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In this note we derive an exact formula for the Green’s function of the ran-
dom walk on different subspaces of the discrete lattice (orthants, including the
half space, and the strip) without killing on the boundary in terms of the Green’s
function of the simple random walk on Zd, d ≥ 3.
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1 Introduction

The literature encompassing random walks on subgraphs of the square lattice is very rich,
spanning not only probability theory, but also combinatorics, queueing theory, and algebraic
geometry (Bostan et al. (2014), Bousquet-Mélou and Schaeffer (2002), Denisov and Wachtel
(2015), Fayolle et al. (1991), Kurkova and Malyshev (1998), Raschel (2012), Uchiyama (2010)
to mention only a few). In this short note we focus on one particular observable of the random
walk, the Green’s function, which measures the local time of the walk (Lawler and Limic, 2010,
Chapter 4). In this short note we answer the natural question of whether this quantity is directly
related to the Green’s function g(·, ·) of the simple random walk on the whole lattice Zd. We
will be concerned with the transient case, that is, when g is finite, although our formulas can be
derived in the recurrent setting adding an extra killing to the walk. To the best of the authors’
knowledge, explicit formulas for the Green’s function were obtained only in the case when a
killing is imposed on the boundary of the graph, for example on the axes (Lawler and Limic
(2010, Chapter 8)) or for walks with Neumann and reflected boundary conditions (Ganguly and
Peres (2015) study for example the scaling limit of reflected random walks in a planar domain).
We obtain a closed formula for the Green’s function in any subspace which is the intersection
of m hyperplanes, m ≤ d in d ≥ 3, and for the strip of fixed width in d ≥ 4. Using a simple
“folding” technique, we fold Zd onto each of these subgraphs, and by electric networks reduction

1



we deduce a representation formula exclusively in terms of g, which enables also to approximate
numerically the Green’s function in each of these subgraphs by means of Bessel functions.

Structure of the paper After introducing some notation in Section 2, we give the explicit for-
mulas for the Green’s function of the half space in Section 3, the strip in Section 4, and of the
orthant in Section 5.

2 General setup

Let G = (V,E) be a connected graph of bounded degree with vertex set V and edge set E.
We will write x ∼ y if {x, y} ∈ E. We endow each edge {x, y} ∈ E with a positive and finite
conductance cG(x, y) and for each x ∈ V we write πG(x) :=

∑
y∼x cG(x, y).

Let (Sn)n∈N0 be a discrete time random walk on G with transition probability

P(Sn+1 = y|Sn = x) =
cG(x, y)

πG(x)
.

Then Sn is a reversible, irreducible Markov chain on G with stationary measure given by πG . If
the random walk is transient, then we can define the Green’s function

GG(x, y) =
1

πG(y)
Ex

[∑
m≥0

1{Sm=y}

]
, x, y ∈ V, (2.1)

where Ex is the expectation with respect to the random walk (Sn)n∈N0 started at x ∈ V . It is
easy to see that GG(x, y) = GG(y, x), being the walk Sn reversible with respect to πG .

We will adopt a special notation when the graph has vertex set Zd, edge set {{x, y} : ‖x −
y‖ = 1} and unitary conductances. In this case we are just looking at the classical simple
random on Zd which is transient for d ≥ 3. We will denote its Green’s function simply by
g(x, y), x, y ∈ Zd. Notice that using (2.1) g(x, y) differs for a normalization constant of value
2d from the more classical definition g̃(x, y) := Ex[

∑
m≥0 1{Sm=y}].

Notation. Let
(
e(i)

)
i=1, ..., d

denote the canonical basis of Rd. For a vector v ∈ Rd we use

also the notation v = (vi)
d
i=1 to specify its components and for a vector-valued process X we

specify its components with (Xn)n≥0 = (X
(1)
n , . . . , X

(d)
n )n≥0 . We denote N = {1, 2, . . . }

and N0 = {0} ∪ N.

3 Green’s function on the half lattice

The half lattice H is the graph with vertex set H := {x ∈ Zd : x1 ≥ 0} and edge set
E := {{x, y} : ‖x− y‖ = 1, x, y ∈ H}. We set all the conductances equal to one, so that
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Figure 1: A portion ofH′ with in red the conductances with value 2.

πH(x) = deg(x). The Green’s function of the simple random walk (Sm)m≥0 onH = (H,E)
is simply given, by means of (2.1), by

GH(x, y) :=
1

πH(y)
Ex

[∑
m≥0

1{Sm=y}

]
, x, y ∈ H.

In the case in which one considers a random walk onH with killing on {0}×Zd−1, the Green’s
function has the form

g(x, y)− g(x, y) x, y ∈ H,

where · is the map which takes y = (y1, y2, . . . , yd) ∈ Zd to y := (−y1, y2, . . . , yd)
(see Lawler and Limic (2010, Proposition 8.1.1)). We compare this formula with our result that
considers the case without killing.

Proposition 1 (Green’s function on the half-space). We have, for all x, y ∈ H, that

GH(x, y) = g(x, y) + g
(
x, y − e(1)

)
. (3.1)

Proof. We will work in several steps by reducing our problem from considering a random walk
on the half space to one on Zd. The idea is basically to fold Zd on itself along the line {x : x1 =
−1/2} to obtain a graph which looks like the half lattice plus some additional lateral “combteeth”,
and thus obtain a half space with reflection across the vertical axis. We will explain this now in
mathematical terms.

Let us begin by adding to H all the bonds {z, z − 1/2 e(1)} for all z ∈ {0} × Zd−1. Call this
new graphH′. Let us put for each edge a conductance

cH′(x, y) :=

{
2 ‖x− y‖ = 1/2

1 otherwise
.

(see Figure 1 for a two-dimensional example). It is easy to see that GH′(x, y) = GH(x, y)
for all x, y ∈ H as there is no current flowing through the new bonds and the old ones are
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Figure 2: A portion of Q. Starting from Zd (light gray lines), we split the conductance {x, z}
which has value one in the two conductances {x, y} and {y, z} with value two.

unchanged. Also denote by (Ln)n≥0 the random walk on H′ with transition probabilities given
by pxy := cH′(x, y)/πH′(x).

Consider further the graph obtained from Zd by splitting the conductance on the bond {z −
e(1), z} with z ∈ {0} × Zd−1 into two conductances in series on the bonds {z − e(1), z −
1/2 e(1)} and {z − 1/2 e(1), z}. More precisely on this new graph, which we call Q, put the
following conductances:

cQ(x, y) :=

{
2 ‖x− y‖ = 1/2

1 otherwise
, x, y ∈ Zd ∪

(
{−1/2} × Zd−1

)
.

By Ohm’s law of conductances in series, this ensures that the new graph obtained is equivalent
to Zd. More precisely g(x, y) = GQ(x, y) for all x, y ∈ Zd.

Consider the simple random walk W = (Wn)n≥0 on Q with transition probabilities given by
qxy := cQ(x, y)/πQ(x) and started in H . Write Wn = (Un, Vn) with Un being the pro-
jection of Wn on the first coordinate direction and Vn the projection of Wn on the remain-
ing d − 1 components. Finally, consider W ′ = (W ′

n)n≥0 which is the reflection of W with
respect to the hyperplane

{
x ∈ Rd : x1 = −1/2

}
. In other words, W ′

0 = W0 and W ′
n =

(−Un − 1, Vn)1{Un≤−1/2} + (Un, Vn)1{Un>−1/2}.

As we have already mentioned, by electric network reduction (Lyons and Peres, 2016, Section
2.3), we are able to say that GQ(x, y) = g(x, y) for all x, y and GH(x, y) = GH′(x, y) for
all x, y ∈ H . Moreover by construction πH′ ≡ πQ onH and by checking the first step transition
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probabilities it is easy to notice that W ′ d=L. Therefore, for all x, y ∈ H it holds that

GH(x, y) = GH′(x, y) =
1

πH′(y)
Ex

[∑
n≥0

1{Ln=y}

]
=

1

πQ(y)
Ex

[∑
n≥0

1{W ′n=y}

]

=
1

πQ(y)
Ex

[∑
n≥0

1{Wn=y}

]
+

1

πQ(y)
Ex

[∑
n≥0

1{Wn=y−e(1)}

]
= GQ (x, y) +GQ

(
x, y − e(1)

)
where the second equality uses that W ′ d

= L. The conclusion follows immediately after using
that GQ(x, y) = g(x, y) for all x, y ∈ Zd.

Remark 2. Let N ∈ N and consider the set CN := ([0, N ]× [−N,N ]d−1) ∩H . Let

GCN
(x, y) :=

1

πH(y)
Ex

[τCN∑
m=0

1{Sm=y}

]
, x, y ∈ H,

where τCN
:= inf{m ≥ 0 : Sm /∈ CN}. In fact we are looking at the Green’s function of a

random walk on H which is killed when leaving CN . Then by the arguments of Proposition 1
one can guess that

GCN
(x, y) := gKN

(x, y) + gKN
(x, y − e(1)) (3.2)

where KN := ([−N − 1, N ] × [−N,N ]d−1) ∩ Zd = CN ∪ (CN − e(1)) and gKN
is the

Green’s function of the simple random walk on Zd which is killed when leaving KN . Having this
guess it is straightforward to verify that this is the right choice since GCN

(·, y), y ∈ H , is the
unique solution to{∑

z∼x, z∈H cH(z, x)(GCN
(z, y)−GCN

(x, y)) = −δx(z), x ∈ CN ,
GCN

(x, y) = 0, x /∈ CN
(Lawler and Limic, 2010, Proposition 6.2.2). Notice finally that sending N → +∞ we get back
(3.1) as gKN

(·, ·)→ g(·, ·). This approach offers a concise alternative to prove Proposition 1,
but is of course based on the “educated guess” (3.2).

Remark 3. Another natural case which is worth comparing with (3.1) is the Green’s function of
the process (Sn)n≥0 = (|S(1)

n |, S(2)
n , . . . , S

(d)
n )n≥0, where (S

(1)
n , S

(2)
n , . . . , S

(d)
n )n≥0 is the

simple random walk on Zd. It is easy to see that Sn has the same law of a random walk on H
with conductances c(x, y) equal to 1/2 if x1 = y1 = 0 and equal to one otherwise. Its Green’s
function equals

g(x, y) + g(x, y), x, y ∈ H.
Remark 4. The Green’s function GH is not translation invariant and the maximum of GH(x, x)
is on the hyperplane {x ∈ Zd : x1 = 0}. More precisely it follows from (3.1) that

g(0, 0) = inf
x∈H

GH(x, x) < sup
x∈H

GH(x, x) = GH(0, 0), (3.3)

and that limx1→+∞GH(x, x) = g(0, 0). Notice that even though we could have proven that
supx∈H GH(x, x) = GH(0, 0) with Rayleigh’s monotonicity law, we could not employ such a
technique to obtain the strict inequality (3.3).
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4 Green’s function for the strip

The same idea of folding Zd on itself allows us to obtain a closed formula for the strip SL :=
[0, L−1]×Zd−1 for L ∈ {2, 3, . . .}, d ≥ 4 and nearest-neighbour bonds. The conductances
are set to be cSL

≡ 1 for all the bonds.

Proposition 5. With the above notation one has

GSL
(x, y) =

+∞∑
k=−∞

[
g(x, (kL+ L− 1)e(1) + y)1{k∈2 N +1} + g(x, kLe(1) + y)1{k∈2 N}

]
.

(4.1)

Proof. The idea is to apply a so-called "mountain-and-valley"fold to Zd. We are splitting each
of the conductances connecting the points in LZ×Zd−1 and LZ×Zd−1−e(1), which have
value one, into two conductances in series with value two, then we fold Zd along the lines
{x1 = kL − 1/2}, k ∈ Z, as described in Figure 3. This operation will translate a point
A0 ∈ SL into a family of points {Ak}k∈Z, where

Ak :=

{
(kL+ L− 1)e(1) + A0 k ∈ 2 N +1

kLe(1) + A0 k ∈ 2 N
.

Figure 3: Following traditional origami notation, we are folding the strip and its translates in a
mountain (dot dashed) and valley (dashed) fashion. The points A−2, A−1, A1 are (a
few of) the translates of A0.

By comparing the random walk on the strip and the projection of the simple random walk onto
the strip under the above mentioned folding, one gets (4.1).
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Remark 6 (Transience on the strip). This makes one understand that the Green’s function is
constant along hyperplanes of the form {x ∈ Zd : x1 = a}, a = 0, . . . , L − 1. Note also
that our formula combined with the estimate for the transient simple random walk (cf. Lawler
and Limic (2010, Theorem 4.3.1))

max
{

1, c` ‖x− y‖2−d
}
≤ g(x, y) ≤ max

{
1, cr ‖x− y‖2−d

}
, c`, cr > 0, x, y ∈ Zd

(4.2)
implies that the Green’s function is finite on the diagonal in d ≥ 4, that is, the random walk is
transient on SL.

5 Green’s function on the orthant

LetO be the subgraph of the d-dimensional lattice with vertex set

O :=
{
x ∈ Zd : ∀ i = 1, . . . , d : xi ≥ 0

}
= Nd

0

and nearest-neighbor bonds. This graph is also known with the name of discrete orthant (called
“octant” in d = 3). We set the bonds ofO to have cO ≡ 1.

For d ≥ 3, the Green’s function of a random walk (Sn)n≥0 onO is given by

GO(x, y) :=
1

πO(y)
Ex

[∑
n≥0

1{Sn=y}

]
, x, y ∈ O,

where πO(x) :=
∑

y∼x cO(x, y) as usual.

We wish to prove a closed formula for the Green’s function not only for the orthant, but also for
more general subgraphs of the lattice in which m components are non-negative. We denote by
Um the graph with vertex set Nm

0 ×Zd−m and with nearest-neighbor unitary conductances. We
call their Green’s function Gm in place of GUm to ease the notation. Also notice that G0(·, ·) ≡
g(·, ·) and Gd(·, ·) ≡ GO(·, ·).

Proposition 7 (Green’s function on the orthant). For all x, y ∈ Um

Gm(x, y) =
∑

v∈{0, 1}m×{0}d−m

g
(
x, ((−1)vi (yi + 1/2)− 1/2)di=1

)
. (5.1)

In particular, for all x, y ∈ O,

GO(x, y) =
∑

v∈{0, 1}d
g
(
x, ((−1)vi (yi + 1/2)− 1/2)di=1

)
. (5.2)

Proof. Before we begin, we want to stress that the apparently complicated formulas (5.1) and
(5.2) are nothing but a sum over all the reflections of the point y about m axes of the form{
x ∈ Rd : xj = −1/2

}
for some 1 ≤ j ≤ d. Figure 4 clarifies this in the case m = d.
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Figure 4: For y ∈ O,
{
((−1)vi (yi + 1/2)− 1/2)2

i=1 : v ∈ {0, 1}2
}

= {y, y′, y′′, y′′′}, in
this two-dimensional example.

The proof is similar to that of Proposition 1 so we will only sketch it here. The notation we adopt
is also similar to stress we are essentially going over the same argumentation. Since the orthant
is a special case of intersections of d half spaces, we will work directly for a subspace Um and
m ≥ 1, being U0 = Zd trivial.

To Um, we add all the bonds of length 1/2 that connect the “face” Fj := {x ∈ Um : xj = 0}
to the shifted “face” Fj − 1/2e(j) for all 1 ≤ j ≤ m and we put on each newly added
edge a conductance equal to 2. Call this new graph U ′m and its Green’s function G′m. Clearly
G′m(x, y) = Gm(x, y) for all x, y ∈ Um. Denote by L be the random walk on U ′m driven by
such conductances.

At this point we modify the discrete lattice in a similar way as in Proposition 1. Essentially for all
1 ≤ j ≤ m we replace each conductance which connects the hyperplanes Ij := {x ∈ Zd :
xj = 0} and Ij − e(j) by two conductances in series and value two (these are the red bonds
in Figure 4). These new conductances have length 1/2 and connect Ij − 1/2e(j) to either Ij or
Ij − e(j) for some 1 ≤ j ≤ m. Call this new graphQ.

Let X = (Xn)n≥0 = (X
(1)
n , . . . , X

(d)
n )n≥0 be the random walk on Q starting in Um and

GQ(·, ·) its Green’s function. Let Y be the reflection of X on the hyperplanes given by{
x ∈ Rd : xj = −1/2 e(j)

}
,

1 ≤ j ≤ m, that is, Y0 = X0 and Yn = (Y
(1)
n , . . . , Y

(d)
n ) with

Y (k)
n :=

{
(−X(k)

n − 1)1n
X

(k)
n ≤−1/2

o +X
(k)
n 1n

X
(k)
n >−1/2

o 1 ≤ k ≤ m,

X
(k)
n otherwise

.

We can now use the fact that Gm ≡ G′m on Um × Um, that GQ ≡ g on Zd×Zd and the
equivalence of the laws of the random walks L and Y to show that for all x, y ∈ Um

Gm(x, y) =
∑

v∈{0, 1}m×{0}d−m

g
(
x, ((−1)vi (yi + 1/2)− 1/2)di=1

)
. (5.3)
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We are interested now in monotonicity properties of Green’s functions. We could not find in
the literature a reference to the next Lemma, so we decided to give a short proof for it. Let
x, y ∈ Zd and define the partial relation x � y if and only if |xi| ≥ |yi| for all 1 ≤ i ≤ d. This
is also known as product order.

Lemma 8 (Monotonicity of g(0, ·) with respect to the product order). If x, y ∈ Zd and x � y,
then g(0, x) ≤ g(0, y).

Proof. We have, from Montroll (1956, Eq. (2.10)), that

2dg(0, x) =

∫ +∞

0

e−t
d∏
i=1

Ixi

(
t

d

)
d t.

For j, j′ ∈ N0, one has Ij(t) ≥ Ij′(t) for all t ∈ [0, +∞) if j′ ≥ j . Considering also that
I−m = Im for m ∈ Z (Abramowitz and Stegun, 1964, Eq. 9.6.6), the product order yields the
desired conclusion.

Corollary 9. Gm(x, ·) is monotone decreasing with respect to the product order for all x ∈ Um.

Proof. The result follows combining Proposition 7 with Lemma 8.

Remark 10. From (5.3) and Lemma 8 above one obtains the location of the maximum of the
Green’s function:

sup
x∈Um

Gm(x, x) = Gm(0, 0), 0 ≤ m ≤ d. (5.4)

Another consequence of (5.3) is the following chain of strict inequalities:

g(x, y) < G1(x, y) < . . . < Gd(x, y), x, y ∈ O.

More precisely Gj(x, y) < Gj+1(x, y) for all x, y ∈ Uj+1 and 0 ≤ j ≤ d− 1.

5.1 A useful formula at the origin

An interesting consequence of our analysis is that we can explicitly calculate (5.3) in the case
x = y = 0. Namely we show

Lemma 11. Let Ik(·) be the modified Bessel function of the first kind of order k ∈ N0. For all
0 ≤ m ≤ d,

Gm(0, 0) =
1

2d

∫ +∞

0

e−x
(
I1

(x
d

)
+ I0

(x
d

))m
I0

(x
d

)d−m
dx. (5.5)

Proof. Let γj :=
∑j

k=1 e(k) for 1 ≤ j ≤ d. The formula (5.1) is telling us that, to compute
Gm(0, 0) we have to choose, for each j ∈ {0, ...,m}, j hyperplanes out of m about which
to reflect the point 0, and then compute the sum of terms of the form g(0, z), where z is one
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reflection of the origin about these hyperplanes. However, the value of g(0, z) is independent
of the j hyperplanes chosen, due to the fact that g(x, y) depends only on ‖x− y‖. This yields

Gm(0, 0) =
m∑
j=0

(
m

j

)
g (0, γj) .

As a consequence of Montroll (1956, Eq. (2.11b)) we obtain

g (0, γj) =
1

2d

∫ +∞

0

e−xI1

(x
d

)j
I0

(x
d

)m−j
I0

(x
d

)d−m
dx, j = 0, . . . , m

whence (5.5).

One can use the above formula as a starting point to show asymptotic expansions of GO for
large values of d. Furthermore, it appears to be useful to get statements pointwise in the dimen-
sion. The corollary below provides a simple example.

Corollary 12. 2dGO(0, 0) is decreasing in d for all d ≥ 3.

Proof. This is an immediate consequence of Lemma 11. Indeed for d′ ≥ d, Abramowitz and
Stegun (1964, Eq. 9.6.19) gives that(
I0

(x
d

)
+ I1

(x
d

))d
=

(∫ π

0

e
x
d

cosϑ (cosϑ+ 1)

π
dϑ

)d
≥
(∫ π

0

e
x
d′ cosϑ (cosϑ+ 1)

π
dϑ

)d′
=
(
I0

( x
d′

)
+ I1

( x
d′

))d′
where the second line follows from Jensen’s inequality and the fact that the measure defined as
π−1 (cosϑ+ 1) dϑ has mass 1. Plugging this into (5.5) with m = d, we can conclude.
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