIs
[(
Zi − EIs

[
Zi
]) (

Zi − EIs
[
Zi
])T]

(Lemma G.5) and finalize the proof by proving that Σ̂Z ≈ Σ̂Ẑ (Lemma G.7).

The results of this section rely on a lemma which is a trivial corollary of Lemma 6 by [24] providing the
concentration result for the empirical covariance matrix

Lemma G.1. Let Assumption 3.1 hold for some L > 0. Then for any positive γ

δn(χ) := 2L2

(
2 log p+ χ

n
+

√
4 log p+ 2χ

n

)

P
{∣∣∣∣∣∣Σ̂− Σ∗

∣∣∣∣∣∣
∞
≥ δn(γ)

}
≤ pΣ(γ) := 2e−χ.

Lemma G.2. Assume, Assumption 3.1 holds. Moreover, let

∣∣∣∣EIs [XiX
T
i

]
− Σ∗

∣∣∣∣
∞ ≤ δs

and let Θ̂ denote a symmetric estimator of Θ∗ s.t.∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣
∞
< r

and Θ∗ij = 0⇒ Θ̂ij = 0. Then for positive x and q

P
{∣∣∣∣∣∣Σ̂Y − Σ∗Y

∣∣∣∣∣∣
∞
≥ ∆Y

}
≤ pΣY

s (x, q)

where

pΣY
s (x, q) := pΣZ1

s
(x, q) + pΣZ2

s
(x)
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∆Y :=
∣∣∣∣S−1

∣∣∣∣2
∞

(
∆

(1)
ΣZ

+ ∆
(2)
ΣZ

)
and ∆

(1)
ΣZ

and ∆
(2)
ΣZ

along with the probabilities pΣZ1
s

(x, q) and pΣZ2
s

(x) are defined in Lemma G.5
and Lemma G.7 respectively.

Proof. Notice that∣∣∣∣∣∣Σ̂Y − Σ∗Y

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣S−1Σ̂ẐS

−1 − S−1Σ∗ZS
−1
∣∣∣∣∣∣
∞
≤
∣∣∣∣S−1

∣∣∣∣2
∞

∣∣∣∣∣∣Σ̂Ẑ − Σ∗Z

∣∣∣∣∣∣
∞

because the matrices Σ̂Y and Σ∗Y are composed of blocks S−1Σ̂ZS
−1 and S−1Σ∗ZS

−1 respectively,
each block multiplied by some positive value not greater than 1 (which can be verified by simple
algebra).

By Lemma G.7 and Lemma G.5 ∣∣∣∣∣∣Σ̂Ẑ − Σ∗Z

∣∣∣∣∣∣
∞
≤ ∆

(1)
ΣZ

+ ∆
(2)
ΣZ

and hence ∣∣∣∣∣∣Σ̂Y − Σ∗Y

∣∣∣∣∣∣
∞
≤
∣∣∣∣S−1

∣∣∣∣2
∞ (∆

(1)
ΣZ

+ ∆
(2)
ΣZ

)

with probability at least
1− pΣZ1

s
(x, q)− pΣZ2

s
(x)

Lemma G.3. Under Assumption 3.1 it holds for arbitrary 1 ≤ u, v ≤ p and positive x that

P
{
|Z1,uv| ≤

(
3L2
√
dΛ (Θ∗)

(
3

2
+ 4x

)
+ 1

)
||Θ∗||∞

}
≥ 1− e−x

Proof. Re-write the definition (2.1) of an element Zi,uv for arbitrary 1 ≤ u, v ≤ p

Zi,uv = Θ∗uXiΘ
∗
vXi −Θ∗uv

= XT
i

[
Θ∗u(Θ

∗
v)
T
]
Xi −Θ∗uv.

The first term is clearly a value of a quadratic form defined by the matrix B = Θ∗u(Θ
∗
v)
T . Note that

rankB = 1 which implies that it is either positive semi-definite or negative semi-definite. Next we
apply Lemma H.4 and obtain for all positive x

P
{∣∣XT

i BXi

∣∣ ≥ 3L2
(
|trB|+ 2

√
tr(B2)x+ 2 |Λ (B)|x

)}
≤ e−x. (G.1)

Again, due to the fact that B is a rank-1 matrix

trB = Λ (B) =
√
trB2 (G.2)

and by construction of matrix B
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|trB| =
∣∣Θ∗u(Θ∗v)T ∣∣

≤ ||Θ∗u||1 ||Θ
∗||∞

≤
√
d||Θ∗u||2 ||Θ∗||∞

≤
√
dΛ (Θ∗) ||Θ∗||∞ .

(G.3)

Substitution of (G.2) and (G.3) to (G.1) yields

P
{∣∣XT

i BXi

∣∣ ≥ 3L2
√
dΛ (Θ∗) ||Θ∗||∞

(
1 + 2

√
x+ 2x

)}
≤ e−x.

And since
√
x ≤ x+ 1

4

P
{∣∣XT

i BXi

∣∣ ≥ 3L2
√
dΛ (Θ∗) ||Θ∗||∞

(
3

2
+ 4x

)}
≤ e−x.

Finally, we obtain a bound for Zi,uv as

P
{
|Zi,uv| ≥

(
3L2
√
dΛ (Θ∗)

(
3

2
+ 4x

)
+ 1

)
||Θ∗||∞

}
≤ e−x.

Correction for all i, u and v establishes the following result

Lemma G.4. Consider an i.i.d. sample Xi of length n. Under Assumption 3.1 for positive x it holds
that

P {∀i ∈ {1..n} : ||Zi||∞ ≤ Zn(x)} ≥ 1− pZn(x)

where

Zn(x) :=

(
3L2
√
dΛ (Θ∗)

(
3

2
+ 4 log p2n+ 4x

)
+ 1

)
||Θ∗||∞ ,

pZn(x) := e−x.

Lemma G.5. Under Assumption 3.1 for positive x and q

P
{∣∣∣∣∣∣Σ̂Z − Σ∗Z

∣∣∣∣∣∣
∞
≥ ∆

(1)
ΣZ

}
≤ pΣZ1

s
(x, q)

where

∆
(1)
ΣZ

:=
s

s− 1

(
4Z2

s (x) + s−1
s
||Σ∗Z ||∞

)
q

3s

(
1 +

√
1 +

9sσ2
W

q
(
4Z2

s (x) + s−1
s
||Σ∗Z ||∞

)2

)

pΣZ1

s
(x, q) := p4e−q + pZs(x)
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Proof. Denote

W (i) := (Zi − EIs
[
Zi
]
)(Zi − EIs

[
Zi
]
)T − s− 1

s
Σ∗Z

and note that

s− 1

s

(
Σ̂Z − Σ∗Z

)
=

1

s

∑
i∈Is

W (i).

By Lemma G.4 we have ||Zi||∞ ≤ Zs(x) with probability at least 1−pZs(x) which implies
∣∣∣∣W (i)

∣∣∣∣
∞ ≤

4Z2
s (x)+ s−1

s
||Σ∗Z ||∞. SinceW (i)

kl are i.i.d., bounded and centered, Bernstein inequality applies here:

P

{
EIs

[
W

(i)
kl

]
≥
(
4Z2

s (x) + s−1
s
||Σ∗Z ||∞

)
q

3s

(
1 +

√
1 +

9sσ2
W

q
(
4Z2

s (x) + s−1
s
||Σ∗Z ||∞

)2

)}
≤ e−q

where σ2
W is the smallest variance of components of W (i). Therefore

P

{∣∣∣∣EIs [W (i)
]∣∣∣∣
∞ ≥

(
4Z2

s (x) + s−1
s
||Σ∗Z ||∞

)
q

3s

(
1 +

√
1 +

9sσ2
W

q
(
4Z2

s (x) + s−1
s
||Σ∗Z ||∞

)2

)}
≤ p4e−q.

The following lemma bounds the mis-tie between Zi and Ẑi.

Lemma G.6. Let Assumption 3.1 holds and let Θ̂ be a symmetric estimator of Θ∗ s.t.∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣
∞
< r

and Θ∗ij = 0⇒ Θ̂ij = 0. Then for positive x

P
{
∀i ∈ Is :

∣∣∣∣∣∣Zi − Ẑi∣∣∣∣∣∣
∞
≤ ∆Z(x)

}
≥ 1− pXs (x)

where

∆Z(x) := 2rd3/2x2 ||Θ∗||∞ + (rdx)2

pXs (x) := se−x
2/L2

Proof. Due to sub-Gaussianity,

∀α ∈ Rp : P
{∣∣αTXi

∣∣ ≤ x
}
≥ 1− se−x2/L2

(G.4)

Now consider the mis-tie of arbitrary elements Zi,uv and Ẑi,uv :
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∣∣∣Zi,uv − Ẑi,uv∣∣∣ =
∣∣∣Θ∗uXiΘ

∗
vXi + Θ∗uv − Θ̂uXiΘ̂vXi − Θ̂uv

∣∣∣
≤
∣∣∣(Θ∗u − Θ̂u)XiΘ

∗
vXi

∣∣∣+
∣∣∣(Θ∗u − Θ̂u)XiΘ̂vXi

∣∣∣+ r

Now note that due to (G.4) and assumptions imposed on Θ∗

|Θ∗vXi| ≤
√
d ||Θ∗||∞ x∣∣∣(Θ∗v − Θ̂v)Xi

∣∣∣ ≤ rdx

∣∣∣Θ̂vXi

∣∣∣ ≤ |Θ∗vXi|+
∣∣∣(Θ∗v − Θ̂v)Xi

∣∣∣ ≤ √d ||Θ∗||∞ x+ rdx

And hence ∣∣∣Zi,uv − Ẑi,uv∣∣∣ ≤ 2rd3/2x2 ||Θ∗||∞ + (rdx)2

Lemma G.7. Assume Assumption 3.1 holds. Let Θ̂ be a symmetric estimator of Θ∗ s.t.∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣
∞
< r

and Θ∗ij = 0⇒ Θ̂ij = 0. Then for positive x

P
{∣∣∣∣∣∣Σ̂Z − Σ̂Ẑ

∣∣∣∣∣∣
∞
≥ ∆

(2)
ΣZ

}
≤ pΣZ2

s
(x)

where

pΣZ2

s
(x) := pXs (x) + pZs(x)

∆
(2)
ΣZ

= ∆Z(x)(2Zs(x) + ∆Z(x))

Proof. By Lemma G.4 with probability at least 1 − pZs(x) we have ||Zi||∞ ≤ Zs(x) and in combi-

nation with Lemma G.6 we obtain
∣∣∣∣∣∣Ẑi∣∣∣∣∣∣

∞
≤ Zs(x) + ∆Z(x) with probability at least 1− pZs(x)−

pXs (x). Now denote

ξi := Zi − EIs
[
Zi
]

and ξ̂i := Ẑi − EIs
[
Ẑi

]
And deliver the bound

∣∣∣∣∣∣Σ̂Z − Σ̂Ẑ

∣∣∣∣∣∣
∞
≤ EIs

[
ξi(ξi − ξ̂i)T + (ξi − ξ̂i)ξ̂Ti

]
≤
(∣∣∣∣∣∣ξ̂i∣∣∣∣∣∣

∞
+ ||ξi||∞

) ∣∣∣∣∣∣ξi − ξ̂i∣∣∣∣∣∣
∞

≤ ∆Z(x)(2Zs(x) + ∆Z(x))
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H Known results

H.1 Gaussian approximation result

In this section we briefly describe the result obtained in [9].

Throughout this section consider an independent sample x1, ..., xn ∈ Rp of centered random vari-
ables. Define their Gaussian counterparts yi ∼ N (0,Var [xi]) and denote their scaled sums as

SXn :=
1√
n

n∑
i=1

xi

SYn :=
1√
n

n∑
i=1

yi

Definition H.1. We call a set A of the form A = {w ∈ Rp : ai ≤ wi ≤ bi ∀i ∈ {1..p}} a
hyperrectangle. The family of all hyperrectangles is denoted as Are.

Assumption H.1. ∃b > 0 such that

1

n

n∑
i=1

E
[
x2
ij

]
≥ b for all j ∈ 1..p

Assumption H.2. ∃Gn ≥ 1 such that

1

n

n∑
i=1

E
[
|xij|2+k

]
≤ G2+k

n for all j ∈ 1..p and k ∈ {1, 2}

E
[
exp

(
|xij|
Gn

)]
≤ 2 for all j ∈ 1..p and i ∈ 1..n (H.1)

Lemma H.1 (Proposition 2.1 by [9]). Let Assumption H.1 hold for some b and Assumption H.2 hold
for some Gn. Then

sup
A∈Are

∣∣P{SXn ∈ A}− P
{
SYn ∈ A

}∣∣ ≤ C

(
G2
n log7(pn)

n

)1/6

and the constant C depends only on b.

H.2 Anti-concentration result

Lemma H.2 (Nazarov’s inequality [31]). Consider a normal p-dimensional vector X ∼ N (0,Σ) and
let ∀i : Σii = 1. Then for any y ∈ Rp and any positive a

P {X ≤ y + a} − P {X ≤ y} ≤ Ca
√

log p,
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where C is an independent constant.

H.3 Gaussian comparison result

By the technique given in the proof of Theorem 4.1 by [9] one obtains the following generalization of
the result given in [7]

Lemma H.3. Consider a pair of covariance matrices Σ1 and Σ2 of size p× p such that

||Σ1 − Σ2||∞ ≤ ∆

and ∀k : C1 ≥ Σ1,kk ≥ c1 > 0. Then for random vectors η ∼ N (0,Σ1) and ζ ∼ N (0,Σ2) it holds
that

sup
A∈Are

|P {η ∈ A} − P {ζ ∈ A}| ≤ C∆1/3 log2/3 p,

where C is a positive constant which depends only on C1 and c1.

H.4 Tail inequality for quadratic forms

The following result is a direct corollary of Theorem 1 in [21]

Lemma H.4. Consider a positive semi-definite or negative semi-definite matrix B and suppose As-
sumption 3.1 holds. Then for all t > 0

P
{∣∣XT

1 BX1

∣∣ ≥ 3L2
(
|trB|+ 2

√
tr(B2)t+ 2 |Λ (B)| t

)}
≤ e−t

H.5 High-dimensional precision matrix estimation

In order to address the problem of high-dimensional precision matrix estimation one has to assume its
sparsity. Below we describe two approaches exploiting this assumption. In both of them we assume
that an i.i.d. sample X1, ...Xn ∈ Rp is supplied.

H.5.1 Graphical lasso

In [17] the graphical lasso approach was suggested. An estimate may be obtained as the solution of
the following optimization problem over a positive-definite cone Sp++ of p× p dimensional matrices.

Θ̂GL := arg min
Θ∈Sp

++

[
tr(ΘΣ̂)− log detΘ + λ ||Θ||1

]
(H.2)

where Σ̂ stands for the empirical covariance matrix

Σ̂ =
1

n

n∑
i=1

XiX
T
i .
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The theoretical treatment of the approach keeps track on the following Schatten norms: κΣ∗ =
|||Σ∗|||∞ and κΓ∗ = |||(Γ∗SS)−1|||∞. The following result establishes consistency of the estimator
in the sense of Definition 3.1.

Lemma H.5 (Theorem 1, [32]). Consider a distribution satisfying Assumption 3.2 with some φ ∈
(0, 1], let Θ̂ be a solution of the optimization problem (H.2) with tuning parameter λn = 8

ψ
δn. Further-

more, impose the following sparsity assumption:

d ≤ 1

6(δn + λn) max{κΓ∗κΣ∗ , κ2
Γ∗κ

3
Σ∗}

.

Then on the set T =
{∣∣∣∣∣∣Σ̂− Σ∗

∣∣∣∣∣∣
∞
< δn

}
the following holds:∣∣∣∣∣∣Θ̂GL −Θ∗

∣∣∣∣∣∣
∞
≤ rλ := 2κΓ∗(δn + λn)

and
Θ∗ij = 0⇒ Θ̂ij = 0.

A rather similar result is provided in paper [3] for adaptive versions of graphical lasso suggested and
studied in [39] [15] [16] [38] .

H.5.2 Node-wise lasso

This section describes the node-wise lasso approach which was suggested in [29].

For each 1 ≤ j ≤ n define a vector

Γ̂j := (γ̂j 1, ..., γ̂j j−1, 1, γ̂j j+1, ..., γ̂j p)

where γ̂j is defined as a solution of the following lasso regression:

γ̂j := arg max
γ∈Rp−1

1

n

∑
1≤i≤n

(
Xij −XT

i,−jγ
)2

+ 2λ ||γ||1

and

τ̂ 2
j :=

1

n

∑
1≤i≤n

(
Xij −XT

i,−j γ̂j
)2

+ λ ||γ||1 .

Finally the j-th column of the estimator is defined as

Θ̂MB
j := Γ̂j/τ̂

2
j .

Note, that this estimator might not be symmetric, so one cannot use it as an estimator Θ̂ based on
the sub-sample {Xi}i∈Is . The paper [23] suggests to construct a de-sparsified estimator T̂ (Θ̂MB)
where

T̂ (Θ̂) := Θ̂ + Θ̂T − Θ̂T Σ̂Θ̂

and threshold elements of T̂ obtaining a positive-definite estimate.

Under Assumption 3.1, the sparsity assumption d log p
n

= o(1) and the assumption of the bounded
spectrum (Assumption H.3) the paper [23] establishes the root-n consistency of such an estimator
(see Definition 3.1).
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Assumption H.3.

∃E :
1

E
≤ λ (Θ∗) ≤ Λ (Θ∗) ≤ E.

H.5.3 Bounds for r

While graphical lasso and node-wise estimate are point estimates, de-sparsified estimators have been
suggested in order to obtain confidence intervals [24] [23].

The analysis of these estimators relies on the bounds for the residual term r:

r := T̂ −
(

Θ∗ −Θ∗(Σ∗ − Σ̂)Θ∗
)

The next two lemmas bound the remainder r for the case of graphical lasso and node-wise estimator.

Lemma H.6 (by [24]). Impose Assumption 3.1, Assumption 3.2 and Assumption H.3. Then under the
sparsity assumption

d log p√
n

= o(1) (H.3)

it holds that

||r||∞ = Op

(
d log p

n

)
.

A finite sample-size bound for r along with its adaptations for the case of adaptive graphical lasso may
be found in [3]

Lemma H.7 (by [23]). Let Θ̂ be yielded by the node-wise procedure with λn �
√

log p
n

. Then under
Assumption 3.1, Assumption H.3 and sparsity assumption (H.3)

||r||∞ = Op

(
d log p

n

)
.

References

[1] Alexander Aue and Lajos Horvath. Structural breaks in time series. Journal of Time Series
Analysis, 34(1):1–16, 2013.
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