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Abstract

We consider a full Navier-Stokes and Q-tensor system for incompressible liquid crystal flows
of nematic type. In the two dimensional periodic case, we prove the existence and uniqueness
of global strong solutions that are uniformly bounded in time. This result is obtained without any
smallness assumption on the physical parameter ξ that measures the ratio between tumbling and
aligning effects of a shear flow exerting over the liquid crystal directors. Moreover, we show the
uniqueness of asymptotic limit for each global strong solution as time goes to infinity and provide
an uniform estimate on the convergence rate.

1 Introduction

In this paper, we study the global well-posedness and long-time dynamics of a full coupled incom-
pressible Navier-Stokes and Q-tensor system due to Beris-Edwards [4], which models the evolution
of incompressible liquid crystal flows of nematic type. In the Landau-de Gennes theory [12], the local
orientation and degree of ordering for the liquid crystal molecules are characterized by a symmetric,
traceless d × d tensor Q (here d stands for spatial dimension), which measures the deviation of the
second moment tensor from its isotropic value. The Q-tensor can incorporate the biaxiality of the liq-
uid crystal molecule alignment [28]. Moreover, if Q has two equal non-zero eigenvalues then it can be
formally written as Q(x) = s(n(x)⊗ n(x)− 1

d
I), with s ∈ R \ {0} and the vector n : Rd → Sd−1

representing the averaged macroscopic molecular orientation, so that the coupled Q-tensor system
(see (1.1)-(1.3) below) reduces to the well-known Ericksen-Leslie system [24].

In this paper, we restrict ourselves to the periodic case. Denote by Td the periodic box with period
ai in the i-th direction and by O = (0, a1) × ... × (0, ad) the periodic cell. Without loss of gener-
ality, we can simply set O = (0, 1)d. The coupled PDE system we are going to study consists of
incompressible Navier-Stokes equations for the fluid velocity with highly nonlinear anisotropic force
terms and nonlinear convection-diffusion equations of parabolic type that describe the evolution of the
Q-tensor (see, e.g., [31]). More precisely, the full coupled Navier-Stokes and Q-tensor system takes
the following form:

ut + u · ∇u− ν∆u+∇P = λ∇ · (τ + σ), (x, t) ∈ Td × R+, (1.1)

∇ · u = 0, (x, t) ∈ Td × R+, (1.2)

Qt + u · ∇Q− S(∇u,Q) = ΓH(Q), (x, t) ∈ Td × R+. (1.3)

Here, the vector u(x, t) : Td × (0,+∞) → Rd denotes the velocity field of the fluid and Q(x, t) :

Td × (0,+∞) → S
(d)
0 stands for the order parameter of liquid crystal molecules (see (2.1) for the

definition of the set S(d)
0 ). We assume that the system (1.1)-(1.3) is subject to the periodic boundary

conditions

u(x+ ei, t) = u(x, t), Q(x+ ei, t) = Q(x, t), for (x, t) ∈ Td × R+, (1.4)

where {ei}di=1 is the canonical orthonormal basis of Rd. Moreover, the system is subject to initial
spatially 1-periodic data

u|t=0 = u0(x) with ∇ · u0 = 0, Q|t=0 = Q0(x), for x ∈ Td. (1.5)
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We note that the system preserves for all time both the symmetry and tracelessness of any solution
Q associated to an initial datum with the same property [31,40].

The system (1.1)-(1.3) describes the complex interaction between the fluid and the alignment of liquid
crystal molecules: the evolution of the fluid affects the direction and position of the molecules while
changes in the alignment of molecules will also influence the fluid velocity. The positive constants
ν, λ and Γ stand for the fluid viscosity, the competition between kinetic energy and elastic potential
energy, and macroscopic elastic relaxation time (Deborah number) for the molecular orientation field,
respectively.

The free energy for the liquid crystal molecules is given by (see e.g., [28])

F(Q)
def
=

∫

Td

(
L

2
|∇Q|2 + fB(Q)

)
dx. (1.6)

In the definition of F(Q), the gradient term corresponds to the elastic part of the free energy and
L > 0 is the elastic constant. Here, we simply use the so-called one constant approximation of the
Oseen-Frank energy (cf. [3]). On the other hand, the bulk part fB(Q) of Landau-de Gennes type takes
the following form

fB(Q) =
a

2
tr(Q2)− b

3
tr(Q3) +

c

4
tr2(Q2),

where a, b, c ∈ R are material-dependent and temperature-dependent coefficients that are assumed
to be constants here. In particular, we assume that

c > 0,

which is necessary from the modeling point of view to guarantee that the free energy F(Q) (and thus
the total energy E(t) of the coupled system (1.1)-(1.3)) is bounded from below (see [27,28]).

The tensor H = H(Q) in equation (1.3) is related to the variational derivative of the free energy
F(Q) with respect to Q (under the constraint that Q is both symmetric and traceless) such that

H(Q)
def
= −∂F(Q)

∂Q
= L∆Q− aQ+ b

(
Q2 − 1

d
tr(Q2)I

)
− cQ tr(Q2), (1.7)

where I ∈ Rd×d stands for the identity matrix. Then the matrix valued function S(∇u,Q) in (1.3)
takes the following form

S(∇u,Q)
def
= (ξD + Ω)

(
Q+

1

d
I
)

+
(
Q+

1

d
I
)
(ξD − Ω)− 2ξ

(
Q+

1

d
I
)

tr(Q∇u), (1.8)

where

D =
∇u+∇Tu

2
, Ω =

∇u−∇Tu

2

represent the symmetric and skew-symmetric parts of the rate of strain tensor, respectively. We note
that S(∇u,Q) describes the rotating and stretching effects on the order parameter Q due to the
fluid, as the liquid crystal molecules can be tumbled and aligned by the flow. In particular, the constant
parameter ξ ∈ R in (1.8) depends on the molecular shapes of the liquid crystal and it is a measure
of the ratio between the tumbling and the aligning effect that a shear flow exerts on the liquid crystal
director.
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Concerning the stress tensors τ and σ on the right-hand side of Navier-Stokes equations (1.1), the
symmetric part τ reads

τ
def
= −ξ

(
Q+

1

d
I
)
H(Q)− ξH(Q)

(
Q+

1

d
I
)

+ 2ξ
(
Q+

1

d
I
)

tr(QH(Q))− L∇Q�∇Q, (1.9)

in which the last term is understood as (∇Q �∇Q)ij =
∑d

k,l=1∇iQkl∇jQkl. On the other hand,
the skew-symmetric part σ is given by

σ
def
= QH(Q)−H(Q)Q. (1.10)

We recall some related results in the literature. The coupled Beris-Edwards system (1.1)-(1.3) has
been recently studied by several authors. For the simpler case ξ = 0, which means that the molecules
only tumble in a shear flow, but they are not aligned by the flow (cf. [32]), the first contribution is due
to [32], in which the authors proved the existence of global weak solutions to the Cauchy problem in
Rd with d = 2, 3, and they obtained higher global regularity as well as the weak-strong uniqueness
for d = 2. Asymptotic behavior of the Cauchy problem in R3 with ξ = 0 is recently discussed in [10].
Besides, initial boundary value problems subject to various boundary conditions for d = 2, 3 have
been investigated by several authors in [2, 16, 17] under the assumption ξ = 0. In these works, they
proved the existence of global weak solutions, existence and uniqueness of local strong solutions as
well as some regularity criteria etc. For the full Navier-Stokes and Q-tensor system (1.1)-(1.3) with
general ξ ∈ R, existence of global weak solutions for the Cauchy problem in Rd with d = 2, 3 was
established in [31] for sufficiently small |ξ|, while the uniqueness of weak solutions in the 2D setting
is given quite recently in [11]. On the other hand, in [1] the authors proved existence of global weak
solutions and local well-posedness with higher time-regularity for the initial boundary value problem
subject to inhomogeneous mixed Dirichlet/Neumann boundary conditions.

Some recent progresses have also been made on the mathematical analysis of certain modified ver-
sions of the Beris-Edwards system in terms of its free energy. For instance, in [40], the regular bulk
potential in (1.6) is replaced by a singular potential of Ball-Majumdar type (cf. [3]) that ensures the
Q-tensor always stays in the “physical"region. Then, in the co-rotational regime ξ = 0, the author
proved the existence of global weak solutions for d = 2, 3 and for d = 2. Moreover, he obtained
the existence and uniqueness of global regular solutions. In [13, 14], non-isothermal variants of the
Beris-Edwards system were derived and the authors proved existence of global weak solutions in the
case of a singular potential under periodic boundary conditions for general ξ and d = 3. In [19], the
authors considered a general Beris-Edwards system where the Dirichlet type elastic functional as in
(1.6) is replaced by three quadratic functionals. For the Cauchy problem in R3, they proved existence
of global weak solutions as well as the existence of a unique global strong solution provided that the
fluid viscosity is sufficiently large. We also refer the interested readers to [9, 22] for well-posedness
results regarding theQ-tensor gradient flow generated by the general Landau-de Gennes energy with
a cubic term (but without fluid coupling).

It is worth mentioning that a rigorous derivation from the Beris-Edwards system (with general free
energy and arbitrary ξ) to the classical Ericksen-Leslie system is recently given in [39] by using the
Hilbert expansion method. We refer to [6,7,20,26,38,42] and the references therein for mathematical
analysis of the general Ericksen-Leslie system either under the unit length constraint of the molecule
director or with Ginzburg-Landau approximation of the free energy.

In this paper, we are interested in the global well-posedness and long-time behavior of the full Navier-
Stokes and Q-tensor system (1.1)-(1.5) in the two dimensional periodic setting. The main difficulty in
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handling the current full coupled system with ξ ∈ R is due to the fact that for ξ 6= 0 the system (1.1)-
(1.5) no longer enjoys the maximum principle for the Q-equation (1.3), which is instead true in case
ξ = 0 (see e.g., [17, Theorem 3]). Due to the loss of control on Q in L∞(0, T ;L∞), extra difficulties
arise in obtaining estimates for highly nonlinear terms of the system (see Proposition 3.1). We note
that a similar problem was encountered in [31] to prove the existence of global strong solutions of the
Cauchy problem in R2 (assuming that |ξ| is sufficiently small). In order to get such highly nonlinearities
under control, the authors of [31] chose to work within the technical Littlewood-Paley approach and
then made use of the sharp logarithmic Sobolev embedding of H1+ε in L∞ (cf. [5]) together with the
precise growth of the constant of the Sobolev embedding of H1 in Lp for any p > 1 (cf. [8]), and
an optimal choice of the non-constant index p of interpolation depending on the norm of the solution.
Then they established the existence of a unique global strong solution (u,Q) to the Cauchy problem
in R2, whose Hs ×H1+s-norm (s > 0) may increases at most quadruply exponential in time.

We note that in [31], the smallness of the parameter |ξ| is required because of the unboundedness
of the whole plane R2, which however can be removed in our current periodic setting (see (2.8)). In
the periodic domain T2, the first main result we are able to prove is the existence and uniqueness of
global strong solutions (u,Q) for arbitrary ξ ∈ R, whoseH1×H2-norm is indeed uniformly bounded
in time (see Theorem 2.1). To achieve this goal, we use the idea of [25] for the simplified liquid crystal
system together with the interpolation techniques in [31] to derive a suitable higher-order differential
inequality for a specific quantityA(t) (see (3.5) for its definition), which is essentially contained in the
energy dissipation of the system (1.1)-(1.5) and is integrable with respect to time on the unbounded
half line R+ such that A(t) ∈ L1(0,+∞) (see Proposition 3.1). The resulting higher-order energy
inequality (3.6) has a delicate double-logarithmic type structure and it plays a crucial role in three
aspects of the subsequent proofs: (1) it yields uniform-in-time estimates on H1 × H2-norm of the
global strong solution (u,Q) provided that (u0, Q0) ∈ H1 ×H2 (see (4.17)); (2) it implies the decay
ofA(t) to zero as t→ +∞ and thus gives a characterization of the ω-limit set of the evolution system
(1.1)-(1.5) (see Lemma 5.1); (3) it helps to obtain an uniform estimate on the rate of convergence to
equilibrium for the global strong solution (see (5.36)).

Our second main result is about the long-time behavior of global strong solutions obtained in Theorem
2.1 (see Theorem 2.2). The problem whether a bounded global solution of a nonlinear evolution equa-
tion will converge to a single equilibrium as time tends to infinity is of great importance. This issue is
nontrivial since the structure of the equilibrium set may form a continuum for many dynamic systems in
higher space dimensions. For instance, under current periodic boundary conditions, it is expected that
the dimension of the equilibrium set of our problem (1.1)-(1.5) is at least 2 due to the simple fact that
a shift in each variable produces another steady state. Hence, it is interesting to determine whether a
trajectory defined by a global strong solution will converge to a single steady state or not. To this end,
we first construct a specific gradient inequality for tensor valued functions subject to periodic boundary
conditions (see Lemma 5.2), then we apply the Łojasiewicz-Simon approach (see [34] and also [15])
to achieve our aim. This approach turns out to be a powerful tool in the study of long-time dynamics
of evolution equations, and we refer interested readers to [21] and the references therein for various
applications.

The rest of this paper is organized as follows. In Section 2 we introduce the notations as well as
some preliminary results, and then state the main results of this paper. Section 3 is devoted to the
derivation of a specific higher-order differential inequality that will be crucial in the subsequent proof.
In Section 4, we prove the existence and uniqueness of global strong solutions to the Beris-Edward
system (1.1)-(1.5). In Section 5 we demonstrate that every global strong solution will converge to a
single equilibrium and provide a uniform estimate on the convergence rate. Some detailed calculations

4



will be presented in the Appendix Section.

2 Preliminaries and Main Results

2.1 Notations

Let X be a real Banach space with norm ‖ · ‖X and X∗ be its dual space. By < ·, · >X∗,X we
indicate the duality product between X and X∗. We denote by Lp(Td,M), Wm,p(Td,M) the usual
Lebesgue and Sobolev spaces defined on the torus Td for M -valued functions (e.g., M = R, M =
Rd or M = Rd × Rd) that are in Lploc(Rd) or Wm,p

loc (Rd) and periodic in Td, with norms denoted
by ‖ · ‖Lp , ‖ · ‖Wm,p , respectively. For p = 2, we simply denote Hm(Td) = Wm,2(Td) with norm
‖ · ‖Hm . In particular for m = 0, we denote H0(Td) = L2(Td) and the inner product on L2(Td) will
be denoted by (·, ·)L2 . For simplicity, we shall not distinguish functional spaces when scalar-valued,
vector-valued or matrix-valued functions are involved if they are clear from the context.

Einstein summation convention will be used throughout this paper. For arbitrary vectors u, v ∈ Rd,
we denote u · v = uivi the inner product in Rd. For any matrix Q ∈ Rd×d, we use the Frobenius
norm |Q| =

√
tr(Q2) =

√
QijQij . Let S(d)

0 denote the space of symmetric traceless matrices with
spatial dimension d,

S
(d)
0

def
=
{
Q ∈ Rd×d | Qij = Qji, tr(Q) = 0, i, j = 1, ..., d

}
. (2.1)

Then for matrices A,B ∈ S(d)
0 , we denote A : B = tr(AB). Concerning the norms for derivatives,

we denote |∇Q|2(x) = ∇kQij(x)∇kQij(x) and |∆Q|2(x) = ∆Qij(x)∆Qij(x). Sobolev spaces

for Q-tensors will be defined in terms of the above norms. For instance, L2(Td, S
(d)
0 ) = {Q : Td →

S
(d)
0 ,
∫

Td |Q(x)|2 dx < ∞} and H1(Td, S
(d)
0 ) = {Q : Td → S

(d)
0 ,
∫

Td |∇Q(x)|2 + |Q(x)|2 dx <
∞} etc. Concerning the divergence of a d× d differentiable matrix-valued function σ = (σij), its i-th
component is given by (∇ · σ)i = ∇jσij , 1 ≤ i, j ≤ d.

For any normed space X , the subspace of functions in X with zero-mean will be denoted by Ẋ , that
is Ẋ =

{
v ∈ X :

∫
Td v dx = 0

}
. Then we recall the well established functional settings for periodic

solutions to Navier-Stokes equations (see e.g., [36]):

H = {v ∈ L̇2(Td,Rd), ∇ · v = 0},
V =

{
v ∈ Ḣ1(Td,Rd), ∇ · v = 0

}
,

V′ = the dual space of V.

In the spatial periodic setting, one can define a mapping S associated with the Stokes problem:

Su = −∆u, ∀u ∈ D(S)
def
= {u ∈ H, ∆u ∈ H} = Ḣ2(Td,Rd) ∩H. (2.2)

The operator S can be seen as an unbounded positive linear self-adjoint operator on H. If D(S) is
endowed with the norm induced by Ḣ2(Td), then S becomes an isomorphism from D(S) onto H.
For detailed properties of S , we refer to [36].

We denote by C a generic constant that may depend on ν, Γ, λ, ξ, L, a, b, c, Td and the initial
data (u0, Q0), whose value is allowed to vary on occurrence. Specific dependence will be pointed out
explicitly if necessary.
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2.2 Basic energy law and global weak solutions

We first present some basic properties of the Navier-Stokes and Q-tensor system (1.1)-(1.5) that are
valid in both two and three dimensional cases.

The total energy of the system (1.1)-(1.5) consists of two parts: the kinetic energy for the velocity field
u and the free energy F(Q) (see (1.6)). More precisely, we have

E(t)
def
=

1

2

∫

Td
|u|2(x, t) dx+ λF(Q(t)). (2.3)

By the same argument as in [31, Proposition 1] for the whole space case in Rd (see also [11, Propo-
sition 2.1]), we can derive the following basic energy law:

Lemma 2.1 (Basic energy law). Suppose d = 2, 3 and (u,Q) be a smooth solution to the problem
(1.1)-(1.5). Then we have

d

dt
E(t) = −ν

∫

Td
|∇u|2 dx− λΓ

∫

Td
|H(Q)|2 dx ≤ 0, ∀ t > 0. (2.4)

Lemma 2.1 reflects the energy dissipation of the liquid crystal flow and indicates that the energy func-
tional E(t) which is bounded from below since c > 0, serves as a Lyapunov functional for the system
(1.1)-(1.5). This property provides necessary uniform estimates for further mathematical analysis of
the PDE system (1.1)-(1.5), for instance, the existence of global weak solutions.

Lemma 2.2. Suppose d = 2, 3. Let (u,Q) be a smooth solution to the problem (1.1)-(1.5). Then we
have

‖u(t)‖L2 + ‖Q(t)‖H1 ≤ C, ∀ t > 0, (2.5)

where the constant C > 0 depends on ‖u0‖, ‖Q0‖H1 , L, λ, a, b, c and Td. Moreover, it holds

∫ T

0

∫

Td
|∇u(x, t)|2 + |∆Q(x, t)|2 dxdt < CT , ∀T > 0, (2.6)

where CT > 0 may further depend on ν, Γ and T .

Proof. It follows from Lemma 2.1 that

E(t) +

∫ t

0

∫

Td
ν|∇u|2 + λΓ|H(Q)|2dxdt = E(0), ∀ t > 0. (2.7)

We easily infer from the Sobolev embedding theorem (d = 2, 3) that

E(0) =
1

2
‖u0‖2L2 + λF(Q0) ≤ C(‖u0‖L2 , ‖Q0‖H1).

On the other hand, there exists a constant M = M(a, b, c) > 0 large enough (see [31, (18)]) such
that

M

2
tr(Q2) +

c

8
tr2(Q2) ≤

(
M +

a

2

)
tr(Q2)− b

3
tr(Q3) +

c

4
tr2(Q2),

which combined with the Young’s inequality and the fact c > 0 yields that

a

2
tr(Q2)− b

3
tr(Q3) +

c

4
tr2(Q2) ≥ −M

2
tr(Q2) +

c

8
tr2(Q2)
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≥ 1

2
tr(Q2) +

c

16
tr2(Q2)− (M + 1)2

c
.

Then we have following estimate

1

2
‖u(t)‖2L2 +

λL

2
‖∇Q(t)‖2L2 + λ

∫

Td

1

2
tr(Q2(t)) +

c

16
tr2(Q2(t)) dx

≤ 1

2
‖u(t)‖2 + λF(Q(t)) +

λ(M + 1)2

c
|Td|, (2.8)

where |Td| stands for the Lebesgue measure of Td. As a consequence, we can deduce that E(t) is
uniformly bounded from below by a generic constant only depending on the coefficients a, b, c, λ and
the size of periodic domain. Hence, the estimate (2.5) easily follows from (2.7) and (2.8).

Next, we infer from (2.5), (2.7), (2.8) and the Sobolev embedding theorem (d = 2, 3) that
∫ t

0

∫

Td

∣∣L∆Q
∣∣2 dxdτ

≤ 2

∫ t

0

∫

Td

∣∣H(Q)
∣∣2 dxdτ + 2

∫ t

0

∫

Td

∣∣∣∣−aQ+ b

(
Q2 − 1

3
tr(Q2)I

)
− cQ tr(Q2)

∣∣∣∣
2

dxdτ

≤ 2

∫ t

0

∫

Td

∣∣H(Q)
∣∣2 dxdτ + C

∫ t

0

(
‖Q(τ)‖2L2 + ‖Q(τ)‖4L4 + ‖Q(τ)‖6L6

)
dτ

≤ 2

λΓ

(
E(0)− E(t)

)
+ Ct

≤ C(1 + t), ∀ t > 0,

where C depends on ‖u0‖, ‖Q0‖H1 ,Γ, L, λ, a, b, c and Td. Then the conclusion (2.6) follows from
the above estimate and (2.7).

Remark 2.1. For the full Navier-Stokes and Q-tensor system (1.1)-(1.5) with general ξ ∈ R, existence
of weak solutions for the Cauchy problem in the whole space Rd with d = 2, 3 is established in [31] for
sufficiently small ξ. On the other hand, for the initial boundary value problem in a bounded domain in
Rd, in [1] existence of global weak solutions under inhomogeneous mixed Dirichlet/Neumann bound-
ary conditions were obtained without any restriction on ξ. The smallness for ξ can be removed for the
bounded domain case because one can use a generic constant depending on the domain size to get
a priori L2 estimates for the Q-tensor (see (2.8)).

Since we are working with the periodic domain, the following result can be easily proved in a way
similar to [1]:

Proposition 2.1 (Existence of global weak solutions). Suppose that d = 2, 3 and ξ ∈ R. For any
initial data (u0, Q0) ∈ H × H1(Td, S

(d)
0 ), the problem (1.1)-(1.5) possesses at least one global-in-

time weak solution (u,Q) such that

u ∈ L∞(0, T ; H) ∩ L2(0, T ; V), (2.9)

Q ∈ L∞(0, T ;H1(Td, S
(d)
0 )) ∩ L2(0, T ;H2(Td, S

(d)
0 )). (2.10)

Moreover, for a.e. t ∈ (0, T ), the following energy inequality holds:

E(t) +

∫ t

0

∫

Td
ν|∇u|2 + λΓ|H(Q)|2dxdt ≤ E(0). (2.11)
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2.3 Main results

In the remaining part of this paper, we shall focus on the two dimensional case that d = 2. First,
we observe the simple fact that when d = 2, it holds tr(Q3) = 0 and thus the cubic term with
coefficient b in the free energy F(Q) (see (1.6)) vanishes (cf. [22]). As a consequence, we have a
simpler expression for H(Q) in the 2D case:

H(Q) = L∆Q− aQ− cQ tr(Q2). (2.12)

Let us introduce the notion of strong solutions to problem (1.1)-(1.5):

Definition 2.1. Suppose that d = 2 and (u0, Q0) ∈ V × H2
(
T2, S

(2)
0

)
. A pair (u,Q) is called a

global strong solution to problem (1.1)-(1.5) if

u ∈ C([0,+∞); V) ∩ L2
loc(0,+∞;H2(T2,R2)), (2.13)

Q ∈ C([0,+∞);H2(T2, S
(2)
0 ) ∩ L2

loc(0,+∞;H3(T2, S
(2)
0 )). (2.14)

Moreover, the equations (1.1) for u and the equations (1.3) forQ are satisfied in L2
loc(0,+∞; H) and

L2
loc(0,+∞;L2(T2, S

(2)
0 )), respectively.

Then we state the main results of this paper. The first result is about the global well-posedness of the
hydrodynamic system (1.1)-(1.5) in T2.

Theorem 2.1 (Existence and uniqueness of global strong solutions). Suppose d = 2 and ξ ∈ R.
Then, for any (u0, Q0) ∈ V × H2

(
T2, S

(2)
0

)
, problem (1.1)-(1.5) admits a unique global solution

(u,Q) in the sense of Definition 2.1, which satisfies

‖u(t)‖H1 + ‖Q(t)‖H2 ≤ C, ∀ t ≥ 0,

where C > 0 is a constant that depends on ν,Γ, L, λ, a, c,T2, ‖u0‖H1 , ‖Q0‖H2 and ξ.

Our second main result states that for any global strong solution obtained in Theorem 2.1, it has an
unique asymptotic limit as t→ +∞.

Theorem 2.2 (Uniqueness of asymptotic limit). Suppose that the assumptions in Theorem 2.1 are
satisfied. For any (u0, Q0) ∈ V ×H2

(
T2, S

(2)
0

)
, the unique global strong solution to problem (1.1)-

(1.5) converges to a single steady state solution (0, Q∞) as time tends to infinity:

lim
t→+∞

(‖u(t)‖H1 + ‖Q(t)−Q∞‖H2) = 0, (2.15)

where Q∞ ∈ S(2)
0 satisfies the elliptic problem in T2

L∆Q∞ − aQ∞ − c tr(Q2
∞)Q∞ = 0, in T2, Q∞(x+ ei) = Q∞ for x ∈ T2.

Furthermore, the following estimate on convergence rate holds

‖u(t)‖H1 + ‖Q(t)−Q∞‖H2 ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (2.16)

Here, C > 0 is a constant that depends on ν,Γ, L, λ, a, c, ξ,T2, ‖u0‖H1 , ‖Q0‖H2 , ‖Q∞‖H2 , and
θ ∈ (0, 1

2
) is the constant given in Lemma 5.2 depending on Q∞.
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3 Higher-Order Energy Inequality

In this section we will derive a useful higher-order energy inequality for problem (1.1)-(1.5). For the
sake of simplicity, the subsequent calculations shall be performed formally on smooth solutions of
the problem (1.1)-(1.5), without referring to any approximation. Nevertheless, they can be justified by
working within the Faedo-Galerkin approximation scheme (4.1)-(4.7) given in Section 4.

We start by recalling the following special cases of the Gagliardo-Nirenberg inequality in 2D that will
be frequently used in the subsequent proofs (see, e.g., [23]):

Lemma 3.1. Suppose d = 2. We have

‖g‖L4 ≤ C
(
‖∇g‖

1
2

L2‖g‖
1
2

L2 + ‖g‖L2

)
, ∀ g ∈ H1(T2), (3.1)

‖∇g‖L2 ≤ ‖g‖
1
2

L2‖∆g‖
1
2

L2 , ∀ g ∈ H2(T2). (3.2)

Besides, we will make use of the following Lp-interpolation inequality with precise growth of the con-
stant in 2D, which follows from [8] (see also [30, Lemma 10]) and the Sobolev extension theorem [29,
Chap. 2, Sect. 3.6]:

Lemma 3.2. Suppose d = 2. For any η > 1, it holds:

‖g‖L2η ≤ C
√
η‖g‖1−

1
η

H1 ‖g‖
1
η

L2 , ∀ g ∈ H1(T2),

where the constant C is independent of the exponent η and function g.

Next, we recall that when ξ = 0 the system (1.1)-(1.5) enjoys a maximum principle for theQ-equation
(1.3) (see e.g., [17, Theorem 3]). However, since now the parameter ξ is allowed to be non-zero, the
maximum principle property is no longer valid. The loss of control on Q ∈ L∞(0, T ;L∞) brings us
several difficulties in obtaining estimates for highly nonlinear terms of the system. In order to handle
the L∞-norm of Q, we shall use the following well-known results

Lemma 3.3 (Agmon’s Inequality [37]). When d = 2, it holds

‖g‖L∞ ≤ C‖g‖
1
2

L2‖g‖
1
2

H2 , ∀ g ∈ H2(T2). (3.3)

Lemma 3.4 (Brézis-Gallouet Inequality [5]). When d = 2, for any g ∈ H2(T2), it holds

‖g‖L∞ ≤ C‖g‖H1

√
ln(1 + ‖g‖H2) + C‖g‖H1 . (3.4)

Now we state the main result of this section.

Proposition 3.1. Let d = 2 and

A(t) = ‖∇u(t)‖2L2 + λ‖H(Q(t))‖2L2 . (3.5)

For any ξ ∈ R, the following energy inequality holds:

d

dt
A(t) +

ν

2
‖∆u(t)‖2L2 +

λΓ

2
‖∇H(Q(t))‖2L2

≤ C∗
[
1 + |ξ|

[
1 + ln(e+ ln(e+A(t)))

]
(e+ ln(e+A(t)))

][
e+A(t)

]
A(t), (3.6)

where C∗ > 0 is a constant that depends on ν,Γ, L, λ, a, c,T2, ‖u0‖L2 , ‖Q0‖H1 and ξ.
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Proof. After a lengthy calculation (see Appendix for details), we obtain

1

2

d

dt
A(t) + ν‖∆u‖2L2 + λΓ‖∇H‖2L2

=

∫

T2

(
u · ∇u,∆u

)
dx− 2λ

∫

T2

∇luk∇l∇kQijHijdx+
λ

L

∫

T2

uk∇kFijHijdx

−2λ

∫

T2

∇jui(∇lQkj∇lHik − λ∇lQik∇lHkj)dx− λ
∫

T2

∇jui(∆QkjHik −∆QikHkj)dx

+λξ

∫

T2

(
D∆Q+ ∆QD) : Hdx+ 4λξ

∫

T2

∇lDik∇lQkjHij dx

−2λξ

∫

T2

∆
(
QklQji

)
∇juiHkl dx− 4λξ

∫

T2

∇m

(
QklQji

)
∇m∇juiHkl dx

−λ
∫

T2

∂F (Q)

∂Q
(u · ∇Q) : Hdx+ λ

∫

T2

∂F (Q)

∂Q
S(∇u,Q) : Hdx

+λΓ

∫

T2

∂F (Q)

∂Q
H : Hdx

:=
12∑

i=1

Ji. (3.7)

Below we shall estimate the terms J1 through J12 in (3.7). Let us take ε ∈ (0, 1) to be a small constant
that will be determined later.

The term J1 can be easily estimated by using the Gagliardo-Nirenberg inequality (3.1) and the lower-
order estimate (2.5):

J1 ≤ ‖u‖L4‖∇u‖L4‖∆u‖L2

≤ C‖u‖
1
2

L2‖∇u‖L2‖∆u‖
3
2

L2

≤ ε‖∆u‖2L2 + C‖∇u‖4L2 .

Recalling (2.12) and using again (2.5), we observe that

‖∆Q‖L2 ≤ 1

L
‖H(Q)‖L2 +

1

L

∥∥aQ+ c tr(Q2)Q
∥∥
L2

≤ 1

L
‖H(Q)‖L2 + C(‖Q‖H1)

≤ 1

L
‖H(Q)‖L2 + C. (3.8)

Meanwhile, applying (3.2) and (3.3) once more, we get

‖∇∆Q‖L2 ≤ 1

L
‖∇H(Q)‖L2 +

1

L

∥∥∥a∇Q+ c∇
[

tr(Q2)Q
]∥∥∥

L2

≤ 1

L
‖∇H(Q)‖L2 + C

(
1 + ‖Q‖2L∞

)
‖∇Q‖L2

≤ 1

L
‖∇H(Q)‖L2 + C

(
1 + ‖∆Q‖L2

)

≤ 1

L
‖∇H(Q)‖L2 + C

(
1 + ‖∇Q‖

1
2

L2‖∇∆Q‖
1
2

L2 + ‖∇Q‖L2

)

10



≤ 1

L
‖∇H(Q)‖L2 +

1

2
‖∇∆Q‖L2 + C,

which implies

‖∇∆Q‖L2 ≤ 2

L
‖∇H(Q)‖L2 + C. (3.9)

On the other hand, we infer from Agmon’s inequality (3.3) and the estimates (2.5), (3.8) that

‖Q‖L∞ ≤ C‖Q‖
1
2

L2‖Q‖
1
2

H2 ≤ C(1 + ‖∆Q‖
1
2

L2) ≤ C(1 + ‖H(Q)‖
1
2

L2). (3.10)

As a consequence, we obtain from the Hölder inequality, the Gagliardo-Nirenberg inequality (3.1) and
the Young’s inequality that

J2 ≤ C‖∇u‖L2‖Q‖W 2,4‖H‖L4

≤ C‖∇u‖L2‖Q‖
1
2

H2‖Q‖
1
2

H3‖H‖
1
2

L2‖H‖
1
2

H1

≤ C‖∇u‖L2

(
‖∆Q‖

1
2

L2‖∇∆Q‖
1
2

L2 + ‖∆Q‖L2 + 1
)(
‖H‖

1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2

)

≤ C‖∇u‖L2

(
‖H‖

1
2

L2‖∇H‖
1
2

L2 + ‖∇H‖
1
2

L2 + ‖H‖L2 + 1
)(
‖H‖

1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2

)

≤ ε‖∇H‖2L2 + C‖∇u‖2L2 + C‖∇u‖4L2 + C‖H‖2L2 + C‖H‖4L2

≤ ε‖∇H‖2L2 + CA(1 +A).

For J3, using the inequalities (3.1) and (3.3), we obtain that

J3 ≤ ‖u‖L4‖∇Q‖L4(1 + ‖Q‖2L∞)‖H‖L2

≤ C‖∇u‖L2‖∆Q‖
1
2

L2‖∇Q‖
1
2

L2(1 + ‖∆Q‖L2)‖H‖L2

≤ C‖∇u‖L2(1 + ‖∇∆Q‖
1
2

L2‖∇Q‖
1
2

L2)‖∆Q‖
1
2

L2‖H‖L2

≤ ε‖∇H‖2L2 + C‖∇u‖4L2 + C‖H‖4L2 + C‖H‖2L2

≤ ε‖∇H‖2L2 + CA(1 +A).

And terms J4 and J5 can be estimated as follows

J4 ≤ C‖∇u‖L4‖∇Q‖L4‖∇H‖L2

≤ C‖u‖
1
2

L2‖∆u‖
1
2

L2‖∇Q‖
1
2

L2‖∆Q‖
1
2

L2‖∇H‖L2

≤ ε‖∆u‖2L2 + ε‖∇H‖2L2 + C‖∇u‖2L2 + C‖H‖4L2

≤ ε‖∆u‖2L2 + ε‖∇H‖2L2 + CA(1 +A),

J5 ≤ C‖∇u‖L4‖∆Q‖L2‖H‖L4

≤ C‖∇u‖
1
2

L2‖∆u‖
1
2

L2(1 + ‖H‖L2)(‖H‖
1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2)

≤ ε‖∆u‖2L2 + ε‖∇H‖2L2 + C‖∇u‖2L2 + C‖∇u‖4L2 + C‖H‖2L2 + C‖H‖4L2

≤ ε‖∆u‖2L2 + ε‖∇H‖2L2 + CA(1 +A).

Besides, for J10 and J12 the following inequality holds

J10 + J12
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≤ C
(
1 + ‖Q‖2L∞

)(
‖H‖L2 + ‖u‖L∞‖∇Q‖L2

)
‖H‖L2

≤ C(1 + ‖H‖L2)
(
‖H‖L2 + ‖u‖

1
2

L2‖∆u‖
1
2

L2

)
‖H‖L2

≤ C(1 + ‖H‖L2)‖H‖2L2 + C‖H‖2L2‖u‖
1
2

L2‖∆u‖
1
2

L2 + C‖H‖L2‖∇u‖
1
2

L2‖∆u‖
1
2

L2

≤ ε‖∆u‖2L2 + C‖∇u‖2L2 + C‖∇u‖4L2 + C‖H‖2L2 + C‖H‖4L2

≤ ε‖∆u‖2L2 + CA(1 +A).

It remains to estimate the terms J6, ..., J9 and J11 involving the parameter ξ, which all vanish when
ξ = 0. Thus, we only need to consider the case ξ 6= 0 (with ξ being fixed).

The term J6 can be estimated in the same way as for J2, that is

J6 ≤ C|ξ|‖∇u‖L2‖∆Q‖L4‖H‖L4

≤ ε‖∇H‖2L2 + C(1 + |ξ|2)A(1 +A).

For J7, using the Hölder inequality, (3.1), (3.8) and Young’s inequality, we have

J7 ≤ C|ξ|‖∆u‖L2‖∇Q‖L4‖H‖L4

≤ C|ξ|‖∆u‖L2‖∇Q‖
1
2

L2‖∆Q‖
1
2

L2

(
‖H‖

1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2

)

≤ ε‖∆u‖2L2 + ε‖∇H‖2L2 + C(1 + |ξ|4)(‖H‖2L2 + ‖H‖4L2)

≤ ε‖∆u‖2L2 + ε‖∇H‖2L2 + C(1 + |ξ|4)A(1 +A).

Next, we first treat J11 and postpone the estimates for terms J8, J9 that are more involved.

J11 ≤ C
(
1 + ‖Q‖2L∞

)
‖S(∇u,Q)‖L2‖H‖L2

≤ C(1 + ‖H‖L2)
(
1 + ‖Q‖L∞

)2‖∇u‖L2‖H‖L2

≤ C(1 + ‖H‖L2)2‖∇u‖L2‖H‖L2

≤ C‖∇u‖L2‖H‖L2 + C‖H‖3L2‖∆u‖
1
2

L2‖u‖
1
2

L2

≤ ε‖∆u‖2L2 + C‖∇u‖2L2 + C‖H‖2L2 + C‖H‖4L2

≤ ε‖∆u‖2L2 + CA(1 +A).

Now, let us consider the term J8. By a similar argument for J5 and using the Brézis-Gallouet inequality
(3.4), we obtain that

J8 ≤ 2|ξ|‖∇u‖L4‖H‖L4‖∆(QQ)‖L2

≤ C|ξ|‖∇u‖L4‖H‖L4

(
‖Q‖L∞‖∆Q‖L2 + ‖∇Q‖2L4

)

≤ C|ξ|‖∇u‖L4‖H‖L4

(
‖Q‖L∞‖∆Q‖L2 + ‖∆Q‖L2‖∇Q‖L2

)

≤ C|ξ|‖∇u‖
1
2

L2‖∆u‖
1
2

L2(1 + ‖H‖L2)(‖H‖
1
2

L2‖∇H‖
1
2

L2 + ‖H‖L2)
(
‖Q‖L∞ + 1

)

≤ ε‖∆u‖2 + ε‖∇H‖2
+ C(|ξ|+ |ξ|4)(1 + ‖Q‖2L∞)(‖∇u‖4L2 + ‖∇u‖2L2 + ‖H‖4L2 + ‖H‖2L2)

≤ ε‖∆u‖2 + ε‖∇H‖2 + C(|ξ|+ |ξ|4)BA(1 +A),

where we have set
B = e+ ln(e+A) > e. (3.11)
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Concerning the last term J9, by the Hölder inequality we have, for any p ∈ (0, 1),

J9 ≤ 4|ξ|‖Q‖L∞‖∇Q‖
L

2
p
‖∇2u‖L2‖H‖

L
2

1−p
. (3.12)

For any p ∈ (0, 1/2), applying the Lp-interpolation inequality Lemma 3.2, with η = p−1 > 1 and
η = (1− p)−1 ∈ (1, 2), respectively, we deduce that

‖∇Q‖
L

2
p
≤ C

√
p−1‖Q‖1−pH2 ‖∇Q‖pL2

≤ C
√
p−1‖H‖1−pL2 ‖∇Q‖pL2 + C

√
p−1

≤ C
√
p−1‖H‖1−pL2 + C

√
p−1, (3.13)

and

‖H‖
L

2
1−p
≤ C

√
(1− p)−1‖H‖pH1‖H‖1−pL2

≤ C
√

(1− p)−1‖∇H‖pL2‖H‖1−pL2 + C
√

(1− p)−1‖H‖L2

≤ C‖∇H‖pL2‖H‖1−pL2 + C‖H‖L2 . (3.14)

Hence, by the Brézis-Gallouet inequality (3.4), estimates (3.12)-(3.14) and the Young’s inequality, we
have

J9 ≤ C|ξ|
√
p−1‖∆u‖L2‖Q‖L∞

×
(
‖∇H‖pL2‖H‖2(1−p)

L2 + ‖H‖2−pL2 + ‖∇H‖pL2‖H‖1−pL2 + ‖H‖L2

)

≤ ε|ξ|‖∆u‖2L2 + ε|ξ|‖∇H‖2L2 + C|ξ|p− 1
1−p‖Q‖

2
1−p
L∞ (‖H‖4L2 + ‖H‖2L2)

+ C|ξ|p−1‖Q‖2L∞(‖H‖4L2 + ‖H‖2L2)

≤ ε|ξ|‖∆u‖2L2 + ε|ξ|‖∇H‖2L2 + C|ξ|p− 1
1−p [e+ ln(e+A)]

1
1−p (‖H‖4L2 + ‖H‖2L2)

+ C|ξ|p−1[e+ ln(e+A)](‖H‖4L2 + ‖H‖2L2)

:= ε|ξ|‖∆u‖2L2 + ε|ξ|‖∇H‖2L2 + J9a + J9b, ∀ p ∈
(
0,

1

2

)
. (3.15)

Since the constant C in the estimate (3.15) is independent of the parameter p ∈ (0, 1/2), then, in the
spirit of [31], we can take the exponent

p = (1 + lnB)−1,

where B is given in (3.11). We note that with this choice p may not be a constant, but it is always true
that p ∈ (0, 1/2). Then it follows from (3.15) that

J9b ≤ C|ξ|(1 + lnB)BA(1 +A), (3.16)

and

J9a ≤ C|ξ|p− 1
1−p [e+ ln(e+A)]

1
1−p (‖H‖4L2 + ‖H‖2L2)

≤ C|ξ|[(1 + lnB)B]1+ 1
lnBA(1 +A)

≤ C|ξ|(1 + lnB)BA(1 +A), (3.17)
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where we have used the following simple fact such that the quantity

[(1 + lnB)B]
1

lnB = [(1 + lnB)elnB]
1

lnB = e(1 + lnB)
1

lnB

is uniformly bounded for all B > e. As a consequence of (3.15)-(3.17), we deduce that

J9 ≤ ε|ξ|‖∆u‖2L2 + ε|ξ|‖∇H‖2L2 + C|ξ|(1 + lnB)BA(1 +A). (3.18)

Now we take the small constant

ε ∈
(

0,
min{ν, λΓ}
2(7 + |ξ|)

)
.

From (3.7) and the above estimates for terms J1,... J12, it follows that

dA
dt

+
ν

2
‖∆u‖2L2 +

λΓ

2
‖∇H‖2L2 ≤ C∗

[
1 + |ξ|(1 + lnB)B

]
A(1 +A), (3.19)

which easily implies the conclusion (3.6). The proof is complete.

Remark 3.1. If ξ = 0, the inequality (3.6) reduces to

d

dt
A(t) ≤ C∗[e+A(t)]A(t), (3.20)

which is the same as the higher-order energy inequality derived in [2, Lemma 7.1].

4 Global Strong Solutions in 2D

In this section, we show that starting from initial data with higher regularity, the problem (1.1)-(1.5)
admits a unique global strong solution.

4.1 Semi-Galerkin approximation scheme

We can work with a semi-Galerkin scheme in the periodic setting, which is similar to [25] for the simpli-
fied Ericksen-Leslie system for incompressible nematic liquid crystal flow. For the convenience of the
readers, we briefly describe it below. Recalling the classical spectral theorem for compact operators in
Hilbert spaces and standard results for the stationary Stokes system, we have the following results on
eigenfunctions of the Stokes operator S for u. Let {vn}∞n=1 be the eigenvectors of the Stokes operator
S in the torus T2 with zero mean,

Svn = κnvn, ∇ · vn = 0,

∫

T2

vn(x) dx = 0, in T2,

vn(x+ ei) = vn(x), x ∈ T2,

where 0 < κ1 ≤ κ2 ≤ ... ↗ +∞ are eigenvalues. The eigenvectors vn are smooth and the
sequence {vn}∞n=1 forms an orthogonal basis of H as well as V (see e.g., [36]).

Taking an arbitrary but fixed integerN ∈ N, we consider the finite-dimensional space VN = span{vn}Nn=1

along with the orthogonal projection operators ΠN : H → VN , which are bounded linear operators
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with norms bounded by one. For any T > 0, we seek approximations of solutions to the problem
(1.1)-(1.5). The approximation of velocity uN takes the form

uN =
N∑

i=1

hi(t)vi(x),

which solves
∫

T2

(uN)t · vk dxdt−
∫

T2

(
uN ⊗ uN

)
: ∇vkdx+ ν

∫

T2

∇uN : ∇vk dx

= −
∫

T2

(σN + τN) : ∇vk dx, ∀ t ∈ (0, T ), (4.1)

for any k = 1, ..., N . In (4.1), the approximations of stress tensors are given by

τN
def
= −ξ

(
QN +

1

2
I
)
HN(QN)− ξHN(QN)

(
QN +

1

2
I
)

+2ξ
(
QN +

1

2
I
)

tr(QNHN(QN))− L∇QN �∇QN , (4.2)

σN
def
= QNHN(QN)−HN(QN)QN , (4.3)

where

HN(QN)
def
= L∆QN − aQN − cQN tr((QN)2), (4.4)

On the other hand, the approximate function QN is determined in terms of uN as the unique solution
of the parabolic system

QN
t + uN · ∇QN − S(∇uN , QN) = ΓHN(QN), (x, t) ∈ T2 × R+, (4.5)

where

SN(∇uN , QN)
def
= (ξDN + ΩN)

(
QN +

1

2
I
)

+
(
QN +

1

2
I
)
(ξDN − ΩN)

− 2ξ
(
QN +

1

2
I
)

tr(QN∇uN) (4.6)

with

DN =
∇uN +∇TuN

2
, ΩN =

∇uN −∇TuN

2
.

The initial conditions are given by

uN |t=0 = ΠNu0, QN |t=0 = Q0, x ∈ T2. (4.7)

4.2 Proof of Theorem 2.1

The proof for the existence of global strong solutions consists of several steps.

Existence of approximate solutions. For any fixed integer N , we have the following result on local
existence of the approximate solution (uN , QN):
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Proposition 4.1. Suppose u0 ∈ V, Q0 ∈ H2(T2, S
(2)
0 ). For any N ∈ N, there exists TN >

0 depending on ‖u0‖H1 , ‖Q0‖H2 and N such that the approximate problem (4.1)-(4.7) admits a
solution (uN , QN) satisfying

uN ∈ L∞(0, TN ; V) ∩ L2(0, TN ;H2(T2,R2)) ∩H1(0, TN ; H),

QN ∈ L∞(0, TN ;H2(T2, S
(2)
0 )) ∩ L2(0, TN ;H3(T2, S

(2)
0 )) ∩H1(0, TN ;H1(T2, S

(2)
0 )).

Proposition 4.1 can be proved by a classical Schauder’s argument (see e.g., [25]). Indeed, given a
vector ũ ∈ C([0, T ];VN), then we find a Q = Q[ũ] by solving the equation (4.5) with uN replaced
by ũ. Inserting Q[ũ] back into the equation (4.1), then the solution u to the resulting ODE system
defines a mapping T : ũ 7→ T [ũ] = u. It is standard to show that T admits a fixed point by means of
the classical Schauder’s argument on (0, TN), with certain TN > 0 depending on ‖u0‖H1 , ‖Q0‖H2

and N . We leave the detailed proof to interested readers.

Remark 4.1. Since we are working in the periodic domain T2, by the classical regularity theory for
parabolic equations (cf. [23]) and a bootstrap argument, we can see that (uN , QN) is C∞ in the
interior of T2 × (0, TN).

In order to prove the existence of global strong solutions, we need to derive some uniform estimates
for approximate solutions (uN , QN) that are independent of the approximation parameter N as well
as the time t.

Lower-order estimates. A similar argument like in [1] yields that the approximate solutions satisfy the
following energy identity

d

dt
EN(t) = −ν

∫

T2

|∇uN |2 dx− λΓ

∫

T2

|HN(QN)|2 dx ≤ 0, ∀ t ∈ [0, TN). (4.8)

where

EN(t)
def
=

1

2

∫

T2

|uN |2(x, t) dx+ λF(QN(t)).

As in Lemma 2.5, the energy identity (4.8) provides uniform estimates for uN and QN such that

‖uN(t)‖L2 + ‖QN(t)‖H1 ≤ C, ∀ t ∈ [0, TN), (4.9)
∫ t

0

∫

Td
|∇uN(τ)|2 + |∆QN(τ)|2 dxdτ < C(1 + t), ∀ t ∈ [0, TN), (4.10)

where the constant C > 0 depends on ‖u0‖, ‖Q0‖H1 , L, λ, ν,Γ, a, c and T2, but it is independent
of the parameter N and the time t.

Higher-order estimates. It is easy to see that the calculations we made in Section 3 for smooth
solutions (u,Q) to the problem (1.1)-(1.5) still hold for the approximate solutions (uN , QN). Thus, for
(uN , QN), we introduce the quantity

AN(t) = ‖∇uN(t)‖2L2 + λ‖HN(QN(t))‖2L2 . (4.11)

In particular, we infer from (4.8) that
∫ t

0

∫

T2

ν|∇uN(τ)|2 + λΓ|HN(QN(τ))|2 dxdτ ≤ K, ∀ t ∈ [0, TN), (4.12)
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where K > 0 is a constant that only depends on ‖u0‖L2 , ‖Q0‖H1 , L, λ, a, c,T2. Then we have

∫ t

0

AN(τ) dτ ≤ K

min{ν,Γ} , ∀ t ∈ [0, TN). (4.13)

On the other hand, using the lower-order estimate (4.9), for any ξ ∈ R, we can get the following
higher-order energy inequality for all t ∈ [0, TN):

d

dt
AN(t) +

ν

2
‖∆uN‖2L2 +

λΓ

2
‖∇HN(QN)‖2L2

≤ C∗
[
1 + |ξ|

[
1 + ln(e+ ln(e+AN(t)))

]
(e+ ln(e+AN(t)))

]
[e+AN(t)]AN(t),(4.14)

where C∗ > 0 is a constant that depends on ν,Γ, L, λ, a, c,T2, ‖u0‖L2 , ‖Q0‖H1 , ξ, but is indepen-
dent of N and t.

Now we consider two cases.

Case 1. If ξ = 0, then we infer from (4.14) that

d

dt
ln[e+AN(t)] ≤ C∗AN(t),

which implies

AN(t) ≤ [e+AN(0)]eC∗
R t
0 AN (τ)dτ ≤ [e+AN(0)]e

C∗K
min{ν,Γ} ≤ C, ∀ t ∈ [0, TN),

where C > 0 is a constant that depends on ν,Γ, L, λ, a, c,T2, ‖u0‖V, ‖Q0‖H2 .

Case 2. If ξ 6= 0, then we deduce from (4.14) that

d

dt
lnZN(t) ≤ C∗(1 + |ξ|)AN(t), (4.15)

where
ZN(t) = 1 + ln[1 + ln[e+AN(t)]].

Integrating (4.15) with respect to time and using (4.13), we have

lnZN(t) ≤ lnZN(0) + C∗(1 + |ξ|)
∫ t

0

AN(τ)dτ

≤ lnZN(0) +
(C∗)2K(1 + |ξ|)

min{ν,Γ} , ∀ t ∈ [0, TN),

which again yields that

AN(t) ≤ C, ∀ t ∈ [0, TN). (4.16)

For both cases, after integrating the differential inequality (4.14) with respect to time, we obtain that
∫ t

0

(
‖∆uN(τ)‖2L2 + ‖∇HN(QN(τ))‖2L2

)
dτ ≤ C, ∀ t ∈ [0, TN).

As a consequence, we have the following uniform higher-order estimates:

‖uN(t)‖H1 + ‖QN(t)‖H2 ≤ C, ∀ t ∈ [0, TN), (4.17)
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∫ t

0

∫

T2

|∆uN(τ)|2 + |∇∆QN(τ)|2 dxdτ < C(1 + t), ∀ t ∈ [0, TN), (4.18)

where the constant C > 0 depends on ‖u0‖H1 , ‖Q0‖H2 , L, λ, ν,Γ, a, c, ξ and T2, but it is indepen-
dent of the parameter N and the time t.

Passage to the limit N →∞. First, we can deduce from the above uniform-in-time lower-order and
higher-order estimates (4.9), (4.17) that the approximate solutions (uN , QN) can not blow up in finite
time. Thus, for any N ∈ N, it holds TN = +∞ such that every approximate solution (uN , QN) can
be extended to the time interval [0, T ] for arbitrary T > 0.

Second, since the uniform estimates (4.9), (4.10), (4.17), (4.18) are also independent of the approx-
imation parameter N , we infer from the equations (4.1), (4.5) and the Hölder inequality that for any
T > 0 and N ∈ N,

uN ∈ L∞(0, T ; V) ∩ L2(0, T ;H2(T2,R2)) ∩H1(0, T ; H),

QN ∈ L∞(0, T ;H2(T2, S
(2)
0 )) ∩ L2(0, T ;H3(T2, S

(2)
0 )) ∩H1(0, T ;H1(T2, S

(2)
0 )).

The above uniform estimates together with standard weak compactness results and the Aubin-Lions
compactness lemma (see e.g., [35, Cor. 4, Sec. 8]) enable us to pass to the limit as N →∞ (up to a
subsequence) to obtain a limit pair (u,Q), which turns out to be a global strong solution to the original
Navier-Stokes and Q-tensor system (1.1)-(1.5). Since the argument is standard (cf. [2]), we omit the
details here.

Uniqueness. The uniqueness of strong solutions is a direct consequence of [31, Section 5], where a
weak-strong uniqueness result is given in R2.

Let (ui, Qi), i = 1, 2 be two global strong solutions of the problem (1.1)-(1.5) subject to initial data
(ui0, Qi0), i = 1, 2, respectively. Since we are dealing with the periodic domain, using the same ar-
gument as in [31], we can obtain the following estimates (however, without any smallness assumption
on ξ):

d

dt

(
‖u1 − u2‖2L2 + λL‖∇(Q1 −Q2)‖2L2 + λ‖Q1 −Q2‖2L2

)

+ ν‖∇(u1 − u2)‖2L2 + λΓL2‖∆(Q1 −Q2)‖2L2

≤ h(t)
(
‖u1 − u2‖2L2 + λL‖∇(Q1 −Q2)‖2L2 + λ‖Q1 −Q2‖2L2

)
, (4.19)

where h(t) ∈ L1(0, T ) is a time-integrable function. As a consequence, we have

‖(u1 − u2)(t)‖2L2 + ‖(Q1 −Q2)(t)‖2H1

+

∫ t

0

(‖∇(u1 − u2)(s)‖2L2 + ‖∆(Q1 −Q2)(s)‖2L2)ds

≤ Ce
R t
0 h(s)ds

(
‖u01 − u02‖2L2 + ‖Q01 −Q02‖2H1

)
, ∀ t ∈ (0, T ). (4.20)

Therefore, the global strong solution to the problem (1.1)-(1.5) is unique.

The proof of Theorem 2.1 is complete.

Remark 4.2. It seems impossible to prove any continuous dependence results on initial data for the
strong solutions obtained above in the space V ×H2. Nevertheless, the estimate (4.20) implies that
for any (u0, Q0) ∈ V ×H2, we are able to define a closed semigroup Σ(t) for t ≥ 0 (in the sense
of [33]) by setting (u(t), Q(t)) = Σ(t)(u0, Q0), where (u,Q) is the global strong solution to the
problem (1.1)-(1.5).
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5 Long-time Behavior

In this section we investigate the long-time behavior of the global strong solution to problem (1.1)-(1.5)
established in Theorem 2.1. The related study consists of two steps. First, we prove that the asymptotic
limit point of the global strong solution (u(t), Q(t)) as t tends to infinity is unique. Then we provide
an uniform estimate of the convergence rate.

5.1 Characterization of ω-limit set

For any initial datum (u0, Q0) ∈ V ×H2
(
T2, S

(2)
0

)
, we denote its ω-limit set by

ω(u0, Q0)
def
=
{

(u∞, Q∞)| ∃ {tn} ↗ ∞ : u(tn)→ u∞ in L2, Q(tn)→ Q∞ in H1 as n→∞
}
.

On the other hand, we denote the set of solutions to the elliptic problem

S =
{
Q∗ : L∆Q∗ − aQ∗ − c tr(Q2

∗)Q∗ = 0, Q∗ ∈ S(2)
0 and Q∗(x+ ei) = Q∗(x) in T2

}
.

Remark 5.1. Since the free energy F(Q) given by (1.6) is bounded from below, using the classical
variational method and the elliptic regularity theorem, it is easy to see that the set S is non-empty.
Besides, every Q∗ ∈ S is a critical point of F(Q).

Next, by virtue of the properties of the ω-limit set ω(u0, Q0) as well as the higher-order energy term
A(t), we have

Lemma 5.1. Suppose that the assumptions in Theorem 2.1 are satisfied. For any initial datum (u0, Q0) ∈
V ×H2

(
T2, S

(2)
0

)
, we have ω(u0, Q0) is a nonempty bounded subset in V ×H2

(
T2, S

(2)
0

)
which

satisfies
ω(u0, Q0) ∈

{
(0, Q∗) : Q∗ ∈ S

}

and the total energy E(t) is a constant on ω(u0, Q0). Besides, the unique global strong solution
(u,Q) has the following decay property:

lim
t→+∞

(
‖u(t)‖H1 + ‖H(Q(t))‖L2

)
= 0. (5.1)

Proof. Since the global strong solution (u,Q) obtained in Theorem 2.1 satisfies the higher-order
energy inequality (3.6), using a similar argument as in Section 4.2, we get

A(t) ≤ C, ∀ t ≥ 0, (5.2)

where C > 0 depends on ‖u0‖H1 , ‖Q0‖H2 , L, λ, ν,Γ, a, c, ξ and T2. As a consequence, it follows
from (3.6) and (5.2) that

d

dt
A(t) ≤ C, ∀ t ≥ 0. (5.3)

On the other hand, the energy identity (2.7) for (u,Q) yields that

∫ +∞

0

∫

T2

ν|∇u|2 + λΓ|H(Q)|2 dxdt ≤ K0, (5.4)
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where K0 > 0 is a constant that only depends on ‖u0‖L2 , ‖Q0‖H1 , L, λ, a, c,T2. This implies that∫ +∞
0
A(t) dt < +∞, which together with (5.3) leads to the conclusion (5.1).

Since the total energy E(t) is non-increasing in time and bounded from below by a generic constant,
there exists a constant F∞ ∈ R such that

lim
t→+∞

E(t) = F∞. (5.5)

By the definition of ω(u0, Q0), it is easy to see that E(t) is equal to the constant F∞ on the set
ω(u0, Q0). The proof is complete.

5.2 Convergence to equilibrium

In general, we cannot directly conclude that each global strong solution of system (1.1)-(1.5) converges
to a single equilibrium as t → +∞ because the set of steady states S for Q-tensors can have
a complicated structure. Besides, since we are working in the periodic torus T2, we may expect the
dimension of the set S to be at least 2. However, we may establish a gradient inequality of Łojasiewicz-
Simon type for this matrix valued function Q and apply Simon’s idea (see [15, 34]) to accomplish our
goal.

To begin with, using (2.5) and (5.2), we have the following uniform-in-time estimates

‖u(t)‖H1 + ‖Q(t)‖H2 ≤ C, ∀ t ≥ 0. (5.6)

Then, from Lemma 5.1 we infer that there exists an increasing unbounded sequence {tn}n∈N and a

matrix function Q∞ ∈ H2
(
T2, S

(2)
0

)
, such that

lim
tn→+∞

∥∥Q(tn)−Q∞
∥∥
H1 = 0, (5.7)

where (0, Q∞) ∈ ω(u0, Q0).

We now proceed to prove the convergence of Q(t) to Q∞ for all time as t→ +∞, which implies that
the ω-limit set ω(u0, Q0) is actually a singleton. For this purpose, the following Łojaciewicz-Simon
type inequality plays an important role.

Lemma 5.2. Let Q∗ ∈ H1(T2, S
(2)
0 ) be a critical point of the energy functional F(Q). Then there

exist some constants θ ∈ (0, 1
2
) and β > 0 depending on Q∗, such that for any Q ∈ H1(T2, S

(2)
0 )

satisfying ‖Q−Q∗‖H1 < β, we have
∥∥L∆Q− aQ− c tr(Q2)Q

∥∥
(H1)′ ≥ |F(Q)−F(Q∗)|1−θ. (5.8)

Here, (H1(T2, S
(2)
0 ))′ is the dual space of H1(T2, S

(2)
0 ).

Proof. If Q ∈ S(2)
0 , then it can be written into the following form

Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
, (5.9)

where p, q are two scalar functions defined on T2. Now we introduce the vector Q̃ : T2 → R2 defined
by

Q̃ =

(
p
q

)
.
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By direct computations, we see that

F̃(Q̃) = F̃(p, q)
def
= F(Q) =

∫

T2

[
L(|∇p|2 + |∇q|2) + a(p2 + q2) + c(p2 + q2)2

]
dx.

Then the corresponding Fréchet derivative of F̃ with respect to Q̃ in L2 is given by

δF̃
δQ̃

=

(
δF̃
δp
δF̃
δq

)
= −2

(
L∆p− ap− 2c(p2 + q2)p
L∆q − aq − 2c(p2 + q2)q

)

Let Q̃∗ =

(
p∗
q∗

)
be a critical point of F(Q̃). Correspondingly, we can easily verify that Q∗ =

(
p∗ q∗
q∗ −p∗

)
is a critical point of F(Q). Then, applying the Łojaciewisz-Simon inequality for vector

valued functions derived in [21], we conclude that there exist some constants θ ∈ (0, 1
2
) and β > 0

depending on Q̃∗ (and thus Q∗), such that the following inequality holds

∥∥∥δF̃
δQ̃

∥∥∥
(H1(T2))′

≥
∣∣F̃(Q̃)− F̃(Q̃∗)

∣∣1−θ, (5.10)

for any Q̃ ∈ H1(T2,R2), provided that ‖Q̃ − Q̃∗‖H1 < β
2

. Therefore, our conclusion (5.8) is an
immediate consequence of the inequality (5.10). The proof is complete.

Remark 5.2. Lemma 5.2 can be considered as an extended version for matrix valued functions of
Simon’s result in [34] for scalar functions. In the present case, there are two constraints (i.e., matrix
symmetry and trace free) imposed on Q ∈ S

(2)
0 , which might bring extra difficulties in the proof.

However, due to the special structure of the Q-tensor in two dimensional case (5.9), the possible
difficulties can be avoided by reducing the problem to the vector case that has been treated in the
literature.

The convergence of the order parameter Q(t) can be proved by adapting the argument in [15] for
parabolic equations, which relies on the following analysis lemma (see e.g., [15, Lemma 7.1])

Lemma 5.3. Let θ ∈ (0, 1
2
). Assume that Z(t) ≥ 0 be a measurable function on (0,+∞), Z(t) ∈

L2(0,+∞) and there exist C > 0 and t0 ≥ 0 such that
∫ ∞

t

Z2(s)ds ≤ CZ(t)
1

1−θ , for a.e. t ≥ t0.

Then Z(t) ∈ L1(t0,+∞).

To this end, by Lemma 5.2, for each element (0, Q∞) ∈ ω(u0, Q0), there exist some constants
βQ∞ > 0 and θQ∞ ∈ (0, 1

2
) such that the inequality (5.8) holds for

Q ∈ BβQ∞ (Q∞) :=
{
Q ∈ H1(T2, S

(2)
0 ), ‖Q−Q∞‖H1 < βQ∞

}
.

The union of balls {0} × {BβQ∞ (Q∞) : (0, Q∞) ∈ ω(u0, Q0)} forms an open cover of ω(u0, Q0).
Due to the compactness of ω(u0, Q0) in H1 (see Lemma 5.1), there exists a finite sub-cover {0} ×
{Bβi(Qi

∞) : i = 1, 2, ...,m} of ω(u0, Q0) in H1, where the constants βi, θi corresponding to the
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limit pointQi
∞ (and thus a critical point ofF(Q)) in Lemma 5.2 are indexed by i. From the definition of

ω(u0, Q0), there exists a sufficient large t0 >> 1 such that the global strong solution Q(t) satisfies

Q(t) ∈ U :=
m⋃

i=1

Bβi(Q
i
∞), for t ≥ t0.

Taking θ = minmi=1{θi} ∈ (0, 1
2
), using Lemma 5.2 and convergence of the total energy E(t) (see

(5.5)), we deduce, for all t ≥ t0,

∣∣F(Q(t))−F∞
∣∣1−θ ≤

∥∥L∆Q(t)− aQ(t)− c tr(Q(t)2)Q(t)
∥∥

(H1)′

≤ ‖H(Q(t))‖L2 . (5.11)

Therefore, we have

(
E(t)−F∞

)1−θ ≤
(

1

2
‖u(t)‖2L2 +

∣∣F(Q(t))−F(Q∞)
∣∣
)1−θ

≤
(1

2
‖u‖2L2 + ‖H(Q(t))‖

1
1−θ
L2

)1−θ

≤ C‖u(t)‖2(1−θ)
L2 + C‖H(Q(t))‖L2

≤ C(‖u(t)‖L2 + ‖H(Q(t))‖L2)

≤ CA 1
2 (t), ∀ t ≥ t0, (5.12)

in which we use the fact 0 < θ < 1
2

and the uniform estimate (5.6).

On the other hand, it follows from the energy inequality (2.4) that

E(t)−F∞ ≥ min{ν,Γ}
∫ ∞

t

A(s)ds, ∀ t ≥ t0. (5.13)

As a consequence,
∫ ∞

t

A(s)ds ≤ CA(t)
1

2(1−θ) , ∀ t ≥ t0. (5.14)

Taking Z(t) = A(t)
1
2 , from (5.14) and Lemma 5.3 we conclude that

∫ +∞

t0

(‖∇u(t)‖L2 + ‖H(Q(t))‖L2)dt ≤
∫ +∞

t0

A(t)
1
2dt < +∞. (5.15)

Then, by using the equation (1.3) forQ, the uniform bounds on ‖u(t)‖H1 , ‖Q(t)‖H2 and the Sobolev
embedding theorem (d = 2), we have
∫ ∞

t0

‖Qt(t)‖L2 dt ≤
∫ ∞

t0

(
‖u · ∇Q‖L2 + ‖S(∇u,Q)‖L2 + Γ‖H(Q)‖L2

)
dt

≤ C

∫ ∞

t0

[
‖u‖L4‖∇Q‖L4 + ‖∇u‖L2

(
‖Q‖2L∞ + 1

)
+ ‖H(Q)‖L2

]
dτ

≤ C

∫ ∞

t0

(
‖∇u(t)‖L2 + ‖H(Q)(t)‖L2

)
dt
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< +∞, (5.16)

which indicates that Q(t) converges in L2(T2) for all t → +∞. Combining the sequential conver-
gence result (5.7), it is easy to check that

lim
t→+∞

‖Q(t)−Q∞‖L2 = 0. (5.17)

Next, by the uniform bound on ‖Q(t)‖H2 (see (5.6)) and (5.17), from the standard interpolation we
obtain that

lim
t→+∞

‖Q(t)−Q∞‖H1 = 0. (5.18)

Finally, observing the following fact

‖∆Q−∆Q∞‖ ≤
1

L
‖H(Q)−H(Q∞)‖+

1

L

∥∥aQ+ c tr(Q2)Q− aQ∞ − c tr(Q2
∞)Q∞

∥∥

≤ 1

L
‖H(Q)‖+ C‖Q−Q∞‖H1 ,

we further deduce from Lemma 5.1 and (5.18) that

lim
t→+∞

‖Q(t)−Q∞‖H2 = 0. (5.19)

5.3 Convergence rate

In what follows, we derive uniform estimates on the convergence rate. First, the rate on lower-order
norm ‖Q(t)−Q∞‖L2 follows from the Łojasiewicz-Simon approach (cf. [18]). We infer from the basic
energy law (2.4), (5.5) and (5.12) that

d

dt
(E(t)−F∞)θ + C(‖∇u‖L2 + ‖H(Q)‖L2) ≤ 0, ∀ t ≥ t0, (5.20)

and
d

dt
(E(t)−F∞) + C(E(t)−F∞)2(1−θ) ≤ 0, ∀ t ≥ t0. (5.21)

As a consequence of (5.21), we can deduce the rate on energy decay:

0 ≤ E(t)−F∞ ≤ C(1 + t)−
1

1−2θ , ∀ t ≥ t0.

Then similar to (5.16), on (t,+∞), where t ≥ t0, it follows from (5.20) that
∫ ∞

t

‖Qt(s)‖L2 ds ≤ C

∫ ∞

t

(
‖∇u(s)‖L2 + ‖H(Q)(s)‖L2

)
ds

≤ (E(t)−F∞)θ

≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ t0, (5.22)

which further implies

‖Q(t)−Q∞‖ ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (5.23)

Higher-order estimates on the convergence rate can be achieved by constructing proper differential
inequalities via a suitable energy method (see e.g., [41] for the simplified liquid crystal system). The
key idea relies on the use of the basic energy law (2.4) and the higher-order energy inequality (3.6).
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It follows from Lemma 5.1 that the limit system of problem (1.1)–(1.5) takes the following form

∇P∞ = −λ∇ · (∇Q∞ �∇Q∞), x ∈ T2, (5.24)

H(Q∞) = 0, x ∈ T2, (5.25)

subject to periodic boundary conditions. Subtracting the stationary problem (5.24)–(5.25) from the evo-
lution problem (1.1)-(1.5), then testing the velocity equation by u and the Q-equation by−λ(H(Q)−
H(Q∞)), respectively, adding the results together and integrating over T2, we can infer from (2.4)
that

d

dt

(
1

2
‖u‖2L2 +

λL

2
‖∇Q−∇Q∞‖2L2 + λ

∫

T2

[fB(Q)− fB(Q∞)− f ′B(Q∞)(Q−Q∞)]dx

)

+ν‖∇u‖2L2 + λΓ‖H(Q)‖2L2

= −λL
∫

T2

ui∇j(∇i(Q∞)kl∇j(Q∞)kl)dx

= −λ
∫

T2

ui∇i(Q∞)kl(L∆(Q∞)kl − [f ′B(Q∞)]kl)dx− λ
∫

T 2

ui∇i(Q∞)kl[f
′
B(Q∞)]kldx

−λL
2

∫

T2

ui∇i|Q∞|2dx
= 0, (5.26)

where f ′B(Q) = aQ + cQ tr(Q2). On the other hand, testing the equation (1.3) by Q − Q∞, from
the uniform estimate (5.6), the Hölder inequality and the Sobolev embedding theorem (d = 2) we
conclude that

1

2

d

dt
‖Q−Q∞‖2L2 + ΓL‖∇(Q−Q∞)‖2L2

=

∫

T2

[−u · ∇Q+ S(∇u,Q)] : (Q−Q∞)dx

− Γ

∫

T2

(f ′B(Q)− f ′B(Q∞)) : (Q−Q∞)dx

≤ C‖u‖L4‖∇Q‖L4‖Q−Q∞‖L2 + C‖u‖L2(‖Q‖2L∞ + 1)‖Q−Q∞‖L2

+ C

∫

T2

∫ 1

0

f ′′B(sQ+ (1− s)Q∞)(Q−Q∞) : (Q−Q∞)dsdx

≤ ε1‖∇u‖2L2 + C1‖Q−Q∞‖2L2 . (5.27)

Multiplying (5.27) by µ > 0 and adding the resultant to (5.26), we get

d

dt
Y(t) + (ν − µε1) ‖∇u‖2L2 + λΓ‖H(Q)‖2L2 + µΓL‖∇(Q−Q∞)‖2L2

≤ C1µ‖Q−Q∞‖2L2 , (5.28)

where

Y(t) =
1

2
‖u(t)‖2L2 +

λL

2
‖∇Q(t)−∇Q∞‖2L2 +

µ

2
‖Q(t)−Q∞‖2L2

+ λ

∫

T2

[fB(Q(t))− fB(Q∞)− f ′B(Q∞)(Q(t)−Q∞)]dx, ∀ t ≥ 0. (5.29)
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It follows from the Newton-Leibinz formula and (5.6) that

∣∣∣∣
∫

T2

[fB(Q)− fB(Q∞)− f ′B(Q∞) : (Q−Q∞)]dx

∣∣∣∣

=

∣∣∣∣
∫

T2

∫ 1

0

s

∫ 1

0

f ′′B(ρ(sQ+ (1− s)Q∞) + (1− ρ)Q∞)(Q−Q∞) : (Q−Q∞)dρdsdx

∣∣∣∣
≤ ‖f ′′B‖L∞‖Q−Q∞‖2L2

≤ C2‖Q−Q∞‖2L2 . (5.30)

Thus we can choose µ ≥ 2 + 2λC2 > 0 to see that there exists a constant k1 > k2 > 0,

k1(‖u(t)‖2L2 + ‖Q(t)−Q∞‖2H1) ≥ Y(t) ≥ k2(‖u(t)‖2L2 + ‖Q(t)−Q∞‖2H1). (5.31)

We now take ε1 = ν
2µ

in (5.28). It follows from (5.31) that there exist some constants C3, C4 > 0 such
that

d

dt
Y(t) + C3[Y(t) +A(t)] ≤ C4‖Q(t)−Q∞‖2L2 , (5.32)

which together with (5.23) yields

Y(t) ≤ C(1 + t)−
2θ

1−2θ , ∀ t ≥ 0. (5.33)

In view of (5.31), we thus obtain

‖u(t)‖L2 + ‖Q(t)−Q∞‖H1 ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (5.34)

At last, from the higher-order energy inequality (3.6) and the uniform estimate (5.6), it follows that

d

dt
A(t) ≤ C5A(t). (5.35)

Multiplying (5.35) with α = C3

2C5
and adding the resultant with (5.32), we deduce

d

dt
[Y(t) + αA(t)] + C6[Y(t) + αA(t)] ≤ C(1 + t)−

2θ
1−2θ . (5.36)

As a consequence,

Y(t) + αA(t) ≤ C(1 + t)−
2θ

1−2θ , ∀ t ≥ 0,

which together with the fact Y(t) ≥ 0 (see (5.31)) yields

A(t) ≤ C(1 + t)−
2θ

1−2θ , ∀ t ≥ 0. (5.37)

Then from the definition ofA(t) and estimates (5.34), (5.37), we can see that

‖∇u(t)‖L2 + ‖∆Q(t)−∆Q∞‖L2 ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (5.38)

Collecting the estimates (5.34) and (5.38), we arrive at the conclusion (2.16).

The proof of Theorem 2.2 is complete.
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6 Appendix

The following calculations hold for both two and three dimensional cases.

Lemma 6.1. Suppose d = 2, 3. Let (u,Q) be a smooth solution to the problem (1.1)-(1.5). Define
the quantity

A(t) = ‖∇u‖2L2 + λ‖H(Q)‖2L2 . (6.1)

Then we have the following equality

1

2

d

dt
A(t) + ν‖∆u‖2L2 + λΓ‖∇H‖2L2

=

∫

Td

(
u · ∇u,∆u

)
dx− 2λ

∫

Td
∇luk∇l∇kQijHijdx+

λ

L

∫

Td
uk∇kFijHijdx

−2λ

∫

Td
∇jui(∇lQkj∇lHik −∇lQik∇lHkj)dx− λ

∫

Td
∇jui(∆QkjHik −∆QikHkj)dx

+λξ

∫

Td

(
D∆Q+ ∆QD) : Hdx+ 4λξ

∫

Td
∇lDik∇lQkjHij dx

−2λξ

∫

Td
∆
(
QklQji

)
∇juiHkl dx− 4λξ

∫

Td
∇m

(
QklQji

)
∇m∇juiHkl dx

−λ
∫

Td

∂F (Q)

∂Q
(u · ∇Q) : Hdx+ λ

∫

Td

∂F (Q)

∂Q
S(∇u,Q) : Hdx

+λΓ

∫

Td

∂F (Q)

∂Q
H : Hdx

:=
12∑

i=1

Ji, (6.2)

where

F (Q) = −aQ+ b

(
Q2 − 1

d
tr(Q2)I

)
− cQ tr(Q2) = −∂fB(Q)

∂Q
− b

d
tr(Q2)I. (6.3)

Proof. Using the equations (1.1), (1.3) and integration by parts, we have

1

2

d

dt
‖∇u‖2L2 + ν‖∆u‖2L2

=

∫

Td
(u · ∇u,∆u) dx− λ

∫

Td
(∇ · σ,∆u) dx− λ

∫

Td
(∇ · τ,∆u) dx

:= I1 + I2 + I3, (6.4)

where

I2 = −λ
∫

Td
∇j(QikHkj −HikQkj)∆ui dx, (6.5)

and

I3 = λL

∫

Td
∇j(∇iQkl∇jQkl)∆ui dx+ λξ

∫

Td
∇j

(
QikHkj +HikQkj +

2

d
Hij

)
∆ui dx

− 2λξ

∫

Td
∇j

(
QklHklQij +

1

d
QklHklδij

)
∆ui dx
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:= I3a + I3b + I3c. (6.6)

As in [2, A.3], using the incompressibility condition∇ · u = 0 , the definition of F (Q) (see (6.3)) and
the fact∇tr(Q) = 0, we get

I3a = λ

∫

Td
∇iQkl(Hkl − Fkl)∆ui dx+ λL

∫

Td
∇j∇iQkl∇jQkl∆ui dx

= λ

∫

Td
∇iQklHkl∆ui dx+ λ

∫

Td
∇fB(Q) ·∆u dx+

λb

d

∫

Td
tr(Q2)∇tr(Q) ·∆udx

+
λL

2

∫

Td
(∇|∇Q|2) ·∆u dx

= λ

∫

Td
∇iQklHkl∆ui dx. (6.7)

Using the symmetry of Q and H(Q), and the basic algebra for arbitrary matrices A,B,C ∈ Rd×d

(AB) : C = B : (ATC) = A : (CBT ), (6.8)

we have

I3b = −2λξ

d

∫

Td
Hij∇j∆ui dx− λξ

∫

Td
(QikHkj +HikQkj)∇j∆ui dx

= −2λξ

d

∫

Td
Hij∆Dij dx− λξ

∫

Td
QikHkj∆Dij dx

−λξ
∫

Td
HikQkj∆Dij dx

= −λξ
∫

Td

(
∆DQ+Q∆D +

2

d
∆D

)
: H dx. (6.9)

By the incompressibility condition∇ · u = 0, it holds

I3c = −2λξ

∫

Td
∇j

(
QklHklQij)∆uidx−

2λξ

d

∫

Td
∇i(QklHkl)∆ui dx

= −2λξ

∫

Td
∇j

(
QklHklQij)∆uidx. (6.10)

On the other hand, we have

λ

2

d

dt
‖H(Q)‖2L2 + λΓ‖∇H(Q)‖2L2

= λL

∫

Td
(∆Qt : H(Q)) dx+ λ

∫

Td
∂tF (Q) : H(Q) dx+ λΓ‖∇H(Q)‖2L2

= λL

∫

Td
(Qt : ∆H(Q)) dx+ λ

∫

Td
∂tF (Q) : H(Q) dx+ λΓ‖∇H(Q)‖2L2

= −λ
∫

Td
uk∇kQij∆Hijdx+ λ

∫

Td
S(∇u,Q) : ∆Hdx+ λ

∫

Td
∂tF (Q) : H(Q) dx

:= I4 + I5 + I6. (6.11)

Then by the incompressibility condition∇ · u = 0 and (1.3) we have

I4 = −λ
∫

Td
uk∇kQij∆Hijdx
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= λ

∫

Td
(∇luk∇kQij + uk∇l∇kQij)∇lHijdx

= −λ
∫

T d
∆uk∇kQijHijdx− 2λ

∫

Td
∇luk∇l∇kQijHijdx

−λ
L

∫

Td
uk∇k(Hij − Fij)Hijdx

= −λ
∫

Td
∆uk∇kQijHijdx− 2λ

∫

Td
∇luk∇l∇kQijHijdx

+
λ

L

∫

Td
uk∇kFijHijdx

:= I4a + I4b + I4c. (6.12)

I5 = λ

∫

Td
(ξD + Ω)

(
Q+

1

d
I
)

+
(
Q+

1

d
I
)
(ξD − Ω)− 2ξ

(
Q+

1

d
I
)

tr(Q∇u) : ∆Hdx

= λ

∫

Td
(ΩQ−QΩ) : ∆Hdx+ λξ

∫

Td

(
DQ+QD +

2

d
D
)

: ∆Hdx

−2λξ

∫

Td
tr(Q∇u)

(
Q+

1

d
I
)

: ∆Hdx

:= I5a + I5b + I5c.

Using the symmetry properties of Q, H and (6.8), after integration by parts, it is easy to check that

I5a = λ

∫

Td
(ΩQ−QΩ) : ∆Hdx

=
λ

2

∫

Td
(∇uQ−∇TuQ−Q∇u+Q∇Tu) : ∆Hdx

= λ

∫

Td
∇u : (∆HQ−Q∆H)dx

= λ

∫

Td
∆(∇juiQkj)Hik dx− λ

∫

Td
∆(∇juiQik)Hkj dx

= λ

∫

Td
∆∇jui(QkjHik −QikHkj)dx+ 2λ

∫

Td
∇l∇jui(∇lQkjHik −∇lQikHkj)dx

+λ

∫

Td
∇jui(∆QkjHik −∆QikHkj)dx

= λ

∫

Td
∇j(QikHkj −QkjHik)∆uidx− 2λ

∫

Td
∇jui(∇lQkj∇lHik −∇lQik∇lHkj)dx

−λ
∫

Td
∇jui(∆QkjHik −∆QikHkj)dx. (6.13)

Moreover, using integration by parts, we have

I5b = λξ

∫

Td
∆
(
DQ+QD +

2

d
D
)

: Hdx

= λξ

∫

Td

(
∆DQ+Q∆D +

2

d
∆D

)
: H dx

+ λξ

∫

Td

(
D∆Q+ ∆QD) : Hdx+ 4λξ

∫

Td
∇lDik∇lQkjHij dx. (6.14)
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Next, for I5c, using the property tr(H(Q)) = 0 and after integration by parts, we obtain that

I5c = −2λξ

∫

Td
∆
[

tr(Q∇u)Q
]

: H dx

= −2λξ

∫

Td
∆
(
QklQji∇jui

)
Hkl dx

= −2λξ

∫

Td
QklQji∇j∆uiHkl dx− 2λξ

∫

Td
∆
(
QklQji

)
∇juiHkl dx

− 4λξ

∫

Td
∇m

(
QklQji

)
∇m∇juiHkl dx

= 2λξ

∫

Td
∇j

(
QklHklQji

)
∆ui dx− 2λξ

∫

Td
∆
(
QklQji

)
∇juiHkl dx

− 4λξ

∫

Td
∇m

(
QklQji

)
∇m∇juiHkl dx. (6.15)

Finally, using the equation (1.3), the term I6 can be expressed as follows

I6 = λ

∫

Td

∂F (Q)

∂Q
∂tQ : H(Q) dx

= λ

∫

Td

∂F (Q)

∂Q
(−u · ∇Q+ S(∇u,Q) + ΓH(Q)) : H(Q)dx.

In summary, we find the following special cancellations between those highly nonlinear terms:

(a) the term I2 (i.e., (6.5)) cancels with the first term in (6.13),

(b) the term I3a (i.e., (6.7)) cancels with the term I4a in (6.12),

(c) the term I3b (i.e., (6.9)) cancels with the first term in (6.14),

(d) the term I3c (i.e., (6.10)) cancels with the first term in (6.15).

Taking into account the above cancellation relations, we can easily conclude (6.2).

Remark 6.1. We note that in the above cancellations, the relation (a) is the same as for the simpler
case with ξ = 0 (see e.g., [2]). However, for the general case ξ 6= 0, we have found extra relations
(b)-(d) between higher-order nonlinear terms of the full Navier-Stokes and Q-tensor system (1.1)-(1.5).
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