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1. MOTIVATION AND INTRODUCTION

1.1 Motivation. We start with the Wiener measure P on Ω = C0

(
[0,∞); Rd

)
corresponding to the d-

dimensional Brownian motionW = (Wt)t≥0 starting from the origin. Our result is motivated by the following

set up. Let Lt denote the normalized occupation measure of the Brownian motion until time t, i.e.,

(1.1) Lt =
1

t

∫ t

0

ds δWs
.

This is a random element of M1 = M1(R
d), the space of probability measures on Rd. We are interested

in the transformed measure

(1.2) P̂t(A) =
1

Zt

E

{
1lA exp{tH(Lt)}

}

with A being a measurable set in the path space of the Brownian motion and

(1.3) H(µ) =

∫ ∫

Rd×Rd
V (x− y)µ(dx)µ(dy).

Here V (·) is a continuous function on Rd vanishing at infinity and

Zt = E
{

exp{tH(Lt)}
}

is the normalizing constant or the partition function. For d = 3 and V (x) = 1
|x| , it is known (see [4]) that,

(1.4) lim
t→∞

1

t
log E

{
exp{tH(Lt)}

}
= sup

ψ∈H1(Rd)
‖ψ‖2=1

{∫

Rd

∫

Rd
dxdy V (x− y)ψ2(x)ψ2(y)− 1

2

∥∥∇ψ
∥∥2

2

}
,

where H1(Rd) is the usual Sobolev space of square integrable functions in with their gradient in L2(Rd).

For d = 3, V (x) = 1
|x| , this variational formula has also been analyzed by Lieb (see [5]) who proved that

there is a maximizer which is unique except for spatial translations. In other words, if m denotes the set of

maximizing densities, then

(1.5) m =
{
µ0 ? δx : x ∈ R3

}
,

where µ0 is a probability measure with a density ψ2
0 so that ψ0 maximizes the variational problem (1.4).

Given (1.4) and (1.5), we expect that the asymptotic distribution of Lt under P̂t to be concentrated around

m. Indeed, we would like to show that for very ε > 0,

(1.6) lim
t→∞

P̂t

{
Lt /∈ Uε(m)

}
= 0

where Uε(m) is a (weak) neighborhood of m. In fact, we can write

P̂t

{
Lt /∈ Uε(m)

}
=

E
[
1lLt /∈Uε(m) exp

(
tH(Lt)

)]

E
[
exp

(
tH(Lt)

)]

=
E

[
exp

(
tF (Lt)

)]

E
[
exp

(
tH(Lt)

)]
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where

(1.7) F (µ) =

{
H(µ) =

∫ ∫
Rd×Rd

V (x− y)µ(dx)µ(dy) ifµ /∈ Uε(m)

−∞ else.

Let us pretend that we have a strong Donsker-Varadhan large deviation principle for Lt in M1(R
d) under

the weak topology, see (4.2)-(4.3) and the following remarks for a precise definition. Then, using Varadhan’s

lemma (ignoring the lack of upper semicontinuity of F coming from the singularity for V (x) = 1/|x|) we

could (formally) conclude that P̂t

(
Lt /∈ Uε(m)

)
decays exponentially fast in t.

However, the lack of a strong large deviation principle turns out a to be crucial issue. To circumvent this

problem, the space M1(R
d) has to be “compactified". This can be done by replacing the usual topology of

weak convergence by the “vague toplogy", where the space is treated as the dual of continuous functions

with compact support. This is essentially the one point compactification of Rd by adding a point at ∞ that

results in the compactification of M1(R
d) by allowing some mass to escape to the point at ∞. If one were

to use only test functions that are continuous and vanish at ∞ then the compactification results in the space

of sub-probability distributions M≤1(R
d) by ignoring the mass at ∞.

Let us also mention that, for (1.4), in [4], the lack of compactness of the state space was handled by

replacing Brownian motion by Ornstein-Uhlenbeck (O-U) process on Rd whose occupation measure, unlike

Brownian motion, satisfies a strong large deviation principle. Exploiting the positive definiteness of V (x) =
1
|x| the authors show that the total mass E

{
exp{tH(Lt)}

}
is dominated by the same expectation with

respect to the Ornstein-Uhlenbeck process. This monotonicity combined with strong large deviations for

the O-U process proves (1.4). However, no such monotonicity is available to us in the complement of the

neighborhood of m (i.e., for the term E
[
1lLt /∈Uε(m) exp

(
tH(Lt)

)]
). Another possibility is to replace Rd

by a large torus and “fold"Lt in the torus and use a similar monotonicity of the total masses (see [3], [1]).

Although these methods work well for deriving asymptotic behavior of the partition function, questions on

the path measures P̂t can not be handled so well in this manner. In particular, these methods ignore the

underlying translation invariance of some relevant models from statistical mechanics, models which depend

on shift-invariant functionals of the occupation measures Lt, like the functional H(µ) = H(µ ? δx) for all

x ∈ Rd, defined in (1.3). Motivated by this, we naturally consider the quotient space

M̃1(R
d) = M1(R

d)
/
∼

under spatial shifts and are led to a robust theory of compactification of this space. Let us briefly sketch the

main idea here.

1.2 Translation invariant compactfication: The central idea. Note that M1(R
d) fails to be compact in

the weak topology for several reasons. For instance, if we take a Gaussian with a very large variance, the

mass can spread very thin and totally disintegrate into dust. Also, a mixture like 1
2
(µ ? δan + µ ? δ−an) splits

into two (or more) widely separated pieces as an → ∞ . To compactify this space we should be allowed to

“centerëach piece separately as well as to allow some mass to be “thinly spread and disappear".

The intuitive idea, starting with a sequence of probability distributions (µn)n in Rd is to identify a compact

region where µn has its largest accumulation of mass. This is given by its concentration function defined by

qn(r) = sup
x∈Rd

µn

(
Br(x)

)
.

By choosing subsequences, we can assume that qn(r) → q(r) as n → ∞ and q(r) → p1 ∈ [0, 1] as

r → ∞. Then there is a shift λn = µn ? δan which converges along a subsequence vaguely to a sub-

probability measure α1 of mass p1. This means λn can be written as αn + βn so that αn⇒α1 weakly and



3

we recover the partial mass p1 ∈ [0, 1]. We peel off αn from λn and repeat the same process for βn to

get convergence along a further subsequence. We go on recursively to get convergence of one component

at a time along further subsequences in the space of sub-probability measures, modulo spatial shifts. The

picture is, µn roughly concentrates on widely separated compact pieces of masses {pj}j∈N while the rest

of the mass 1 − ∑
j pj leaks out.

In other words, given any sequence µ̃n of equivalence classes in M̃1(R
d), which is the quotient space

of M1(R
d) under spatial shifts, there is a subsequence which converges (in a sense which we do not

make precise yet) to an element {α̃1, α̃2, . . . }, a collection of equivalence classes of sub-probabilities αj of

masses 0 ≤ pj ≤ 1, j ∈ N.1 The space of such collections of equivalence classes is the compactfication

of M̃1(R
d) and in this space we are able to prove a strong large deviation principle for the distribution of

the equivalence classes L̃t of Lt. This, combined with the shift invariant structure of V (x− y), enables us

to prove (1.6).

Finally, although we were motivated by asymptotic study of path measures of mean-field type interactions

for Brownian motion, it can also be applied to study a wider class of problems that involve translation invariant

functionals of processes with independent increments.

Let us describe the organization of the rest of the article. In section 2, we collect some basic facts about

weak and vague convergence, introduce a class of relevant test functions and characterize notions of total

disintegration of measures as well as measures being widely separated in terms of test integrals with respect

to the corresponding test functions. In Section 3, we introduce a space X̃ and a metric D giving rise a notion

of topology and convergence in this space. Here we also prove that X̃ is the desired compactfication of the

quotient space M̃1(R
d). Section 4 is devoted to proving a strong large deviation principle for the distribution

of the equivalence class L̃t in X̃ and in Section 5 we provide the application to the asymptotics of the path

measures P̂t(L̃t ∈ ·).

2. TOPOLOGIES ON MEASURES

We denote by M1 = M1(R
d) the space of probability distributions on Rd and by M̃1 = M1

/
∼ the

quotient space of M1 under the action of Rd (as an additive group on M1). For any µ ∈ M1, its orbit is

defined by µ̃ = {µ ? δx : x ∈ Rd} ∈ M̃1.

2.1 The weak and the vague topology. We turn to two natural topologies on M1. In the weak topology, a

sequence µn in M1 converges to µ, denoted by µn⇒µ, if

(2.1) lim
n→∞

∫

Rd
f(x)µn(dx) =

∫

Rd
f(x)µ(dx),

for all bounded continuous functions on Rd. On the other hand, in the vague topology for the convergence of

µn to µ, denoted by µn↪→µ, we only require (2.1) for continuous functions with compact support. It continues

to hold for continuous functions that tend to 0 as |x| → ∞. Note that the total mass of probability measures,

which is conserved in the weak convergence, is not necessarily conserved under vague convergence– a

salient feature which distinguishes these two topologies. If we denote by M≤1 = M≤1(R
d) the space of

all sub-probability measures (non-negative measures with total mass less than or equal to one), then both

topologies carry over to M≤1 with the same requirements.

1For example, let µn be a sequence which is a mixture of three Gaussians, one with mean 0 and variance 1, one with mean n

and variance 1 and one with mean 0 and variance n, each with equal weight 1

3
. Then the limiting object is the collection {α̃1, α̃1},

where α̃1 is the equivalence class of a Gaussian with variance 1 and weight 1

3
.
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We collect some standard facts as a lemma which will be relevant for us.

Lemma 2.1. (i) If µn↪→µ in M≤1, then µ(Rd) ≤ lim infn→∞ µn(Rd).

(ii) If µn↪→µ in M≤1 and µn(Rd) → µ(Rd), then µn⇒µ in M≤1.

(iii) While M1 is a closed subset of the space M≤1 in the weak topology, it is dense in M≤1 in the

vague topology.

(iv) The space M≤1 is compact in the vague topology.

We will also need the following elementary lemma.

Lemma 2.2. If µn↪→α in M≤1, then µn can be written as µn = αn + βn where αn⇒α and βn↪→0.

Proof. We will denote by B(x, r) the ball of radius r > 0 around the point x ∈ Rd. If µn↪→α then

lim
n→∞

µn

(
B(0, r)

)
= α

(
B(0, r)

)
,

for all but at most countably values of r and α(Rd) can be recovered as the limit

α(Rd) = lim
k→∞

lim
n→∞

µn

(
B(0, r)

)
.

Hence, given any r > 0, there is nr ∈ N such that for n ≥ nr we have,

µn

(
B(0, r)] ≤ α(Rd) +

1

r
.

Without loss of generality we can assume that nr is nondecreasing with r. If we define

Rn = sup{r > 0 : nr ≤ n},
then Rn → ∞ and

µn

(
B(0, Rn)

)
≤ α(Rd) +

1

Rn

.

If we take αn and βn as the restrictions of µn to B(0, Rn) and B(0, Rn)c respectively, αn↪→α and

αn(Rd) → α(Rd). Therefore, by Lemma 2.1 part (ii), αn⇒α. Furthermore, for any given r > 0, even-

tually βn(B(0, r)) = 0 and hence βn↪→0. �

2.2 The space F of test functions.

For our desired compactification, we need to develop a suitable topology on the quotient space M̃1 via

convergence of test integrals. For this, we first need to characterize a suitable class of continuous functions

(or rather, functionals) on M̃1.

We fix a positive integer k ≥ 2. Let Fk be the space of continuous functions f : (Rd)k −→ R that are

translation invariant, i.e.,

f(x1 + y, . . . , xk + y) = f(x1, . . . , xk) ∀y, x1, . . . , xk ∈ Rd.

and vanish at infinity, in the sense,

lim
maxi6=j |xi−xj |→∞

f(x1, . . . , xk) = 0,

In other words, f(x1, . . . , xk) depends only on the differences {xi−xj}i,j . A typical example of a function

f ∈ F2 could be f(x1, x2) = V (x1 − x2) where V (·) is a continuous function such that V (x) → 0 as
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|x| → ∞. Note that, each f ∈ Fk can interpreted as a continuous function of k − 1 variables vanishing at

infinity. Hence, for each k ≥ 2, Fk is a separable space under the uniform metric. Hence, if we denote by

F = ∪k≥2Fk,

then we can choose a countable dense subset for each Fk and ordering all of them as a single countable

sequence {fr(x1, . . . , xkr) : r ∈ N} we obtain a countable dense subset of F .

For any µ ∈ M1 and f ∈ F , we define the function

Λ(f, µ) =

∫

(Rd)k
f(x1, . . . , xk)µ(dx1) · · ·µ(dxk).

Note that, because of translation invariance of f , Λ(f, µ) depends only on the orbit µ̃ ∈ M̃1 for any

fixed f ∈ F . As it will turn out, these are natural continuous functions to consider on M̃1. Given any

sequence (µn)n in M1, because there is a countable dense set {fr}, by diagonalization one can choose a

subsequence such that along the subsequence (denoted again by µn), the limit

Λ(f) = lim
n→∞

Λ(f, µn),

exists. To compactify the space M̃1 we will determine what the set of possible limits are, see Section 3.

2.3 Total disintegration of a sequence of measures. We say that a sequence (µn) in M≤1 totally

disintegrates if for any positive r <∞,

lim
n→∞

sup
x∈Rd

µn

(
B(x, r)

)
= 0.

A typical example of a totally disintegrating sequence µn of measures is a centered Gaussian with covariance

matrix n Id.

The following facts determine equivalent criteria for total disintegration of a sequence of measures and it

is useful to collect them.

Lemma 2.3. Let (µn)n be a sequence in M≤1. The following facts are equivalent.

a. There exists a continuous function V (x) > 0 on Rd, with lim|x|→∞ V (x) = 0, such that

(2.2) lim
n→∞

∫ ∫

R2d

V (x− y)µn(dx)µn(dy) = 0.

b.

(2.3) lim
n→∞

sup
x∈Rd

µn

(
B(x, r)

)
= 0.

c. For any continuous function V (x) with lim|x|→∞ V (x) = 0,

(2.4) lim
n→∞

sup
x∈Rd

∫
V (x− y)µn(dy) = 0.

d. For any continuous function V (x) with lim|x|→∞ V (x) = 0,

(2.5) lim
n→∞

∫ ∫

R2d

V (x− y)µn(dx)µn(dy) = 0.
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Let the sequence µn of measures satisfy any of the above. Then for any k ≥ 2 and f ∈ Fk

(2.6) lim
n→∞

∫
. . .

∫

Rdk
f(x1, . . . , xk)µn(dx1) · · ·µn(dxk) = 0.

Proof. a) =⇒ b). Let r > 0 be given. Since V (x) > 0 and continuous, there exists δ > 0 such that

V (x) ≥ δ on B(0, 2r). Then,
∫ ∫

R2d

V (x− y)µn(dx)µn(dy) ≥ δ

∫

|x−y|≤2r

µn(dx)µn(dy) ≥ δ sup
x∈Rd

{
µn

(
B(x, r)

)}2
.

b) =⇒ c). Let εM = sup|x|≥M |V (x)|. Then limM→∞ εM = 0 and

sup
x∈Rd

∫
|V (x− y)|µn(dy) ≤ sup

x∈Rd

∫

B(x,M)

|V (x− y)|µn(dy) + sup
x∈Rd

∫

B(x,M)c
|V (x− y)|µn(dy)

≤ ‖V ‖∞ sup
x∈Rd

µn[B(x,M)] + εM .

Therefore

lim sup
n→∞

sup
x∈Rd

∫
|V (x− y)|µn(dy) ≤ εM ,

for any M . Since εM → 0 if we let M → ∞, we get the claim.

c) =⇒ d). Observe that, since µn(Rd) ≤ 1,
∫ ∫

R2d

V (x− y)µn(dx)µn(dy) ≤ sup
x∈Rd

∫
V (x− y)µn(dy).

d) =⇒ a). This is obvious.

For the last part, for k > 2 we define

W (x1, x2) = sup
x3,...,xk

|f(x1, . . . , xk)|.

Note that W ∈ F2 and so it is of the form V (x1 − x2). Since
∫
. . .

∫

Rdk
|f(x1, . . . , xk)|µn(dx1) · · ·µn(dxk) ≤

∫ ∫

R2d

W (x1, x2)µn(dx1)µn(dx2)

=

∫ ∫

R2d

V (x− y)µn(dx)µn(dy),

the lemma is proved. �

2.4 Widely separated sequences of measures. We now need a working definition of two widely separated

sequence of measures. We say that two sequences (αn)n and (βn)n in M≤1 are widely separated, if for

some strictly positive function V on Rd which is continuous and vanishes at infinity,

(2.7) lim
n→∞

∫
V (x− y)αn(dx)βn(dy) = 0.

Note that if a sequence (µn)n in M≤1 satisfies (2.2), then, because of (2.4), it is widely separated from any

arbitrary sequence of measures in M≤1.

Lemma 2.4. Let (αn)n and (βn)n be two widely separated sequences in M≤1.Then,
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(i) For any continuous function W in Rd vanishing at infinity

lim
n→∞

∫
W (x− y)αn(dx)βn(dy) = 0.

(ii) For every k ≥ 2 and f ∈ Fk,

(2.8)

lim
n→∞

∣∣∣∣
∫
f(x1, . . . , xk)

k∏

i=1

[αn + βn](dxi) −
∫
f(x1, . . . , xk)

k∏

i=1

αn(dxi)

−
∫
f(x1, . . . , xk)

k∏

i=1

βn(dxi)

∣∣∣∣ = 0.

Proof. Let W be any continuous function Rd vanishing at infinity. Since (αn)n and (βn)n are widely sepa-

rated, for some strictly positive V which is continuous and vanishes at infinity,

lim
n→∞

∫
V (x− y)αn(dx)βn(dy) = 0.

Furthermore, given any ε > 0, there is a constant Cε > 0 such that

|W (x)| ≤ CεV (x) + ε.

Then

lim sup
n→∞

∫
|W (x− y)|αn(dx)βn(dy) ≤ Cε lim sup

n→∞

∫
V (x− y)αn(dx)βn(dy) + ε = ε.

This proves the first part (i).

For the second part (ii), if we take k = 2 and expand the product

2∏

i=1

(αn + βn)(dxi),

it is seen that all the cross terms are controlled by (2.7) and are negligible, by the first part (i), as f(x1, x2) =
W (x1 − x2) for some continuous W vanishing at infinity. The general case k ≥ 3 follows easily. �

3. COMPACTIFICATION OF M̃1: THE SPACE X̃

We turn to the central issue of M1 failing to be compact in the weak topology. As mentioned before some

typical reasons for this could be as follows: The location of the mass can shift away to ∞ as in µn = µ ∗ δan
with an → ∞, or it can split into two (or more) pieces like in µn = 1

2
[µ ∗ δan + µ ∗ δ−an ], or it can also

totally disintegrate into dust like a Gaussian with a large variance. One imagines, in the limit, an empty,

finite or countable collection I of mass distributions {αi : i ∈ I} that are widely separated with total mass∑
i∈I αi(R

d) = p ≤ 1 and the remaining mass 1 − p having totally disintegrated. Therefore, a natural

“compactification"could be a space X̃ of empty, finite or countable collections of orbits {α̃i : i ∈ I} of

sub-probability distributions αi having masses pi with p =
∑

i pi ≤ 1.

3.1 The space X̃ and a metric D.

We define

(3.1) X̃ =

{
ξ : ξ = {α̃i}i∈I , αi ∈ M≤1,

∑

i∈I

αi(R
d) ≤ 1

}
.
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We make some remarks about the above definition.

Remark 1. First note that, in order to keep notation short, we suppressed the fact that the index set I above

ranges over empty, finite or countably many collections. Furthermore, we will write any typical element ξ ∈ X̃
as ξ = {αi} with the understanding that either the collection is empty or i ranges over a finite or countable

set.

Remark 2. Note that any element α ∈ M≤1 in the orbit α̃ has the same total mass α(Rd). Hence, for any

element ξ = {α̃i} ∈ X̃ , pi = αi(R
d) will denote the total mass of any candidate αi in the orbit α̃i and∑

i pi = p ≤ 1. If the collection is empty, then p = 0 vacuously.

Remark 3. Note that in any element ξ = {α̃i} of X̃ , an orbit αi could be repeated more than once. We call

the number of occurrences of an orbit in an element ξ its multiplicity.

We now introduce a metric on X̃ that corresponds to the convergence (2.2). Recall the class of functions

Fk for k ≥ 2 and F = ∪k≥2Fk. We want a sequence (ξn)n to converge to ξ in the space X̃ under the

desired metric, if the sequence

Λ(f, ξn) =
∑

eαn∈ξn

∫
f(x1, . . . , xk)αn(dx1) · · ·αn(dxk)

converges to the corresponding expression

Λ(f, ξ) =
∑

eα∈ξ

∫
f(x1, . . . , xk)α(dx1) · · ·α(dxk)

for every f ∈ F . Recall that the value of
∫
f(x1, . . . , xk)α(dx1) · · ·α(dxk) depends only on the orbit α̃

since f is translation invariant. We also remark that if ξ is empty then Λ(f, ξ) = 0 for all f ∈ F .

For any ξ1, ξ2 ∈ X̃ , we define

(3.2)

D(ξ1, ξ2) =
∞∑

r=1

1

2r

1

1 + ‖fr‖∞

∣∣∣∣
∑

eα∈ξ1

∫
fr(x1, . . . , xkr)

kr∏

i=1

α(dxi)−
∑

eα∈ξ2

∫
fr(x1, . . . , xkr)

kr∏

i=1

α(dxi)

∣∣∣∣,

for a countable sequence of functions {fr(x1, x2, . . . , xkr)}r∈N which is dense in F . Here is our first main

result.

Theorem 3.1. D is a metric on X̃ .

Proof. Note that to prove D is a metric the only nontrivial part that we need to show is that, two collections

ξ1 and ξ2 are identical if D(ξ1, ξ2) = 0. For this it is enough to show if for every k ≥ 2 and every f in Fk,

(3.3)
∑

eα∈ξ1

∫
f(x1, . . . , xk)

k∏

i=1

α(dxi) =
∑

eα∈ξ2

∫
f(x1, . . . , xk)

k∏

i=1

α(dxi).

then ξ1 = ξ2. We prove this into three steps.

Step 1: First we show that, if (3.3) holds, then for every integer r ≥ 1,

(3.4)
∑

eα∈ξ1

{∫
f(x1, . . . , xk)

k∏

i=1

α(dxi)

}r

=
∑

eα∈ξ2

{∫
f(x1, . . . , xk)

k∏

i=1

α(dxi)

}r

.
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This is certainly true for r = 1. For r = 2, we take a sequence gN of functions of 2k variables defined by

gN(x1, x2, . . . , x2k) = f(x1, x2, . . . , xk)f(xk+1, xk+2, . . . , x2k)ϕ(N−1(x1 − xk+1)),

where 0 ≤ ϕ ≤ 1 is equal to 1 inside a ball of radius 1 and is truncated smoothly to be 0 outside a ball of

radius 2. Letting N → ∞, for any α ∈ M≤1, by the bounded convergence theorem,

∫
gN(x1, . . . x2k)

2k∏

i=1

α(dxi) →
{ ∫

f(x1, x2 . . . , xk)
k∏

i=1

α(dxi)

}2

,

and we obtain

∑

eα∈ξ1

{ ∫
f(x1, . . . , xk)

k∏

i=1

α(dxi)

}2

=
∑

eα∈ξ2

{ ∫
f(x1, . . . , xk)

k∏

i=1

α(xi)

}2

.

The general case for any r ∈ N follows from a similar argument.

Step 2: We note that if (3.4) holds for every r ∈ N, we can identify for each α ∈ M≤1 the values of

(3.5)

∫
f(x1, . . . , xk)

k∏

i=1

α(dxi),

for f ∈ Fk and k ≥ 2. It follows that if (3.3) holds for any two elements ξ1 and ξ2, then for every f ∈ F ,

the list of values (3.5) for α̃ ∈ ξ1 is the same as the list from ξ2.

However, this is not enough. We need to show that if (3.3) holds for any two elements ξ1 and ξ2, then

every α̃ ∈ ξ1 occurs in ξ2 with the same multiplicity (see Remark 3 for the definition of multiplicity of an

orbit).

Let us denote by S(f, ξ) the set of values of Λ(f, µ̃) as µ̃ varies over ξ. We have matched for ξ = ξ1
and ξ2 the set of values S(f, ξ1) and S(f, ξ2). The next step is to show that if we pick an orbit µ̃1 in ξ1, the

set of values of Λ(f, µ̃1) can actually be matched with the set of values Λ(f, µ̃2) of some µ̃2 ∈ ξ2 i.e. a

single choice µ̃2 ∈ ξ2 can be made to work for all f ∈ ∪kFk. In other words, if we define for each µ̃1 ∈ ξ1
and µ̃2 ∈ ξ2

Ck

(
µ̃1, µ̃2

)
=

{
f ∈ Fk : Λ(f, µ̃1) = Λ(f, µ̃2)

}
,

then we have for each µ̃1

Fk = ∪
eµ2∈ξ2 Ck

(
µ̃1, µ̃2

)
.

Each Ck ⊂ Fk is a closed subset of a complete metric space and we have a countable union. By the Baire

category theorem at least one Ck has an interior. But if two linear functionals agree on an open set they

agree everywhere. Therefore there exists µ2 ∈ ξ2 such that

(3.6) Fk = Ck

(
µ̃1, µ̃2

)
.

The choice of µ̃2 may still depend on k. We need to show that (3.6) holds for some µ̃2 for all k. We note that

any function f(x1, x2, . . . , xk−1) ∈ Fk−1 is a limit of

g(x1, x2, . . . , xk−1, xk) = f(x1, x2, . . . , xk−1)ϕ(xk−1 − xk) ∈ Fk

as the continuous function ϕ with compact support tends boundedly to 1. Therefore if Λ(f, µ̃1) = Λ(f, µ̃2)
on Fk, they agree on Fk−1 as well. In particular if Λ(f, µ̃1) = Λ(f, µ̃2) on Fk for infinitely many values of

k, then they agree for all values of k. We note that by allowing ϕ to tend to 1, if Λ(f, µ̃1) = Λ(f, µ̃2) on F2,

then µ1 and µ2 have the same mass. Assuming the mass to be positive, there can only be a finite number

of possibilities for µ2 since the total sum is at most 1. There is then a µ2 that works for an infinite number of
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values of k and consequently for all k. We can then peel off matching pairs and proceed with what is left. If

we are careful to remove at each stage measures with the largest masses from ξ1 and ξ2, we will exhaust

both ξ1 and ξ2 (it may take a countable number of steps).

Step 3: Now we have to recover the orbit of µ ∈ M≤1(R
d) from the value

∫
f(x1, . . . , xk)

k∏

i=1

µ(dxi)

for f ∈ Fk. We can let f converge boundedly to exp{∑k
i=1

√
−1〈ti, xi〉} provided

∑
i ti = 0. In other

words we can determine for the characteristic functions {φ(t)e
√
−1〈t,a〉} of α̃ ∈ X , the value of

∏k
i=1 φ(ti)

for all {ti} with
∑

i ti = 0.

The following calculation will complete the proof. Let φ(·) and ψ(·) be two characteristic functions such

that
∏k

i=1 φ(ti) =
∏k

i=1 ψ(ti) for all {ti} with
∑

i ti = 0. In particular |φ(t)|2 = φ(t)φ(−t) =
ψ(t)ψ(−t) = |ψ(t)|2. Let G = {t : |φ(t)| = |ψ(t)| 6= 0}. Write φ(t) = ψ(t)χ(t) on G. G is a

symmetric open set containing 0. For any k and t1, . . . , tk ∈ G such that
∑k

i=1 ti = τ ∈ G, we have

k∏

i=1

χ(ti)χ(−τ) = 1

Noting that χ(τ) = χ(−τ), we find that χ(t1 + t2 + · · · + tk) =
∏k

i=1 χ(ti) provided, {ti} as well as

t1 + · · · + tk are all in G which contains a neighborhood of 0. It is now standard to show that for some

a ∈ Rd, χ(t) = e
√
−1 〈a,t〉 near 0 and since χ(kt) = (χ(t))k the proof is complete. �

3.2 Completion under the metric D and the compactification.

Henceforth, the metric D will define the topology on the space X̃ . Recall that the space of orbits M̃1 is

canonically embedded in X̃ .

Theorem 3.2. The set of orbits M̃1(R
d) is dense in X̃ . Furthermore, given any sequence (µ̃n)n in

M̃1(R
d), there is a subsequence that converges to a limit in X̃ . Hence X̃ is a compactification of M̃1(R

d).

It is then also the completion under the metric D of the totally bounded space M̃1(R
d).

Proof. We prove the theorem in two main steps.

Step 1: First we show that M̃1 is dense in X̃ . Given any ξ =
{
α̃i : i ∈ I} ∈ X̃ , we would like to have a

sequence (µ̃n)n in M̃1 which converges to ξ ∈ X̃ . This can be done if we take “distant shiftsöf µn weighted

by corresponding masses pi of αi. Any remaining mass 1 − ∑
i pi can be filled by a Gaussian with a large

variance (leading to “total disintegrationöf mass 1 − ∑
i pi). The convex combination of all these measures

will approximate ξ in X̃ .

Indeed, let ξ = {α̃i : i ∈ I} ∈ X̃ be given. If it is an infinite collection, then for every ε > 0 we can pick

a finite sub-collection {α1, . . . , αn} such that the remaining total masses
∑

j>n αj(R
d) add up to at most

ε > 0. Since for any α ∈ M≤1 and f ∈ Fk,

∫
f(x1, . . . , xk)

k∏

i=1

α(dxi) ≤ ‖f‖∞
(
α(Rd)

)k ≤ ‖f‖∞ α(Rd),
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we infer that

(3.7)
∑

j>n

∫
f(x1, . . . , xk)

k∏

i=1

αj(dxi) ≤ ‖f‖∞
∑

j>n

αj(R
d) ≤ ε‖f‖∞.

Let us denote by pj = αj(R
d) for j = 1, . . . , n and choose spatial points a1, . . . , an ∈ Rd so that

infi6=j |ai−aj| → ∞. Also, for anyM > 0, let λM be a Gaussian in Rd with mean 0 ∈ Rd and covariance

matrix M Id ∈ Rd×d. Since the family of measures {λM}M>0 totally disintegrates, by Lemma 2.3 and

(2.6), for any k ≥ 2 and f ∈ Fk,

(3.8) lim
M→∞

∫
f(x1, . . . , xk)

k∏

i=1

λM(dxi) = 0.

Then for the convex combination

(3.9) µ(a1,...,an,M)

n = µn :=
n∑

j=1

αj ? δaj +

(
1 −

n∑

j=1

pj

)
λM ,

we conclude that, for any k ≥ 2 and f ∈ Fk,

∫
f(x1, . . . , xk)

k∏

i=1

µn(dxi) −→
n∑

j=1

∫
f(x1, . . . , xk)

k∏

i=1

αj(dxi)

as infi6=j |ai − aj| → ∞ and M ↑ ∞, by (2.8) and (3.8) (masses that are far away from each other do

not interact and masses that are too thinly spread do not count). Therefore, by (3.7) and the definition of the

metric D (recall (3.2)), the sequence of orbits (µ̃n)n converges to ξ in X̃ .

Step 2: We show that any sequence (µ̃n)n in X̃ has a subsequence that converges to some ξ ∈ X̃ . We

need to collect some facts.

Let µ ∈ M≤1(R
d). The concentration function of µ is defined as,

(3.10) qµ(r) = sup
x∈Rd

µ
(
B(x, r)

)
,

for any r > 0. Then limr→∞ qµ(r) = µ(Rd).

If (µn)n is a sequence in M≤1(R
d), and qn(r) is the concentration function of µn, we can, by choosing

a subsequence (which we suppress in the notation) if needed, assume that for any r > 0,

lim
n→∞

qn(r) = q(r),

exists and also

lim
n→∞

µn(Rd) = p ∈ [0, 1].

If q = limr↑∞ q(r), then always q ≤ p.

If q = 0, we have for every r > 0

lim
n→∞

sup
x∈Rd

µn

(
B(x, r)

)
= lim

n→∞
qn(r) = 0

and hence by Lemma 2.3, (2.6) and the definition of the metric D (recall (3.2)), µ̃n → 0 in X̃ .

If q > 0, then taking a suitable translation an ∈ Rd, we can assume that λn = µn ? δan satisfies, for

some r > 0,

(3.11) λn

(
B(0, r)

)
≥ q/2,
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for all sufficiently large n. Let us assume, by choosing a subsequence if needed, λn↪→α. Then α(Rd) ≥ q
2
.

According to Lemma 2.2, we can express λn = αn +βn where βn↪→0 and αn⇒α. Lemma 2.4 implies that

for V ∈ F2

lim
n→∞

∫
V (x− y)αn(dx)βn(dy) = 0.

This property is valid after translating back by δ−an and µn has the same decomposition in terms of the

shifted αn ∗ δ−an and βn ∗ δ−an . We will denote them again by αn and βn. We remark that if q = p, then

λn = µn ? δan converges weakly to α and βn can be taken to be 0. To see this, choose r > 0 so that

(3.11) holds. Furthermore, note that given any ε > 0, there are translations bn,ε such that, for some rε,

(µn ? δbn)[B(0, rε)] ≥ p− ε for large enough n. The sets B(−an, r) and B(−bn, rε) can not be disjoint,

because if they were, there combined total mass would exceed p (recall (3.11)). Therefore |an−bn| ≤ r+rε.

This implies B(−an, r+ 2rε) ⊃ B(−bn, rε) and λn[B(0, r+ 2rε)] ≥ p− ε. This shows that λn is a tight

family of measures and (choosing a subsequence if needed) λn⇒α for some α ∈ M≤1(R
d) and βn can

be taken as 0. Hence, again by definition of the metric D (recall (3.2)), µ̃n → α̃ in X̃ .

Let us now start with a sequence (µn)n in M1(R
d). We want to prove that the sequence (µ̃n)n in X̃ has

a subsequence that converges to some ξ ∈ X̃ . Hence, to begin with p = 1 and 0 ≤ q ≤ 1. By the remarks

made above, if q = 0, then µ̃n → 0 in X̃ . If q = 1, then αn = µn and µ̃n → α̃ in X̃ .

If 0 < q < 1, we can, for some sequence (an)n ⊂ Rd, represent µn = αn + βn. αn so that

�

αn ∗ δan ⇒ α.

� For every V ∈ F2,

lim
n→∞

∫
V (x1 − x2)αn(dx1)βn(dx2) = 0.

� For every r > 0,

lim
n→∞

qβn(r) ≤ min
{
1 − q

2
, q

}
.

The last inequality requires a remark. Since βn ≤ µn we have qβn(r) ≤ qµn(r) for every r. Mass of
q
2

has

been removed in the limit from µn by (3.11). What is left can in the limit have mass at most 1 − q
2
.

We repeat the procedure with βn. Either the process goes on forever or terminates at some finite stage. If

it terminates at a finite stage we would have the decomposition

(3.12) µn =
k∑

j=1

α(j)

n + γn k ∈ N,

that will satisfy

� For j = 1, . . . , k,

lim
n→∞

α(j)

n ∗ a(j)

n ⇒ αj.

� For i 6= j and V ∈ F2,

lim
n→∞

∫
V (x1 − x2)α

(i)

n (dx1)α
(j)

n (dx2) = 0.

� For every r > 0, qγn(r) → 0 and

lim
n→∞

∫
V (x1 − x2)γn(dx1)γn(dx2) = 0.
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Clearly µ̃n converges to ξ = {α̃1, . . . , α̃k} in X̃ .

If the process continues forever, we have for each k ∈ N a decomposition as above. Inductively, starting

from βn,0 = µn, we define according to Lemma 2.2 βn,j = αn,j+1 + βn,j+1 so that αn,j ⇒ αj . Let

pj = limn→∞ βj(R
d) and qj = limr→∞ limn→∞ qβn,j(r). Since αj(R

d) ≥ qj
2

, and
∑

j αj(R
d) ≤ 1, it

follows that qj → 0 as j → ∞. Fix any F ∈ Fk. Then, proceeding inductively in j,

∫
F (x1, . . . , xk)µn(dx1) · · ·µn(dxk) =

j∑

i=1

∫
F (x1, . . . , xk)αn,i(dx1) · · ·αn,i(dxk)

+

∫
F (x1, . . . , xk)βn,j(dx1) · · · βn,j(dxk)

Since qj → 0 and the orbits α̃n,j converge to α̃j in X̃ , the theorem is proved. �

We end this section with an immediate corollary which will be of use later.

Corollary 3.3. Let (µ̃n)n be a sequence in X̃ so that µ̃n → ξ = {α̃j} ∈ X̃ . Then, for any V ∈ F2,

lim
n→∞

∫ ∫

Rd×Rd
V (x− y)µn(dx)µn(dy) =

∑

j

∫ ∫

Rd×Rd
V (x− y)αj(dx)αj(dy).

In other words, the functional

H(µ̃) =

∫ ∫

Rd×Rd
V (x− y)µ(dx)µ(dy) µ ∈ M1(R

d),

is continuous on X̃ .

4. LARGE DEVIATION PRINCIPLES IN THE COMPACT SPACE X̃

Recall that we started with Wiener measure P on Ω = C[[0,∞); Rd] corresponding to the d-dimensional

Brownian motion W starting from the origin with

Lt(A) =
1

t

∫ t

0

1lA(W (s))ds A ⊂ Rd

denoting its normalized occupation measure until time t. Note that Lt maps

(4.1) Ω → M1(R
d)

inducing a probability distribution on M1(R
d). Classical large deviation principle ([2]) states that the family of

these distributions satisfies a “weak"large deviation principle in the space probability measures on M1(R
d)

equipped with the weak topology with a rate function I . More precisely, for every compact subset K ⊂
M1(R

d),

(4.2) lim sup
t→∞

1

t
log P(Lt ∈ K) ≤ − inf

µ∈K
I(µ)

and for every open subset G ⊂ M1(R
d)

(4.3) lim inf
t→∞

1

t
log P(Lt ∈ G) ≥ − inf

µ∈G
I(µ),
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where I is the rate function given by

(4.4) I(µ) =

{
1
2
‖∇f‖2

2 if f =
√

dµ
dx

∈ H1(Rd)

∞ else.

Here H1(Rd) is the usual Sobolev space of square integrable functions with square integrable derivatives.

Note that the function µ 7→ I(µ) is translation invariant and depends only on the orbit µ̃. Furthermore, this

map is convex and homogenous of degree 1.

We say that a family of measures satisfies a “strong"large deviation principle, or simply a large deviation

principle (LDP) if the upper bound (4.2) holds for all closed sets.

Note that we also have an extension of (4.1) via

Ω → M1(R
d) → M̃1(R

d) ⊂ X̃

which induces a probability distribution Qt of L̃t on X̃ . Our second main result gives a large deviation

principle for Qt on X̃ with the rate function

(4.5) Ĩ(ξ) =
∑

eα∈ξ

I(α̃)

where

I(α̃) = I(α)

where I is defined in (4.4) and α is any arbitrary element of the orbit α̃ (recall that I is translation invari-

ant). We remark that although I is defined in (4.4) only on probability measures M1(R
d), the definition

canonically extends to sub-probability measures M≤1(R
d). Here is our second main result.

Theorem 4.1. The family of measures {Qt}t on the compact metric space X̃ equipped with the metric D

satisfies a large deviation principle with the rate function Ĩ(ξ) defined in (4.5).

We split the proof into three main steps. First we prove that the function Ĩ is lower semicontinuous on X̃ .

Lemma 4.2 (Lower semicontinuity). If ξn → ξ in X̃ , then

lim inf
n→∞

Ĩ(ξn) ≥ Ĩ(ξ).

Proof. Let us first consider the case where, for each n ∈ N, ξn consists of a single orbit µ̃n and the limit ξ
is a finite or countable collection {α̃i} arranged so that their masses {pi} form a non-increasing sequence.

Given ε > 0, it is then possible to write (recall (3.12))

µn =
k∑

i=1

α(i)

n + βn

for some k ∈ N such that the following properties hold: For each i = 1, . . . , k, there are sequences

{a(i)
n }n ⊂ Rd such that
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α(i)

n ∗ δ
a
(i)
n

⇒ αi ∈ α̃i,

lim
n→∞

inf
i6=j

|a(i)

n − a(j)

n | = ∞,

lim
n→∞

∫
V (x− y)α(i)

n (dx)βn(dy) = 0,

lim sup
n→∞

∫
V (x− y)βn(dx)βn(dy) ≤ 2ε,

for all V ∈ F2. In particular, since for each i = 1, . . . , k, α(i)
n is weakly convergent, they are a tight sequence

and therefore α(i)
n is concentrated near −a(i)

n . We can find a smooth cut-off function ϕ(x) which is 1 in the

unit ball, 0 outside a ball of radius 2 and smoothly varies in between. In particular, 0 ≤ ϕ ≤ 1. For rn > 0
to be suitably chosen later we will have a partition of unity by setting

1 =
k∑

i=1

{
ϕ

(
x+ a(i)

n

rn

)}2

+

[
1 −

k∑

i=1

{
ϕ

(
x+ a(i)

n

rn

)}2]
rn > 0.

We can assume that I(µn) < ∞ for each n ∈ N (since otherwise there is nothing to prove) and hence

µn(dx) = fn(x)dx and fn ∈ H1(Rd). If gn =
√
fn and 1

2

∫
Rd

|∇gn|2dx ≤ `, we need to prove that

α1, . . . , αk are all absolutely continuous with densities f (1), . . . , f (k) and

k∑

i=1

I(f (i)) ≤ `.

We define, for any i = 1, . . . , k,

f (i)

n (x) = fn(x)

{
ϕ

(
x+ a(i)

n

rn

)}2

=

{
gn(x)ϕ

(
x+ a(i)

n

rn

)}2

and we let rn → ∞ in such a way that 2rn ≤ mini6=j |a(i)
n −a(j)

n |. Then f (i)
n (x)dx⇒ αi for i = 1, 2, . . . , k

and

I(f (i)

n ) =
1

2

∫ ∣∣∣∣∇gn(x)ϕ

(
x+ a(i)

n

rn

)
+

1

rn

gn(x)
(
∇ϕ

)(x+ a(i)
n

rn

)∣∣∣∣
2

dx

Since rn → ∞ , ϕ and ∇ϕ are uniformly bounded and the integrals
∫
|gn(x)|2dx and

∫
|∇gn|2dx are

bounded, only the first term in the integral counts. Since the functions{
ϕ

(
x+ a(i)

n

rn

)}

i=1,...k

do not overlap and 0 ≤ ϕ ≤ 1, we infer

k∑

i=1

1

2

∫ {∣∣∇gn(x)
∣∣ϕ

(
x+ a(i)

n

rn

)}2

dx ≤ 1

2

∫
|∇gn(x)|2dx

=
1

2

∫ ∣∣∇
√
fn(x)

∣∣2dx

= I(fn)

≤ `.
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This implies that any weak limit αi of f (i)
n dx has a density f (i) and

∑k
i=1 I(f

(i)) ≤ `.

Finally if ξn consists of multiple orbits {ξ(i)
n }i with

∑
i Ĩ(ξ

(i)
n ) ≤ `, we can choose subsequences such

that, for each i, ξ(i)
n has a limit which is a collection ξ(i) of orbits {α̃(i)

j }j . The last step implies, for each i,∑
j Ĩ(α̃

(i)

j ) ≤ `(i) where `(i) = lim infn→∞ Ĩ(ξ(i)
n ). Hence,

I(ξ) =
∑

i

`(i) ≤ lim inf
n→∞

∑

i

Ĩ(ξ(i)

n ) ≤ `.

This proves the lemma. �

Next we derive the large deviation lower bound for Qt on X̃ . This is easily done given the translation

invariance, convexity and homogeneity of I and the denseness of the space M̃1(R
d) in X̃ .

Lemma 4.3 (Lower Bound). For any open set G in X̃ ,

(4.6) lim inf
t→∞

1

t
log Qt(G) ≥ − inf

ξ∈G
Ĩ(ξ)

Proof. For (4.6) it is enough to prove, given ξ ∈ X̃ with Ĩ(ξ) <∞,

(4.7) lim inf
t→∞

1

t
log Qt(U) ≥ −Ĩ(ξ).

for any neighborhood U 3 ξ.

We claim that any ξ ∈ X̃ with Ĩ(ξ) <∞ can be approximated by ξn ∈ X̃ such that

(4.8) lim sup
n→∞

Ĩ(ξn) ≤ Ĩ(ξ).

Indeed, recall from step-1 of the proof of Theorem 3.2 that M̃1 is dense in X̃ and ξ = {α̃j} ∈ X̃ can be

approximated by the sequence (µ̃n)n in M̃1, where, as constructed in (3.9),

µn :=
n∑

j=1

αj ? δaj +

(
1 −

n∑

j=1

pj

)
λM ∈ M1(R

d),

and λM is a Gaussian with mean vector 0 and covariance matrixM Id. Furthermore, since I(·) onM1(R
d)

is translation invariant, homogeneous of degree 1 and convex, it is also sub-additive on M≤1(R
d). Then,

I(µn) ≤
n∑

j=1

I(αj ? δaj) +

(
1 −

n∑

j=1

pj

)
I(λM)

=
n∑

j=1

I(αj) +

(
1 −

n∑

j=1

pj

)
I(λM)

≤ Ĩ(ξ) + I(λM)

= Ĩ(ξ) +
1

M
.

Since we can choose M to depend on n, make it arbitrarily large and take (ξn) to be the single orbit

sequence (µ̃n), (4.8) is proved. The desired lower bound (4.7) now follows from the large deviation lower

bound (4.3) of the distribution of Lt on M1(R
d). �

Finally we turn to the large deviation upper bound for Qt.
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Proposition 4.4 (Upper bound of Theorem 4.1). For any closed set F in X̃ ,

(4.9) lim sup
t→∞

1

t
log Qt(F ) ≤ − inf

ξ∈F
Ĩ(ξ)

Let U be the space of functions of the form u = c + v where v is a smooth nonnegative function

with compact support on Rd and c > 0 is a positive constant. Let ϕ(x) be a smooth function satisfying

0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 inside the unit ball and ϕ(x) = 0 outside the ball of radius 2. For any

k ≥ 1, R > 0, u1, . . . , uk ∈ U and a1, . . . , ak ∈ Rd and c > 0 consider the function

(4.10) g(x) = g(k,R, c, a1, . . . , ak, x) = c+
k∑

i=1

ui(x+ ai)ϕ

(
x+ ai

R

)

and define F : Ω → R by setting

(4.11)

F (u1, . . . , uk, c, R, t, ω) = sup
a1,...ak

infi6=j |ai−aj |≥4R

1

t

∫ t

0

−1
2
∆g

(
W (s)

)

g
(
W (s)

) ds

= sup
a1,...ak

infi6=j |ai−aj |≥4R

∫

Rd

−1
2
∆g(x)

g(x)
Lt(dx).

Since the last expression depends only on the image L̃t of Lt in X̃ , we write

(4.12)

F̃
(
u1, . . . , uk, c, R, L̃t

)
= sup

a1,...ak
infi6=j |ai−aj |≥4R

∫

Rd

−1
2
∆g(x)

g(x)
Lt(dx)

= F (u1, . . . , uk, c, R, t, ω).

We will need the next three lemmas to prove the upper bound. First we prove that F̃ (·) grows only sub-

exponentially as t→ ∞.

Lemma 4.5. For any k ≥ 1, R > 0, u1, . . . , uk ∈ U and c > 0,

(4.13)

lim sup
t→∞

1

t
log E

{
exp

{
tF̃ (u1, . . . , uk, c, R, L̃t)

}}

= lim sup
t→∞

1

t
log E

{
exp

{
tF (u1, . . . , uk, c, R, t, ω)

}}

≤ 0.

Proof. If it were not for the supremum over a1, . . . , ak this would be a simple consequence of Feynman-Kac

formula. In fact, we first show that,

(4.14) lim sup
t→∞

1

t
log E

{
exp

{ ∫ t

0

−1
2
∆g

(
W (s)

)

g
(
W (s)

) ds

}}
= 0

Indeed, by the Feynman-Kac formula, the function

Ψ(t, x) = Ex

{
g(Wt) exp

{ ∫ t

0

∆g(Ws)

2u(Ws)

}}
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satisfies the initial value problem{
∂
∂t

Ψ = −1
2
∆Ψ(t, x) + ∆g(x)

2g(x)
Ψ(t, x)

Ψ(0, x) = g(x).

However, we clearly see that

Ψ(t, x) = g(x)

solves the above heat equation. Furthermore by definition (recall (4.10)),

g(x) ≥ c.

Hence, we conclude,

g(x) = Ex

{
g(Wt) exp

{ ∫ t

0

∆g(Ws)

2g(Ws)

}}

≥ cEx

{
exp

{∫ t

0

∆g(Ws)

2g(Ws)

}}

and therefore,

(4.15) Ex

{
exp

{∫ t

0

∆g(Ws)

2g(Ws)

}}
≤ g(x)

c
.

This proves (4.14). To handle the supremum over (a1, . . . ak) inside the expectation we have to do a “course

grainingärgument.

First we note that if the range of the Brownian motion in the time interval [0, t] is rt, once any |ai| exceeds

rt +R it will no longer affect the value of g (again recall the definition (4.10)). We can therefore limit each ai

to the ball of radius rt +R. But P [rt +R ≥ t2] ≤ exp[−c1t3] and can be ignored. In other words, we can

limit each ai to the ball of radius t2.

Furthermore, the function
− 1

2
∆g(x)

g(x)
is a uniformly continuous function of a1, . . . , ak and given any ε > 0,

there is a δ > 0 such that its oscillation in a box of size δ is at most ε. A ball of radius t2 can be covered by(
t2

δ

)dk
such boxes. There is a set K ⊂ (Rd)k of representatives of such boxes, a set of cardinality at most(

t2

δ

)dk
satisfying |ai − aj| ≥ 4R for all i 6= j.

Using the above two remarks, we can now estimate,

E

{
exp

{
sup

a1,...,ak
|ai−aj |≥4R∀i6=j

∫ t

0

−1
2
∆g(Ws)

g(Ws)
ds

}}

≤ E

{
exp

{
sup

|a1|≤t
2,...,|ak|≤t

2

|ai−aj |≥4R∀i6=j

∫ t

0

−1
2
∆g(Ws)

g(Ws)
ds

}}
+ ec2tP

(
sup

0≤s≤t
|Ws| ≥ t2

)

≤ E

{
exp

{
εt+ sup

(a1,...,ak)∈K

∫ t

0

−1
2
∆g(Ws)

g(Ws)
ds

}}
+ exp

(
c2t− c1t

3
)

≤ E

{ ∑

(a1,...,ak)∈K

exp

{
εt+

∫ t

0

−1
2
∆g(Ws)

g(Ws)
ds

}}
+ exp

(
c2t− c1t

3
)

≤
(
t2

δ

)dk

sup
(a1,...,ak)∈K

E

{
exp

{
εt+

∫ t

0

−1
2
∆g(Ws)

g(Ws)
ds

}}
+ exp

(
c2t− c1t

3
)

Taking logarithm, dividing by t, passing to limt→∞ and invoking (4.14), we obtain
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lim sup
t→∞

1

t
logE

{
exp

{
sup

a1,...,ak
|ai−aj |≥4R∀i6=j

∫ t

0

−1
2
∆g(Ws)

g(Ws)
ds

}}
≤ ε,

and ε > 0 is arbitrary. (4.13) is proved. �

Lemma 4.6. Let (µ̃n)n be sequence in X̃ which converges to ξ = {α̃j} ∈ X̃ . For any k ∈ N, i = 1, . . . , k
and ui,`(x) = ui(x)ϕ( x

R
), where ui ∈ U , we have

(4.16)
lim inf
n→∞

F̃ (u1, . . . , uk, c, R, µ̃n) ≥
k∑

i=1

∫ −(1
2
∆ui,R)(x)

c+ ui,R(x)
αi(dx)

= Λ̃(ξ, R, c, u1, . . . , uk).

Proof. If µ̃n → ξ = {α̃j}, then for j = 1, 2, . . . k we can again decompose µn as (recall (3.12)) µn =∑k
j=1 αn,j + βn with αn,j ∗ δan,j ⇒ αj for a suitable choice of an,j that satisfy limn→∞ |an,i − an,j| = ∞

for i 6= j. If n is large enough |an,i − an,j| ≥ 4R and the supports of {ui,R}i are mutually disjoint. In

particular with the choice of ai = −an,i

−1
2
∆g(k,R, c, a1, . . . , ak, x)

g(k,R, c, a1, . . . , ak, x)
=

k∑

i=1

−(1
2
∆ui,R)(x− an,i)

c+ ui,R(x− an,i)

Because αn,j is gets widely separated from βn as well as αn,i for i 6= j, it is clear that

lim
n→∞

∫ −(1
2
∆ui,R)(x− an,i)

c+ ui,R(x− an,i)
µn(dx) =

∫ −(1
2
∆ui,R)(x)

c+ ui,R(x)
αi(dx),

and the lemma follows. �

Lemma 4.7. With Λ̃ defined in (4.16) and Ĩ defined in (4.5), we have the identification

Ĩ(ξ) = sup
R,c>0,k∈N,
u1,...,uk∈U

Λ̃(ξ, R, c, u1, . . . , uk).

Proof. Recall the definition of the classical rate function I from (4.4). For any α ∈ M≤1(R
d), we can also

identify I as

I(α) = sup
u∈U
c>0

∫ −1
2
∆u(x)

c+ u(x)
α(dx).

Therefore for every k ∈ N,

sup
c>0,R>0
u1,...,uk∈U

Λ̃(ξ, c, R, u1, . . . , uk) =
k∑

i=1

I(αj)

and

sup
k∈N

k∑

j=1

I(αj) =
∞∑

j=1

I(αj) = Ĩ(ξ).

�
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Now we come to the proof of the large deviation upper bound for Qt in X̃ .

Proof of Proposition 4.4: X̃ being compact, for (4.9), it is enough to prove (by the usual machinery of

covering a compact space by finitely many balls and invoking the union of events bound) that if ξ ∈ X̃ and

Nδ is a ball (as usual, in the metric D) of radius δ around ξ, then

(4.17) lim sup
δ→0

lim sup
t→∞

1

t
log Qt(Nδ) ≤ −Ĩ(ξ).

Let H be the space of maps H : M̃1(R
d) → R with the following properties: For each H there is a

corresponding function ΛH : X̃ → R such that

(4.18) lim inf
eµ∈ fM1(Rd)

eµ→ξ∈ eX

H(µ̃) ≥ ΛH(ξ)

and

(4.19) lim sup
t→∞

1

t
log EQt

{
exp{tH(·)}

}
≤ 0.

Then again the properties of the decomposition (3.12), a routine application of Tchebycheff’s inequality,

(4.18) and (4.19) show that, for any H ∈ H,

lim sup
δ→0

lim sup
t→∞

1

t
log Qt[Nδ] ≤ −ΛH(ξ).

It is therefore enough to identify Ĩ(ξ) as

(4.20) Ĩ(ξ) = sup
H∈H

ΛH(ξ).

Recall the definition of F̃ from (4.12). Then, for H, by Lemma 4.5, Lemma 4.6 and Lemma 4.7, we can take

the collection {F̃ (u1, . . . , uk, c, R, µ̃)} with k ∈ N, R, c > 0, u1, . . . , uk ∈ U and µ ∈ M1(R
d) and set

Λ
eF = Λ̃, with Λ̃ defined in (4.16). This proves (4.20) and hence Proposition 4.4. �

5. APPLICATION: LOCALIZATION OF PATH MEASURES WITH COULOMB INTERACTION

In this section we come back to the problem we introduced in Section 1. Again we consider the Wiener

measure P on Ω = C0([0,∞); R3) corresponding to a three dimensional Brownian motion W = (Wt)t≥0

starting at the origin. Consider the transformed measure

dP̂t =
1

Zt

exp

{
1

t

∫ t

0

∫ t

0

1

|Ws −Wσ|
dsdσ

}
dP

where

Zt = E

[
exp

{
1

t

∫ t

0

∫ t

0

1

|Ws −Wσ|
dsdσ

}]

is the normalizing constant or the partition function. As mentioned before (see [4]),

(5.1) lim
t→∞

1

t
logZt = sup

ψ∈H1(R3)
‖ψ‖2=1

{∫

Rd

∫

Rd
dxdy

ψ2(x)ψ2(y)

|x− y| − 1

2

∥∥∇ψ
∥∥2

2

}
,
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and according to the classical result of Lieb (see [5]), this variational problem admits a maximizer ψ0 which

is radially symmetric and is unique up to translations. Let dµ0 = ψ2
0(x)dx define its probability distribution

with µ̃0 the corresponding orbit in M̃1(R
3). We study the distribution

Q̂t = P̂tL̃
−1
t

on M̃1(R
3) of the orbit L̃t of the normalized occupation measures Lt of the trajectory {Ws : 0 ≤ s ≤ t}

under the transformed measure P̂t. Here is our next main result.

Theorem 5.1 (The tube property under Coulomb interaction). As probability mesures on M̃1(R
3),

lim
t→∞

Q̂t = δ
eµ0

under the weak topology.

Remark 4. Note that the topology on M̃1(R
3) is the same as weak convergence. As we shall see, the

compactification X̃ of M̃1(R
3) plays a role only in the proof of this theorem and not in its statement.

The proof involves the standard large deviation route. The function 1
|x| is unbounded and needs to be

truncated to fit within the standard large deviation theory. We write

(5.2)
1

|x| = Vε(x) + Yε(x)

with Vε(x) = (ε2 + |x|2)− 1
2 . The difference is given by

Yε(x) =
1

|x| −
1√

ε2 + |x|2
=

√
ε2 + |x|2 − |x|
|x|

√
ε2 + |x|2

=
ε2

|x| +
√
ε2 + |x|2

1√
ε2 + |x|2

1

|x|

= ε−1ϕ
(x
ε

)
,

with

φ(x) =
1

|x|
1√

1 + |x|2
1

(
|x| +

√
1 + |x|2

)

We need the following lemma to control the difference.

Lemma 5.2. For any λ > 0,

(5.3) lim sup
ε→0

lim sup
t→∞

1

t
log E

[
exp

λ

t

∫ t

0

∫ t

0

Yε(Ws −Wσ)dsdσ

]
= 0.

Proof. One can bound φ(x) which behaves like 1
|x| near 0 and like 1

|x|3 near ∞ by C

|x|
3
2

. In particular

Yε(x) ≤
C
√
ε

|x| 32
.
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Then by time ordering and Jensen’s inequality,

exp

{
λ

t

∫ t

0

∫ t

0

Yε(Ws −Wσ)dsdσ

}

= exp

{
2λ

t

∫ t

0

{∫ t

s

Yε(Ws −Wσ)dσ

}
ds

}

≤ 1

t

∫ t

0

exp

{
2λ

∫ T

s

Yε(Ws −Wσ)dσ

}
ds

≤ 1

t

∫ t

0

exp

{
2Cλ

√
ε

∫ t

s

1

|Ws −Wσ|
3
2

dσ

}
ds

=(D)
1

t

∫ t

0

ds exp

{
2Cλ

√
ε

∫ t−s

0

1

|Wσ|3/2
dσ

}

If we can show that, for ε > 0 small enough,

(5.4) sup
x∈R3

E(x)

{
exp

{
2Cλ

√
ε

∫ 1

0

1

|Wσ|3/2
dσ

}}
≤ α <∞,

then it follows, by successive conditioning and the Markov property,

(5.5) E

{
exp

{
2Cλ

√
ε

∫ t−s

0

1

|Wσ|3/2
dσ

}}
≤ αt−s.

This will prove (5.3).

It remains to check (5.4). For this, we appeal to Portenko’s lemma (see [6]), which states that, if for a

Markov process {P(x)} and for a function Ṽ ≥ 0

sup
x∈Rd

E(x)

{ ∫ 1

0

Ṽ (Ws)ds

}
≤ η < 1

then

sup
x∈Rd

E(x)

{
exp

{ ∫ 1

0

Ṽ (Ws)ds

}}
≤ η

1 − η
= α <∞.

Hence, to prove (5.4), we need to verify that

(5.6) sup
x∈R3

E(x)

{ ∫ 1

0

dσ

|Wσ|
3
2

}
= sup

x∈R3

dy

∫ 1

0

dσ

∫

R3

1

|y| 32
1

(2πσ)
3
2

exp

{
− (y − x)2

2σ

}
<∞.

One can see that

sup
x∈R3

∫

R3

dy
1

|y| 32
1

(2πσ)
3
2

exp

{
− (y − x)2

2σ

}

is attained at x = 0 because we can rewrite the integral by Parseval’s identity as

c

∫

R3

exp

{
− σ|ξ|2

2
+ i〈x, ξ〉

}
1

|ξ| 32
dξ,

where c > 0 is a constant. When x = 0 the integral reduces to
∫ 1

0
σ−3/4 dσ which is finite. �

We continue with the proof of the Theorem 5.1. First we prove a large deviation estimate for Q̂t.
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Theorem 5.3. For any closed set F ⊂ X̃

lim sup
t→∞

1

t
log Q̂t[F ] ≤ − inf

ξ∈F
J̃(ξ),

and for any open set G ⊂ X̃
lim inf

t→∞

1

t
log Q̂t[G] ≥ − inf

ξ∈G
J̃(ξ),

where, for ξ = {α̃j} ∈ X̃ ,

J̃(ξ) = ρ̃−
∑

j

{ ∫
1

|x− y|αj(dx)αj(dy) − Ĩ(α̃j)

}

and ρ̃ is given by

ρ̃ = sup
ξ∈ eX

∑

j

{ ∫

R3

∫

R3

ψ2
j (x)ψ

2
j (y)

|x− y| dxdy − 1

2

∑

j

∥∥∇ψj

∥∥2

2

}

and αj(dx) = ψ2
j (x)dx with

∑
j

∫
R3 ψ

2
j (x)dx ≤ 1.

Proof. We fix a closed set F ⊂ X̃ . Then, by definition,

(5.7)

Q̂t(F ) = P̂t(L̃t ∈ F )

=

EQt

{
exp

{
1
t

∫ t

0

∫ t

0
1

|Wσ−Ws|dσds
}

1lF

}

EQt

{
exp

{
1
t

∫ t

0

∫ t

0
1

|Wσ−Ws|dσds
}} ,

where Qt is the distribution of L̃t in M̃1(R
d). We first handle the numerator. The denominator will be taken

care of similarly. Recall the decomposition (5.2). Then with 1
p
+ 1

q
= 1 and Hölder’s inequality, the numerator

becomes
∫

F

exp

[
1

t

∫ t

0

∫ t

0

{
Vε(|Ws −Wσ|) + Yε(|Ws −Wσ|)

}
dσ ds

]
dQt

≤
[ ∫

F

exp

{
1

t

∫ t

0

∫ t

0

p Vε(|Ws −Wσ|)dσ ds

}
dQt

] 1
p

×
[ ∫

F

exp

{
1

t

∫ t

0

∫ t

0

q Yε(|Ws −Wσ|)]dσ ds

}
dQt

] 1
q

Taking logarithm, dividing by t, passing to lim supt→∞ and followed by ε→ 0,

lim sup
t→∞

1

t
log

∫

F

exp

[
1

t

∫ t

0

∫ t

0

1

|Ws −Wσ|
dσ ds

]
dQt

≤ lim sup
ε→0

1

p
lim sup

t→∞

1

t
log

∫

F

exp

[
1

t

∫ t

0

∫ t

0

p Vε(|Ws −Wσ|)dσ ds

]
dQt

+ lim sup
ε→0

1

q
lim sup

t→∞

1

t
log

∫

F

exp

[
1

t

∫ t

0

∫ t

0

q Yε(|Ws −Wσ|)dσ ds

]
dQt.
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By Lemma 5.2 the second term is 0. For the first term, since for every ε > 0, Vε ∈ F2, by Corollary 3.3,

Proposition 4.4 and Varadhan’s lemma,

lim sup
t→∞

1

t
log

∫

F

exp

[
1

t

∫ t

0

∫ t

0

p Vε(|Ws −Wσ|)dσ ds

]
dQt

≤ sup
ξ∈F

[ ∑

j

∫

R3

∫

R3

pVε(x− y)ψ2
j (x)ψ

2
j (y)dxdy −

1

2

∑

j

‖∇ψj‖2

]
,

where ξ = {α̃j} and αj(dx) = ψ2
j (x)dx with

∑
j

∫
R3 ψ

2
j (x)dx ≤ 1.

Since Vε(x) ≤ 1
|x| and Vε(x) → 1

|x| as ε→ 0, for any p > 1,

lim
ε→0

sup
ξ∈F

[ ∑

j

∫

R3

∫

R3

pVε(x− y)ψ2
j (x)ψ

2
j (y)dxdy −

1

2

∑

j

‖∇ψj‖2

]

= sup
ξ∈F

[ ∑

j

∫

R3

∫

R3

p
1

|x− y|ψ
2
j (x)ψ

2
j (y)dxdy −

1

2

∑

j

‖∇ψj‖2

]
.

We can now let p→ 1 and obtain

(5.8)

lim sup
t→∞

1

t
log

∫

F

exp

[
1

t

∫ t

0

∫ t

0

1

|Ws −Wσ|
dσ ds

]
dQt

≤ sup
ξ∈F

[ ∑

j

∫

R3

∫

R3

1

|x− y|ψ
2
j (x)ψ

2
j (y)dxdy −

1

2

∑

j

‖∇ψj‖2

]
.

The lower bound

(5.9)

lim sup
t→∞

1

t
log

∫

G

exp

[
1

t

∫ t

0

∫ t

0

1

|Ws −Wσ|
dσ ds

]
dQt

≥ sup
ξ∈G

[ ∑

j

∫

R3

∫

R3

1

|x− y|ψ
2
j (x)ψ

2
j (y)dxdy −

1

2

∑

j

‖∇ψj‖2

]
,

for open sets G ⊂ X̃ follows immediately from Lemma 4.3. This derives the asymptotic behavior of the

numerator in (5.7). For the denominator, we invoke (5.8) for F = X̃ and (5.9) for G = X̃ to deduce

lim
t→∞

1

t
log

∫

eX
exp

[
1

t

∫ t

0

∫ t

0

1

|Ws −Wσ|
dσ ds

]
dQt

= sup
ξ∈ eX

[ ∑

j

∫

R3

∫

R3

1

|x− y|ψ
2
j (x)ψ

2
j (y)dxdy −

1

2

∑

j

‖∇ψj‖2

]
(5.10)

= ρ̃.

We apply (5.8), (5.9) and (5.10) to (5.7). The theorem is proved. �

We need a lemma here to complete the proof of Theorem 5.1.

Lemma 5.4. The supremum in (5.10) is attained only when ξ consists of a single orbit µ̃ with µ(dx) =
ψ2(x)dx for a unique radially symmetric ψ and

∫
R3 ψ(x)2dx = 1.
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Proof. If we rescale with ψ(x) being replaced by σ2ψ(σx), the expression

σ8

∫

R3

∫

R3

1

|x− y|ψ
2(σx)ψ2(σy)dxdy − σ6 1

2

∫

R3

|∇ψ(σx)|2dx

becomes

σ3

∫

R3

∫

R3

1

|x− y|ψ
2(x)ψ2(y)dxdy − 1

2
σ3

∫
|∇ψ(x)|2dx

while the mass σ4
∫

R3 ψ
2(σx)dx becomes σ

∫
R3 ψ

2(x)dx. Therefore if we define

ρ(m) = sup
R

R3 h2(x)dx=m

[ ∫

R3

∫

R3

1

|x− y|ψ
2(x)ψ2(y)dxdy − 1

2

∫

R3

|∇ψ(x)|2dx
]

then ρ(m) = Cm3. In particular ρ(m1+m2) > ρ(m1)+ρ(m2) proving that supremum in (5.10) is attained

at a single orbit ξ = {µ̃} of total mass µ(R3) = 1. According to Lieb’s theorem (see [5]), the function ψ
that maximizes [ ∫

R3

∫

R3

1

|x− y|ψ
2(x)ψ2(y)dxdy − 1

2

∫

R3

|∇ψ(x)|2dx
]

subject to
∫

R3 ψ
2(x)dx = 1 is unique up to translation. �
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