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ABSTRACT. We study the solutions to the Cauchy problem on the with random potential and localised initial
data. Here we consider the random SchrA{idinger operator, i.e., the Laplace operator with random field, whose
upper tails are doubly exponentially distributed in our case. We prove that, for large times and with large
probability, a majority of the total mass of the solution resides in a bounded neighborhood of a site that achieves
an optimal compromise between the local Dirichlet eigenvalue of the Anderson Hamiltonian and the distance
to the origin. The processes of mass concentration and the rescaled total mass are shown to converge in
distribution under suitable scaling of space and time. Aging results are also established. The proof uses the
characterization of eigenvalue order statistics for the random Schrédinger operator in large sets recently proved
by the first two authors.

1. INTRODUCTION

Random Schrddinger operators — most notably, the Anderson Hamiltonian H = A + ¢ — have been a
subject of intense research over several decades. Most of the attention has been paid to the character of
the spectrum and the ensuing physical consequences for the quantum evolution. However, the associated
parabolic problem — characterized by the PDE d;ut = Au + ¢u — is of as much interest both for theory
and applications. Here we study the latter facet of this problem for a specific class of random potentials. Our
main result is the proof of localization of the solution to the above PDE for large time in a neighborhood of a
process determined solely by the random potential.

A standard way to describe the parabolic Anderson model (PAM) is via a solution u: 7% x [O, oo) —
[0, 00) of the Cauchy problem

oru(z, t) = Au(z, t) + &(2)u(z,t), z€ 7% te (0,00), (1.1)
u(z,0) = 1p(z), z ez (1.2)

Here d; abbreviates the derivative with respect to t and A is the discrete Laplacian acting on f : 74 - R
as

AM(z)= ), [fy)-f@=)] (1.3)

y: ly—z|=1

where | - | denotes the £! norm on Z¢, and & = (&(z): z € Z%) is an i.i.d. random potential taking values
in [—0c0, 00).

The interest in for mathematics as well as applications comes from the competing effect of the
two terms on the right-hand side of (1.1). Indeed, the Laplacian tends to make the solution smoother over
time while the field makes it rougher. The problem appears in the studies of chemical kinetics [GM90Q],
hydrodynamics [CM94], and magnetic phenomena [MR94]. We refer to the reviews [M94] [CM94] for more
background and [GM90] for fundamental mathematical properties of the model. A recent comprehensive
survey of mathematical results on the PAM and related models can be found in [K16].

A positive solution to the Cauchy problem (1.1H1.2) exists and is unique as soon as the upper tail of
[#(0)/ log &(0)]4 is integrable [GM30]. Under this condition, there is also a representation in terms of the
changed-path measure,

Q7 (dX) = iy exp{ [ s Po(ax) 14



on nearest-neighbour paths X = (X;)s>0 on Z% where IP stands for the law of a continuous-time random
walk on Z¢ (with generator A) started at zero. Indeed, the Feynman-Kac formula shows

u(z,t) = U(HQY (X, = z) = Ey [efot &(Xs)ds {Xt:z}] , (1.5)

whereby the normalization constant U () obtains the meaning

ue) = Y ulx,t) :]Eo(exp{/otg(Xs)ds}). (1.6)

xez4
The aforementioned competition is now obvious probabilistically: the walk would like to maximize the “energy”
fot ¢(Xs)ds, by spending its time at the places where ¢ is large, against the “entropy” of such trajectories
under the path measure IP.

An alternative and equally useful way to view (1.1) is as the definition of a semigroup t — el (B+C)

on £2(Z*). The solution to is then given by

u(x,t) = <(5x,et(A+§)50>€2(Zd), (1.7)

where 9, is the vector in EZ(Zd) that is one at z and zero otherwise. This opens up the possibility to
control the large-f behavior through spectral analysis of the Anderson Hamiltonian. To this end, it is useful to
restrict the problem to a sufficiently large (in t-dependent fashion) finite volume A C Z% (with 0 € A) as
follows. Denote by H 5 the Anderson Hamiltonian in A with Dirichlet boundary conditions, i.e., for ¢ € ]RA,
Ha¢ = Hp where H = A + & and ¢ is the extension of ¢ to RZ’ that is equal to zero on A°. Let up be

the solution to (1.1H1.2) restricted to A and with the right-hand side of (1.7) substituted by Hau. Then the
above interpretation yields

up(xt) = Y e 9 ()9 (0), (1.8)
k=1

where AX) are the eigenvalues and cpy{) the corresponding eigenvectors of Hx which we assume to be
orthonormal in Kz(Zd).

The competition we described in the context of the changed-path measure now reflects itself as
follows. The term in the sum in that grows the fastest in t is that with the largest eigenvalue. However,
there is no a priori reason for it to be the dominant term at a fixed time. Indeed, an eigenvalue will only
contribute to when its eigenvector puts non-trivial mass on both 0 and x. Since the leading eigenvectors
decay exponentially away from their localization centers (Anderson localization), ¢5’§)(0)| will in fact be

typically extremely small. It is thus the combined effect of both e and ¢ (x)$' (0) that decides which
index k will give the main contribution to the sum.

In the present paper, we analyze these competing effects for a class of random potentials with upper
tails close to the doubly-exponential distribution, characterized by

Prob((0) > r) = exp{—e’/f}, reR, (1.9)

where p € (O, oo). (Precise definitions will appear in Section ) For these potentials we show that, at all
large f, a majority of the total mass U () of the solution resides in a bounded neighborhood of a random
point Z; defined entirely by ¢. This point marks a local peak of ¢ optimizing the strategy by which the random-
walk in traverses to Z; in time o(t) and then “sticks around” Z; thereafter to enjoy the benefits of a



“strong” local Dirichlet eigenvalue. We also characterize the scaling limits of Z; and % log U(t), and obtain
aging results for both Z; and u(x, t).

Our results build on a large body of literature on the PAM whose full account here would detract from the
main message of the paper. For now let us just say that we extend results from [MOS11,[LM12,IST14} [FM14],
dealing with localization on one lattice site, to a benchmark class of random potentials exemplified by (1.9),
where the localization takes place in large domains, albeit not growing with £. An important technical input
for us is the recent work [BK16] where eigenvalue order statistics for the Anderson Hamiltonian H = A + ¢
was characterized for this class of ¢. Further connections will be given in Section

2. MAIN RESULTS

We now move to the statements of our main results. Throughout the paper, In x denotes the natural logarithm
of x and Inp x := Inlnx, Ingx := InInln x, etc denote its iterates. We will use “Prob” to denote the
probability law of the i.i.d. random field ¢.

2.1 Assumptions.

We begin by identifying the class of potentials to which our results apply. Besides some regularity, the fol-
lowing ensures that the upper tails of C(O) are in the vicinity of the doubly-exponential distribution (1.9).
Assumption 2.1 (Upper tails) Suppose that esssup ¢(0) = oo and let

1
Prob(&(0) >r)’

We assume that F is differentiable on its domain and that

F(r):=1ny r > essinf £(0). (2.1)

rlgg F(r)= % for some p € (0,). (2.2)

The assumption above is exactly as Assumption 1.1 in [BK16], and implies Assumption (F) of [GM98].
While the latter would be enough for most of our needs, the extra requirements of Assumption [2.1] are used
in the crucial step, performed in [BK16], of identifying the max-order class of the local principal eigenvalues
of the Anderson Hamiltonian. In order to avoid technical inconveniences, we will also assume the following
condition on the lower tail of ¢.

Assumption 2.2 (Lower tails) Let ¢ (x) := max{0, —&(x)}. We assume that
(o) 1
/ Prob (&~ (0) > €°)?ds < co. (2.3)
0

Assumption is only used in the proof of Lemma which is used in Proposition to give a
lower bound for the total mass U (). Note that holds whenever In(1 + &~ (0)) has a (d + ¢€)-th finite
moment (cf. [M02]). We believe that, with the use of percolation arguments, this assumption can be relaxed
to {(0) > —oo almostsurelyind > 2. Ind = 1, is equivalent to In(1 + ¢~ (0)) having the first
moment, which is known to be in fact necessary (cf. [BKO1D]).

We will assume the validity of Assumptions throughout the rest of the paper without explicitly
stating this in each instance.



2.2 Results: Mass concentration.

Recall that | x| denotes the ¢1-norm of x. Our first result concerns the concentration of the total mass of the
solution to the Cauchy problem (1.1H1.2):

Theorem 2.3 (Mass concentration) There is a Z-valued cadlag stochastic process (Z;) o de-
pending only on & such that t — |Z;| is non-decreasing and such that the following holds: For each
6 > 0, there exists R € IN such that, for any l; > 0 satisfying limy_.c 11y = 0,

u(x,s)
U(s)

lim Prob sup >0 =0. (2.4)

t—oo s€lt—=Ipt+1l] x: |x—Z|>R

In words, means that the solution at time t is with large probability supported around a single
point Z;, and the control in fact extends to sublinearly-growing intervals of time around t. This cannot be
improved to intervals of size growing linearly with ¢ due to the jumps that occur in the process s — Zs; see
Theorem 2.7] below.

Remark 2.4 Note that the asymptotic concentration in one island at time ¢ does not hold
almost surely. Indeed, around jump times of s — Z;, the contributions of two islands are
equally dominant. Almost-sure concentration in at most two islands for all times, dubbed
as a “two-cities theorem”, was shown for the Pareto distribution in [KLMS09], a case in
which the islands reduce to single lattice vertices. In order to keep the present paper to a
manageable length, we decided not to include almost-sure versions here.

In terms of the path measure QY:), Theorem can be interpreted as concentration for the law of the
position of the path at time £. By letting the radius R grow slowly to infinity, this can be improved to include a
majority of the whole random-walk path:

Theorem 2.5 (Path concentration) For any €; € (0,1) satisfying lim;_, €; Inz t = oo,

lim Q¥ ( sup |Xs — Z¢| > €tln t) =0 in probability, (2.5)

feo s€lest ]

where (Z)=o is the stochastic process in Theorem

2.3 Results: Scaling limit.

Our next theorem identifies the large-t behavior of the pair of processes t +— Z; and t +— %ln U(t).
While U(t) is continuous, Z; is only cadlag and thus it is natural to use the Skorohod topology to discuss
distributional convergence. Two relevant scales are

_ P _tde _ p
=g @ T T dng Ing

(2.6)

marking, respectively, the size of fluctuations of % In U(t) and the typical size of Z;.



To describe the scaling limit, consider a sample {(A;,z;): i € IN} from the Poisson point process
on R x R? with intensity measure e *dA ® dz. For @ > 0 define
2|
Po(N,z) == A — YR (2.7)

It can be checked that, for every 6 > 0, the set {¢Py(A;, z;) : i € IN} is bounded and locally finite. Moreover,
the maximizing point is unique at all but at most a countable set of 8’s and we can thus define (Ag, Zg) to
be the cadlag maximizer of (g over the sample points of the process. We set

Tg = QDQ(KQ,ZQ). (2.8)
Then we have:

Theorem 2.6 (Scaling limit of the concentration loci and the total mass) There is a non-

decreasing scale function a; > 0 obeying
lim —4— = 0 (2.9)
t—o0 11’12 t

such that the following holds: The stochastic process (Zt)=o in Theorems[2.3|and [2.5] can be chosen
such that, for all s € (0, 00) and relative to the Skorohod topology on D([s, ), R x R?),

1
(“1“”(9” - ”@) = (F,,7,)
f€s,00)

7 P = oefs,c0) (2.10)
In particular, for each © > 0, the random variable (3 InU(0t) — a,)/d; converges in law to a
Gumbel random variable with scale 1 and location d1n(20), while Zgy;/ 1+ converges in law to a
random vector in R with i.id. coordinates, each having probability density (20)~e~I*I/? with
respect to the Lebesgue measure on R.

The scaling function a; characterizes the leading-order scale of the principal Dirichlet eigenvalue of the
Anderson Hamiltonian in a box of radius £, as identified in [BK16]. See (7.3) below for a precise definition.

2.4 Results: Aging.

The techniques used to prove the above theorems also permit us to address the phenomenon of aging in the
problem under consideration. The term “aging” usually refers to the fact that certain decisive changes in the
system occur at time scales that increase proportionally to the age of the system. Our next result addresses
aging in the process (Z¢)¢=o:

Theorem 2.7 (Aging for the localization process) For each s > 0, and for (Z¢)=o and (Z¢) =0

as in Theorems and
lim Prob(Zg: = Z; V0 € [0,5])

t—o0
= lim Prob(Zsyst = Zt) (2.11)
= Prob(Zy49 = Z1 Y0 € [0,5]) = Prob (© > s),

where the random variable B B
©:=inf{6 > 0: Z1,9 # Z1} (2.12)



is positive and finite almost surely.

In light of Theorem Theorem can be seen as a reflection of the fact that the functional con-
vergence stated in Theorem [2.6] is not achieved through a large number of microscopic jumps, but rather
through sporadic macroscopic jumps.

Our second aging result deals with the jumps in the profile of the normalized solution u(-, £ /U(t).
It comes as a consequence of the mass concentration of the normalized solution around Z; together with
Theorem

Theorem 2.8 (Aging for the solution) Forany e € (0,1), the random variable

%inf{s>0: Z uxits) u(x,t)'>€}

xeZ4

(2.13)

U(t+s) U(t)
converges in distribution as t — oo to the random variable © defined in 212).

A key point to note about Theorem [2.8]is that the limiting random variable does not depend on €. The
result thus implies that, in fact, the sum in (2.13) jumps from values near O to values near 1 as s varies in a
time interval of length o(#) centered at ©t.

2.5 Results: Limit profiles.

The localization stated in Theorem [2.3|can be given in a more precise form provided we make an additional
uniqueness assumption. To state this assumption, we need further definitions. Given a potential V' : 74 —
R, let
V(x)
LV):=) er. (2.14)

xezd

The functional £ plays the role of a large deviation rate function for random potentials ¢ with doubly-
exponential tails. Whenever £(V) < oo (in fact, whenever V(x) — —oo0 as |x| — c0), A+ V has
a compagct resolvent as an operator on EZ(Zd) and its largest eigenvalue AV (V) is well-defined and sim-
ple. The constant

x = x(p) := —sup{AO(V): Ve RZ, £(V) <1} € [0,2d] (2.15)
is important in the description of the asymptotic growth of U(t) The set of centered maximizers
Mg = {V eRZ: 0¢ argmax(V), L(V) <1 and AV (V) = —X} (2.16)

is known to be non-empty. The assumption below deals with uniqueness:

Assumption 2.9 (Uniqueness of maximizer) We assume that Mj = {V,}, i.e, the varia-
tional problem (2.15) admits a unique centered solution V,.

The uniqueness of the centered minimizer is conjectured to hold for all o > 0, but has so far only
been proved for p large enough; see [GHI9]. In the latter paper it is also shown that, for any V' € M,

the non-negative principal eigenfunction of the operator A + V is strictly positive and lies in El(Zd). Under



Assumption (2.9), we will denote henceforth by v, the principal eigenfunction of A+ Vp, normalized so that
vp >0 and |vpllpize = 1. (2.17)
Then we have:

Theorem 2.10 (Limiting profiles) Suppose that Assumption 2.9 holds and let (Z)s~¢ be the
process from Theorems 2.3} [2.5|and 2.6 There exist yy € IN and @y > 0 satisfying lim; .o py =
and im0 a;/ (0 Ing t) = 1 such that, forall e € (0,1),

sup sup  |&(x+Zs) —a — Vo(x)| — 0 in probability. (2.18)
s€let, e 1] xeZa: |x|<ps f=e0
Moreover, for any I; > 0 satisfying lim; .o %lt =0,
Z .
sup % —0p(x) —~ 0 in probability. (2.19)
Se[f*lt,t+lt} XEZd

The scale a@; in (2.18) coincides (up to terms that vanish as t — ©o) with the maximum of ¢ inside a box
of radius f (cf. Lemma|5.1). Moreover, the scales a; and d; satisfy lim;_,co 4t — a; = X.

The rest of the paper is organized as follows. In Section [3|below we discuss connections to the literature
and provide some heuristics. Section [4] contains an extensive overview of our proofs including the definition
of the localization process Z;. The technical core of the paper is formed by Section |5 (properties of the
potential and spectral bounds), Section [6] (path expansions) and Section [7| (a point process approach).
The bulk of the proofs related to our main results is carried out in Sections concerning respectively
negligible contributions to the Feynman-Kac formula, localization of relevant eigenfunctions, path localization
properties and the analysis of local profiles. The proofs of some technical results are given in Appendices [A-

3. CONNECTIONS AND HEURISTICS

In this section we make the necessary connections to earlier work on this problem, and also provide a short
heuristic argument motivating the definition of the scales in (2.6).

3.1 Relations to earlier work.

Let us give a quick survey on earlier works on the particular question that we consider; we refer to [K16]
for a comprehensive account on the parabolic Anderson model and to [M11] for a survey on certain aspects
closely related to the present paper.

Much of the effort since 1990 went into developing a characterization of the logarithmic asymptotics of
t +— U(t) and its moments, which are all finite if and only if all the positive exponential moments of ¢(0)
are finite. For this case, under a mild regularity assumption, [HKMOQ6] identified four universality classes of
asymptotic behaviors: the double-exponential tails of the form [GM98| IGH99, IGKMQ7], the so-called
“almost bounded” potentials (corresponding formally to p = 0) [HKMO06], the bounded potentials treated
in [BKO1a], and potentials with tails heavier than (corresponding formally to p = o0) [HMS08, KLMSQ9,
LM12.[ST14, [FM14].



In all of the classes mentioned above, the asymptotics of U(t) is expressed in terms of a variational
principle for the local time of the path in fo) and/or the “profile” of ¢ that maximizes a local eigenvalue.
The picture that emerges is that a typical path sampled from QY:) for t large will spend an overwhelming
majority of time in a relatively small volume whose location is characterized by a favourable value of the local
Dirichlet eigenvalue. Proofs of such statements have first been available for a related version of the model
using the method of enlargement of obstacles [S98] and later also for the double-exponential class by prob-
abilistic path expansions [GKMQO7]. However, neither of these approaches was sharp enough to distinguish
among the many “favourable eigenvalues.” In fact, while the expectation was that only a finite number of such
eigenvalues needs to be considered, the best available bound on their number was to(1),

For distributions with tails heavier than (1.9), progress on the path-localization question has been made
in [KLMS09] and more recently in [LM12,IST14} [FM14]. The distributions considered in these references are,
respectively, Pareto, exponential, Weibull with parameter v & (0,2) and general Weibull. In these papers
it is proven that, with large probability, the solution is asymptotically concentrated on a single lattice point,
which is an extremely strong localization property. In the doubly-exponential case considered here, due to
less-heavy tails, the localization phenomenon is not so strong; indeed, restricting to any bounded region
misses some fraction of the total mass of the solution.

The analysis leading to our result depends crucially on the characterization of the order statistics of local
principal eigenvalues for the Anderson Hamiltonian performed in [BK16], which allows us to conveniently
represent local eigenvalues through a point process approach. In this aspect, our paper shares similarities
with [EM14], which draws heavily upon the analysis of the spectral order statistics in [Ast12, /Ast13]. However,
our case also harbors many significant differences, caused mainly by the non-degenerate structure of the
dominant eigenfunctions.

For the remaining two universality classes of ¢ — namely, the bounded and “almost bounded” fields
— the path localization question is yet more difficult because the relevant eigenvectors extend over spatial
scales that diverge with time. Nevertheless, we expect that our approach provides a correct strategy for
tackling these cases as well.

3.2 Some heuristics.

We present next a heuristic calculation based on [BK16] to motivate the appearance of the scale 74 defined
in (2.6). We will describe a strategy to obtain a lower bound for the total mass U(t) defined in (1.6). Our
actual proof of the corresponding result (cf. Proposition below) follows similar but somewhat different
steps.

Write By C Z¢ for the £!-ball with radius ¢, and denote by /\%‘t), cpgf, 1 < k < |By|, the eigenvalues
(in decreasing order) and corresponding orthonormal eigenfunctions of the Anderson Hamiltonian in By with
zero Dirichlet boundary conditions. If Y](3kt) € By are points maximizing (¢g2)2’ it can be shown via spectral
methods that

(k)
E, [efotC(Xr)df 1{X, € B;Vr € [0, t]}} > oMy (3.1)

By



Inserting in (1.6) the event where the random walk X reaches Y,(skt) at atime s < t and then remains in By
until time £, using the Markov property we obtain

_ar o)
U(t) > B [eh {4 0 X, = V), X, € Bi¥r € [s,1]}] 2 Po(X, = Yf) e~ 0

(k) (k) (k)
o e IR 1/9) )
where we assumed |Yl(;kt)| > s to approximate the probability Po(Xs = Yg?). Optimizing over s gives the

candidate s = |Yl(3kt) | //\%‘t), which we may plug in (3.2) provided that we also assume |Yékt) | /)\g‘t) < t. With
this choice, (3.2) becomes approximately

)\(k) — at
(k) (k) | _ 4t B (k) (k)
exp {tABt — | Y5, |1n/\Bt} = e exp {tdttd—t —[Yp/ |InAp 5, (3.3)
where a; ~ plny t is the leading order of the principal Dirichlet eigenvalue of H in a box of radius t as
identified in [BK16]. Therein it is shown that the collection of rescaled points {()\%‘: —at)/dif1<k<p|

converges in distribution to (the support of) a Poisson point process. Assuming thus that (Agt) — at)/dt is

of finite order, an index k optimizing (3.3) will balance out the two competing terms, implying |Y1(3kt)| X 11,

4. MAIN RESULTS FROM KEY PROPOSITIONS

The goal of this section is to give an outline to the proof of Theorems[2.3] 2.5 [2.8] and We will achieve
this by way of a sequence of propositions that encapsulate the key technical aspects of the whole argument.
The proofs of these propositions and of Theorems constitute the remainder of this paper and are
the subject of Sections as well as the three appendices. Note that Theorem will be assumed in
Sections below.

Throughout the rest of this work, we set N := {1,2,...}, write Ny := IN U {0} and denote by
dist(-, -) the metric derived from the £!-norm | - |. For a real-valued function f and a positive function g,
we write f(t) = O(g(t)) as t — oo to denote that there exists C > 0 such that |f ()| < Cg(t) for
all large enough £, and we write f () = 0(g(t)) in place of lim¢ .« |f(£)|/g(t) = 0. In the latter case,
we may also alternatively write | f(f)| < g(t) or g(t) > |f(¢)]. By o(+) or O(-) we will always mean
deterministic bounds, i.e., independent of the realization of .

4.1 Definition of the localization process.

In this subsection, we provide the definition of the localization process (Zt)t>0- We start with some neces-
sary notation.

For A C Z¢ finite, we denote by /\(X) the largest Dirichlet eigenvalue (i.e., with zero boundary condi-
tions) of A+ ¢ in A. For L € N and x € Z4, we let

Br(x):=x+[-L LNz, (4.1)

and when x = 0 we write By instead of By (0).



Fix x € (0,1/d). For each z € Z%, we define a ¢-dependent radius

0: = {exp {gé‘(z)}J 42)

¢ = {z 2% &z) > &(y) Yy € BQZ(Z)} (4.3)

denote the set of local maxima of & in neighborhoods of radius 0, which we call capitals. Since {(x) has a
continuous law, we have By_(z) N¢ = {z} for all z € € almost surely.

and we let

For z € €, we abbreviate

€ —
)\ (Z) o A(éliz (Z). (4'4)
For t > 0, we define a cost functional over the points z € € by setting
. Ind |z
Yi(z) :=A%(z) — 3t| ||z|, where Ing x := Inz(x V e°). (4.5)

The functional ¥; measures the relevance at time t of a capital z € % by weighting the principal eigenvalue
in B,, (z) against the £!-distance to the origin |z|. The next proposition shows that ¥ admits a maximizer:

Proposition 4.1 Almost surely, |¢| = oo and, forall t > 0 and all n € R,
{z € €: ¥i(z) > n}| < oo. (4.6)

The proof of Proposition [4.1] will be given in Section [5} In order to define Z; as a cadlag maximizer of
¥, we proceed as follows. Write (A,z) = (A’,z') for the usual lexicographical order of R x R, i.e.,
(A, z) = (N, 2') ifeither A > A/, or A = A" and z = 2’ according to the usual (non-strict) lexicographical
order of R%. Now define, recursively for k € IN,

Yo = sup Yi(z), (4.7)
zee\{zW,.., 2y
G = {z ee\{Z",...,ZF N ¥y(z) = ‘Ff‘)}, (4.8)
and
zp e {zesl: (A9(2),2) = (A\9(9),2) vze &} (4.9)

Observe that (4.9) determines Zik) uniquely. Then we set
Z =7, (4.10)

The above definitions ensure that the maps t +— ‘I’i’” are continuous while t +— Zi’” are cadlag, with
t — |Z| non-decreasing (see Lemmaand (7.40) below).

4.2 Properties of the cost functional.

The technical statements start with a discussion of the properties of the above cost functional ¥+ and the
process Z;. Recall the definitions of 7; and d; from (2.6). The various error estimates that are to follow will
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require a host of auxiliary scales. First we fix €; € (0, 1), € > (1n3 t)_1 arbitrary as in the statement of
Theorem Then, similarly to [MP14], we fix e¢, ft, g+, It and by such that

et, ft,h,by — 0 and g — o (4.11)
t—o0 t—o00
while also
St <« b < fily and gl < ey, (4.12)
€rlng t

As an example of scales satisfying (4.114.12), one may take suitable powers of €; Inz t. We then have:

Proposition 4.2 Forall0 <a <b < ooandalle € (0,1),

(‘Yﬁft) - Tff) A (‘Yﬁff - ‘I’ﬁ)) > drey, (4.13)
refe < inf  |Zs| < sup  |Zs| < 118t (4.14)
s€lat,bt] s€[at,bt]
and
p(l—¢)lnpt < inf §(Zs) < sup &(Zs) <p(l+e)lnyt (4.15)
s€lat,bt] s€|at,bt]

hold with probability tending to one as t — oo.

Proposition [4.2]is proved in Section[7] together with Theorems The proofs rely strongly on the
extreme order statistics of the principal Dirichlet eigenvalue in a box identified in [BK16] and, similarly to
the approach of [KLMSQ9, MOS11, [LM12, IST14, [FM14, [MP14], on a Poisson point process approximation.
However, in order to deal with the fact that the local eigenvalues do not depend on bounded regions in space,
a coarse-graining scheme taken from [BK16] is required. Our approach provides a quite direct implication of
functional convergence and aging for Z; from the convergence of the underlying point process (in a suitable
topology), see in particular Lemmas|7.4] [7.6|and[7.8| below. We believe that this approach could be useful to
prove analogous results in other contexts, e.g., the PAM with lighter potential tails.

Notice that in (4.13) we only require a gap between ‘I’él) and ‘I’éz) fors € {at, bt}. This is because,
while the gap is greater than de; with large probability at both at and bt, there is by a non-zero
probability that s — Z jumps in the interval [at, bt], leading to a zero gap at the jump time. Notwithstanding,
if no such jump occurs, then the gap remains uniformly positive throughout the interval. Indeed, define

Grs = {‘PS) — ¥ > dtet} : (4.16)
Then we have:
Proposition 4.3  With probability one, for any 0 < a < b < coand any t > 0,

Gtat NGyt N{Zat = Zps} = m (Grs N{Zs = Zaut}). (4.17)
s€|at,bt]

The proof of Proposition |4.3|is related to that of Theorem and so it is relegated to Section[7]as well.
4.3 Mass decomposition and negligible contributions.

Having dealt with the cost functional and localization process, we proceed by giving estimates on the solution
to (1.1H1.2). As noted already earlier, this solution can be written using the Feynman-Kac formula (1.5), which



offers the strategy to control u(t, x) by decomposing the expectation based on various restrictions on the
underlying random walk. A starting point is a good lower bound on the total mass U ():

Proposition 4.4 Forany(0 <a <b < o,

inf {ln U(s) — s‘If@”} > o(td;bre;) (4.18)
s€at,bt]

holds with probability tending to 1 as t — oo.

For A C Z%, let
A = inf{s > 0: X; € A} (4.19)

denote the first hitting time of /A. Our decomposition of (1.5) begins by restricting the expectation to paths
that never leave a box of side-length

Ly := |tIn] t|, where Inj t:=1Iny(tVe). (4.20)
This restriction comes at little loss since we have:
Proposition 4.5 Forany0 < a < b < oo, thereisa ty = to() with tg < oo a.s. such that
s 1
sup InkEg [efo ¢(Xu)du ]l{TBi < s}] < ——t(Inp t) Ing t (4.21)
s€[at,bt] ! 8

holds whenever t > t.

Next we show that the bulk of the contribution to the Feynman-Kac formula comes from the paths that
do not even leave the random domain

Dps = {x e Z%: |x| <|Zs|(1+he)}. (4.22)
Indeed, the contribution of paths that leave this set is bounded via:
Proposition 4.6 Forany0 <a <b < oo,

sup {lnlEo [ef"s EXd 1o 1 <5 < e }}
s€|at,bt] ’ !

— max {S‘Y? sl — ht|Zs| Ing t}} < o(tdsby) (4.23)

holds with probability tending to 1 as t — oo.

Finally, we show that the random walk X enters a fixed-size neighborhood of Z; by time ¢ with large proba-
bility:

Proposition 4.7 For all large enoughv € N and all 0 < a < b < oo,

s[up } {ln]EO [efos ¢(Xu)du W1, (7 A Tp; > s}] — s‘i’f)} < o(tdsby) (4.24)
s€|at,bt

holds with probability tending to 1 as t — oo.



13

The above propositions will allow us to restrict the Feynman-Kac formula to the event

lt//S = {T(Di?,s)c >s5 > TBv(Zs)} , (4.25)

and proceed to control the result using spectral techniques; see Section 4.4

Our proofs of Propositions [4.4] and given respectively in Sections[8.7]and are relatively simple
and follow similar results in the literature. Propositions and are proven in Section [8.3] their main
technical point is a path expansion scheme developed in Section [6| based on an approach from [MP14].
Additional difficulties arise in our case due to smaller gaps in the potential, and to the fact that the effective
support of the relevant local eigenvalues is unbounded in the limit of large times. This is overcome through
a careful analysis of the connectivity properties of the level sets of the potential and their implications for the
bounds derived via path expansions.

It is important to note that /\%(ZS) is the largest possible over all capitals inside D} ; (cf. Lemma .
This comes as a consequence of the choice of /1 in (4.12), which is of special relevance as it simultaneously
allows the proofs of Proposition above (for which ¢ should be large enough) and Proposition below
(for which h; should be small enough). We also note that a complementary bound to holds as well (cf.
Lemma8.6), which will be important for the proof of Theorem [2.6]in Section[8.4

4.4 Localization.

Once the path has been shown to enter a neighborhood of Z; by time t with large probability, the next
item of concern is to show that it will actually not be found far away from Z; at time . This will be done
by bounding the end-point distribution using the principal eigenfunction qbf,s corresponding to the largest

Dirichlet eigenvalue of the Anderson Hamiltonian in Dy, which we assume to be normalised so that

¢rs > 0on Dy, ¢ps=00n(D;s)° and |y

2(zd) = 1. (4.26)
We have:

Proposition 4.8 Foranyv € Nand0 < a < b < oo, the following holds with probability tending
tolast — oo: Forall s € [at,bt] and all x € Dy,

Eo el S 1p, v | < UGs) P () 473) @27)
yEBy(Zs

In order to use the bound in (4.27), we will need an estimate on the decay of gbtols away from Zg. On the
event G; s from (4.16), this is the subject of:

Proposition 4.9 There exist c1,cy > 0 and, for all v € IN, also e, > 0 such that, for all 0 < a <
b < oo, the following holds on with probability tending to 1 as t — oco: For all s € [at, bt], on Gy s we
have

(i) ¢rs(x) < ce 2%l vy e z4, (4.28)
(i) ¢;s(y) > ey Yy € By(Zs). (4.29)

Propositions 4.9 are proven in Section [9] Proposition is similar to Proposition 3.11 in [MP14],
and its proof is an adaptation of the proof of Theorem 4.1 of [GKMO07|. The proof of Proposition [4.9(i) is an



adaptation of the proof of Theorem 1.4 of [BK16], while part (ii) relies on results from [GM98], [GH99] and
[GKMOQ7]| regarding the optimal shapes of the potential.

4.5 Proof of mass concentration results.

We have now amassed enough information for the proof of Theorem assuming Theorem [2.7] and the
above propositions:

Proof of Theorem2.3 Fix v € IN large enough so that Proposition [4.7]is available. Fix 0 < a < b < oo.
We will first show that, for all 6 > 0, there exists an R € IN such that

lim Prob (3 s € [at,bt]: ¥ —¥2 > diey, QF (|Xs — Zs| > R) > 5) —0, (4.30)

and derive the desired claim from this at the very end.
We begin by noting that Propositions imply that, with probability tending to 1 as { — oo,

1 S E(X,)d
NE )

tln, tIng t
< —smin {‘Pg” — 9P hy|Zs|Ingt, —=—2

8s

holds true for all s € [at,bt]. By Proposition on Gs = {¥ —¥P > die} we may further
bound (4.31) by

} + o(tdibs) (4.31)

_ gtmin {dtet, hrifilngt, &1y tng t} + o(tdyby) (4.32)

which goes to —co as t — 0 by and (@.72) — indeed, (4.72) shows that e;In3t — oo (in fact,
er > gt/ Ing t with ¢ — o0) and so tdse; > ct/|[(Int) Ins t) — implying that

]1 gt,s

lim sup U(s)

t Eo [efos §(Xu)du H(Rys)c} =0 in probability. (4.33)
% se(at,bt] ’

Fix now 6 > 0 and let R € IN be large enough such that

)
e, % ) el <o, (4.34)
|x|>R

where ¢1, ¢p and €, are as in Proposition [4.9] By Propositions [4.844.9]

1 s 1)
Sup ugt,s Z IEO |:ef0 é(Xu)dM ]lR}/Sﬁ{XSZX}] < E (435)
s€at,bt] (S) x: |x—Zs|>R ’

with probability tending to 1 as £ — oo, which together with (4.33) implies (4.30).

To conclude the desired statement from (@.30), fix [; > 0, I} = o(t) and note that, by Theoremand
Propositions 4.3, with probability tending to 1 as t — o0,

Zs =74 and ¥ — ¥ >diey Vs e [t—I,t+ 1. (4.36)
This together with (witha < 1 < b) implies (2.4). U

For the proof of Theorem we need two more propositions, which are proved in Section[10l The first
one is an improvement of Proposition [4.7]
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Proposition 410 For e; € (0,1) satisfying e; > (Ingt) " (as in Theorem[2.5), as soon asv € N
is sufficiently large
1 [ E(Xe)ds
WIEO [e 0 H{T(Df,t)c >t > TB,(Z (Z > €tt}] P — 0 (4.37)
in probability.
The second proposition bounds the contribution of paths starting at a point x € BV(Zt) and reaching a
distance greater than %et In ¢t

Proposition 4.11 For any v € IN, the following holds with probability tending to 1 as t — oo: For
all x € By(Z;) and all 0 < s < t,

Ex

0<u<s

eJo ¢(Xu)du ]l{ T(pg,)c > 5, Sup | Xy — x| > 1er lnt}] < [ Jo §(X) du} . (4.38)

Proof of Theorem[2.3. Fix v € IN large enough so that the conclusion of Proposition becomes avail-
able. Write T := TB,(Z;) and note that, when t is large,

{ sup |Xs —Zi| > € lnt} C (Riy)U {T(th)c >t>T> ett} U A, (4.39)

s€let, ]

where

Ap = {T(th)c >t1,T < e, sup | Xs — Xz| > %et lnt} . (4.40)

s€[T,t]
By (4.33), Proposition[4.2] and Proposition [4.10]

Q¥ ((RY)S) v QF ( c>t>T > ett> — 0 in probabilty. (4.41)
To control Q1 (Ay), let
Fi(x,s) := E, [ef(f &(Xy)du 1{T<th)c>s,sup0§u§5 |Xu—x|> 3¢t lnt}} (4.42)
and use the strong Markov property and Proposition [4.11]to get
[fo (Xs)ds q , }: ) IEO[JO XstIL{T >T—Tx§ett}Ft(xt—T)]

x€By(Zy) (4.43)

<t~
with probability tending to 1 as t — oo. The desired claim now readily follows from (4.39), (4.41) and (4.43).
0

4.6 Proof of aging and limit profiles.

The last set of propositions to be introduced here concern the proof of Theorems and We start
with some supporting notation. Given a function £ — ¢ with pi; € IN, let ¢7 ; denote the eigenfunction



corresponding to the largest Dirichlet eigenvalue of the Anderson operator in Byt (ZS), normalised so that
¢fs > 00n By, (Zs), ¢ps=00nB;,(Zs) and |[|Pfsllp(ze) = 1. (4.44)

(Notice our use of the -norm here.) When s = t we omit one index from the notation. Recall the choice of
k € (0,1/d) in @2). We then have:

Proposition 4.12 Forany y; € N with1 < puy < (Int)*, andany 0 < a < b < oo,

u(-,s) ./ o "
sy~ ¢ () = 0 in probability. (4.45)

lim sup Ig,, i

f=e0 s€(at,bt]

We may thus obtain information about the profile of (-, s) via that of ¢} s- As shown next, this can be
achieved under Assumption as it uniquely determines the limit profile Vp of ¢ and the “shape” 0, of the
principal eigenfunction:

Proposition 4.13  If Assumption 2.9 holds, then there exists y; € N with 1 < py < (Int)* and
a function a; satisfying lim; . a;/ Iny t = p such that, forany 0 < a < b < oo, both
sup sup |[&(x+ Zs) —a — Vp(x)| (4.46)
s€lat,bt] xEBy,

and

sup |[¢75(Zs + ) = 0 ()| 1 za) (4.47)
s€|at,bt]

converge to 0 in probability as t — oo.

The proofs of Propositions are based on an approach from [GKMOQ7] and will be given in
Section [11]below. Together with Theorem they imply Theorem as follows.

Proof of Theorem|[2.10. Note that (2.18) follows directly from (4.46). For (2.19), use (4.45), (4.47), the trian-
gle inequality for the £1-norm and (4.36). O

Proposition[4.12| (and Theorem will also allow us to prove Theorem 2.8

Proof of Theorem[2.8 We adapt the proof of Theorem 1.1 of [MOS11]. By Theorem[2.7} it is enough to show
that, forany e € (0,1) and b > 1,
u(z,s) u(zt)

Us) 0 ’ <e ifandonlyif Zs= Z;Vs € [t bt] (4.48)

sup
sE[t,bt] zezd

holds with probability tending to 1 as t — oo.

Assume first that Zs # Z; for some s € (t,bt]. By Propositions and |4.3, we may assume that
Zye # Zy; moreover, | Zy — Z¢| > (Int)*/? by [@15), the definition of 0, and the fact that Z;, Zy; € €.
Fixing R so that (4.30) holds with § < %(1 — €), we obtain

y u(z,bt) u(z, t)‘ > Y u(z,bbt)' B
Lluen T um | <, & U
with probability tending to 1 as ¢ — o0, proving the “only if” part of (4.48).

’ > 1-25 > ¢ (4.49)
IZ—Zt|>R
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Assume now that Zs = Z; V' s € [t,bt]. Then ¢f; = ¢} for all s € [t, bt], and the “if” part of (#.48)
follows by (4.45) with 2 = 1 < b together with Propositions This finishes the proof. O

5. PREPARATIONS

In this section we collect auxiliary results that will be used in the remainder of the paper. We start with a few
basic properties of the potential field and of the principal Dirichlet eigenvalue of the Anderson Hamiltonian
in subdomains of Zd, leading to the proof of Proposition The two subsequent subsections concern
additional properties of the potential field, and the last one contains spectral bounds for the Feynman-Kac
formula.

5.1 Potentials and eigenvalues.

First we consider the maximum of the potential in a box. Let 4} be the minimal number satisfying
Prob (£(0) > ;) = L7¢, (5.1)

which exists since, by Assumption ¢(0) has a continuous distribution. Note that, in the notation of
[GM98], a1 = ¢ (dIn L). Then we have:

Lemma 5.1 (Maximum of the potential)

lim max{(x) —a, =0 as. (5.2)
L—oo XGBL

Proof. See Corollary 2.7 of [GM98]. L]

Let us mention here some properties of @} . By equation (2.1) of [GM98],
ay, =ap +o0(1) asL — oo whenever Ink; =1InL(1+0(1)) (5.3)

and, by Remark 2.1 therein, it is straightforward to verify that 2, = (o + 0(1)) Iny L.

Next we recall the Rayleigh-Ritz formula for the largest eigenvalue of the Anderson Hamiltonian. For
ACZ%ndV : Z% — [—c0,00), let A([i)(V) denote the largest eigenvalue of the operator A + Vin A
with Dirichlet boundary conditions. Then the Rayleigh-Ritz formula reads

AV(V) = sup {{(A+V)p9) gz ¢ € RZ, suppp € A, 9l pze) = 1} - (5.4)

When V' = ¢ we sometimes write Ax) instead of /\(X) (&). Here are some straightforward consequences of
the Rayleigh-Ritz formula:

1 forany I' C A,

max V(z) —2d < AP(V) < AY(V) < max V(2); (5.5)
zel z€EA
2 the eigenfunction corresponding to AX)(V) can be taken non-negative;
3 if V is real-valued and A is finite and connected (in the graph-theoretical sense according to the
usual nearest-neighbor structure of Zd), then the middle inequality in (5.5) is strict and, moreover,
the non-negative eigenfunction corresponding to )L(/{) (V) is strictly positive;



4 for A, A C Z% such that dist(A, A) > 2,

A A (V) = max{A} (V), AQ(V) 1} (5.6)

We can now give the proof of Proposition (4.1

Proof of Proposition[7, Note that, for any R € N and z € Z¢,

{z€e €} D {C(z) < px 'InR, &(z) = max)@(x)}, (5.7)

XEBR(z
and the probability of the event on the right-hand side does not depend on z and is positive for some fixed
large enough R. As the events on the right of depend only on a finite number of coordinates, the second
Borel-Cantelli lemma shows |%4’| = co almost surely. Now, by (55), A¢ (z) < &(z) for any z € € while,
by Lemmal5.1} almost surely & (z) < 2p1ny |z| for all |z] large enough. This implies that, almost surely,

Inz R
limsup sup Y¢(z) < lim <2p In,b R —R 3 ) = — (5.8)
R—oo z€%,|z|=R R—00 t
for each t > 0. This finishes the proof. [
Next we generalise as follows. For A C Z% and V : Z% — [—00,00), let
Vix)
LA(V):=) er (5.9)

xXeEA

with the interpretation e~ := 0. Then set
d
xa = xalp) := —sup {Aj@(V): V€ [—0,01%, LA(V) < 1}. (5.10)

When A = Z¢ we write just x. From the definition it follows that, if I' C A, then xT > xa; in particular,
0 < x < xa < 2dsince x(,, = 2d forany x € Z.

5.2 Islands.

Central to our analysis is a domain truncation method taken from [BK16], which we describe next. Recall the
choice of k € (0,1/4d) in (#.2) and fix an increasing sequence R} € IN such that

Ry <(InL)V1 and R.>> (InL)PasL — co forsome B € (x,1/4d). (5.11)

This sequence will control the spatial size of the regions in B} where the field is large, and thus the (principal)
local eigenvalue has a chance to be close to maximal. We will often work with R;, satisfying additionally

Ry < (InL)*asL — oo forsomewa € (B,1/d), (5.12)

but for the proof of Proposition in Section we will need to consider Ry growing as In L. Unless
explicitly mentioned, only (5.17) is assumed in the following. Given A > O and L € IN, let

I 4 = {Z € By: &(z) >ap — 2A} (5.13)
be the set of high exceedances of the field inside the box B; , and put
DL,A = U BRL (Z) N B;. (5.14)

ZEHL,A
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The parameter A, providing the cutoff between the “high” and “small” values of the field, will be later fixed to
a suitably large value that depends only on the dimension d and the parameter p.

Let €1, 4 denote the set of all connected components of Dy, 4, to be called islands. For C e Cr A, let
ze :=argmax{{(z): z € C} (5.15)
be the point of highest potential within C. Since C(O) has a continuous law, z¢ is a.s. well defined for all
Ce CL,A-
Next we gather useful properties of &1 4. The first result concerns a uniform bound on the size of the
islands. Hereafter we will say that an L-dependent event occurs “almost surely eventually as L. — o0 if

there exists a.s. a (random) Ly € IN such that the event happens for all L > L. Similar language will be
used for events depending on other parameters (e.g. t).

Lemma 5.2 (Maximum size of the islands) For any A > 0, there exists ny € IN such that,
for any Ry satisfying G-11), a.s. eventually as L — oo, all C € €y 4 satisfy |C N1 4| < ny and
diam(C) < nyR;.

Proof. See the proof of Lemma 6.6 in [BK16]. O

Foré >0,A>0and L € N, let
1 ~
Q:(Ii,A = {CEQ:LIAZ /\(C) >IZL—)(—5} (5.16)
denote the set of islands with large principal eigenvalue. We call these relevant islands, as their eigenvalue

is close to the principal eigenvalue of By, (cf. Lemma 6.8 of [BK16]).

The following lemma is crucial for the proof of Proposition 7.1 below, from which Proposition [4.2] follows.
It allows us to compare the eigenvalues of relevant islands to those of disjoint boxes.

Lemma 5.3 (Coarse-graining for local principal eigenvalues) Assume Ry, satisfies and (512).
Let N € N satisfy LP < Ny < L* as L — oo for some 0 < B < a < 1. For all A > 0 sufficiently
large and 6 > 0 small enough, the following occurs with probability tending to one as L — oo:

(i) Each C € C‘i,A satisfies )\8) — )Lg) > pln2.
(ii) For each C € C‘z’A, there exists z € (2N + 1)Z% such that C C By, (z) C B.
(iii) Every two distinct C,C’ € & , satisfy dist(C,C’") > 4dN.
Y LA

(iv) Letns == {1+ A/(4d)} 1. Foranyz € (2N +1)Z% such that By, (z) C By and/'\g;V (2) >
L
ar — x — 8+ (na)Re, there exists a C € QI‘{IA satisfying C C By, (z) and
A > A%LL(Z) — (ga)ke. (5.17)

Proof. Let A, J be as in the statement of Lemma 6.7 of [BK16]; we may assume that A > x + &. ltems

(i)—(iii) follow from items (1)—(3) in this lemma (the scales there do not match ours exactly, but the proof is

the same). For (iv), assume that L is so large that 2d(174)?Re=1 < (174)Rt, and note that Agl)\] (z) —
L

A > ap — 2A. By Theorem 2.1 of [BK16] applied to D = By, (z) and (5.6), there exists C € € 4,
C N By, (z) # @ such that holds. In particular, C € @‘z,A so, by item (i), C C By, (2). O
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Our next goal is to control the behavior of the potential inside relevant islands. This will be important for
the proofs of Propositions[4.7|and[4.9)as well as Lemma[5.8|below. First we will need two lemmas concerning
lower and upper bounds for L.

Lemma54 Forany A C Z%andanya € R, if A\ > athen LA(E—a—xa) > 1.

Proof. This is a consequence of and the fact that ' (V +a) = AV (V) +a. O
Lemma 5.5 Let Ry satisfy . Forany A > 0,
limsup sup L¢(G—ap) <1 as. (5.18)

L—oo CGQ:L/A

Proof. This is a consequence of Lemmal5.2]and a straightforward extension of Corollary 2.12 in [GM98] with
R substituted by 114 Ry . L]

We will now combine the previous two lemmas with results from [BK16], [GH99] and [GKMOQ7] to obtain
upper and lower bounds around @, for the potential in relevant islands.

Lemma 5.6 (Upper bound for the potential inside relevant islands) Assume . For
all 6 € (0,1) small enough, there exist A1 > 4d and vy € N such that, for all A > 0, a.s. eventually
as L — oo,

sup sup &(z) <ap—2A;. (5.19)
cee) , z€C\By, (z¢)

Proof. We follow the proof of Lemma 4.8 of [BK16]. Fix & € (0,1) small enough such that

1 2 2
Aq = —§p1n<ep —e P) >4d > x4+, (5.20)
and let 7 € IN be such that 2d17124r1_1 < dwherena = (1+A/4d) 1. ForC € Ci,A’ let
S:={xeC: ¢(x)>ar—2A1}. (5.21)
We claim that
diam S < 2(r+1)IS|. (5.22)

Indeed, suppose by contradiction that does not hold. Then S = S1 U Sy with dist(Sq, Sp) > 2(r +
1).Let ST := {x € C: dist(x,S;) <r},i=1,2.Then, by (5.6),

A(Slf v /\*(912) - Agfusg > Ag) —2dny > ap — x —26 (5.23)

where for the first inequality we use Theorem 2.1 of [BK16] applied to D := C (note that )\(cl) — A >

ar — 2Aq since C is assumed to be in Qi 4 1-e., such that )\(Cl) > ap — x — 6, and by (5.20)), and the last

inequality follows by our choice of 7. Supposing without loss of generality that Agr) > Ag) by Lemma
1 2

and (5.23) we have

Xep ~A2 26
Ls(G—ay)>e ¢ >e r. (5.24)
o~ 26/p
On the other hand, by Lemma|5.5\we may suppose that L (& —ap) < e*°/P. Then, for any x € Sy,
S(x)—ap 25 Z(x)—ag

Lsr(G—ar) < Le(G—aL)—e ¢ <er—e ¢ . (5.25)
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Combining (5.24H5.25) we obtain
20 _2
¢(x)—ar <pln (e P—e P ) = —2A4, (5.26)

contradicting x € S. Therefore, (5.22) holds.
To conclude, note that

28 N _4
et > Le(E—ap) >e 7 IS|. (5.27)
Since z¢ € S by (5.5) and (5.20), the inequalities (5.22) and (5.27) now imply (5.19) with v1 := [2(r +
2(A1+5)
e » 1. O

Lemma 5.7 (Lower bound for the potential in relevant islands) Suppose that Ry is such that
hold. For any v € IN, there exist A*,d > 0 such that, for all A > 0, the following is true
a.s. eventually as L — oo:

inf inf {(z) >ap —2A". (5.28)
ce¢f , z€Buy(zc)

Proof. Recall the definition of /\/l:; in (2.16). We note that Lemma 3.2(i) of [GKMO07] holds for /\/l:; in place
of M, as can be inferred from the proof. In particular, /\/l;‘, # @ and, by Lemma 3.1 therein, all V € M;
satisfy £(V') = 1. On the other hand, by (3.21) in [GKMO07] together with Theorem 2 and Proposition 3 of
[GH99] (see also (5.44) therein),

A*:=— inf inf V(x) < oco. (5.29)
VeM; x€B,

Fix, by (3.6) in [GKMO07], 6 > 0 small enough such that

V€ [~00,02Z", 0 € argmax(V), L(V) < 1

and _inf sup |[V(x) — V(x)] > A*
VEM; xeB,

= AD(V) < —x—26. (5.30)

Fix C € ¢‘£A and define

V*(x)::{é(erzC)—ﬁL—(S ifx+2z¢ €C, (5.31)

—0 otherwise.

By Lemma V* € [~00,0)Z" as. eventually as L — o0, and 0 € argmax(V*) by the definition of
ze. Furthermore, L(V*) = L¢(& — a@r — &) which is a.s. smaller than 1 for large L by Lemma 5.5/ Now,
since C € € ,, we have A\ (V*) = AL — @ — 6 > —x — 2, and thus the conclusion follows from
(5.29H45.30). ]

We end this subsection with a comparison between the islands and capitals with large local eigenvalues,

which will be crucial in the proof of Proposition [7.1] below.

Lemma 5.8 Assume . There exists a constant ¢c; > 0 such that, for all A > 0 large
enough and 6 > 0 small enough, the following occurs with probability tending to one as L — oo:
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(i) IfC € QI‘{/A, then ze € €, (InL)*/? < 0,, < Ry and

K/2

0 <AL — A% (z¢) < eaalinl) (5.32)

(i) For all z € € such that B, (z) C By and A% (z) > @y, — x — 6, there exists C € C‘E,A such
that z = z¢ and holds.

Proof. Let A,6 > 0 satisfy the hypotheses of Lemmas [5.3| and andlet Ay > 0,v; € N asin
Lemma We may assume that 2A > Aj. For (i), note that, if C € @iA, then (In L)"/2 +11 < 0z <

maxcp, 0z < Ry forall L large enough by (4.2), (5.2), and (5.17), and thus z¢ € €. By Lemma
the set {x € C: dist(x,I1; 4,) < (InL)*/2} is contained in By..(z¢) and thus follows by
Theorem 2.1 of [BK16] with ¢; := In(1 + A1/ (4d)). For (ii), note that, again by (5.5), {(z) > ar — Ay
and thus z € T} 4. Letting C € € 4 such that z € C, note that B, (z) C C since ¢, < Ry, and thus

C e Q(IS,A' Since 0z > V1,2 = z¢ by Lemma and (5.32) follows by item (i). L]

5.3 Connectivity properties of the potential field.

In this section, we provide bounds on the number of points in which the potential achieves high values inside
connected sets of the lattice. These will be important in the proof of Proposition We will use the following
concentration inequality for Binomial random variables.

Lemma 5.9 Let Bin(p, n) denote a Binomial random variable with parameters p and n. Then, for all

u>0o,
u
P(Bin(p,n) > u) < exp {—u (ln i 1) } ) (5.33)
Proof. Since, for any & > 0,
E [eaBin(p,n)} = {1+ p(e* — 1)}11 < enpe“’ (5.34)
(5.33) follows by applying Markov’s inequality and maximizing over & > 0. L]

Ouir first lemma reads as follows.

Lemma 5.10 (Number of intermediate peaks of the potential) For each p € (0,1) there is
e € (0,B/2) such that, a.s. eventually as L — oo, for all finite connected subsets A C Z% with
ANBL #@and |A| > (InL)#,

Nai= [z € A: £(2) > (1—e)a}] <

(L) (5.35)

Proof. Let e € (0,6/2) be small enough so that, for all L large enough,
pr = Prob (¢(0) > (1 —¢e)ar) < exp {—(ln L)l_g} : (5.36)

This is possible by e.g. Lemma 6.1 in [BK16]. Now fix a point x € By, and n € IN. The number of connected
subsets A C Z“ with |[A| = nand x € A is at most e0" for some cg > 0 independent of x (see e.g.
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[G99], Section 4.2). For such a A\, the random variable N has a Bin(py,, n)-distribution. Using (5.33) and a
union bound, we obtain

Prob(EI connected A 3 x, |A| =nand Ny > n/(In L)S>

_d_ 1+elnp L
Se"p{‘”(““”l i “ZH—L))} &30
. . . . 1 1—é—g .
When L is large enough, the expression in the parentheses above is at least 5 (In L)"~ 2™ °. Summing over
2

n > (InL)? and x € By, we get

3 connected A such that AN By # @,
Prob

5
< L4 —c(InL)!27¢ L (5.
|A| > (InL)* and does not hoId) - aLexp { 2(InL) } 539

for some positive constants c1, cp. By our choice of ¢, (5.38) is summable on L, so the conclusion follows
from the Borel-Cantelli lemma. ]

A similar computation allows us to bound the number of high exceedances of the potential.

Lemma 5.11 (Number of high exceedances of the potential) For each A > 0, there is a con-
stant C > 1 such that, for all 6 € (0,1), the following holds a.s. eventually as L — oo: For all finite
connected subsets A C Z* with AN By # @ and |A| > C(InL)? it holds that

IANTIL 4| < (ILAL’)(S' (5.39)

Proof. The proof proceeds exactly as for Lemma5.10]by noting that, by Lemma 6.1 in [BK16],
pr:=Prob (0 € I 4) < L™° (5.40)
for some € € (0,1) and all large enough L, and then taking C > 2(d + 1) /€. O

5.4 Spectral bounds.

Here we state some spectral bounds for the Feynman-Kac formula. The results in this section are determin-
d
istic, i.e., they hold for any fixed choice of potential ¢ € RZ".

Fix a finite connected subset A C Zd, and let H denote the restriction of the Anderson Hamiltonian
to A with Dirichlet boundary conditions. For z € A, let 1% be the positive solution of

diu(x,t) = Hau(x,t), x €A, t>0,

w(x,0) = L(x),  x€A, (5:47)

and set U7 (t) := Y e 43 (X, ). The solution admits the Feynman-Kac representation

t
uj (x,t) =E; [exp {/0 C(Xs)ds} Htac >t X = x}, (5.42)
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where Tc is as in (4.19). It also admits the spectral representation

AL
_ tAL £ (k) (k)
ui(x,t) =Y e gl (z)¢) (x), (5.43)
k=1
where )\x) > Af > e 2> /\9\/\') and 4)%,4&),. ey ﬁl\A‘) are respectively the eigenvalues and corre-

sponding orthonormal eigenfunctions of H . One may exploit these representations to obtain bounds for
one in terms of the other, as shown by the following lemma.

Lemma 5.12 (Bounds on the solution) For any finite A C Z%, any z € A and any t > 0,
1) -t
tA 1 2 Xs)d
en 4)5\) (Z) S IEZ |:ejO C( ) ) H{TAc>f,Xt:Z}:|
t (1)
SE [ehtdy p] <e™WIAP2 (a4
Proof. The first and last inequalities follow directly from (5.42H5.43); the middle inequality is elementary. []

The second lemma bounds the Feynman-Kac formula integrated up to an exit time.

Lemma 5.13 (Mass up to an exit time) Foranyz € Aand v > Ax),
Tac 2d|A
Ex [ep { [ (600 - mas}] <1+ 200

o /\x) (5.45)

Proof. See Lemma 4.2 in [GKMO07]. ]
The next lemma is a well-known representation for the principal eigenfunction.

Lemma 5.14 Forany x,y € A,

iiﬁ; E;; = Ex [exp {/OTy (C(Xu) - AE@) du} T, < TAc}} ) (5.46)

Proof. See e.g. Proposition 3.3 in [MP14]. ]

Our last lemma bounds the Feynman-Kac formula when the random walk is restricted to hit a subset,
and is the principal ingredient in the proof of Proposition |4.8

Lemma 5.15 (Bound by principal eigenfunction) Forallt > 0,z,x € AandI' C A,

E, [efot CX)ds 1{ Xy = x, Tpc >t > Tr}] <UE(H) ¢l (x) sug 9% ()] 2. (5.47)
ye

Proof. We adapt the proof of Theorem 4.1 of [GKMO7]. Fix z € Z® and, for x € Z% and t > 0, denote
t
w(x,t) = Ey [efo §(Xs)ds KXt =2z,Tpc >t > Tr}i| : (5.48)

Note that, by invariance under time reversal, (5.48) is equal to the left-hand side of (5.47). It will suffice to
show that, forany 0 < s < tandy € I,

t—s u s (1) _
Ey [elo SO0y ] S e R )Py, ). (5.49)
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Indeed, by the strong Markov property, w(x, t) equals

ZIEx ef0 w)du Yayest=m<t) (Ey [ o e Mozt S}DS_TJ

yel
(1)>du

< Y 1oL ()| Pw(y, ) E; [ Jo¥ (&%)

:H‘{TAC >Ty}:|
yel

= ¢p () L 168 )| Pw(y, 1) < ¢ (x) sup [¢) (y)| PUA(H),  (5.50)

yer yer

where for the second line we used (5.49) and, for the last one, we invoked (5.46) and one more time applied
the invariance under time reversal.

In order to prove (5.49), we restrict to X; = y inside the expectation defining w(y, t) to obtain

w(y,t) > E, [efo &(Xy)du ﬂ{xs:y,ers}} E, [ej &(Xy)du Lix, S_Z,TAOH}] : (5.51)
By Lemmaf5.12
s (1)
E, [efo &(Xy)du IL{Xs:]/,TAC>S}i| > A |¢X)(y)|2/ (5.52)
implying as desired. U

6. PATH EXPANSIONS

In this section, we develop a setup to bound the contribution of certain specific classes of random-walk paths
to the Feynman-Kac formula. This leads to Propositions below, which are the key to the proof of

Propositions in Section [8|and Propositions in Section
6.1 Key propositions.

To start, we define various sets of nearest-neighbour paths in Z% as follows. For ¢ € INy and subsets
A, N C 7%, define

o €A\, 71y € A
Py (N N) =4 (mo, ..., 1) € (27)F 6.1
(AN {(o Ve =li=1,...1 6.1)
and set
P(NN) = | 2u(AN),
{eN

Py = @g(zd Zd) (6.2)

P2 =22%2% = | 2.

{eNy

When A or A’ consists of a single point, we write x instead of {x}. If 7T € £/, we set | 7T| := {. We write

supp(7t) := {7, ..., ||} to denote the set of points visited by 7t.

Let X = (Xt)tzo be a continuous-time simple symmetric random walk with total jump rate 2d; this is
the process that “drives” the Feynman-Kac formula. We denote by (Tn)nelNo the sequence of its jump times
(with T := 0). For £ € Ny, let 7 (X) := (X, ..., Xt,) be the path in &, consisting of the first £ steps
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of X and, for t > 0, 71(Xp,) the path in & consisting of all the steps taken by X between the times 0 and
t. Recall the definition (4.19) of the hitting times TA.

Forte &,L € Nand A > 0, we define
/\L,A(n) i=sup {/\8)1 C e Cra, supp(r() NncnN I1; 4 # @} , (6.3)

with the convention sup @ = —oo. This is the largest principal eigenvalue among the components of &; 4
encountered by the path.

The main results of this section are the following two propositions.

Proposition 6.1 Let Ry satisfy . For any A > 0, there exists a constant c4 > 0 such
that the following holds a.s. eventually as L — oco: For each x € By, eacht > 0,each N' C 2 (x,Z%)
satisfying supp(7t) C Br and maxq<<|n| |7t¢ — x| > InL for all 7 € N, and each assignment

7T (Y, 27) € R x Z% such that

Tre > Apa(m) V(@ — A) +e K (6.4)
and
zx € supp(m) U U C (6.5)
CGQ:L,A:
supp()NCNII 4 #D

are true for all 1 € N, we have

InE, [efot ¢(Xo)ds 1f (X ) € N}} < sup {t’yn — (In3(4dL) —ca) |z — x| } (6.6)
meN

While we assume (5.11H5.12) in most of the paper, the proof of Proposition [4.11| will require us to work
without (5.12). In this setting, we have the following:

Proposition 6.2 For A > 0, let n4 € IN as in Lemma 5.2} For any Ry, € N that obeys and
any 01, € N satisfying 9 < Ing L as L — oo, the following holds a.s. eventually as L — oo: For
each x € By, eacht > 0, each N' C P(x,Z*) satisfying supp(rt) C B and mMaxi << || |70 —
x| > (na+1)Ry forall m € N, and each 7t — 7y € R that obeys

Y > AL,A(T[) V (Z‘l\L — A) + e_ﬂLRL, T € N, (6.7)
InE, [efot §(Xs)ds Hr(Xot) € N}} < tsup yr— %RL Ins L. (6.8)
neN

To prove Propositions 6.2, we will need a key lemma (Lemma below), whose proof in turn
depends on intermediate results obtained in the following two subsections. We emphasize that all of these
d
results are deterministic, i.e., they hold for any fixed potential ¢ € RZ".

6.2 Mass of the solution along excursions.

In order to control the contribution to the mass given by a path, it will be important for us to control the
contribution of its excursions outside of I} 4 (recall (5.13)). A useful result is the following:
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Lemma 6.3 (Path evaluation) For any ¢ € INg, any path m € &y and any y such that v >
max;. | &(7;) — 24,

Ex, {exp {/()Tk(g(xs) —7)ds} ’ 79 (X) = n} = ﬁ 2d+72i ) (6.9)

Proof. The left-hand side of can be directly evaluated using the fact that T is the sum of £ i.i.d.
Exp(2d) random variables that are independent of 7r'") (X) The condition on 7y ensures that all integrals are
finite. [

Forapath m € &,any L € N andany ¢ € (0,1), we denote
My = [{x € supp(7) \ {7 }: §(x) < (1—e)arL}]. (6.10)
Then we have:

Lemma 6.4 (Mass of excursions) For any A, e > 0, there exist ¢ > 0 and Ly € IN such that, for
all L > Lo, all v > ayp — A and all T € & satisfying mt; & 11} 4 foralli < £ :=|m|,

T, e
E [exp { /0 Z(g(xt) - 'y)ds} ’ 0 (X) = 74 < glelcIms L)Mz* (6.11)

where ga = (1+ A/2d)~L.
Note that the statement of Lemma 6.4]allows for 77, € 1 4.

Proof. By our assumptions on 7t and <y, we can use Lemma|6.3] Splitting the product on the right-hand side
of according to whether &(7;) is larger than (1 — €)ay, or not, and using that ¢(77;) < ap — 2A for
all i < |7t|, we obtain that (6.17) is at most

i — A] —[{i<t: ¢(m)<(1—e)ar}|
. (6.12)

{
da |:qA 2d

Forlarge L, a; > %p Iny L and the number within square brackets in exceeds gaep(Iny L) /5d > 1.
Since |{i < |7|: &(rm;) < (1 —e)ar}| > ML, holds with ¢ := In(1V 5d(ge0)1). O

6.3 Equivalence classes of paths.

Here we develop a setup similar to Section 6.2 of [MP14]. The idea is to categorize paths 71 € & according
to their excursions between 11}, 4 and DE 4 (cf. (5.13 ) and then apply the results from Sections

andﬁ Note that dist(I1; 4, Df ,) > Rp.

First we discuss the concatenation of paths. If 77 and 7t” are two paths in &2 such that | = 7'(6, we
define their concatenation as

o = (7‘[0,...,7'[|7.[|,7Ti,...,7'[‘/7_(/|)E@. (6.13)

Note that |7t o 7| = |7t| + |7'|.
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If a path 7T € &2 is contained in B and intersects IT; 4, then it can be decomposed into an initial path,
a sequence of excursions between Il; 4 and D ,, and a terminal path. Explicitly, there exists m, € IN
such that

m=7YoAWo...0xMm) o Agma) o7, (6.14)
where the paths in are contained in By, and satisfy
iV e 2(Z°,11; 4) and 7tV ¢TI, 0<i<|xY),
0 e P(DS 4 M a)  and 7Y ¢4 0<i<|%¥], 2<k<my 6.15)
AV € (U, Df,) and AY €Dpa 0<i<|A¥,1<k<mz-1,
A € P (10 4,27 and A"€Dpa 0<i<|A"),
while
e P(Df 20, 1 ¢l aVi>0 ifA" e 2(Ia, DS ), 6.16)

7o € Dpa, |7t =0 otherwise.
Note that the decomposition (6.14H6.16) is unique, and that the paths 7t A7) and 7t can have zero
length.
For L € IN and € > 0, whenever supp(7r) NI1; 4 # @, we define

My Mo
o= Y [0+ |7 and K=Y MBS+ MES ©17)
i=1 i=1

to be respectively the total time spent in exterior excursions and the sum of the numbers of moderately low
points of the potential visited by exterior excursions (excluding their last point). In the case when supp(n) N

1, 4 = @,wesetmy :=0,n, := || and kL := ML*. Recall from (6:3) that, in this case, Apa(m) =
—0Q.

We say that 77, 7/ € 2 are equivalent, written 77 ~ 71, if my = my, 77’0 = 70 for all i =
1,...,myand @ = 7if 7Ty € Df 4. If ' ~ 71, then ny, kl;f’,g and Ap 4 (77') are all equal to the
counterparts for 7.

To state our next lemma, we define, for m, n € Ny,

gp(m.n) ={neP: my=mng=n}, (6.18)

and we denote by
Cra:=max{|C|: C €€ 2} (6.19)

the maximal size of the islands in € 4.

Lemma 6.5 For any A,e > 0, there exist ¢ > 0 and Ly € IN such that, for all L > Ly, all
m,n € Ny, all 7 € 2" with supp(rt) C Br, all v > Apo(71) V (@ — A) and all t > 0,

E oJo (6(Xs)—7)ds 1 71(Xoys) ~ n}]

1 2dC " n Le
3/2\ ~{m>0} LA qA —Ins L)kL
< (CLfA> (1 + —'y—AL,A(ﬂ)> <_2d> elcIns Lkz (6.20)
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Proof. Fix A,e > O andletc > 0, Ly € IN be as given by Lemma6.4] For 0 < s < t < oo, set
t
I; = efs (E(Xu)=r)du gy strategy is to prove the claim by induction on m1.

Suppose first that m = 1, let £ := |7t'V| and set z := 7’(?. There are two possibilities: either 7T
belongs to D 4 or not. Focussing first on the case 7Ty € Dy 4, which in particular implies |ﬁ'| = 0, the
strong Markov property yields %

Er, [I(t)ﬂ{n(Xolt)wn'}} IE 7, [1 17, Lo 0=y LTy 1 {Xo1,€D1,4 Vs€[0,4— TA}]

IOTZ IL{nM)(X):ﬁ(l)} Ler,<n <1Ez [Iés ]L{TDEA>t_S}]) T] . (6.21)
, =T,

Since z € I} 4, we may write C, to denote the island in ¢r,A containing z. As TDc = T¢e IP;-as.,

Lemmaand our hypothesis on 7y bound the inner expectation in (6.21) by |CZ\3/2 Applylng Lemmas
and[6.4] we further bound (6.21) by

T A\! (c—InzL)M"¢
.32, [104 10 ()20 }} <C}2 (Zd) Qe LM, (6.22)

= En,

thus proving (6.20) inthe case m = 1, 7ty € Dy, 4.
Next let us assume x := 7Tg € DY ,. Abbreviating 0 := inf{s > Ty: Xs ¢ Dy a}, we may write

Eny |11 (gt < Bty 1§ L)t oty (B [ 167 ﬂ{n(xo,t_s)zﬁ}DS:J - (6829

Let /4 := |fc| and note that, since 7Ty, ¢ IT; 4, by the hypothesis on <y we have

e (15 Lnttmm) < Be [ L pom] < (55) 7 €mIME oy

by Lemmal6.4] On the other hand, by Lemmas[5.13|and[6.4]

Ery |15 Lz x)=200) | = By [ 15" Lo gy | Bz |16
= (H 2 ZdAiI:qA ) <q_d) (i DMy, (6.25)

Putting together (6.23)—(6.25), we finish the proof of the case m = 1.

By induction, assume now that the statement is proven for some fixed m > 1, and let 7t € 4
!
Define 77’ := 7t o A o - .. 0 7t(m+1) o ﬁ(mH) o 7t. Then 77’ € 2(m") where n = |7tM| + n’, and
kLt = kL‘g + MLS Setting £ := |7tV], Y and 0 := inf{s > T;: X & Dy 4}, we get

Er [féﬂ{mxo,t)w}} < Ex {18 L0 ()= o<1} (lEx [16‘5ﬂ{n(XO,FM/)}DSZU]f (6.26)

from which (6.20) follows using the induction hypothesis and (6.25). The case m = 0 follows from equa-
tion (6.24) after substituting 77 by 7t and t — s by ¢. ]

m+1,n)

6.4 Proof of Propositions

We are now ready to present the proofs of the above key propositions.
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Proof of Proposition The proof is based on Lemma [6.5/and results from Sections Fix A > 0
and, for B as in (5-11), take € € (0,1/2) as in Lemma[5.10] Let Ly € IN be as given by Lemma [6.5/and
take L > Lo so Iarge that the conclusions of Lemmas [5.10|and 5.2 hold. Fix x € By . Recall the definition
of 33(’” ") Noting that the relation ~ is an equivalence relation in (") define

Fmn = {equivalence classes of the paths in 2 (x, Z%) N (")} (6.27)
We first claim that, for a constant c; € IN, a.s. eventually as L. — oo,
|2 < (eiRD)™(2d)"  Ym,n € N. (6.28)

Indeed, (6.28) is clear if m = 0. To prove it in the case m > 1, write, for A C Z%, A := {z ¢
A: dist(z, A) = 1}. By Lemmal5.2] there is a ¢y € IN such that

9C| < 2d|C| < coRY VC € €1 4 a.s. eventually as L — oo. (6.29)
L ,

We then define a map ®: g«)xm,n) — Pu(x,Z%) x {1,.. .,coRi 4 1}™ as follows: For each A C Z*
with1 < |A| < coR‘i,fix an injection fo: A — {1,.. coR }. Givenapath m € 2" N 2 (x, Z%),
decompose 7t as in (6.13) and, abusing notation sllghtly, write 7t0"+Y for 7t. Now let 7T be the path obtalned
from7t®, 1 <k <m —|— 1 by progressively shifting, for 2 < k < m -+ 1, the starting point of each 7t

the termlnal point of 7t~V and concatenating these shifted paths together. Note that, for each 2 < k < m,
the starting point 7’(8‘) lies in Cy, for some Cy € € 4, while 7'[0"’“) o € 9C UC for some C € € 4.
Thus we may set

(7 foe, (B, fac, (7
®(m) = { (7%, facz(7T9 )r0 fac, (7T

As is readily checked, Cb(n) depends only on the equivalence class of 7t and, when restricted to equivalence
classes, @ is injective. Thus (6.28) follows with e.g. ¢ := 2¢.

Take now N' C Z(x, Zd) as in the statement, and set

"), coR? +1) it tg € C C Dy 4,

(
b 7 i 7 vel 6.30
"), foe(M0)) it € 9C € DS, (6.30)

N1 . {equivalence classes of paths in N” N 2"} pmm), (6.31)
(6.28) permits us to write

Ex [ef‘)tg(XS)dsﬂ{n(xoneN}] =2 L E [efgg(XS)dSﬂWXoft)Nﬂ}}

m,nelNg 7'[6.7\7 mn)

< Z Cle )n sup [y [efo ¢(Xs ds]l{?‘[(XOt)NT[}] (6.32)
mnelNg reN (mn)

where we use the convention sup@ = 0. For fixed 7w € N 1)y the hypothesis on Y7 we may

apply (6.20} 6.5), Lemma5.2)and (5.17) to obtain, for all L large enough
Le
(clRi)m(zd)’ﬂEx [efo S(X)ds {H(XWM}} < eln (R%deﬂLRL) g ele—Ins L)k (6.33)
for some constant ¢ > 0. We now claim that, for large enough L,
kkF > {(m—1)v1} R {1—-2(InL)"}. (6.34)
T

(10)| > (na+1)Rp. Whenm > 2, |supp(7t¥)| > Ry forall2 < i < m.
When m = 1, there are two cases: if supp(7t'"V) N Df , # @, then |supp(7tV)| > Ry while, if




31

supp(7t") C Dy 4, then [ supp(7t)| > Ry by the assumption max; <</ |7ty — x| > (n4 +1)Ry
together with (5.11) and Lemma|5.2] Thus (6.34) holds by (6.17), (6.10), (5.11) and Lemma[5.10
Using (6.34), 91 < Ing Landn > k;LT"C“, for large L we may further bound (6.33) by

[R%deZﬁLRLe—(ZﬁL—&-%)RL] " qzetfyne(c—i—l—&—Zl?L—lm L)kL?
< qﬁL/3 [R%de—%]mqz/zet%e(cﬂuﬂrlng,L)k&;{ (6.35)
Inserting this back into (6.32), we obtain
E, [efot (Xs)ds ﬂ{n(Xo,t)eN}] < suj}\)/ exp {t’yn + (c+1+20; —In3zL) k%’s} . (6.36)
ne
Now follows from (6.36), and ¥, < Inz L. O

Proof of Proposition[6.1] Note that, for large L, the assumptions of Proposition imply those of Proposi-
tion with U1 = 1, and thus we may use (6.36). We proceed to bound k;LT’S using assumption (5.12). For
a € (0,1/d) asin (5.12), let C > 1 be as in Lemmal5.11|with § € (ad, 1) and sete’ := 6 — ad > 0.
Assume that L is so large that the conclusion of Lemma[5.11]is in place.

Note that, by Lemma 5.2} there exists a constant ¢, > 0 such that

kLt > MLE — | supp () NTTp 4| c2RY. (6.37)
By and our hypothesis on \V, | supp(7r)| > In L > C(In L)° for large L. Hence, by Lemma
| supp(7r) 111 4| < 1S9PPUD] - [supp(m)] (6.38)

(InL)> = R¢(InL)
by and our choice of J, ¢’. By Lemma M5 +1 > |supp(m)|{1 — (InL)"¢}. Thus

kLt > | supp(mr)] {1 —(InL)"' = (InL) ¢ — c»(In L)—E’} . (6.39)
Now, by Lemma [5.2]and (6.4H6.5), | supp(7t)| > |zx| — naRp; this in conjunction with | supp(7)| >

In L implies

R
supp(m)| = [z~ x| (1~ A5 ). 640
From 1 i and we obtain (c+3 —Ing L) k% < (c+4 —In3(4dL)) |z — x| for large
enough L, which together with implies (6.6). U

7. ANALYSIS OF THE COST FUNCTIONAL

In this section, we identify the order statistics of ¥+ and give the proofs of Theorem[2.7]and Propositions 4.2
Motivated by Proposition [6.1] and Lemma we define the following generalization of the cost func-
tional: Fort > 0 and c € IR, let

+ I2]

¥ie(z) := A%(2) — (Ing |z — ) Toz€ %, (7.1)
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where /\%(z) is as in (4.4). Arguing as for (4.6), we can see that, almost surely,

{z € €: Yic(z) >n}| <oco foralt>0,17€R, (7.2)

and thus we may define ‘ngg and Z;kc) analogously to the corresponding objects for '¥;.

Fix N; € IN such that tf < N; < t* for some 0 < B < a < 1. Noting that 7; is strictly increasing
for large enough £, we may take f — Li € IN such that Ly, = L¢. Set Nt := N+ and define 4; to be the

smallest positive number such that
2N; )4
prob (A > a,) = ¢ : 7.3
ro ( By, > ay ” (7.3)

Such an ay exists (for f large enough) since /\gl is continuously distributed. Note that
Ny

Li ~ %t(lnt)(lnz f)Ingt as t — oo, (7.4)

and thus also t## < N; < t* for some 0 < B < &’ < 1. An important result of [BK16] (Theorem 2.4
therein) is that, for any 6 € IR,

. _

lim ————Prob Agl >a+0d ) =e”?, (7.5)
t—oo (2N;)4 Ny

where d; is as in (2.6). A strengthened version of this statement (see (7.19) below) will allow us to identify

the order statistics of ¥ .. Together with Theorem 2.3 and Lemma 6.8 in [BK16], (7.5) implies that a; =

a; — x +o(1). In particular, a; = (p 4+ 0(1)) Inp t.

ForO < a <b < oo, c€Randk € IN, we define the events
(k) - : (i) (i+1) ] i+1
gt,a,b,c T {iglnk (Tat,c - Tat,c > A < ;Jt,c - TZt,c) > dfet}
n N {an +dige > Y8 > ¥ > ay, — dtgt}
s€at,bt]

N r in |Z{)
ﬂ { tft < 1%’1£k| s,C
s€|at,bt]

(7.6)

< max |ZY) < 1iQt o
_1§i§k| scl 8

When ¢ = 0 and/or k = 1, we omit them in the notation.

Fora € (0,00), let C([a,0),R"), resp. D([a, o), R"), denote the set of continuous, resp. cadlag,
functions from [a, o) to IR", both equipped with the Skorohod topology. The following result is the main
objective of this section.

Proposition 7.1 Forallc € R, k € IN and a > 0, the stochastic process

(1) € (71 (1) (k) € (7% (k)
( (Tet,c — Ar A (Z(-)t,c) — Ar ZBt,c) (TGt,C — Ar A (ZGt,c) — Ar Z()t,c) >
0€la,00)

4 4 7 4
drt drt T’t drt drt rt
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belongs to (C([a, 00),R) x D([a, ), R) x D([a oo) R%))* and converges in distribution as t — oo

with respect to the Skorohod topology of D ([a, %), (R x R x RY)¥) to the process
(% 56".25) . (\?ghxg"),zgﬁ)) 7.8)
0€la,00)
where Ty = Ay — 17y an d (Ay,Zg)k_, are the k first ordered maximizers of the functional

Po(A,z) = A — % over the points (A,z) of a Poisson point process on R x R? with intensity
e~*dA ® dz, chosen in such a way that ¥y is continuous and Ay, Zy cadlag.

In particular, the probability of the event £ t(’ka),b’ . defined in converges to 1 as t — oo and, for
any fixed 6 € (0, 00), the random vector

(1) (1) (k) (k)
Tet,c — A ZQt,C TG!’,C — A ZGt,c
, Sy , (7.9)
d?‘t rt di‘t rt

converges in law to a random vector in (R x RY)¥ with distribution given by

]l{lpl > ... > wk}e ( 21|+ +3 ‘Zk|+l/)1+ Hpret( 29 Hdlpz ®de (7.10)
i=1

From this we immediately obtain:

Proof of Proposition[4.2 (4.13H4.14) follow directly from Proposition [7.1] and (2.6), while for (4.15) we use
additionally Lemmay5.1|and &(z) > A% (z) > ¥;(z) for z € €, as implied by - O

Note that the part of Theorem [2.6| concerning (Z; )¢~ already follows from Proposition Another
useful consequence is the following comparison between ¥ . and ;.

Lemma 7.2 Foranyc € Randany 0 < a < b < oo, on the event Slfzu) p o the following holds for
all s € [at, bt]:

sup ¥sc(z) — ¥ (diby), (7.11)
z2#7Zs
and

Proof. The supremum in (7.11) is attained at Zélg if Zélg # Zg,0r Zézc) if Zélc) = Zs. Since ]Z§1C)| V ]Zézgl <

rtgt on 5t b in either case we have
rt t_
sup ¥s.(z) — ¥ g o(dsby) (7.13)
z2#£Zs
since 719/t = 0(dsby) by (@.12). The bound (7.12) is obtained analogously. d

The proof of Proposition|7.1]is based on a point process approach, which we describe next. This ap-
proach will also allow us to prove Proposmon [4.3/and Theorem



34

7.1 A point process approach.

The key to the proofs of Proposition [7.1] and Theorem is the convergence of suitably rescaled set
{(A%(2),2): z € €} to (the support of) a Poisson point process. We follow the setup and notation of
[R87] for point processes; some arguments are for brevity relegated to the appendices.

Since we will need to apply the stated Poisson convergence to infer convergence of certain non-local
minimizing functions, we will need to compactify some sets of IR X R as follows. Embed R x R? in a
locally compact Polish space & such that the set

Hﬁ::{()\,z)ele]Rd:A>%+q}c€ (7.14)

is relatively compact for any 7 € R and 6 € (0, c0) and, for each compact K C €&, there exist 0 > 0,7 €
R such that K C Hg. A suitable choice of € is given in Appendix (Bl Note that a Poisson point process in
R x R? with intensity e *dA ® dz can be extended to € as the latter measure is a Radon measure on

¢. Denote by .Zp = j/p((’i) the set of point measures (i.e., INy-valued Radon measures) on &. We equip
M with the topology of vague convergence, and let supp(P) denote the support of P € ..

Let us denote v
AC(z) —a;
Pri=)_ S(vi(z), z/t) Where Yi(z):= %. (7.15)
t
ZEE
Then we have:

Proposition 7.3  The point process Py defined in belongs almost surely to .#p and converges
in distribution as t — oo with respect to the vague topology of .#p to a Poisson point process
supported in R x RY C & with intensity measure e *dA ® dz.

The proof of the Proposition [7.3relies on the following lemma.

Lemma?7.4 Let u bea Radon measure on R such that u & dz is a Radon measure on €. Let Ny € Ny
such that Ny < t ast — oo and assume that, for each t > 0, (Yf(z))ze(zﬁtﬂ)zd is a sequence of
i.i.d. real-valued random variables satisfying the following two conditions:
(i) Foreachs € R,
pd
t—0c0 (ZNfl +1)
(ii) Foreach > 0,1 € R,

Prob <17t(0) > s) = (s, ). (7.16)

lim lim sup ) Prob (?t(O) > %’ + ;7> =0. (7.17)

Pt (R 41)Z7: [x| 2

Then, for each t > 0 large enough, the point process
P = Y. ‘S(?t(x), /1) (7.18)

x€(2N;+1)z4

belongs almost surely to .#p, and converges in distribution as t — oo with respect to the vague
topology of .#p to a Poisson point process in R x R C & with intensity measure y @ dz.
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Proof. Note first that, by (7.17), the expected value of 75,5(7'(2) is finite for all @ > 0,77 € IR when t is large

enough, and hence 731% € /p. The claimed convergence may be proved by a straightforward generalization
of Proposition 3.21 of [R87], with [0, c0) therein substituted by IR? and E therein substituted by R (see also
[HMSO08, Lemma 2.4]). Indeed, we only need to verify (3.20) and (3.21) in [R87]. For (3.21), we note that,
for any compact K C €, there exists 7 € IR such that K N (R x R?) C [1,00) x R¥, and thus (3.21)
follows from (7.16). For (3.20), it suffices to prove that

Z Prob (?t(O) € ) ® 0y /4(dz) o H ® dz vaguely in .#p. (7.19)

xe(2Ni+1)z4
Indeed, by (7.16), the convergence in holds when evaluated on functions with support contained in the
closure of a set of the form [—1, 00) X [—n,n]d C € with n € IN. This is extended to functions compactly
supported in & by applying and the fact that, for any compact K C &, there exists 6 > 0,7 € R
such that K C Hg. O

We can now proceed to:

Proof of Proposition[7.3 We will first use Lemma|[7.4]to obtain convergence of an auxiliary process. Define

/\(1> ) — Ay
Yi(x) = ——"———, xe(2N;+1)Z%, (7.20)

and let 73f be defined as in (7.18). We claim the following:
The statement of Proposition [7.3]holds for ﬁt in place of P. (7.21)

Indeed, condition (7.16) follows from (7.5), while (7.17) is proved in Appendix [Al
Arguing as in the proof of Proposition we see that, almost surely, Py € .#p for all t large enough.

By (7.27) and since P; and P; are simple, it suffices to show that, for any 6 € (0,00) and 7 € R, with
probability tending to 1 as t — oo there exists a bijective map

Ty: supp(P;) N Hg — supp(P¢) N Hg (7.22)

such that
sup dist (T;(E),E) — 0 in probability. (7.23)
Eesupp(ﬁf)ﬁ'Hg Feo

To this end, pick x € (2N; + 1)Z4 such that (Y;(x), x/t) € Hg. We first claim that, a.s. eventually as
t — o0, all such x satisfy

Bg,(x) C By and  AY (v > A = x +o(1). (7.24)

Ny

Indeed, the second claim above follows from (5.3). If the first were violated, then by (5.5), Lemma and
the fact that s +— 20(d;) "1 Iny s — s/ (0t) is decreasing for s > 240t In t, we would have, a.s. eventually
ast — oo,

By~ ™ x| _2plm|x| |x| _ 20lnp Ly Ly —2dN;
ds ot — ds ot — d; ot t—o0

— 0 (7.25)



36

by (74), contradicting (Y;(x),x/t) € Hg. This finishes the proof of (7.24). Now, since N; = Nr:, by
Lemmas [5.3|and [5.8]there exists, with probability tending to 1 as t — oo, a unique z € € satisfying

B,.(z) C By, (x) and Ay — A%(z) < 2e~a(nL))”? (7.26)

)
5, (%)
which allows us to define an injective map
~ X z
T; (Yt(x), ?) = (Yt (2), ?> € supp(Ps). (7.27)
Let us verify that T} satisfies the desired properties. Indeed, (7.23) follows since

x| peani)?{
Zetx < £ 7 : +2d0—tt =g — 0ast — oo, (7.28)

and thus we only need to show that, with probability tending to 1 as t — oo, (7.27) is in Hg and T} is
surjective. Indeed, by (7.21)), with probability tending to 1 as t — oo,

P (Hg_gt \ H§+gt) =0, (7.29)

Yi(x) — Yt(z)‘ n

implying by that is in Hg. Moreover, if (Y¢(z),z/t) € Hg for some z € ¢, then as before
A (z) > ap; —x +o(1) and By, (z) C Bp:. Thus, by Lemmasand there exists ¥ € (2N; +

1)Z* such that (7.26) and (7-28) hold, implying by (7:29) that (Y;(z),z/t) is the image by T; of a point in
supp(Pr) N 7‘(?7. This finishes the proof. O

7.2 Order statistics: proof of Propositions|7.1]and [4.3|and Theorem

Our next task is to translate (4.7H4.9) (and generalizations thereof) in terms of maps defined on point mea-
sures. We start with some necessary notation.

Denote by /Z/E the set of positive measures P on R X R? that can be represented as
P=Y O(r,z) forsome (A z;) € R x RY, (7.30)
ielN
ie., ///; is the set of integer-valued o-finite Borel measures on IR X RY.
Fix a measurable map ¥ R? — R?. For a measure P € ////; as in (7.30), we define

PPi= YO0 731)
ieN
and we set -
Mpg:={P € Mp: P° € Mp}. (7.32)
Finally, we generalise by setting, for 6 > 0,
(o4
WS(A,z) = A — #, (A,z) € R x R% (7.33)
Now, for P € #p » and 6 > 0, we set, recursively fori € IN, i < |supp(P)],

¥y (P)(6) :=

sup {9§(A,2): (1,2) € supp(P)\ {E{(P)(0),...,.E; " (P)(0)} |, (7:34
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Sy (P)(6) := 039
{(02) € supp(P)\ {20 (P)(O),..., By "(P)O)} : 9§(A,2) =45 (P)O)}
and
20(P)0) € {(A,2) € 8Y(P)(O): (\z) = (W,2)V (N, Z) € &J(P)O)},  (7.30

where >~ is the usual lexicographical order of IR x R? as introduced right before (4.7). Note that Eg)(P) is
well defined since the set in (7.36) has cardinality 1. Writing

2)(P) = (AY(P),Z0(P)), (7.37)
we put
) (P) = (¥§(P), A (P), 2] (P)). (7.38)
When @ is the identity, i.e., %(z) = z for all z € IR¥, we omit it from the notation.
The functions defined above enjoy the following properties.
Lemma 7.5 Forany ¢ : R — RY and any P € .Mp g, the following hold:

(i) YY) (P), AL (P) and [8(Zy (P))| are non-decreasing and, if B (P)(6p) # EY’ (P)(61) for
some 0y < 01, then they are strictly smaller at 6y than at 0.
(it) Forany a € (0,00) and any i € N, i < | supp(P)],

YU (P) € C([a,0),R) and EY(P) € D([a,),R x R?). (7.39)
The set of discontinuities of Y (P) is discrete and, if supp(P?) N (R x {0}) = @, then
‘Pg) (‘P) is strictly increasing.

The proof of Lemma is postponed to Appendix [C| It already implies the properties claimed for
‘I"gk), Z§k> at the end of Section : indeed, they follow from the representation

(¥, A%(2)), 2)) = @) (Pe) (1) with 8(2) := zIn] |z], Py := %5@%),2)- (7.40)
ze

Note that Py € .#p g almost surely by (@.6), and that |8(z1)| > |9(zo)| implies |z1]| > |zo|.
Next we consider continuity of P — @ (P) with respect to the Skorohod topology, i.e., specializing to
the case where @ is the identity. To this end, we define the following subsets of .#p, indexed by a € (0, oo):

ME = {73’ € Mo: supp(P) C R x R\ (R x {0}),
(A, z) — Alis injective over supp(P),
77(87-{2) <1V0 e {a}U(0,0)NQ,7 €R, (7.41)
P(OH;) <2V0 € (0,0),7 € R,
{7 €eR: P(OHS) =2} <19 e (o,oo)}.

Then we have:
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Lemma 7.6 Fixa € (0,00) and P € #8. Let % : R — R, t > 0, satisfy
(i) ¢ (2) P locally uniformly for z € R*\ {0}, and (7.42)

(ii) there exists a c, € (0,1] such that, for all 5 > 0, lim mf‘l'nfé |19|£T)|
t—oo  |z|>

> c,. (7.43)

Let Py € #p N AMp,y, such that P; P P vaguely in .. Then also Pl — P vaguely and, for all
ke N,k < |supp(P)],
(cpgi(Pt)) o (PUP)) ik (7.44)

1<i<k t—oo

in the Skorohod topology of D([a, ), (R x R x RY)K). In particular, (®)1<;<y is continuous at
P with respect to the Skorohod topology.

_Lemma 7.6|will be also proved in Appendlxl Cl We note that it may be used to study the contlnwty of P —
oY (P) when & is a homeomorphism by using the representation A®(P?) = A (P), ZO(P?) =

19(Zg)(77)), which is valid e.g. whenever P? € 2.
We now use Lemmal[Z.6]to finish the:

Proof of Proposition[7.1, By Lemma/[7.5] we may realise the processes in (7.8) as
T RO (0 i
(Tg’ Ny, Zy ) = & (P)(0) (7.45)

where P is a Poisson point process on R X R? with intensity e *d A ® dz. Note that, for each a > 0,
Pe € ¢ almost surely. On the other hand, we also have the representation
vy —a, A9(ZY) ) —a, Z! A
Ot,c Tt Bt c 't “Ote \ )
( d?’t ’ d?'t ’ o CI)191,‘ (Prt) (6) (746)

rt

where Pt is as in (7.15) and

+
Ind —
81(2) = 2 (M) i 747
dr,

11’13 t

Note that by (7.2), Py, € Ap 9, almost surely for all ¢ large enough. The convergence claimed in Proposi-
tion[7.1] now follows by Proposition[7.3|and Lemma|7.6|together with (7.45), (7.46)—(7.47) and the Skorohod
representatlon theorem; in fact,

(0) Jaw o)
(o (0PI®), 1) 125 (P O P O i) 70

t—o0

The statement regarding £} _follows from the distributional convergence since d, = d;(1 + 0(1)) and,

by the continuity properties of ‘?g) and Zg),

—oo < inf ‘I’egsup‘Fg < oo, 0< inf [Z§|< sup|29]<oo
fe(a,b) o<(a,b] 0€(ab] fe(ab]

and (?“)—?ﬁj*l) (‘Yb —‘Pb’“) >0

a

(7.49)
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hold almost surely for each i € IN. The expression for the density in (7.10) follows from an analogous
calculation as performed in the proof of Proposition 3.2 in [ST14]. ]

Next we interpret the event in Theorem in terms of the underlying point measure, which is still kept
rather general:

Lemma 7.7 Forany ¢ : R* — R? any P € Mpyand any 0 < a < b < oo, the following
statements are equivalent:

1) zy(P)(a)
2) AY(P)(a)
3) EY(P)(0)

Zy (P)(b);
Ay (P)(b);
EY (P)(a) forall 0 € [a,b]; (7.50)

Pe(\,2) > 9{(E (P)(a)), or -
9o\, 2) = YL (P)(@)) and A > A (P) (a)

Proof. The equivalence between (1) and (2) follows from Lemma [7.5(i), and thus either of them implies
(3) since AY(7P) is non-decreasing. The implications (3) => (4) and (4) => (2) are then easily verified
using the definition of Eg). ]

(4 P {(A,z):

¢
b
¢
b

We study next continuity properties of the event in item (4) above. To this end, we define, for ¢ : R? —
RY, P € Mp g, (A,z) €ER xR¥and 6 > 0,

v = AT l[Jg(/\/,Z/) >l[)3()\,z), or
FY(P,A,z) = P{(A,z). PE(A2) = pP(A,z) and AV > A € No. (7.51)

When ¢ is the identity, we again omit it from the notation. Then we have:

Lemma 7.8 Fixb € (0,00), P € ,//A/I? and take O, Py as in the statement of Lemma Assume
that (As,zs) € supp(P), (At,z¢) € supp(Pr) are such that (Ay, z¢) — (As, z4) ast — oco. Then

F (P, A, zt) 2 Fo(Pr A z:). (7.52)

The proof of Lemmal|[7.8]is again deferred to Appendix|C| Together with Lemma|7.7] it permits us to give the:

Proof of Theorem[2Z Fix 0 < a < b < oo and use the representation (7.467.47) (with ¢ = 0),
Lemma(7.7|and (7.51) to write

0/ 1 (1 —
ik (Prt,A;j(m)(g),zﬁ;(nt)(a)) — 0. (7.53)
Since P € /Z/E N //A/Ffi a.s., the result follows from Lemma and (7.45). U

The last objective of the section is to prove Proposition Our next lemma shows that its statement
holds in fact more generally:

Lemma7.9 Foranyd:RY — R4, anyP € Mpgandany0 < a <b < oo, if
Ey' (P)(6) = 25 (P)(a) V6 € [a,b] (7.54)
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then

it (Y0 P)O) ~ ¥ (P)(0)} = min {¥,(P)(0) ~¥J(P)(O)}. (759

Proof. For € [a,b] andi € {1,2}, put (A}, 2y’) := EY(P)(6) and write

R R 9 s(1)\| _ 9 2(2)
wg)(m(e)—‘ff(m(e):Ag”—M;L' (% )| — 19 )| (7.56)

If \19( N> \19( *))|, substitute = a in the denominator above and use to obtain

> YD (P)(a) — Y (P)(a). (7.57)

If|0(25")| < |9(25)], substituting & = b instead we analogously get
¥y (P)(6) — ¥y (P)(6) > ¥y (P)(b) — ¥y (P)(b). (7.58)
In either case, follows. U

We can finally conclude the:

Proof of Proposition[4-3, Follows from Lemmas [7.7|and[7.9|together with (7-40). O

8. MASS DECOMPOSITION

In this section, we prove Proposition [4.4] in Subsection [8.1] Proposition [4.5] in Subsection [8.2] Proposi-
tions [4.6H4.7lin Subsection [8.3]and Theorem-m Subsection[8.41

8.1 Lower bound for the total mass.
We begin with a lower bound for the mass up to the hitting time of a point.

Lemma 8.1 Under Assumption there exists a constant K > 1 such that, a.s. eventually as
T — oo, forall > T and all x € Z* with |x| > 440,

Eo [efo d”]l{T 9}} >exp{—|x|ln * |} (8.1)

Proof. We follow the proof of Lemma 4.3 of [GM90] (case of d = 1 therein). Fix a path 7t from 0 to x such
that | 77| = |x|. Then the left-hand side of (8-7) is at least

|x|—1
exp {— Y Uiﬁ_(ﬂi)} H{Z"xolmsﬂ}] (8.2)

i=0

(2d)"Eq
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where (07)$2, are i.i.d. exponential random variables with parameter 2d. We can further bound (8:2) from
below by

9 1
—|x[o—6 7 - _
(2d) " ¥le IPO< § ] 7(7_[i)V1 0,...,|x| 1) (8.3)
|x]—1
~xlg i i#) _ x| o (o
> (2d) || (x 15 () exp{ |x| In o0 0 E) In(1+¢ (m))
(8.4)

where we used 1 —e ¥ > %y when 0 < y < % By Theorem 1.1 of [M02] and Assumption there
exists a constant cg > 0 such that, a.s. eventually as |x| — oo,

x[-1
2 In(14¢& (7)) < colx]. (8.5)

Now (8-7) follows from (8.3H8.5) and 6 < |x|/(4d). O
We can now prove Proposition [4.4]

Proof of Proposition[4.4, For a finite connected subset A C 7%, let 4758 be the normalised eigenfunction of
H  corresponding to its largest eigenvalue /\x) as in Section Let xg € A be a point where 4)5@ attains
V(x0)|> > |A|7L. By Lemmal5.12

s (1) (
Ex, [efo £ H{TAC>S}} > e*a |‘P<1 (x )|2 > ¥ InIAl (8.6)

Using the Feynman-Kac formula, the strong Markov property and (8.6), we obtain, for any 8 < s,

U(S) > [Ep [exp {/0 0 C(Xu)du} :H-{T <9}]Ex [efo E0%)du ﬂ{TAC>s—r}L,T }
=Ty,

Tx
> e5/\ =In|A|- 9|/\ ‘IEO |:exp {/O 0 C(Xu)dl/l} ﬂ{TxOSG}] . (8.7)

Specializing now to A := By, (Z;), let K > 1 as in Lemma [8.1/and set 6 := K|xo| /A% (Z;). By
Lemma 5.1]and Proposition[4.2} we may assume that ¢z, < Int. Thus on & ,  we have
|x0| < | Zs| + |x0 — Zs| rtgt+2d1nt
- at at

while A% (Zs) > ¥ > ay, —digr — o0 ast — oo since drg; = 0(1). Therefore, 0 < |xo|/(4d) <'s
for large enough t. On the other hand, by Lemma on &, we have

= o(dtbtet), (8.8)

for large enough f since 7;g: = o(t). Hence

rtft 2dInt

20Ty t — o0ast — oo, (8.10)
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and so we may apply Lemma|8.1]to (8.7) obtaining

InU
n S(S) > )\%)(ZS)—@IHA%(ZS)—K’J;—O“FO(dtth)' (8.11)
Now, by (8:9),
InU — Zs|Ind |Z
n S(S) > ‘Yél) o |XO sl ng | S| B (|ln2p| —|—K) @ +O(dtbt€t)/ (8.12)
and to conclude we note that the second and third terms in are also O(dtbt€t)- O

8.2 Macrobox truncation.

Next we prove Proposition ensuring that the Feynman-Kac formula is not affected by restricting to
random-walk paths that do not leave a box of side Ly = Lt lnzr tJ around the starting point.

Proof of Proposition[4.5 We follow the proof of Proposition 2.1 in [FM14]. First write

L R VO A L, e {Siré%xg(x)}ﬂ)o (esélfop} ol = n) o
n=>~Ly¢ n /S

Denoting by Js the number of jumps of X up to time s, the fact that [ is a Poisson random variable with

parameter 2ds gives

(2ds)"
n!

Py (| sup |Xg| =n| <Py(Js >n) < (8.14)
6€10,s]
By Lemma we have that maXy¢p, {f(x) <2p In, 7 a.s. for all n large enough. Using Stirling’s formula,

we note that, since s € [at, bt|, the term corresponding to 7 in the sum in (8.13) is at most
exp {Zpbtlnzn—n(lnn—lnt—c)} (8.15)

for some deterministic constant ¢ > 0. Now, whenn > L; and t is large enough, Inn — Int — ¢ > % Ins t.
Since the function x — 2pbtIny x — 7 Inz t is strictly decreasing on [Lt, 00) and negative at x = Ly, a.s.
for all t large enough, (8.13) is smaller than

O gt —Ltingt
Y emamt < pema st (8.16)
n:Lf

Plugging in the definition of L; now yields (4.21). L]

8.3 Negligible contributions.

In this subsection we prove Propositions and Here and in the next subsection we will work with
R; satisfying 1 . It will be useful to introduce yet another family of auxiliary cost functionals ¥ s .,
indexed by t,s > 0, ¢ € IR, and defined on the elements of €, 4 as follows:

Fpoe(C) = Ag>_( 7 |ze| —c)

lze|, C €€, a. (8.17)

These functionals will be convenient to express bounds to the Feynman-Kac formula obtained via Proposi-
tion In order to compare ¥ ; - and ', we will need the following.
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Lemma 8.2 Almost surely for all t,s > 0, there exists a component Cys € €y, o such that, for all
0 < a < b < o, the following holds with probability tending to 1 as t — oo:

ze,, = Zs Vs € [at, bt]. (8.18)
Proof. By Lemma there exists a & > 0 such that, with probability tending to 1 as t — oo, whenever
|Zs| +2doz, < L and A(Zs) > ar, — x — ¢ we can find a unique Cs € €p, 4 with z¢, = Zs.
Fixing C; € €, 4 in an arbitrary (measurable) fashion, we define C;s = C; when either the conclusion

of Lemma [5.8| does not hold, or when Zs does not satisfy the properties above. By Proposition Cis
satisfies (8.18) with probability tending to 1 as t — oo. [

When t = s we write C; instead of Ct .
The following lemma relates ‘T’t,s,c to ;.

Lemma 8.3 Forall A > 0large enough and any 0 < a <b <o00,6 >0andc € R,

Ct,s € Q:(zt,A/ qIi‘,s,c(ct,s) - ‘Yél)

< o(d¢by) and gr;%x ‘T’tlslc(C) —vP| < o(dsby) (8.19)

t,s

hold for all s € [at, bt| with probability tending to 1 as t — oo.

Proof. Fix A,0 > 0 as in Lemma[5.8|and let C € €, 4. By this lemma and Proposition we may
assume that, if C ¢ (‘:‘it,A, then ;5. (C) < A(Cl) <@, —x—0 < Y& while, if C € Q‘zt,A, Z¢ € € and

Ftsc(C) = ¥sclze) +o(diby). (8.20)
(8-79) follows by considering in (8.20) the cases z¢ = Z; and z¢ # Zs and applying Lemmal7.2] O
Recall (6.3) and consider the following classes of paths: First set
./\/t(g) = {7‘( € @(O,Zd): supp(7r) C Br,,supp(7r) N (Dfs)¢ # @} (8.21)
and then let
A/;(ls) = {me M(g) Ar,a(m) < /\(Clt),s} and ./\ft(? = ./\/'t(g) ~ t(,ls>/ (8.22)

where Cy s is as in Lemma Note that, if T(pe e <'s < Tg , then (Xos) € J\/t(ls) U J\/'t%) and hence
y t 7 7

we may bound the contribution of each class of paths separately. This is carried out in the following lemma,

using Proposition [6.7]

Lemma 8.4 Forall A > 0 large enough, there exists ¢ > 0 such that, forall 0 < a < b < oo,
Jo &(Xy)du
InEg [e 0 l{n(Xo,s)G/\ft(,i)}}
< S{Ivjtlslc(ctls) — (1]?13 (4st) — C)(l + hf) ’ZS’ + O(tdtbt), (8.23)
and

fsC(Xu)d” @
InEy |:e 0 l{n(XO,S)GM(,E)}‘| <s Cl,’l;%i(s Tt,s,c(c) + O(tdtbt) (8.24)

hold for all s € [at, bt] with probability tending to 1 as t — oo,
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Proof. On & 41, (cf. (7:6)), infyc [y ] | Zs| > In Lt and so we may apply Proposition|6.1/to /\/t(ls) and /\/'t(?.
Choose Y, zr as follows. For 71 € ./\/t(;), lety, = /\8‘ +d;/ Ing t and take z; arbitrarily in supp(77) N
(D) # @l € J\/t<2s) then supp(7r) NI, 4 # @ and we may set v = A, a(71) +d;/ Inst,
zn = z¢, where Crr € €1, gissuchthat A, 4(7T) = A(cli Note that, by Lemma we may assume that
)L(Clt)/s > 4y, — A. Then (18.23 8.24) follow by substituting our choice of 7y, z;r in (6.6), using the definition of
Wi, the fact that | 2| > |Zs|(1 + k) for 1 € N}Y and noting that d; / Ing t = o(d;b;) by @12). O

Proof of Proposition[4.6 This now follows from Lemmas 8.4, Proposition the definition of d; and ¢
in (2.6) and the relations between the various error scales in (4.12). O

Next we turn to Proposition Note that paths avoiding B, (Zs) do not necessarily exit an ?-pall of
radius In L;, so we may not directly use Proposition As the points in I}, 4 are typically far away from
the origin, this can be remedied by considering

NP = {7‘( € 2(0,2%): supp(r) C By, \HLt,A},
(8.25)
N = {m e 2(0,2%): supp(m) C By, \ Bu(Zs),supp(7) NTT, 4 # D}
Since T, (z,) N Tge > 8 implies 77(Xos) € ./\ft@) U ./\ft(é), we may again control the contribution of each
¢ ,

set separately. For J\ft<3) this is an easy task since, for all s € [at, bt],
InE, [efos SXu)du 1 70 (X) € /\/P}} < s(ay, —2A) (8.26)

by the definition of I}, 4. For j\/t(;), we may again apply Proposition :

Lemma 8.5 Forall A > 0 large enough, there exists vi € IN and ¢ > 0 such that, for all 0 < a <
b < oo, the following holds with probability tending to 1 as t — oo. Forall v > vy, s € [at, bt] and
6 >0,

0 ~
¢(Xu)du a7 —
InEg {efo ﬂ{n(xo,g)e/\/t(f)}] <40 (Cr?é%i Yi9.(C)V (ar, —4d) + o(dtbt)) (8.27)
where o(dby) does not depend on 6.

Proof. Let d, A1 > 4d and 17 be as in Lemma|5.6, and assume that ¢ is large enough for the conclusions
of this lemma to hold with L = L;. We may assume A > Aj.

We will apply Proposition using the islands of Q:Lt,Al' We may do so as, by Lemma I, AN
B 1, = © almost surely when t is large, and thus all 77 € j\/'t(i) exit a box of radius In L. Let ¢ = c4, be
as in (6.6). Since A > Ay,
VC e €, a,3C €€ ast.CCC (8.28)
Recall the definition of A 4 (77) in (6.3). For T € J\/t(? let z; := z¢, where C; € €, 4, is such that
nNCNIIa #Dand Ap, 4, () = )\8 Note that z; = z¢r where C C Cl. € €, o When tis
large enough, C; s € Cit’A by Lemma ; hence, by Lemmaand the definition of j\/t(‘;)

CaNCis =0Q. (8.29)



45

From (8.28H8.29), we conclude that
OAL, 4, () —(In3(4dL;) — ) |zx|
= Q)L(Cli - (1113(4st) - C)|ch|

Vel
< fsup {/\(Cl,) — (lng.,+ |zer| — c)+M: C'e€ra\ {Ct,s}} )

(8.30)

0
Choosing now v = Ap, 4, (70) V (a1, —4d) 4 d;/ Inz t, 8:27) follows from (6.6), (8:30) and (#12). [

Proof of Proposition Proposition[4.7]now follows from (8.26) together with Lemma[8.5|applied to 6 = s,
Lemmaand the fact that, by Proposition and the properties of a;, a; and X, ‘Ff) > (ﬁLt — 4d) V
(ap, —2A) forall s € [at, bt] with probability tending to 1 as t — oo. O

8.4 Upper bound for the total mass and proof of Theorem 2.6

We will prove Theorem by comparing %ln U(t) to ‘I’il) and then applying Proposition The last
missing ingredient is the following upper bound for U (). Recall that we assume (5.11H5.12).

Lemma 8.6 (Upper bound for the total mass) Forany0 <a <b < oo,

sup {ln U(s) — s‘I’él)} < o(tdsby) (8.31)
s€[at,bt]

holds with probability tending to 1 as t — oo.
Proof. Applying Proposition [6.1]to the set of paths
NP = {7‘[ c 2(0,Z%): supp(m) C B, supp(m) NIl 4 # @} (8.32)

with ¥y := Ap, a(7) V (A, — A) +d;/Ingt and z,; := z¢_ where C € €, 4 satisfies Ap, 4(7T) =
A(Cli we obtain

In Eg [efos Z(Xy)du o s(X) € /\/;(5)}} < screncax Yis0(C) + o(td;by)
LA (8.33)

S STS) + O(tdtbt)

with probability tending to 1 as t — oo by (2.6), @-12), (6.6), (8:177) and Lemma[8.3] Then (8.37) follows
since, by (8.26) and Propositions and the difference between In U(S) and the left-hand side
of (8:33) is bounded by 0(1) uniformly on s € [at, bt] with probability tending to 1 as f — oo. O

Proof of Theorem[2.6. Proposition [4.4]and Lemmal|8.6|imply that, forany 0 < a < b < oo,

Mnu(s) — v
dy

lim sup =0 in probability, (8.34)

F00 5 [at,bt]

and thus the theorem follows from Proposition[7.1]and d,, = d¢(1 + 0(1)). O
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9. LOCALIZATION

In this section we prove Propositions 4.9 dealing with localization of the solution to the PAM as well as
the eigenfunction 4)25. The proof of the former proposition is actually quite short:

Proof of Proposition[4.8, By (#12) and Proposition (4.2, B, (Zs) C Dy for all s € [at, bt] with probability
tending to 1 as t — 0, and thus we may apply Lemma5.15[to A = Df,z = 0,T = B, (Zs). O

t,s?

We now turn to the proof of Proposition The first step is to obtain a spectral gap in the inner domain

D7 ., which is a consequence of our choice of the scale /; in (4.72). Recall the following useful formulas for

t,s?
the second largest eigenvalue of the Anderson Hamiltonian in a subset of Z%: For A C Z2, let /\5’{), cpx) be
the eigenvalues and eigenvectors of H as in Section Then we may write

d
AY = sup {((A +&)¢,¢): ¢ € RZ supp¢ C A, ¢l 2zey =10 L qu)} .9)
A consequence of and is that, if Ay, Ay C Z% satisfy dist(Aq, Ay) > 2, then
Mo 2 A% = AR, = max {A AR} 9.2)

In the following, we assume that the scale sequence R obeys (5.11H5.12). Recall the component
Cis € €, A from Lemma and the notation G ¢ := {‘I’él) —¢@ > etd; }. We then have:

Lemma 9.1 (Spectral gap) For any A > 0 large enough and any 0 < a < b < oo, it holds with
probability tending to 1 as t — oo that, for all s € [at,bt], on G,

/\(Clt)s > sup /\(C}) + dtet + o(dtet) (9.3)
’ Celp, a\{Crs}:
dist(C,Dp,)<(Int)?
and
Ape, > Ape +dies+o(dier). (9.4)

Proof. Let t be large enough such that the conclusion of Lemma is in place. Then, for any C € <L, A \
{Cis}, by @17) and Lemma|[8.3] on G; s we have

_ |zelIng |z¢| — | Zs|Ing |Z|
s

Ae) =g’ = dies +o(diby) (9.5)

with probability tending to 1 as t — 0. By Propositionand Lemma we may assume that | Zs| > t1/2
and that, for all C € €, 4 suchthat dist(C, Dy,) < (Int)?, |z¢| < |Z|(1+hy) + (Int)2 + 1Ry, <
t. With the help of (2.6), (4.12) and (5.11), we can see that the right-hand side of (9.5) is at least

3 3
|Z5|ht -|S- (11’1 t) Z dtet i O(dtbt) B 2(11’13 t) rtgtht -al-t(ll’l t)

= dtet + O(tht), (9.6)

dtet —+ O(dfbt) — 2(11’13 t)

thus proving (9.3).
To show (9.4), we may assume /\g)o > A<D1)o — A/4 since otherwise (9.4) is trivially satisfied. For
t,s t,s

A > x + 1large enough, take § € (0, 1j asin Lemma By Lemmal(5.2} Proposition[4.2/and Lemma|8.3]
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we may assume that C; s C Dy, and Cis € Q‘L 4- Thus, by (©:3), /\g} —A> Agt)s — A >a, —2A.
Applying Theorem 2.1 of [BK16] to D := D;S together with (5.6) and 1; we obtain

)‘(DZ);’S < sup Aé” \Y A(gt),s + Zd(qA)RLt, where 174 1= (1 + %) 1 . (9.7)
’ C#Chs: CNDEAD
Now, by Lemma 5.3i), and (9.7),
)‘g);s - Ag);s > {dier +o(der) } A 3pIn2 —2d(74)%, (9.8)
which proves since (74)R = o(d;e;) by (28), and (5.11). O

We are now in position to finish the proof.
Proof of Proposition[4.9(i). We can use the proof of Theorem 1.4 in [BK16] with the following three main
modifications:

1 In the part of the proof dealing with large distances, Theorem 2.5 of [BK16] is invoked, with the generic
component C appearing in its statement now set to C s (which we may and do assume to be contained
in Dy by Lemma. For that we need to show that, with probability tending to 1 as t — oo,

1
2> 5 Vs € [at, bt]. (9.9)

H (Pto,s ]lct,s

The proof of Theorem 2.5 then shows that this inequality characterizes C.
2 Still in the part dealing with large distances, we use (9.4) instead of Lemma 8.1 of [BK16].
3 In the second part of the proof dealing with short distances, use (5.19) instead of Lemma 4.8 of [BK16].

With these modifications, the proof goes through in our case.

In order to complete the proof, it thus remains establish (3.9). Let D := Dy \ Ct. We first claim that,
with probability tending to 1 as t — oo,

Ap < Ag) —die +o(der). (9.10)

Indeed, take A > x + 6. By Lemma we may assume that C; s € Q:it,A’ and thus we may also assume
that /\g) > a1, — A since otherwise is satisfied. By Theorem 2.1 of [BK16] and (5.6),

A <sup{Al): C €€, a\{Cis},CND;, # D} +2d(na) R0 (9.11)

where 174 := (1+ A/ (4d)) ™!, so (8.10) follows by Lemma .6), #.12) and (5.17). Now, for x € D,

the eigenfunction ¢} ; satisfies the equation
1
(Hp = )9 = ¥ gi) (0.12)
' yeaD,|ly—x|=1

where Hp is the Anderson operator in D with Dirichlet boundary conditions and 0D := {x € D\
D: 3y e D, |y — x| =1}. By Lemma 4.2 of [BK16],

¢t ﬂaDHez(zd) < {1+ A/(2d)} 2R < ()R (9.13)
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Using (9.12H9.13) together with the operator norm of the resolvent of —Hp and the Cauchy-Schwarz in-
equality, we obtain

1955 10l 270y < dist(Aly , Spec(—Hp))~'2d(174)

< (lnt)z(iyA)RLt =o0(1), (9.14)

. 1 .

where the last line holds by (9.70), AE))?,S > )\85, @.6), @12) and (5.11). As ||q’)f/s||€z(zd) = 1, this
implies as desired. U

Proof of Proposition[4.9(ii). To prove (4.29), we use (4.28), the representation (5.46) and Lemma [5.7} Let
c1,¢2 as in (428). Since ¢y is normalized in EZ(Zd), there exists vy = vp(cq,c2) such that, for all
v 2 1,

ma > a > 1B =:¢e9 > 0. 9.15
yerés)(Pts( ) yGII?VO(XZS)qth( ) 2| vo’ 0 ( )

Fix v > vp and let A*, 5 and A be as in Lemma[5.7] When ¢ is large, the conclusion of this lemma holds
with L := L;. By Lemma we may assume that Ct s € Cit’A, and thus (5.28) holds for C; 5. On the other
hand, by (5.5) we have, with probability tending to 1 as t — oo,

A<D1)o < max §(x) < max¢(x) <ar, +1, (9.16)
xeDyp, x€BL,
by Propositionand Lemma Since Zs = z¢, . forany z € By (Z),
A%%S —(z) 24" +1=: A (9.17)

Let ¥ € By(Zs) with ¢/ (¥) = maxyep,(z,) Prs(y)- For y € By(Zs), fix a shortest-distance path 7z
from y to X inside B, (Zs). Then

E, {exp{/oﬁ (&(Xs) — A%%S)ds} Y1z < T(Dgs)c}}
> E, {exp {/Om (C(Xs) - Agi) ds} Yl (X) = n}] (9.18)

|7r|—1 1
=] @ > (2d+A) 7 =161 >0
i—0 2d+ )‘D?S = ¢(m)
by Lemma(6.3]and (9.17). To conclude, invoke (5.46) to write

0s0) = 95, O0Ey [exp { [ (206) Al ) dspalme <t | zeom @19

by (9.15) and (9.18). The claim follows with &, := €peq > 0. ]

10. PATH CONCENTRATION

In this section, we prove Propositions and [4.11} these proofs come in Sections and [10.2] re-
spectively. We assume throughout that A > 0 and v € IN have been fixed at sufficiently large values to
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satisfy the hypotheses of all previous results. We also assume that R} obeys (5.11H5.12). In order to avoid
repetition, statements inside proofs are tacitly assumed to hold with probability tending to 1 as t — oo.

10.1 Fast approach to the localization center.

Recall the component C; = C; s € €, 4 from Lemma We first show that, under fo), the random walk
exits a box of radius In L; by time €;t, at least on the event that a neighborhood of the localization center Z;
is hit by time £.

Lemma 10.1 In probability under the law of ¢,

1 L (Xy)d
W]EO [efo &(Xu)du H{T(Df,t)c >t > TBV(Zf)'TBCUnLtJ > €tt}i| t—>—o>o 0. (10.1)
Proof. Note that Tp (7,) > TBCU L Forx € BLlnLtj’ we may apply Proposition to the set of paths
n L
./\/;((;) = {7’( € @(x,Zd): supp(m) C Dy, supp(rr) N By (Zt) # @} (10.2)

with v, = Ag) +d¢/Inzt and z; € B, (Z;) arbitrary, which is justified by Lemma Lemmaand
Proposition[4.2| Since |z; — x| > |Z;| — 2dv — 2d|In L |, we obtain

InE, |: fO ¢(Xy)du ]]_{T (1 — €t)t > TBv(Zt)}:|
< (1 — Gt)t)\(clt) — ‘Zt‘ Inj ’Zt| + O(i’dtbt). (10.3)
On the other hand, by Lemma|5.1} a.s. eventually as t — o9,
InE [efos CXudu gy > s}] <s max {(x) <s2plngt Vs>0. (10.4)
[InL;] xeBUnLd

Now use the Markov property at time € together with (10.3H10.4) and Proposition [4.4] to obtain

1 JE(Xu)d
WIEO [efo &(Xu)du H{T(Df,t)c >t > TBv(Zt)’TBCUnLtJ > ett}]
< exp { €ft( —2plngt) + o(tdtbt)} (10.5)
which goes to 0 as t — oo by Lemma and €; > (Ing t)_l. O

The following result can be seen as an alternative version of Lemma|8.5]

Lemma 10.2 There exists a constant ¢ > 0 such that, with probability tending to 1 as t — oo,

f ¢(Xy,)du
In IEO e’o u ]]'{TBV (Zp) /\T(Do )C>€tt>TBC\_l L J/Xett:x}

< ettg;éacx)\ — (In3(4dLs) —¢) |x| 4 o(estdiby) (10.6)
t

forall x € Z%, and o(estd;by) in does not depend on x.
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Proof. Let A > A; where A1 > 4d is as in Lemma[5.6} and define the set of paths
/\/’t(;) = {7‘( € #(0,x): Dy D supp(7) & Bjinr,), supp(7) N By(Z:) = @}. (10.7)

We wish to apply Proposition to /\/'t@ using the islands of €, 4, (i.e., with L = L;, A = Aq therein),
similarly as in the proof of Lemma To that end we take, for all 71 € J\flf? Yr 1= MaXcxe, Ag) +
d¢/ Ing t (where the supremum is taken over C € €p, 4 \ Cy), and z; := x. Let us check that 7y, sat-
isfies (6.4). Indeed, by Lemmaand Proposition H we may assume that SUpcc, A8> > ZiLt — Ajq.

Moreover, reasoning as in the arguments leading to (8.28

8.29'), we obtain Ap, 4, (71) < Supc_sc, )‘(CU for

all 7t € ./\/'t(;) so (6.4) follows. Inserting our choice of Y, z; in and using (4.12), we obtain (10.6) with
C=cCay- L]

We can now finish the proof of Proposition|4.10

Proof of Proposition[4.10. The key point is to show that, for some constant ¢ > 0 and uniformly in x € ze,

t
IEO |:ef0 C(Xu)d“ :H_{T(D?’t)c >t Z TBV(Zt) > €tt Z TB([lnLtj’Xett = X}:|
(10.8)

<exp{etsup Ay + (1— et)t)x(clt) — (In3(4dLs) — ¢)|Z¢| + o(estdiby) 3 .
C#Cs
Indeed, assuming (10.8), Propositions [4.2| and [4.4] allow us to write
1 &(Xy,)du
B [ S et )
< |Dic'),t ]E fO Xu du IL 1
— u( ) S;l;i 0|¢€ {TDO c>i’>TB( )>€ttZTBCUDLtJ,X€tt:x} ( 09)
X

< exp { ett()\ - ICI;éaCXA ) + 0(€ftdtbt)} — 0 in probability

t—o0
by Lemma(9.1]and (4.12). This and Lemma[{0.1]yield (4.37).
In order to prove (10.8), suppose first that dist(x, By (Z;)) > In L;. Then we may apply Proposition6.1]
to the set of paths

,/\ft(i) = {71 € P(x,2%): supp(m) C Dy, supp(m) N By (Z;) # @} (10.10)

with v, = )L ;+ d¢/Ingtand z; € B,(Z;) Nsupp(7) arbitrary, obtaining

lnIEx |:ef0 ¢(Xu)du H{TDO C>(1 et)t>TBv(Zt)}
< (1 — €t)f)\ct — (ln3(4st) — CA)|Zt — X| + O(Gttdtbt) (10.11)

since |zz — x| > |Z; — x| — 2dv. Noting that both (T0.11) and (T0.6) remain true if we substitute ¢ and c 4
by ¢ V c4, (10.8) follows by applying the Markov property at time €;t and then using (10.11), Lemma
and the triangle inequality.
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If instead dist(x, B, (Z;)) < In Ly, we may bound

E ekle £(X0) uemM>
X

du
IL{TDO je>(1—er)t>1p, (z)}} se

< exp {(1 — Gt)t)\%iot + O(€ti’dtbt)} (10.12)
by Lemmal[5.12] By Theorem 2.1 of [BK16] together with Lemma[9.1]and (5.6),
Ag < Ag) +o(esdiby). (10.13)

Since |x| > |Z;| — 2dv — In Ly, (10.8) again follows using the Markov property together with (10.12H10.13} 1
and Lemmal[10.2

10.2 Path concentration.

In this section, we address the principal ingredient needed for the proof of path localization, culminating in
the proof of Proposition4.11

For L € IN, we define €1, := inf{es: s > 0,L; = L} and put
~ gL InL
Rp, = |—/———. 10.14
o= sty 51 1o

Note that ﬁL satisfies (5.11) but not (5.12). Furthermore, (n4 + 1)ﬁLt < %et Int.

Let EL,A be the analogue of €], 4 using the radius ﬁL, and let @ S EL,A such that Z; € @ NI, A
This is well-defined with probability tending to 1 as t — oo since, by and Proposition we may
assume that Z; € Iy, 4. Note that, without assuming (6.12), we cannot use Lemma ; in particular, it
may be that Z; 75 Z@' Nonetheless, we still have the following.

Lemma 10.3 With probability tending to 1 as t — oo,

/\(Cit) > sup Ag) + dier + o(dyey). (10.15)
CGQLt,A\{Ct}: CﬂDf’ﬁé@

In particular, Ag = max{)\g): Ce ELf,Afgﬂ Df,t # O}

Proof. Fix R; < < R} satisfying (5.11 ; andletC; = Cy € €, 4 asin Lemma Then C; C C; and
thus /\ > )\ .Now fix C € Q:Lt A \ {C;}.Cn Dy, # . Applying Theorem 2.1 of [BK16] to D := C

and then (5.6 and Lemma[5.2] we get

Ag) < sup )\C +2d(na)Ru < sup Ag) +2d(y4)Rue (10.16)
CeCy, 41 CNCAD Celr, a\{Ci}:
dist(C,Dy¢;) < (Int)?
where 774 := (1+ A/(4d)) L. Hence follows from Lemma O

We can now give the proof of Proposition|[4.11
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Proof of Proposition[4.11, Letns € IN be as in Lemmal5.2] Fix x € B, (Z;) and define the set of paths

N = {71 € 2(x,2%: supp(n) C Dy, rr€1a>|< ‘ |ty — x| > (na +1)ﬁLt}. (10.17)
<<

t,x

Let 91 := 3(na + 1)|€, '] and note that
U <IngL as L — oo and ®.R. > InL forall L large enough. (10.18)

Choosing v := Ag) + 2/t, by Lemma[10.3| Proposition and (10.18), we may apply Proposition
t
(using the islands of €, 4) to N't(i) obtaining, forall 0 < s < ¢,

E, |efo¢(Xu)du g < e?exp {s)&cl: — iR, Ing Lt} (10.19)

{T<D§t)c >$, SUPo< < |Xufx|>%et lnt}]
since %et Int > (ny+ 1)§Lt. Now note that, by Lemma and Proposition ii),
E, eJo E(Xu)du > E, elo E(Xu)du Htpe >s,Xs =x}| > e exp sAW L (10.20)
bt v Dy,

Then (4.38) follows from (10.19

10.20|) and@ C Df/t. ]

11. LOCAL PROFILES

In this section we prove Propositions and dealing with the local “shapes” of the solution to the
PAM and of the potential configuration in the vicinity of the localization center. In the following we will always
assume that A > 0 and v € IN have been taken large enough so as to satisfy the hypotheses of all
previous results. We start with Proposition [4.73]

d
Proof of Proposition[#.73, Fix 0 < a < b < co. Letd(-, -) be a metric under which [—oc0, 0]%" is compact
and has the topology of pointwise convergence. Since for each R € IN the principal Dirichlet eigenvalue of
A + V, in By is simple, there exists eg > 0 such that

1
< =

, 11.1
1SR (11.1)

d(V, V) <er = sup [V(x) = Vp(x)| v [[of —of
x€BR

where 05, resp., 05 are the principal Dirichlet eigenfunctions of A + V/, resp., A + V) in B, both nor-

malised in 1. Under Assumption , Lemma 3.2(i) in [GKMO07] shows that the quantity
F(e) = —x — sup {/\“)(V): V € [~e0,01%, L(V) < 1,0 € argmax(V),d(V, V,) > s} (11.2)

i strictly positive for ¢ > 0. By Lemmas|5.1} [5.5/and 8.3} Proposition [4.2]and the properties of ar, @y, there
exists a deterministic non-increasing function d; > 0 such that 6; — 0 as t — oo and the following holds
with probability tending to 1 as t — oo:

max ¢(x) < ar, + &, inf AD S>3 —y_35
xeBLtg( ) <L+ selatpr] Cts ~ M X o (11.3)

and
sup Le, (§—ar, —d) < 1. (11.4)

s€[at,bt]
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Letting tg > 0 with tg — oo be such that J; < %f(sR) forall t > tg, we define
Ut = mf{R eN: tg<t< tR—i—l}- (11.5)

Note that y1y — o0, and we may suppose that y; << (Int)* by making fg grow sufficiently fast with R.
Then, defining
V*(x) ::{ C(x—i—ZS)—aLt—(St |fx+ZSECt,S, (11.6)
—o0 otherwise,
we have V* € [—o0,0|Z", L(V*) = Le, (¢ —ar, —¢6) < Tand 0 € argmax(V™*). Furthermore,
AV(V*) = Ag) =1, — 6 > —x — F(ey,). Since vly. () = 1 (- + Zs),
~ 1
sup |§(x + Zs) —ar, — Vp(x)| V [[975(Zs + ) = 0p' ()llp < — + 6 (11.7)
XEUt ]’lt
by and the definition of (). To conclude, we observe that @y, = a; + 0o(1) and that, by Lemma
3.3(iii) of [GKMO07], lim o [|0h' — vp|s1 = 0. O

Next we prove Proposition by adapting the strategy of Section 8.2 of [GKMQ7]. The proof is based
on two lemmas whose proofs will be postponed to subsequent subsections. Fix y; € IN, 1 < u; <
R¢, which is enough by (6.11). We will again decompose the solution with the help of the Feynman-Kac
representation, which states that, for a function f : Z% — [0, 0), f Z 0, the function

(x,t) — E, [efoté(xs)dsf(xt)] (11.8)

is the unique positive solution of the equation (1-7) with initial condition f.
Fix an auxiliary function t — T; € IN such that /sy << T; < . For notational convenience we set
Bts := By, (Zs). Using (T1.8), we may write 1(x,s) = u'V(x,s;t) + u®(x,s; t) where

u(l) (x/ S; t) = ]EX |:ef0 C(Xu)du ]‘{XS_O’TB§S>Tt}:| (1 1 9)

and 1 is defined by replacing Ths, > T} by the complementary inequality. The first lemma shows that the
contribution of u® is negligible.

Lemma 11.1 Forany0 <a <b < oo,

u®(x,s;t)

U(s) = 0 in probability. (11.10)

lim sup Ig,, Z

=005 [at,bt] xeZd
Finally, the second lemma controls the distance between ") and Prs

Lemma 11.2 Forany 0 <a <b < oo,

uW(x,s;t
lim sup Ig,, Z g—(pzs(x) =0 in probability. (11.11)
t_wose[at,bt] " rezd U(S)

Proof of Proposition[4.12 Follows directly from Lemmas [11.1H11.2 4
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The remainder of this section is devoted to the proofs of Lemmas In order to avoid repetition,
we fix here 0 < a < b < oo, and all statements made in what follows are assumed to hold for all s € [at, bt]
with probability tending to 1 as t — 0.

11.1 Contribution of 1%,

Proof of Lemmali11l Recall that B;s = By, (Zs) and note that, since u'?(x,s;t) < u(x,s), @30)
implies

u®(x,s;t
lim sup Ig,, Z g = 0 in probability. (11.12)
t_mose[ut,bt] x¢Bys U(S)

We thus only need to consider the sum over x € By 5. Using the strong Markov property for X, we may write

TBCS
U(z)(x, S, t) = IEx |:eXp {/0 iz C(X@)de} u(XTBEs,S — TB;S) H{XS_OrTBEngt}:| . (11.13)

Consider the event

Rise = {T(Dzs)c >0 > TBV(ZS)} , (11.14)
introduce the functions
11 (x,0) == Ey [efoe &(Xu)du E{XGZO}QRZW] (11.15)
and
s (x,0) 1= Ey [efoeg(xu)du H{XGZO}Q(RZ&Q)C} (11.16)

and define u\” (x,5;t), i = 1,2, by substituting u; for u in (IT.13). Then, clearly, we have u® (x,s; t) =

i
u<12) (x,s;t) + u(z2> (x,s;t). Our strategy is to separately estimate the contribution of u(lz) and u(22>.

Starting with u(22>, we claim that, for all 0 < s,

uy(x,s —0) < eg(z‘j*g(o))uz(x,s). (11.17)
Indeed, (TT.17) can be obtained from (TT.76) with 6 = s by intersecting with the event (R}, ;)N { Xy =
0V u € [s — 0,s]} and applying the Markov property. The inequality (T1.17) in turn shows
7/[(2)(3(/5; t) T.(2d 0 201 uz(x,S)
Z 2—§|Byt’et( +16(0)[+201nz 1) Z NEAATA (11.18)
XEBy U(s) rezd U(s)

where we bound ¢(Xp) < 2p1Iny t by Lemma [5.1] noting that Bys C By. By (4.31H4.32) (and invariance
under time-reversal of the law of X), on G; ; we can bound (11.18) by

|B,,| exp {—t‘(lnt‘)_2 + T¢(2d +|¢(0)| +2p1ny t)} , (11.19)

which tends to 0 as f — oo.

Thus we are left with controlling u(f). To this end, recall the setup of Lemma|5.15{and set A := Df,s

and I := By (Zs). Applying (6.50) with ¢ substituted by ¢ — s and then (5.49) to u1, we obtain, on G s,

o

-5
s =6) < e (nfgh0)) g0 L nls) <o Wha S nmul), 1z
ye
yel
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where A ; is the largest Dirichlet eigenvalue of HD?,S and ¢, is as in Proposition ii). Inserting (11.20) in

the definition of u(lz), we obtain, for some constant ¢y > 0,

D

xeBt,s

Since Bys C Dy, (6.5) shows that maxyep,, §(x) — A7, < 2d. Applying Proposition i), on Gi s we
may further bound (11.21) by

uf) (x,s;1)

B o
UGs) < couf sup ¢fs(x) sup Ey |elo " (E(Xu)=Az,)du Ly <Ti} | - (11.21)

X¢Bt,5 XEB[,S

cocipdecam+2dTy (11.22)
Since (11.22) tends to 0 as t — oo, the proof of Lemma is concluded. [

11.2 Contribution of ).

Let Affks) (,biks) be the ordered Dirichlet eigenvalues and respective orthonormal eigenfunctions of the Ander-
son operator in B;s. We extend the eigenfunctions to be 0 outside of B;s = By, (Zs). In our previous

notation, A} = /\,(515) and ¢y = CPSS)/ ||<Pils)

0 (z4)- We start with the following important fact.

Lemma 11.3 Forany 0 < a < b < oo, with probability tending to 1 as t — oo,

sei[letfbt] Ape > ar, — x +o(1), (11.23)
and
sei[letfbt] Afe— A3 > 1pIn2. (11.24)

Proof. By Proposition Lemmaand ar, = d, +0(1), may assume that /\(C}t)s > ar, —x +o(1).
In particular, Ct s € Q‘L,A forany § € (0,1), so by Lemma i),

Agzs — Aggs > lpIn2. (11.25)

t,s

Furthermore, by Lemmatogether with Theorem 2.1 of [BK16] (note that /\(C}t)s — Ay >0y, —2Ay),

Since Bys C Cig, A8 < Ag:s by the minimax formula (see e.g. the proof of Lemma 4.3 in [BK16]).

Ay 1-2(ps—v1)
) : (11.26)

(1) o _ A1
Apg > /\Ct,s 2d (1 + 1]
Now (11.23H11.24) follows from (11.25H11.26). O

Lemma|11.3|will allow us to prove the following localization property for cpfg

Lemma 11.4 There exist c1,cp € (0,00) and, for fixed R € N, a constant ex > 0such that, for all
0 < a < b < oo, the following holds with probability tending to 1 as t — co: For all s € [at, bt],

P (x) < cre 2%l wx e Zf, (11.27)
and
pra(y) > ek Vy € Br(Zs). (11.28)
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Proof. Fix A1, v1 as in Lemmal5.6|and take > v7. By Lemma 4.2 of [BK16] and (11.23),

Ay ~20r=m)
(1) 1
Y (0] < (1+2d) , (11.29)
XEBts\Br(Zs)
proving (11.27). The bound (11.28) is obtained using (11.27) and Lemma as in the proof of Proposi-
tion [4.9]ii). O
We can now finish the proof of Lemma

Proof of Lemmal[11.2 Using the Markov property, we can write

u(l)(x, s; t) E, |:efo &(Xy) du (XTt/S — Tt) ]l{TBf >Tt}] . (11.30)
Since

(x, T) |:ef0 ¢ (Xu)du (XT,S — Tt) IL{TBc >T}:| (11.31)
t,s

solves the parabolic equation (5.4) with A := B; ¢ and initial condition (-, s — T¢), an eigenvalue expan-

sion as (5.43) gives

|Bs|

(x,s;t) 2 eTf)‘fs fs (cpg‘g,u(-,s —Ty)), (11.32)
where (-, -) is the canonical inner product in Ez (Z%).
Set UV (s;t) 1= Y ycza U (x, ;1) and note that, by Lemma

ul(s;t)
O

hm sup lg,, ‘:0 in probability. (11.33)

© selat,bt]

Hence it is enough to prove (T1.11) with U (s) substituted by U™ (s; t). Using (T1.32) we may write

Ut (x,s;t) _ Pra(¥) + Ers(x)

= (11.34)
U(s; ) 112 ll 1 (z0) + Lveze Ers(x)
where
[Bes| s — 1T,
Eis(x Z e Lt(A ts* s 4;t (x) <¢ts' u( t)> (11.35)
(pte (/s —Th))
Noting that || ¢} . (zd) = e ) = 1, we obtain
uM (., st 1 slleza)
- < ||E 1 11.36
Tt~ 950, g, = VBl {1+ gy + mons (1139
and our problem is reduced to showing that
thm sup 1g,, (zd) = 0 in probability. (11.37)

s€at,bt]
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To this end, we first use the Cauchy-Schwarz inequality and Parseval’s identity to obtain
1

1

o~ TiAR)-A) %i 02 2 BZ< o " 2

|Ets(x)] < (¢rsr L ¢po (-5 —Tp
(‘l’i,ls)/”('rS—Tt» = =

T -AY) luCs = Tl (za)

(pre,u(-,s = T))

Once we show that, for some positive constants ¢, c1, on gt,s

I, (x). (11.38)

(-5 = Ti) | 2(zey < coe” ™His U(s), (11.39)
and
(Pl u(-,s = T)) > cre” s U(s), (11.40)
then using (11.38411.40) and (171.24) we will be able to bound
Co _pln2
sup 1g,, [|Etsllpize) < —GBpe)e™ 3 1 (11.41)
s€at,bt] 1
which tends to 0 as t — oo by our choice of T;. Thus it only remains to prove (11.39H11.40).
We start with (11.39). By the triangle inequality,
(s = Tl p(zey < llua (s = Te) l2(zay + l12(rs = Te) | 229 (11.42)
where 11, 1 are defined as in (11.15H{11.16). Reasoning as in (11.17H11.19), we can see that, on G; 5,
[u2(rs = T)lp(zay _ Nua(ers = Tl gz
U(s) - Ufs)

< exp {Tt(zd +|E(0)]) — t(lnt)_z} <e T (1143)
since A}y < maxyep,, ¢(x) < 2plny t by Lemma On the other hand, using we get, on G g,

lur(s = T)llpgzey s
<eg,
U(s)
since Ay > A} ;. This shows (11.39).
For (11.40), let uV, u® be as in and write
(u(-/5), o) = (W), 910) + (W (-, 5:8), ¢}))
= el (u(-,s = To), ¢1 1) + (1 (-, 5:1), 90) (11.45)

e This < g, 5e T (11.44)

to obtain
W\ _ —TiA? 1 i (1)
(s = T, ¢f) = e T Lu(,),9) = (W (0, 0f) (1140
Fix R € IN such that (4.30) holds with 6 < % and, for this R, take € > 0 as in (11.28). Then on G; s we

can estimate

sl gl) 2 L gu(ns) 2 eh(1-U(s) > JekU(s) (1147
x€BR(Zs)
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On the other hand, by Lemma , the second term inside the brackets in (11.46) multiplied by ﬂgt,s is

smaller than €% U (s) /4 with probability tending to 1, proving (T1.40) with ¢; = }18;{. This concludes the
proof of Lemma|11.2 [

A. A TAIL ESTIMATE

In this section we prove (7.16) for Yt given by (7.20) using an approach from [BK16]. We will strongly rely on
Assumption [2.1] The first step concerns the tail of C.

Lemma A.1 Forany e > 0, there exists ty > 0 such that, for all t > t,
t% Prob (£(0) > @y 4 sdy) < e 1789 s >0, (A1)

Proof. Recall the definition of F in (Z.). Note that £ = exp(ef(@)) to write

“In {throb (E(0) > @ + sdt)}
_ oF(@) (ep(msdt)#(aﬁ) _ 1) > of (@) {F(a@; +sd;) — F(@)} (A.2)

where in the last inequality we used e¥* — 1 > x. Using (2.2) and the Mean Value Theorem, we obtain
F(@; +sd;) — F(@;) > sd;(1 —¢)/pforalls > Qif t is large enough. Since d; = peF(@), follows
from (A.2). U

Lemma [A.1|will allow us to reduce the sum in to |x| < 6d460t/d;.
Corollary A.2 Foranyn € R, 6 € (0,00),

lim Y Prob (?t(o) > |(;C_t| + ;7) =0. (A.3)
foee x€(2N;+1)Z4
|x|>6d0t/d;

Proof. Recall that maxyep ¢(x) > )‘% by (5.5). Using a; = a; — x +0(1) and x < 2d, we obtain,
t
foreach L € IN, t
- o x|
1 Prob | Y;(0) > —
im sup ) ro < +(0) or T

f= re(2N+1)z4
|x|>6d6t/d;

: o de (]x]
<limsup ) | B, |Prob (C(O) >+ (W —1—217))

f=e0 re(2N4+1)2Z7

By 2N + 1
<limsup Z Mexp _% |[x[(2N: +1) +2n
t—o0 erd td Qt

|x|>Lt/(2N;+1)

= ef‘%(%ﬂﬂ)dz
|z|>L
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by Lemmaand (2.6). Since the integral converges to 0 as L — oo, (A.3) follows. O

To control the sum in (7-16) with |x| < t646/d;, we will use the following lemma.

Lemma A.3 There exist co, e > 0 such that, for all large enough t and s > 0,
d

(2N;)4

Before we prove Lemmal|A.3] let us finish the proof of (7.16).

Prob <l7t(0) > s) < 4e 0% t7F, (A.5)

Proof of (7-16). By Corollary [A.2] we only need to control the sum for |x| < t6d0/d;. Fix 1 € RR. Letting
n > 0]n| and |x| > nt, we have 0 < |x|/(6t) + 1 < 6d/d;. Thus we may bound, by LemmalA.3]

) Prob (?t(O) x| + 17)
P ot
xE(ZNH—l)Z
nt<|x|<t6d0/d;

d N; )4 N
< Cz(ltl’: t) i Z (Zﬁt) 2exp {_CO <% —|—7]>} (A.6)

xezf
nt< \x| (2N¢+1)§t6d9/dt

for a constant c; > 0 and large enough £. To conclude (7.16), note that the right-hand side of converges
ast — oo to

2 o0 (+7) dz, (A7)

|z|=n

which converges itself to 0 as n — ©o. ]

The remainder of this section is dedicated to the proof of Lemma|A.3] Note that Assumption[2.1]implies
that 5(0) has a density f with respect to Lebesgue measure given by

Flr) = { F'(r)exp {F(r) - eF(r)} , > es.sinfg(O), (A8)
0 otherwise.

The following bound holds for f.
Lemma A.4 Fixa finite A C 7% and two functions o, : A — R. Then, as t — oo,
f (@ + 4’ x) +a(x)d) L
<expi —(1+o a(x)e * +o(1)La(e) (A.9)
=7 900 D) ) +()

where L (@) is as in and o(1) is uniform on A and on «, ¢ whenever a(x) > 0 and |¢(x)| is
uniformly bounded. If additionally «(x) is uniformly bounded, then equality holds in (A.9).

Proof. One can follow the reasoning leading to the proof of Lemma 7.5 in [BK16]. L]
Fix now ¢g := %e*3(d+1)/9; this will the constant appearing in (A.3). The following corollary is a

convenient rephrasing of (A.9).
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Corollary A.5 There exists ty > 0 such that, forall t > tg,s > 0, A C Z% and all w, p: A — R
witha(x) >0, —2(d+1) < ¢(x) <1,

I f( at+§0 x) + sa(x)d;) < exp{—ZCOS Y oc(x)+£A(€0)}- (A.10)

XEA at + 90( )) xezd

We can now prove LemmalA.3

Proof of LemmalA3. For t > 0 such that a; > essinf (0) + 1, define the continuous map

r ifr <a;—1,
Fis(r):=< r—sd; if r > ay + sdy, (A.11)
linear, otherwise.

Then F ¢ is bijective with the inverse given by

r ifr <a;—1,
Filr) =1 r+sd,  ifr>ay, (A.12)
linear, otherwise.

Let & s(x) := Fis(&(x)). Then &t s(x) is absolutely continuous with respect to &(x) with density

dés(x) 1 1 ifr <a;—1,
, _ _ A13
dé(x) (r) (1 +sdt)]l{’<at} f(—j;'(sr)(r)) otherwise. (A13)
Recalling that /\gl){ (&) denotes the principal Dirichlet eigenvalue of A + ¢ in B, define
Gts := {C: A(Bl;t(gf) > q; + sdj, LBRt(C a;) <1In2, nelgx ¢(x) giz}—i—l}. (A.14)
X Ry
Since ¢(x) —2d; < &is(x) < E&(x), ¢ € Gy implies Gt s € Gy . Write
. FE(x
Prob (&5 € Gro) = E | 1,,(€) (1 -+ sdy) (7B m-1<s<al} T f(Fps (E(x))) A5
' Al FEG)
(?(X)>€lt71
where E denotes expectation with respect to Prob. Bound the middle term in by
(14 sdy)Bril < es@2RADT < gsea (A.16)

for large ¢ by (5.11). For the product term, define ¢(x) := ¢&(x) — @ and a(x)

>
¢(x) +sde(x) = ft_sl(é(x)). Noting that, if & (x) 7# Othen —2(d +1) < ¢(x) <

0 by the equation
1, by Corollary

R E)
’ <2 -2 (A7)
xeBRt:I;(!c)%ztl f(C(X)) oF o XEBR,: EZ(;C)>at1a(x)
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since L, (¢) < In2on G;. Moreover, on this event we have ¢(x) > a; and thus a(x) = 1 for some
X € Bg, since maxyepy, ¢(x) > Agl){ (&). Noting now that, by and Lemma 6.4 of [BK16],
t

Prob (Ag;t(g) > ap + sdt> < Prob (& € Gys) + ot~ @) (A.18)

for some g9 > 0, we obtain by
Prob (Ag;t(g) > ap + sdt> < 2e~“05Prob </\g; (&) > at> + o(t~(d+e0))y, (A.19)

t

To pass the estimate to A};’ (&), note first that, by Lemma 7.6 of [BK18],
Nt

d

limsup —————Prob (A B (6) = at) <1, (A.20)

t—o0 (2Ri’)
and thus for large t the right-hand side of (B.19) is at most 3 e 05 (2R; /)% + o(t~(4+20)) Moreover, by
Lemma 7.7 of [BK16] applied to t; := a; — ar + sd; and R} := (Inp L)?,

td
(2N;)4
for £ large enough, noting that o(L~%) and 0(1) in equation (7.27) of [BK16] are uniform on the sequence
tr. Note that the factor 2 multiplying R and Nt here and not in [BK16] appears since our boxes have side-

length 2R + 1 while theirs R. Recalling that N; >> tP for some f > 0 and taking ¢ := £ A (Bd), the
lemma is proved. L]

(1)
Prob ()‘BA

Ni

(&) > a; + sdt) < N4 4e 05 4 o(t %) (A.21)

B. COMPACTIFICATION

Let ¢ := (R x R%) U[0,00) be equipped with a metric d defined by setting, for 8,8’ € [0, o) and
(A,z),(M,Z) € R x RY,

! oA 2zl
d(6,6") :=[6 -0 d(6,(A,z) i=e* + ‘1\/)\ ,
2] 2 (B.1)
I VY o a—AAN =A== |z B
A2 (1z))i=e <1 © )+ VA TV

One may verify that d is indeed a metric under which & is separable, complete and locally compact. More-
over:

Lemma B.1 Forany (6,7) € (0,00) X R, the set Hg C € defined in is relatively compact.

Proof. Note that the closure of Hg in ¢ is given by

_g:{(A,z)elele: /\—%ZU}U[O,G]. (B.2)

Fix a sequence (Ey),eN in Hg and consider the following three cases:

1 B, € [0, 8] for infinitely many n;
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2 B, = (Ay,zn) € R x R¥ for all but a finite number of 7 and (A, ) e is bounded, implying that
{Z,: n € N} is contained in a compact subset of R x R¥;

38, = (Auzn) € RX R for all but a finite number of 7 and lim,, . A, = 00. Note that
limsup, . |zu|/An < 6.

As is directly checked, in each case there exists a subsequence converging in € to a point of H_g, thus
proving the claim. L]

We finish the section with the following important property of &.

Lemma B.2 For any compact set K C €, there exist 0 € (0,00) and 1 € R such that KN (R X
RY) C HY.

Proof. Cover each x € K with an open set Hz’; U [0, 8x) for some 0 > 0,%, € R. Use compactness to

extract a finite subcover corresponding to x1,..., Xy and set 6 := maxfil 9xi, n= minf\il 1], to obtain
the result. U

C. PROPERTIES OF THE COST FUNCTIONAL

In this section we prove Lemmas 7.5 [7.6]and
Proof of Lemmal[7.5(i). Fix 6y < 01 and set (A;,z;) = 3591)(73)(91-), i=0,1.Then
90()\1 — )L()) < ‘19(21)’ — |l9(20)| < 91(/\1 — /\0) (C.1)

by the definition of ¥’ (7), so that all three functions are non-decreasing. Now, if (Ao, zo) # (A1,21),
then one of the inequalities above is strict, since otherwise A1 = A, |8(z1)| = [8(z0)| and we would
have (A, z;) € GS)(P)(G]-) with i # j € {1,2}, implying that (A1,z1) = (Ao, zo) by the definition of

EY (P). This concludes the proof. O

Proof of Lemma[7.5(ii). We will first consider the case | supp(P)| < co. We may assume | supp(P)| >
2 since otherwise there is nothing to prove.

Consider first the case i = 1. ‘1’59”(73) is continuous as the pointwise maximum of finitely many
continuous functions. Lemma i) implies that 3591)(73) jumps finitely many times, and thus has left lim-
its; let us to show that it is cadiag. Fix 69 > 0 and let (Ag,z9) = Ej'(P)(6p). Note first that, if
(A,z) € Y (P)(6o), then Y§ (A, z) < 9¥(Ao,zo) for all @ > 6 because A < Ag by definition.
On the other hand, if (A, z) & &Y (P)(6o), then there exists J) . > 0 such that )5 (A, z) < g (Ao, z0)
for all @ € [0p, 6 + J -]. Setting & > 0 to be the smallest among these, we can see that

(Mo, z0) € By (P)(8) C &Y (P)(8y) VO € [6o, 60 + J] (C.2)

implying 2’ (P)(0) = EY’(P) () for all 8 € 6y, 6 + ], i.e., Z(P) is right-continuous.
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Assume now by induction that the statement of Lemman) has been proved in the case | supp(P)| <
ooforalli < k — 1,k > 2. Note that, by the definition of CI>19

DY (P)(0) = 1 P4V (Pz) (0 C3
where Pg(-) = P(-\ {E}). Since E}’(P) is cadlag, it follows from the induction hypothesis that

@Y (P) is also cadlag. To prove in addition that ¥y’ (7P) is continuous, we only need to show that, if
o= Eg)(P)(G—) #* :E;)(P)(G) =: &, then "F kil)(PEO)(G) = <1(71)(775)(9); but this follows from
the definition of ¥ ") since, by the continuity of ¥y (P), ¥§ (E9) = yg (Z). This finishes the proof in the
case | supp(P )\ < oo.

The case | supp(P)| = oo can be reduced to the previous one as follows. First note that we may
substitute (0, 00) by [a, b] with 0 < a < b < oo arbitrary. Fix i € IN. Since Hg TR x R as N — —oo,
Hg is relatively compact and P? € .4, there exists an 7 € R such that i < |supp(P?) N Hyl <
7319(7'(2) < c0. Noting that, on [a, b], @5 (P) = @Y (P’) where P'(+) := P(- N {(A,2): (A, 8(z)) €
HY n 1), we fallinto the previous case.

For the last statements, note that the proof above shows that =) (‘P) jumps finitely many times in each

[
compact interval [, 62] C (0, 00). Moreover, if $(Z§’(P)(61)) # 0and ZY(P) is constant in [61, 65],
then Y\’ (P) is strictly increasing in [61, 62]. O

Proof of LemmalZ.8. We first consider the case 1 < | supp(P)| < oo. By Proposition 3.13 of [R87], for ¢
large enough there exist bijections T : supp(P) — supp(Pt) such that

lim sup dist(Ty(E),E) = (C.4)
t_moEEsupp(P)

Moreover, letting 7¢ (A, z) := (A, 9¢(z)), by and supp(P) NR x {0} = @ we have

lim sup dist(Z;oTy(E),E) =0, (C.5)
f=eo Zesupp(P)

and 7; o T} is a bijection onto supp(P?t). In particular, 73;9* — P.
Let ap := a and, recursively for £ € IN,

a;:=inf{0 > a, 1: 31 <i < |supp(P)|,EY(P)(8) # EY (P)(ar_1)}- (C.6)

Note that E(” (P) jumps finitely many times: for i = 1 this follows by Lemma [7.5(i), and for i > 2, by
induction using (C.3). Thus £« = ¢y (a, P) := inf{l > 0: a5, = oo} < 0.

We proceed by induction on £, starting with £, = 0. Since P € .2, the values i — 1, (27 (P)(a))
are all distinct, which together with (C.4)—(C.5) implies that ng(Pt)(a) = T (EY(P)(a)) for all i when ¢
is large enough. In particular, implies the result in the case £, = 0. Assume by induction that, for some
L € N, the statement has been proved for all @’ € (0,00) and P’ € .4 satistying | supp(P’)| < oo
and £, (a’,P") < L —1, and suppose that ¢, = ¢,.(a, P) = L (in which case necessarily | supp(P)| >
2).
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Note now that, because P € ¢, there exists a unique i1 such that both Z(1)(P) and E1+)(P)
jump at a; while 2% (P) is continuous at a for all i ¢ {iy,i; + 1}. Furthermore, E(1)(P)(ay) is the point
2 € supp(P) minimizing F, (&, ) (P)(a)) where

|zl —lz|

Fo((A1,21), (A2, 22)) = { won > Azand volhvz) <wolhoz) (oq)
00 otherwise,

and also a1 — a = F,(EW(P)(ay), 2D (P)(a)), E*V(P)(ar) = EW(P)(a).

Let now aj, £% be the analogous of a, £ for E(it)(Pt) and fix a’ € (ay,a;) N Q. By (C4—(C5) and
SZ(Pt) does not jump in [a,a’] forall i & {iy,i; + 1}.
Moreover, Eg:)(Pt)(aﬁ) = T,(EW(P)(a1)), Eg:+l)(77t)(ai) = Eg:>(73t)(a) = Ty(EW(P)(a)),
a} <a' <aband

the previous discussion, when t is large enough, =

a1 —af| = | Fa(EY (P)(ar), EV(P)(a)) — Fu(Ef) (Po)(a}), By (P) (a)|
< __max ’.'Fa(El, 32) - fa(Tt(El), Tt(Ez))’ — 0 (C.8)
E1,5pesupp(P) t—o0

.7:,1 (31,52)<00

by (C-4). Define now a time change 0% : [a,a’'] — [a, a’] by setting

oi(a) =a, oi(ay) =a}, oi(a’) =a andlinear otherwise. (C.9)
Then, by and (C.3),
lim sup sup |o:(0) — 6|V <1>g2(73t)((7t(9)) - <I>(i)(73)(9)‘ =0. (C.10)

f=e0 1<i<|supp(P)| 0€a,a’]

Since £,(a’,P) = L —1and P € .4 , by the induction hypothesis we can extend 0} to [4, c0) in such

a way that holds with [a, a’] substituted by [a, 00), finishing the proof in the case | supp(P)| < co.
Consider now the case |supp(P)| = oo. Let us first show (7.44). Fix k € IN and a point b €

—

(a,00) N Q. Note that, since P € &, b is a continuity point of @ (P) forall 1 <i < k. Letn € Rbe
negative enough such that, for all { large enough,

k < |supp(P) NHj| = | supp(Pr) N Hj| < Pe(HZ ) = P(HZ“) < oo, (C.11)

where ¢, € (0,1] is as in (7-43); this is possible because P € .#p and P; — P. Moreover, since
supp(P) NR x {0} = @, by (7.42)—(7-43) we may also assume that

k < |supp(73tl9t) NHy|  and supp(Ptﬂt) N HZ cT; (supp(Pt) N H%b/c*> , (C.12)

where 7; is defined right before (C.5). Now (C.11)-(C.12) imply that, on [a, b], @7 (P) = P (P’) and
@gt)(Pt) = QDSE(P[) forall 1 < i < k, where P'(-) := P(- N 'H;"/°) and analogously for P}. Since
P} — P’, (744 follows by the previous case and Theorem 16.2 of [B99]). The convergence Ptﬁt —

P follows from (C:12), (7.42) and Py — P (note that b, 17 above can be taken arbitrarily large, respec.
negative). L]
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Proof of LemmalZ8 For (A,z) € R x (R \ {0}), let

o i. Pp(A,Z') > y(A,z) or
AN, z) = {(A,z) € R x R*: BV 2) = dp(A2) and AV > A [ (C.13)
Note that, by the definition of P?, F2 (P, A,z) = P? { A(A,9(z))}. Since 8(zt) — z. by and
73;9* — P by Lemma we may assume that %;(z) = zforallz € R,

Now, since P € /ZZB F(P, Ay, ze) =P {HE and there exists a & > 0 such that
P Py (Assz4)

P {Hfbb(m,z*)—é} =1+P {HZ)b(A*,z*)M} . (C.14)

On the other hand, since Py — P and (A, z:) — (A, z4«), when t is large we also have

b b b b
Py s} = P {0 mie ) a0 (Aeze) € Moy s\ oise (©19)

In particular, for all f large enough,

_ b _ b _ b
Pt {A(/\trzi‘)} — Pt {Hllib()\*,z*)—‘ré} - P {Hlpb()\*,z*)—l—é} == 73 {H¢b()\*/z*)} y (016)
concluding the proof. O

REFERENCES

[Ast12] A. ASTRAUSKAS, Extremal theory for spectrum of random discrete Schrddinger operator. Il. Distributions with heavy
tails. J. Stat. Phys. 146:1, 98-117 (2012).

[Ast13] A. ASTRAUSKAS, Extremal theory for spectrum of random discrete Schrédinger operator. lll. Localization properties. J.
Stat. Phys. 150:5, 889-907 (2013).

[B99] P. BILLINGSLEY, Convergence of Probability Measures, 2nd edition, John Wiley & Sons, New York (1999).

[BKO1a] M. Biskup and W. KONIG, Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29:2,
636-682 (2001).

[BKO1b] M. Biskup and W. KONIG, Screening effect due to heavy lower tails in one-dimensional parabolic Anderson model, J.
Stat. Phys. 102:5/6, 1253—-1270 (2001).

[BK16] M. Biskup and W. KONIG, Eigenvalue order statistics for random Schrédinger operators with doubly-exponential tails,
Commun. Math. Phys. 341:1, 179-218 (2016).

[CM94] R. CARMONA and S.A. MoLCHANOV, Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 no.
518 (1994).

[FM14] A. FIoboRoV and S. MUIRHEAD, Complete localisation and exponential shape of the parabolic Anderson model with
Weibull potential field, Electron. J. Probab. 19:58, 1-27 (2014).

[G99] G. GRIMMETT, Percolation, Second edition, Springer, Berlin (1999).

[GH99] J. GARTNER and F. DEN HOLLANDER, Correlation structure of intermittency in the parabolic Anderson model. Probab.
Theory Relat. Fields 114, 1-54 (1999).

[GKMO7] J. GARTNER, W. KONIG and S. MOLCHANOV, Geometric characterization of intermittency in the parabolic Anderson
model. Ann. Probab. 35:2, 439—499 (2007).

[GM90] J. GARTNER and S. MOLCHANOV, Parabolic problems for the Anderson model I. Intermittency and related topics.
Commun. Math. Phys. 132, 613-655 (1990).

[GM98]  J. GARTNER and S. MOLCHANOV, Parabolic problems for the Anderson model Il. Second-order asymptotics and struc-
ture of high peaks. Probab. Theory Relat. Fields 111, 17-55 (1998).



66

[HKMO6]

[HMS08]

[K16]
[KLMS09]

[LM12]

[M02]

[M94]

M11]

[MOS11]

[MP14]
[MR94]

[R87]
[S98]
[ST14]

R. vAN DER HOFSTAD, W. KONIG and P. MORTERS, The universality classes in the parabolic Anderson model. Com-
mun. Math. Phys. 267:2, 307-353 (2006).

R. VAN DER HOFSTAD, P. MORTERS and N. SIDOROVA, Weak and almost sure limits for the parabolic Anderson model
with heavy-tailed potential, Ann. Appl. Prob. 18, 2450-2494 (2008).

W. KONIG, The Parabolic Anderson Model, Pathways in Mathematics, Birkhauser (2016).

W. KONIG, H. LACOIN, P. MORTERS and N. SIDOROVA, A two cities theorem for the parabolic Anderson model, Ann.
Probab. 37:1, 347-392 (2009).

H. LACOIN and P. MORTERS, A scaling limit theorem for the parabolic Anderson model with exponential potential,
in: J.-D. Deuschel et al (eds.), Probability in Complex Physical Systems In Honour of Erwin Bolthausen and Jiirgen
Gértner, Springer Proceedings in Mathematics 11 153—179, Springer (2012).

J.B. MARTIN, Linear growth for greedy lattice animals, Stoch. Proc. Appl. 98, 43—66 (2002)

S. MOLCHANOV, Lectures on random media. In: D. Bakry, R.D. Gill, and S. Molchanov, Lectures on Probability Theory
pp. 242—-411, Lecture Notes in Mathematics 1581, Springer (1994)

P. MORTERS, The parabolic Anderson model with heavy-tailed potential. In: Surveys in Stochastic Processes, Pro-
ceedings of the 33rd SPA Conference in Berlin, 2009. Edited by J. Blath, P. Imkeller, and S. Reelly. EMS Series of
Congress Reports. (2011).

P. MORTERS, M. ORTGIESE and N. SIDOROVA, Ageing in the parabolic Anderson model, Ann. Inst. Henri Poincaré (B)
Prob. Stat. 47:4, 969—1000 (2011).

S. MUIRHEAD and R. PYMAR, Localisation in the Bouchaud-Anderson model, to appear in Stoch. Proc. Applic.

S. MoLcHANOV and A. RUzMAIKIN, Lyapunov exponents and distributions of magnetic fields in dynamo models. In
The Dynkin Festschrift: Markov Processes and their Applications. (Ed. Mark Freidlin) pp. 287-306, Birkh&user (1994).

S.l. RESNICK, Extreme Values, Regular Variation, and Point Processes, Springer, New York (1987).
A.-S. SZNITMAN, Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998).

N. SIbOROVA and A. TWAROWSKI, Localisation and ageing in the parabolic Anderson model with Weibull potential,
Ann. Probab. 42:4, 1666—1698 (2014).



	1. Introductionto.44em.
	2. Main resultsto.44em.
	  2.1. Assumptionsto.44em.
	  2.2. Results: Mass concentrationto.44em.
	  2.3. Results: Scaling limitto.44em.
	  2.4. Results: Agingto.44em.
	  2.5. Results: Limit profilesto.44em.

	3. Connections and heuristicsto.44em.
	  3.1. Relations to earlier workto.44em.
	  3.2. Some heuristicsto.44em.

	4. Main results from key propositionsto.44em.
	  4.1. Definition of the localization processto.44em.
	  4.2. Properties of the cost functionalto.44em.
	  4.3. Mass decomposition and negligible contributionsto.44em.
	  4.4. Localizationto.44em.
	  4.5. Proof of mass concentration resultsto.44em.
	  4.6. Proof of aging and limit profilesto.44em.

	5. Preparationsto.44em.
	  5.1. Potentials and eigenvaluesto.44em.
	  5.2. Islandsto.44em.
	  5.3. Connectivity properties of the potential fieldto.44em.
	  5.4. Spectral boundsto.44em.

	6. Path expansionsto.44em.
	  6.1. Key propositionsto.44em.
	  6.2. Mass of the solution along excursionsto.44em.
	  6.3. Equivalence classes of pathsto.44em.
	  6.4. Proof of Propositions 6.1--6.2to.44em.

	7. Analysis of the cost functionalto.44em.
	  7.1. A point process approachto.44em.
	  7.2. Order statistics: proof of Propositions 7.1 and 4.3 and Theorem 2.7to.44em.

	8. Mass decompositionto.44em.
	  8.1. Lower bound for the total massto.44em.
	  8.2. Macrobox truncationto.44em.
	  8.3. Negligible contributionsto.44em.
	  8.4. Upper bound for the total mass and proof of Theorem 2.6to.44em.

	9. Localizationto.44em.
	10. Path concentrationto.44em.
	  10.1. Fast approach to the localization centerto.44em.
	  10.2. Path concentrationto.44em.

	11. Local profilesto.44em.
	  11.1. Contribution of u(2)to.44em.
	  11.2. Contribution of u(1)to.44em.

	A. A tail estimateto.44em.
	B. Compactificationto.44em.
	C. Properties of the cost functionalto.44em.

