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Abstract

A weak formulation for the so-called semilinear strongly damped wave equation with constraint
is introduced and a corresponding notion of solution is defined. The main idea in this approach
consists in the use of duality techniques in Sobolev-Bochner spaces, aimed at providing a suitable
“relaxation” of the constraint term. A global in time existence result is proved under the natural
condition that the initial data have finite “physical” energy.

1 Introduction

This paper is devoted to studying the so-called semilinear wave equation with strong damping, namely

εutt − δ∆ut −∆u+ f(u) = g, (1.1)

for ε, δ > 0. The equation is settled in the parabolic cylinder Q = (0, T ) × Ω, where Ω is a smooth
bounded domain in RN , N ≥ 1, and T > 0 is a given final time, and is complemented with the
initial conditions for u and ut and with homogeneous boundary conditions either of Dirichlet or of
Neumann type. The strong damping is provided by the term −δ∆ut; this comes in contrast with the
weak damping occurring when that term is replaced by +δut. The function g on the right hand side
is a given volume forcing term (here taken of L2-regularity), and the semilinear term f(u) is assumed
to take the form f(u) = β(u) − λu, where β is a monotone function (more precisely, a monotone
graph, see Section 2 below) and λ ≥ 0. In particular, the internal constraint on u is enforced by
the non-smooth monotone part β of f , whereas the remaining term −λu is related to the (possible)
nonconvexity of the energy functional associated to the equation. Actually, the main novelty of this
paper stands in the fact that β is assumed to be defined only in a bounded interval I0 of R and to
diverge at the extrema of I0. A (generalized) function β with the above properties will be referred to
as a constraint on the variable u (cf. Section 2 below for more details). It is worth noting that, up to
purely technical modifications in the proofs, our techniques could be adapted to treat also the case of
unilateral constraints, i.e., functions β whose domain is bounded only from one side.

Physically speaking, equation (1.1) appears in a number of different contexts. Let us mention
here some of them. The main application refers to the study of the motion of viscoelastic materials. In
this setting, u plays the role of a (scalar) displacement and (1.1) represents the momentum balance
(where accelerations are included) written in a small strain regime. In particular, respectively in space
dimensions one and two, the equation describes the transversal vibrations of a homogeneous string
and the longitudinal vibrations of a homogeneous bar subject to viscous effects. The strong damping
term −δ∆ut represents the fact that the stress is decomposed in the sum of a pure elastic part (pro-
portional to the strain) and a viscous part (proportional to the strain rate), as in a linearized Kelvin-Voigt
material. We also mention that in the literature, in space dimension three, (1.1) has been introduced to
model, e.g., the deviation from the equilibrium configuration of a (homogeneous and isotropic) linearly
viscoelastic solid with short “rate type” memory (cf. [15] for details), in the presence of an external
displacement-dependent force g − f(u). We do not enter deeper in the modeling details, and we
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refer to [22] for a physical derivation of models describing the motion of viscoelastic media. Let us
observe that it would be meaningful to consider here a vectorial (displacement) variable u, but we
preferred, just for simplicity, to study only the scalar case at least at a first stage. Indeed, the extension
of our results to the vector-valued case should be possible, at least for constant isotropic diffusion,
whereas the case of non-constant stiffness (and viscosity) tensors may be somehow more involved. In
this framework, we also have to quote (possibly adhesive) contact models with unilateral constraints
(occurring for instance in the case of Signorini conditions) on a part of the boundary. In this setting,
the (vectorial) operator β would force the direction of the trace of u on the boundary in such a way to
ensure impenetrability (cf., e.g., [4, 5, 29]). We are planning to analyze this type of models, by using
the methods developed in this paper, in future works.

Equation (1.1) also appears in the so-called Frémond theory for phase transitions whenever
microscopic accelerations are taken into account (cf., e.g., [8, 9, 16]). In that setting, the unknown
u generally denotes a (scalar) phase parameter, which is related (for a first order phase transition
in a binary system) to the local proportion of one of the two phases, or components, of a binary
material. Then, β represents an internal constraint forcing u to take values into the physical interval
whose extrema (often given by−1, 1) correspond to the pure states, whereas the intermediate values
represent a mixture of the phases. Physically relevant choices are β(r) = log(1 + r)− log(1− r)
(i.e., the derivative of the so-called logarithmic potential often appearing in Allen-Cahn or Cahn-Hilliard
models), or β(r) = ∂I[−1,1](r) (i.e., the subdifferential of the indicator function of the interval [−1, 1],
given by I[−1,1](r) = 0 for r ∈ [−1, 1] and I[−1,1](r) = +∞ otherwise). It is also significant
to consider equation (1.1) with other kinds of nonlinearities β not having the form of a constraint.
For instance, (1.1) appears in the recent theory of isothermal viscoelasticity with very rapidly fading
memory (cf. [12] and references therein), in the sine-Gordon model describing the evolution of the
current u in a Josephson junction (cf. [25]; there f(u) = sinu), or as a Klein-Gordon-type equation
occurring in quantum mechanics (then f(u) = |u|γu for suitable γ > 0).

Actually, in the case when f is smooth and defined on the whole real line, the mathematical
literature on equation (1.1) is very wide (we quote, without any claim of completeness, the papers
[2, 17, 19, 20, 21, 24, 28, 32]). Referring to [21] for more details, we recall here that one of the first
essential results on global well-posedness of (the Dirichlet problem for) (1.1) in the 3D case was
obtained by Webb, who proved in [32] that, if f satisfies standard dissipativity conditions (without
any growth restriction), then the problem admits a unique strong solution (u, ut) taking values in the
space [H2(Ω)∩H1

0 (Ω)]×L2(Ω). On the other hand, when one looks for less regular solutions, the
situation seems different. In particular, it is natural to consider weaker solutions such that the “energy
of the system” remains bounded (in the analytical literature this fact corresponds to require that these
solutions take values in the so-called energy space). Indeed, this type of regularity corresponds to the
a priori estimate obtained by (formally) testing (1.1) by ut. Then, one can easily realize that, at least if
the external source g is 0, the functional

E(u, ut) =

∫
Ω

(ε
2
|ut|2 +

1

2
|∇u|2 + j(u)− λ

2
u2
)

dx, (1.2)

where j is an antiderivative of β, tends to decrease in the time evolution. Usually E is interpreted as
a physical energy. This is particularly clear in the cases when u represents a displacement (including
phase-change models where u is related to the effects of displacements at microscopic scales): then
the component |ut|2 of the integrand is a density of kinetic energy, whereas the other summands
correspond to some kind of configurational or potential energy. Consequently, energy solutions can be
defined as those solutions taking values in the energy space, or, equivalently, keeping finiteness of the
energy in the course of the evolution.
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From the mathematical point of view, managing this type of solutions may be delicate, espe-
cially in high space dimension, in view of the possibly fast growth of the integrand j(u). Correspond-
ingly, the literature related to this case is much more recent: Kalantarov and Zelik in [21] consider
polynomial nonlinearities of the form f(u) ∼ u|u|q without any restriction on the exponent q > 0
and prove well-posedness of the equation in the energy space. Moreover, they analyze the asymptotic
behavior of solutions for large values of the time variable. More recently Pata and Zelik in [28] have
extended these results to the case when f : R → R is any smooth function satisfying the basic
dissipativity assumptions, without any restriction on the growth rate (for instance, they may take ex-
ponential, or even faster growing, terms f ). At least up to our knowledge, however, the case when f
is of constraint type has never been considered up to now. The typical example we have in mind is
f(u) = ∂I[−1,1](u) − u (cf. (2.4) and (2.5) below), which may describe, for example, some phase
transition phenomena accounting for microscopic accelerations (cf. [16]).

As one addresses the initial-boundary value problem for (1.1) under our assumptions, the
main mathematical difficulty comes from the combination of the constraint β with the second time
derivative utt. Indeed, this feature strongly restricts the available a-priori bounds. To be precise, almost
all information on the solution has to be extracted from the so-called “energy” estimate, i.e., testing the
equation by ut. In addition to that, one can just get some more smoothness of u by multiplying (1.1)
by −∆u (as is done, e.g., in [28]). Anyway, this does not help for controlling the term utt, which is the
main issue from the point of view of regularity. Moreover, the standard procedures that one usually
adopts for obtaining higher order bounds, like differentiating in time the equation, do not seem to work
here, at least for a general choice of β. This seems to be, indeed, the main difference of the present
problem with respect to first order (in time) equations with constraint, for which additional regularity of
solutions can be generally deduced by differentiating in time and testing the result by ut, whatever is
the expression of β.

In view of the lack of estimates, we need to build a notion of weak solution which is sufficiently
general to exist under the sole “energy” regularity. This is, indeed, a somehow delicate issue. In par-
ticular, one cannot expect to reproduce the same type of results that hold in the case of less general
nonlinearities β. To say it shortly, the main novelties of our approach can be summarized in two points:

(i) a relaxed form βw of the operator β obtained by means of duality techniques;

(ii) an integrated (both in space and in time) variational formulation where test functions are chosen
in suitable Sobolev-Bochner spaces.

These choices permit us, indeed, to prove existence. However, both of them come at some price.
Namely,

(i) it will not be possible to intend the equation, and the constraint in particular, in the pointwise sense;

(ii) we cannot exclude the occurrence of jumps of ut. Actually, ut may be discontinuous with respect
to time (and, more precisely, is expected to be discontinuous, as we can show by means of examples).

However, from a physical point of view, if (1.1) comes from a variational principle (as the principle of
virtual power is), the variational setting in which we introduce the solution is the natural one. In partic-
ular, the operator β (in its relaxed version βw) stands for an internal force which is defined in duality
with velocities/displacements. In addition to that, an internal constraint on the function u is still ensured
by the definition of the domain of βw. Finally, the fact that we can have jumps on the velocity ut w.r.t.
time, corresponds to the possible occurrence of internal (or external) shocks, which are expected to
happen in this framework (cf, e.g., [16]).

A further drawback is concerned with the problem of uniqueness. Actually, we expect the oc-
currence of genuine nonuniqueness, even though some criteria for “physicality” of weak solutions may
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be proposed (cf. Remark 3.3 at the end).

Let us conclude by giving some more words of explanation for our method. The basic strategy
of proof is, in a sense, very standard: we replace the singular function β by a smooth approximation
βε of controlled growth at infinity (e.g., the Yosida approximation), prove existence of a solution uε

to the regularized problem (which basically follows from results already known in the literature, cf.,
e.g., the quoted [17, 21, 28, 32]), and then let the approximation parameter ε go to 0. Indeed, as a
consequence of the so-called “energy estimate”, uε, at least for a subsequence, tends to some limit
u which we would like to identify as a “weak” solution (where, of course, we need to state precisely
what we mean with this). However, the only uniform bound available for the nonlinear term βε(uε) is in
the norm of L1(0, T ;L1(Ω)), and there is evidence coming from concrete examples that we cannot
go further, at least for general β. This fact has, indeed, a number of consequences. First of all, argu-
ing by comparison, we can obtain an L1(0, T ;X)-bound for uεtt, where X is a Banach space such
that L1(Ω) and H1(Ω) are compactly embedded into X (for example, we can take X = H−2(Ω)
in the 3D case). This estimate suffices, via a generalized version of the Aubin-Lions compactness
lemma, to prove strong convergence of uεt in L2(0, T ;L2(Ω)). However, the limit function ut may
exhibit jumps with respect to time. Secondly, the limit of βε(uε) can be taken at least in the (weak)
sense of measures. A crucial point is, as usual, concerned with the identification of its limit. In view of
our assumptions it looks natural to rely on a suitable version of the so-called Minty’s trick for mono-
tone operators, i.e., to combine the weak convergence of uε in some (reflexive) Banach space V , the
weak convergence of βε(uε) in the dual space V ′, and a lim sup-inequality. A look at the estimates
suggests that an admissible choice for this procedure is (in the Dirichlet case) the Sobolev-Bochner
space V = H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) (in the Neumann case, H1
0 (Ω) is simply replaced

by H1(Ω) and no further difficulties arise). In such a setting, the constraint β has to be reinterpreted
in a relaxed form βw acting as a maximal monotone operator from V to 2V

′
(cf. Definition 2.13 be-

low; see, e.g., [11, 18] for some additional background). Correspondingly, equation (1.1) has to be
intended as a relation in V ′. Let us point out that, from a physical point of view, in the case when (1.1)
corresponds to a mechanical balance equation (i.e., to the momentum balance equation), our weak
formulation takes the meaning of a duality between forces and velocities in time and space (see [7]
for a similar approach, but in a different setting). To avoid occurrence of second time derivatives in
the weak formulation, we also need to integrate by parts with respect to time the second order term
utt (cf. (2.31)). Actually, these modifications will permit us to solve our original problem on the whole
time interval (0, T ), but also to write “pointwise” the duality relation in any subinterval (0, t), with
a physically consistent interpretation of the corresponding constraint. Finally, an energy inequality is
proved to hold on (almost) every subinterval of [0, T ]. We end observing that the behavior of weak
solutions (at least in the homogeneous Neumann case) may be clarified by considering a spatially
homogeneous setting. For instance, if f(u) = ∂I[−1,1](u) and g ≡ 0, (1.1) reduces to the prototype
ODE utt + ∂I[−1,1](u) 3 0 whose solutions can be easily described, especially in relation with the
jumps of ut (cf. Remark 2.4 for more details).

The remainder of the paper is organized as follows: in Section 2 we introduce some amount of
preliminary material mainly related to maximal monotone operators and duality methods; moreover we
present the notion of weak solution and state the related existence result. Then, the proof is detailed
in Section 3, where we also give a number of remarks illustrating our results at the light of simple
finite-dimensional examples.
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2 Preliminary notions and main result

Let Ω ⊂ RN be a smooth bounded domain (with N ≥ 1) of boundary Γ and let us consider the
interval [0, T ], for some fixed final time T > 0. Let us set H := L2(Ω) and use the notation (·, ·) for
the scalar product both in H and in HN . Let also the symbol ‖ · ‖ denote the corresponding norms.
In our analysis, we will consider either Dirichlet or Neumann boundary conditions for (1.1); hence we
introduce a notation suitable for addressing both cases in a unified way. So, we put V := H1(Ω) in
the Neumann case, and V := H1

0 (Ω) in the Dirichlet case. In both cases, V will be endowed with
the standard (Sobolev) norm, indicated by ‖ · ‖V . Moreover, we will denote by 〈·, ·〉 the duality pairing
between V ′ and V . In general, we will indicate by ‖ · ‖X the norm in some Banach space X (or in
XN ).

We letA stand for the weak form of (minus) the Laplace operator seen as an unbounded linear
operator on H whose domain D(A) depends on the boundary conditions. Namely, in the Neumann
case, we set

Av := −∆v, D(A) := H2
n(Ω), (2.1)

where H2
n(Ω) denotes the space of the H2-functions having zero normal derivative (in the sense of

traces) on ∂Ω. Correspondingly, in the Dirichlet case, we set

Av := −∆v, D(A) := H2(Ω) ∩ V = H2(Ω) ∩H1
0 (Ω). (2.2)

In both cases, A is a positive operator (strictly positive for Dirichlet conditions). Morever, A can be
extended to the space V by setting (for both choices of boundary conditions)

〈Av, z〉 =

∫
Ω

∇v · ∇z dx. (2.3)

This extension, which turns out to be linear and bounded from V to V ′, will be identically noted as A;
indeed, we believe that no danger of confusion exists at this stage.

Next, we specify our assumptions on the semilinear term f(u). First, we suppose that f may
be decomposed as

f(u) = β(u)− λu, (2.4)

where λ ≥ 0 and β is a maximal monotone graph in R× R such that

D(β) = [−1, 1], 0 ∈ β(0). (2.5)

Indeed, just for simplicity and with no loss of generality, we require the closure of the domain of β to
be the interval [−1, 1]. In addition, it is not restrictive to assume the normalization 0 ∈ β(0), which
turns out to be useful especially in the Dirichlet case.

Referring the reader to [3, 10] for a complete survey on the theory of maximal monotone
operators in Banach and Hilbert spaces, we just observe here that, thanks to (2.5), there exists a
convex and lower semicontinuous function j : R → [0,+∞] such that β = ∂j, D(j) = [−1, 1],
and j(0) = min j = 0. Here, D(j) denotes the domain of the convex function j, i.e., the set where
j takes finite values.

It is well known that the graph β induces maximal monotone operators (identically noted as β
for simplicity) both in H and in L2(Q), where Q := (0, T ) × Ω. For instance, one has ξ ∈ β(u) in
the H-sense if and only if u, ξ ∈ H and ξ(x) ∈ β(u(x)) for a.e. x ∈ Ω. Moreover, let us define the
convex functional

J : H → [0,+∞], J(u) :=

∫
Ω

j(u) dx, (2.6)
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where the integral may well be +∞ in the case when j(u) 6∈ L1(Ω) (i.e., when u 6∈ D(J)). Then,
β = ∂J inH , namely the operator induced by β onH coincides with theH-subdifferential of the con-
vex functional J . As is customary when dealing with multivalued operators, we shall often identify max-
imal monotone operators with their graphs (cf., e.g., [3, 10]). With the above notation, equation (1.1),
where the coefficients ε and δ have been set to 1 for simplicity, becomes

utt + Aut + Au+ β(u)− λu 3 g in (0, T )× Ω. (2.7)

Note the occurrence of the inclusion sign, motivated by the fact that β may be multi-valued.

In view of (2.1) (or of (2.2)), (2.7) can be read as a relation holding in L2(0, T ;H) (and
thus interpreted as a pointwise inclusion almost everywhere in Q). Indeed, (2.7) looks as the most
natural and appropriate weak formulation of the strongly damped wave equation in the case when
β is a smooth monotone function defined on the whole real line. On the other hand, though (2.7) is
still perfectly meaningful from the mathematical viewpoint under our assumptions (2.4)-(2.5), proving
existence of solution in the current setting seems to be out of reach (see Remark 2.4 below for a
counterexample in the spatially homogeneous case). Mainly, what seems to fail is the possibility to
interpret point-by-point the equation, and in particular the constraint β.

Hence, we need to construct a furtherly relaxed formulation of the equation, for which one
might be able to get existence. In performing this program, we would like our new concept of solution to
be still somehow physically consistent. Namely, weak solutions should comply with thermodynamical
principles (like the energy inequality), satisfy a proper form of the constraint, and be obtained as limit
points of families of functions solving physically sound regularizations of the equation. To start with
this program, we set

V := H1(0, T ;H) ∩ L2(0, T ;V ). (2.8)

Note that, in view of standard results on vector-valued functions, the above space coincides with
H1(Q) in the Neumann case. The duality pairing between V ′ and V will be noted by 〈〈·, ·〉〉. We also
consider the spaceH := L2(Q) = L2(0, T ;H) endowed with the natural scalar product, noted here
as ((·, ·)). Thanks to standard results on Sobolev spaces, the inclusions V ⊂ H ⊂ V ′ hold continu-
ously and densely providedH is identified with its dual by means of the above scalar product. Actually,
the weak formulation of our problem will strongly rely on the parabolic Hilbert triplet (V ,H,V ′).

We also need similar concepts in the case when the time interval (0, T ) is replaced by (0, t)
for 0 < t ≤ T . Namely, we set Qt := (0, t) × Ω, and, correspondingly, we note by ((v, z))(0,t) the
(standard) scalar product inHt := L2(Qt) and by 〈〈·, ·〉〉(0,t) the duality between Vt := H1(0, t;H)∩
L2(0, t;V ) and its dual. We also set

Vt,0 :=
{
v ∈ Vt : v ≡ 0 on {t} × Ω

}
, (2.9)

where relation v ≡ 0 is intended in the sense of traces (in time). Clearly, Vt,0 is a closed subspace of
Vt. Then, if ϕ ∈ Vt,0, extending it by 0 for times larger than t, we obtain an element of V , noted in the
following as ϕ̃. Correspondingly, if η ∈ V ′, we can naturally define its restriction ηt to the time interval
(0, t) by setting, for ϕ ∈ Vt,0,

〈〈ηt, ϕ〉〉(0,t) := 〈〈η, ϕ̃〉〉. (2.10)

Actually, it is readily checked that ηt ∈ V ′t,0. Moreover, the restriction operator η 7→ ηt is linear and
continuous from V ′ to V ′t,0.

With the above notation at disposal, we extend the functional J to time-dependent functions
by setting (see (2.6))

J : H → [0,+∞], J (u) :=

∫ T

0

J(u) dt =

∫ T

0

∫
Ω

j(u) dx dt, (2.11)
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where, as before, the integral may also take the value +∞. Analogously, for t ∈ (0, T ], we put

J(t) : Ht → [0,+∞], J(t)(u) :=

∫ t

0

J(u) ds =

∫ t

0

∫
Ω

j(u) dx ds. (2.12)

As noted above, the H-subdifferential ∂J (u) (or the analogue for J(t)(u)) can be still interpreted in
the “pointwise” form β(u).

We are now ready to introduce the weak form of the constraint β. We shall present most of the
construction by working on the time interval (0, T ). The adaptation to subintervals (0, t) is straighfor-
ward and we mostly leave it to the reader because we do not want to overburden the notation. That
said, we start by setting JV := J |V . It is readily proved that JV is convex and lower semicontinuous
on V . Hence, we may take its subdifferential with respect to the duality pairing between V and V ′.
Namely, for ξ ∈ V ′ and u ∈ V , we put

ξ ∈ βw(u)
def⇐⇒ u ∈ V , ξ ∈ V ′, and 〈〈ξ, v − u〉〉+ JV(u) ≤ JV(v) for all v ∈ V . (2.13)

The idea of “relaxing” β in this way is not new; for instance, the same method has been applied in
[6, 14, 30] in other contexts. It is worth noting from the very beginning that u ∈ D(βw) still implies
u ∈ [−1, 1] almost everywhere; in other words, the weak operator βw still forces u to assume only
“physically meaningful” values. Note that an alternative, but essentially equivalent, approach based on
variational inequalities has been devised in [27] for the Cahn-Hilliard equation with dynamic boundary
conditions. The novelty occurring in our case is related to the use of “parabolic” (Sobolev-Bochner)
spaces. Indeed, this choice seems particularly appropriate for the present problem as far as it permits
us to overcome some issues related with the (expected) low regularity of weak solutions.

Let us now characterize a bit more precisely the operator βw. We follow here the lines of
[11, 18] (see also [6]). Firstly, we observe that (see, e.g., [6, Prop. 2.3]), if u ∈ V , ξ ∈ H, and
ξ ∈ β(u) a.e. in Q, then ξ ∈ βw(u). Namely, if β|V denotes the restriction to V of the “pointwise”
operator β, then βw extends β|V . In other words, the “strong” constraint implies the “weak” one.
Moreover (cf. [6, Prop. 2.5]),

if u ∈ V and ξ ∈ βw(u) ∩H, then ξ ∈ β(u) a.e. in Q. (2.14)

In general, however, the elements ξ ∈ βw(u) (which lie, by definition, in the space V ′) need not belong
to H. Hence, the graph inclusion β|V ⊂ βw is generally a proper one. Nevertheless, if ξ ∈ βw(u),
then ξ “automatically” gains some more regularity.

In order to explain this phenomenon, we proceed along the lines of [30, Sec. 2]. Namely, for
t ∈ (0, T ], we set

Xt := C0(Qt), for Neumann boundary conditions, (2.15a)

Xt :=
{
u ∈ C0(Qt) : u ≡ 0 on [0, t]× Γ

}
, for Dirichlet boundary conditions. (2.15b)

For t = T we simply write X = XT . We also set, in both cases,

Xt,0 :=
{
v ∈ Xt : v ≡ 0 on {t} × Ω

}
. (2.16)

The space Xt (hence its closed subspace Xt,0) is naturally endowed with the supremum norm ‖ · ‖∞.
Moreover, also thanks to the smoothness of Ω in the Neumann case, Xt ∩Vt is dense both in Xt and
in Vt. Let now ξ ∈ V ′ (the analogue applies with straighforward modifications to ξ ∈ V ′t) and let us
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suppose that ξ, if restricted to the functions ϕ ∈ X ∩ V , is continuous with respect to the X -norm,
i.e., there exists C > 0 such that∣∣〈〈ξ, z〉〉∣∣ ≤ C‖z‖∞ for any z ∈ X ∩ V . (2.17)

In that case, by density, ξ extends in a unique way to a bounded linear functional on X . Namely, there
exists a unique T ∈ X ′, which can be seen as a Borel measure onQ in view of Riesz’ representation
theorem, such that

〈〈ξ, z〉〉 =

∫∫
Q

z dT for any z ∈ X ∩ V . (2.18)

In this situation we say that the measure T represents ξ on X . Actually this situation automatically
occurs when ξ is an element of a weak constraint. Indeed, by an easy adaptation of [30, Prop. 2.1]
(which, in turn, is based on the results of [11]), one can see that, up to some adjustment related to
the boundary conditions, any ξ ∈ βw(u), when restricted to continuous functions, is represented by
a measure T defined on the parabolic cylinder Q. Such a measure, in turn, is related to the original
operator β in the following way (cf. [11, Thm. 3] for further details): noting as T = Ta + Ts the
Radon-Nikodym decomposition of T , with Ta (Ts, respectively) standing for the absolutely continuous
(singular, respectively) part, we then have

Tau ∈ L1(Q), (2.19)

Ta(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ Q, (2.20)

〈〈ξ, u〉〉 −
∫ T

0

∫
Ω

Tau dx dt = sup

{∫∫
Q

z dTs, z ∈ X , z(Q) ⊂ [−1, 1]

}
. (2.21)

Hence, the continuous part Ta of the measure T satisfies the constraint pointwise (in view of (2.20)),
whereas the singular part Ts is characterized by (2.21).

In particular, we expect that condition (2.21) could be made more precise. Namely, noting as
Ts = ρ|Ts| the polar decomposition of Ts, where |Ts| is the total variation of Ts, proceeding along the
lines of [18, Thm. 3] one may prove that

ρ ∈ ∂I[−1,1](u) |Ts|-a.e. in Q. (2.22)

In other words, we expect the singular part of T to be supported on the set where |u| = 1 and that
ρ = 1 where u = 1, ρ = −1 where u = −1. In this sense, also the singular part of T is, at least
partially, reminiscent of the expression of the graph β.

Actually, the characterization (2.22) is proved in [18] in the case when V = H1
0 (Ω), Ω a

bounded domain of RN , and may be likely extended to the present situation. However, a detailed proof
may involve some technicalities particularly related to the facts that we are working in the parabolic
cylinder and should distinguish between the Dirichlet and Neumann cases. For this reason, we omit
details here. We note, however, that (2.22) is straighforward whenever we additionally know that u ∈
X ∩ V (i.e., u, beyond lying in V , is continuous). Indeed, in that case, from (2.21) there follows∫∫

Q

ρu d|Ts| =
∫∫

Q

u dTs = 〈〈ξ, u〉〉 −
∫ T

0

∫
Ω

Tau dx dt (2.23)

= sup

{∫∫
Q

z dTs, z ∈ X , z(Q) ⊂ [−1, 1]

}
= |Ts|(Q),

the latter term denoting the total variation of the measure Ts. Comparing terms, we then deduce
ρu = 1 |Ts|-a.e. in Q, as desired.
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Remark 2.1. It is worth observing that, in the Neumann case, the singular component Ts of the
measure T representing ξ ∈ βw(u) may be, at least partially, supported on the boundary of Q. Let
us see this by a simple one-dimensional example. Let Q = (−1, 1), u(x) = x, j = I[−1,1]. Then,
if ξ = αδ1 for some α > 0, where δ1 is the Dirac delta concentrated in 1, it is clear that, for any
v ∈ H1(−1, 1) such that v ∈ D(J) (i.e., such that −1 ≤ v(x) ≤ 1 for all x ∈ Q), there holds

〈ξ, v − u〉 = α(v(1)− u(1)) = α(v(1)− 1) ≤ 0 = J(v)− J(u). (2.24)

Hence, ξ ∈ βw(u) by definition of subdifferential.

Having clarified the nature of the weak constraint βw, we can now observe that equation (2.7) admits
a natural energy functional

E(u, ut) =

∫
Ω

(1

2
|ut|2 +

1

2
|∇u|2 + j(u)− λ

2
u2
)

dx =
1

2

(
‖ut‖2 + ‖∇u‖2 + 2J(u)− λ‖u‖2

)
.

(2.25)
Indeed, testing (2.7) by ut and integrating in time and space, one can get that the value of E at any
time t > 0 is bounded by the initial value E(u0, u1) plus the power of the external applied forces
g (see (2.41) below). Actually, as will be explained later on, the low regularity of solutions does not
allow us to perform this estimate directly for weak solutions, but only for a suitable approximation of
the problem. This is basically the reason for which we will only be able to prove an energy inequality
for weak solutions, cf. Theorem 2.5 below.

We can now introduce our assumption on the source term and on the initial data, the latter
corresponding exactly to the finiteness of the “initial energy”:

g ∈ L2(0, T ;H), (2.26)

u0 ∈ V, u1 ∈ H, J(u0) <∞. (2.27)

Then, we can make precise our concept of weak solution (to be precise, we shall speak of “parabolic
duality weak solution” or something similar, but we will rather use “weak solution“ just for simplicity):

Definition 2.2. A couple (u, ξ) is called a weak solution to the initial-boundary value problem for the
strongly damped wave equation with constraint whenever the following conditions hold:

(a) There hold the regularity properties

u ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ), (2.28)

ξ ∈ V ′ ∩ X ′; (2.29)

more precisely, by (2.29) we may require that there exists a measure T ∈ X ′ representing ξ
over X in the sense of (2.18).

(b1) There holds the following weak version of (2.7):

− ((ut, ϕt)) + (ut(T ), ϕ(T )) + ((∇ut,∇ϕ)) + ((∇u,∇ϕ))

+ 〈〈ξ, ϕ〉〉 − λ((u, ϕ)) = (u1, ϕ(0)) + ((g, ϕ)), ∀ϕ ∈ V . (2.30)

(b2) An analogue of (2.30) holds also on subintervals, in the following sense: for any t ∈ (0, T ]
there exists a functional ξ(t) ∈ V ′t such that

− ((ut, ϕt))(0,t) + (ut(t), ϕ(t)) + ((∇ut,∇ϕ))(0,t) + ((∇u,∇ϕ))(0,t)

+ 〈〈ξ(t), ϕ〉〉(0,t) − λ((u, ϕ))(0,t) = (u1, ϕ(0)) + ((g, ϕ))(0,t), ∀ϕ ∈ Vt. (2.31)
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Moreover, ξ(t) lies in V ′t ∩ X ′t ; hence it is (uniquely) represented over Xt by a measure T(t).
In addition to that, for every t ∈ (0, T ], the functionals ξ and ξ(t) are compatible, namely, for
every ϕ ∈ Vt,0 we have (ϕ̃ denoting the trivial extension of ϕ)

〈〈ξ(t), ϕ〉〉(0,t) = 〈〈ξ, ϕ̃〉〉. (2.32)

In other words, the functional ξ(t), when computed on the elements of Vt,0, coincides with the
canonical restriction ξt of ξ (cf. (2.10)).

(c) There holds the inclusion
ξ ∈ βw(u) in V ′. (2.33)

More generally, for every t ∈ (0, T ], ξ(t) ∈ βw,(t)(u) in V ′t. Here βw,(t) represents the weak
version of β in the interval (0, t); namely, βw,(t) is the subdifferential of the restriction of J(t) to
Vt with respect to the duality product between Vt and V ′t.

(d) There holds the Cauchy condition
u|t=0 = u0. (2.34)

(e) For every s, t ∈ [0, T ], the couple (u, ξ) satisfies the equality

− ‖ut‖2
L2(s,t;H) + (ut(t), u(t)) +

1

2
‖∇u(t)‖2 + ‖∇u‖2

L2(s,t;H) + 〈〈ξ(t), u〉〉(0,t) − 〈〈ξ(s), u〉〉(0,s)

− λ‖u‖2
L2(s,t;H) = (ut(s), u(s)) +

1

2
‖∇u(s)‖2 +

∫ t

s

∫
Ω

gu dx dτ. (2.35)

It is worth discussing a bit how the above formulation has been obtained from (2.7). First of all, β has
been replaced with its “relaxed” form βw. Correspondingly, (2.7) has been restated in the “parabolic”
dual space V ′ by using the test function ϕ ∈ V and performing suitable integrations by parts. In
particular, a key point stands in the integration in time of the “hyperbolic” term utt. Indeed, no second
time derivatives of u appear in (2.30) (or in (2.31)). In addition to that, the Cauchy condition for ut is
now “embedded” into (2.30) and (2.31).

Remark 2.3. We need to explain in some detail the “meaning” of (2.31), especially in relation with the
constraint term. Actually, if ξ ∈ V ′, there is no canonical way of restricting ξ to obtain an element
of V ′t. The best we can do is restricting ξ as explained in (2.10) to obtain a functional ξt ∈ V ′t,0.
However, writing (2.31) as a relation in V ′t,0 (i.e., considering only test functions ϕ ∈ Vt,0) would
give rise to some information loss. Namely, it may happen that the singular part Ts of T is, at least
partially, supported on some set of the form {t} × Ω (or, correspondingly, 〈〈ξ(t), ϕ〉〉(0,t) may also
depend on the trace of ϕ on {t} × Ω).

Remark 2.4. It is worth noting that, according to the above definition, ut need not be continuous with
respect to time, independently of the target topology. This fact is a distinctive feature of this problem
and there seems to be no hope of avoiding jumps of ut, at least for a general constraint β. Here is
a simple example where a jump occurs. Let us consider the case of spatially homogeneous solutions
to the Neumann problem with λ = 0 and g = 0. In other words, we reduce our problem to the “toy
model” represented by the ODE

utt + β(u) 3 0, (2.36)

a weak solution u to which exists according to our theory. Let us also choose β = ∂I[−1,1]. Then,
if we take, for instance, u0 = 0 and u1 = 1, we get that u(t) = t at least for t ∈ [0, 1). As t gets
to 1, ut must develop a discontinuity, otherwise, u(t) would become strictly larger than 1 for t > 1,
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and the equation would no longer make sense. Hence, the only possibility for the trajectory u(t) is to
jump instantaneously in such a way that, in a right neighbourhood (1, 1 + ε) of t = 1,

ut(t) = `, u(t) = 1 + `(t− 1), ` ≤ 0. (2.37)

The trajectory, at least in principle, may “choose” at which level ` the time derivative ut “decides”
to jump (hence we have no uniqueness). If it jumps to ` < 0, then u(t) starts to decrease from the
value 1 at a constant velocity ` until it reaches the value −1 (where a new jump of ut must occur).
On the contrary, if ut jumps to ` = 0, then it will be either u(t) = 1 and ut(t) = 0 forever, or after
some time ut may make a further jump to some ` < 0, starting from which u begins to decrease
as specified above. More precisely, we can notice that, for (2.36), the weak formulation over (0, T )
(cf. (2.30)) reads

−
∫ T

0

utϕt dt+ ϕ(T )ut(T ) + 〈〈ξ, ϕ〉〉 = ϕ(0)u1 ∀ϕ ∈ H1(0, T ). (2.38)

Hence, it is easy to check that, for all ` ≤ 0, the function u described above solves (2.38) on a
suitable interval [0, T ] with T > 1 chosen sufficiently small so that no other jumps of ut occur. Note
in particular that different choices of ` correspond to different “values” of ξ ∈ βw(u). Indeed, from
(2.38) we get

−
∫ 1

0

ϕt dt−
∫ T

1

`ϕt dt+ `ϕ(T ) + 〈〈ξ, ϕ〉〉 = ϕ(0), (2.39)

whence
〈〈ξ, ϕ〉〉 = (1− `)ϕ(1), (2.40)

or, in other words, ξ = (1 − `)δt=1 (δ standing for the Dirac delta) and we can notice that this is
consistent with the above characterization of βw. Indeed, at least for ` < 0, t = 1 is the only time at
which u takes the value 1 and ξ may have, and in fact has, a “singular” part. However, we will see
in the sequel (cf. Remarks 3.7 and 3.8 below) that not every jump of ut (or, in the current example,
every value of ` > 0) is “physically” admissible.

We can now introduce the statement of our main result:

Theorem 2.5. Let us assume (2.4), (2.5), (2.26), and (2.27). Then, there exists at least one weak
solution (u, ξ), in the sense of Definition 2.2, to the initial-boundary value problem for the strongly
damped wave equation with constraint. Moreover ut ∈ BV (0, T ;X) for any Banach space X such
that L1(Ω) and V ′ are compactly embedded in X .

In addition, for almost every s ∈ [0, T ) (surely including s = 0) and every t ∈ (s, T ], the following
version of the energy inequality holds:

E(u(t), ut(t)) + ‖∇ut‖2
L2(s,t;H) ≤ E(u(s), ut(s)) +

∫ t

s

(g, ut) dτ, (2.41)

where E is defined in (2.25).

Finally, in the case when we additionally have

u0 ∈ D(A), (2.42)

then u enjoys the additional regularity property

u ∈ Cw([0, T ];D(A)). (2.43)

Namely, u(t) belongs toD(A) for every t ∈ [0, T ] and t 7→ u(t) is continuous when the target space
is endowed with the weak topology.
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3 Proof of Theorem 2.5

Step 1. Approximation. We start by introducing a natural regularization of (the strong form of) equa-
tion (2.7) depending on an approximation parameter ε (which will then be let go to 0). To this aim,
for ε ∈ (0, 1), we let jε : R → [0,∞) denote the Moreau-Yosida regularization of j (cf., e.g., [10]
for details). In particular, jε turns out to be convex and lower semicontinuous. Moreover, its deriva-
tive βε := ∂jε corresponds to the Yosida approximation of β = ∂j. Under our assumptions βε is
monotone and globally Lipschitz continuous on the whole real line and it satisfies βε(0) = 0. We also
set

Jε(u) :=

∫
Ω

jε(u) dx, J ε(u) :=

∫ T

0

∫
Ω

jε(u) dx dt. (3.1)

Moreover, we regularize the initial data by taking, for ε ∈ (0, 1), uε0 and uε1 satisfying

uε0 ∈ D(A), uε1 ∈ V, Jε(uε0) ≤ J(u0), (3.2)

uε0 → u0 in V, uε1 → u1 in H. (3.3)

The construction of approximate initial data complying with (3.2)-(3.3) is standard. For instance, one
may take uε0 as the solution to the elliptic singular perturbation problem

uε0 ∈ D(A), uε0 + εAuε0 = u0 in H. (3.4)

In particular, the last of (3.2) can be shown by testing the equation in (3.4) by βε(uε0) and noting that

(βε(uε0), uε0 − u0) ≥ Jε(uε0)− Jε(u0) ≥ Jε(uε0)− J(u0), (3.5)

the latter inequality following from the monotonicity of the Moreau-Yosida regularization Jε with respect
to ε.

We are now ready to introduce our approximated equation

uεtt + Auεt + Auε + βε(uε)− λuε = g in (0, T )× Ω. (3.6)

Correspondingly, we have the following well-posedness and regularity result:

Theorem 3.1. Let us assume (2.4), (2.5), (2.26), and (2.27). For ε ∈ (0, 1), let uε0, uε1, and βε be as
detailed above. Then, there exists a unique solution

uε ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;D(A)) (3.7)

to equation (3.6), complemented with the initial conditions uε|t=0 = uε0 and uεt |t=0 = uε1. Moreover,
for all t, s ∈ [0, T ], the following energy equality holds:

1

2
‖uεt(t)‖2 +

∫
Ω

jε(uε(t)) dx− λ

2
‖uε(t)‖2 +

1

2
‖∇uε(t)‖2 + ‖∇uεt‖2

L2(s,t;H)

=
1

2
‖uεt(s)‖2 +

∫
Ω

jε(uε(s)) dx− λ

2
‖uε(s)‖2 +

1

2
‖∇uε(s)‖2 +

∫ t

s

(g, uεt) dτ. (3.8)

The proof of Theorem 3.1 is fairly standard and could be carried out, e.g., by following the lines of [23].
Here it is just worth noting that the regularity conditions stated in (3.7) are compatible with the assump-
tions (3.2)-(3.3) on the regularized initial data. Moreover, one could easily check that (3.7) can be (at
least formally) obtained testing (3.6) by uεtt + Auεt and performing integrations by parts. In particular,
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the term βε(uε) can be managed thanks to the Lipschitz continuity of Yosida approximations. It is also
worth noting that, in this regularity setting, equation (3.6) makes sense pointwise; indeed, all its single
terms belong to the space L2(0, T ;H) (in particular, we do not need to regularize the source term g:
condition (2.26) is enough). Hence, testing the equation by uεt is allowed: this gives relation (3.8) by
means of well-known chain rule formulas.

Step 2. A priori estimates. We now derive a number of bounds, uniform with respect to the regular-
ization parameter ε, for the solutions uε given by Theorem 3.1. First of all, testing (3.6) by ϕ ∈ Vt,
integrating over Qt, and performing suitable integrations by parts (both in space and in time), we
deduce the integrated (weak) formulation

− ((uεt , ϕt))(0,t) + (uεt(t), ϕ(t)) + ((∇uεt ,∇ϕ))(0,t) + ((∇uε,∇ϕ))(0,t)

+ ((βε(uε), ϕ))(0,t) − λ((uε, ϕ))(0,t) = (uε1, ϕ(0)) + ((g, ϕ))(0,t), ∀ϕ ∈ Vt. (3.9)

Of course, (3.9) holds in particular for t = T and ϕ ∈ V . Next, setting s = 0 in (3.8), or, in other
words, testing (3.6) by uεt and integrating over Qt, t ∈ (0, T ], we find (by Young’s inequality)

1

2
‖uεt(t)‖2 +

∫
Ω

jε(uε(t)) dx− λ

2
‖uε(t)‖2 +

1

2
‖∇uε(t)‖2 + ‖∇uεt‖2

L2(0,t;H) = M1(ε) + ((g, uεt))(0,t)

≤M1(ε) + ‖g‖2
L2(0,t;H) +

1

4
‖uεt‖2

L2(0,t;H) =: M2(ε) +
1

4
‖uεt‖2

L2(0,t;H), (3.10)

where we have set

M1(ε) :=
1

2
‖uε1‖2 + Jε(uε0)− λ

2
‖uε0‖2 +

1

2
‖∇uε0‖2, M2(ε) := M1(ε) + ‖g‖2

L2(0,t;H), (3.11)

and we may notice that actually M1 and M2 are bounded uniformly in ε due to (3.2)-(3.3), (2.27), and
(2.26). Let us also observe that, thanks to the properties of the Yosida approximation (cf. [10]), there
exists a constant c ≥ 0 such that jε(r)−λr2 ≥ −c for all r ∈ R and all ε ∈ (0, 1). Hence, applying
Gronwall’s lemma to (3.10), we obtain

‖uεt(t)‖ ≤M for all t ∈ [0, T ], (3.12a)

and for all ε ∈ (0, 1). Here and below M denotes a positive constant, possibily different from line to
line, depending on the problem data, but independent of ε. From (3.10) we also get

‖uε‖H1(0,T ;V ) ≤M, (3.12b)∫
Ω

jε(uε(t)) dx ≤M for all t ∈ [0, T ], (3.12c)

for all ε ∈ (0, 1). Setting now ϕ = uε in (3.9) and taking t = T , we deduce∫ T

0

∫
Ω

βε(uε)uε dx dt+ ‖∇uε‖2
L2(0,T ;H) +

1

2
‖∇uε(T )‖2 = ‖uεt‖2

L2(0,T ;H) − (uεt(T ), uε(T ))

+
1

2
‖∇uε0‖2 + λ‖uε‖2

L2(0,T ;H) + (uε1, u
ε
0) + ((g, uε)). (3.13)

Now, the right hand side is bounded uniformly in ε due to (3.12), (2.26)-(2.27) and (3.2)-(3.3). More-
over, it is easy to check (cf. also [27, Appendix]) that there exist constants c1 > 0, c2 ≥ 0 independent
of ε ∈ (0, 1) such that c1|βε(r)| ≤ βε(r)r + c2 for all r ∈ R. Hence, (3.13) entails

‖βε(uε)‖L1(0,T ;L1(Ω)) ≤M, (3.14a)
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for all ε ∈ (0, 1). Then, using once more (3.12) and comparing terms in (3.6), we also find

‖uεtt‖L1(0,T ;X) ≤M, (3.14b)

for any Banach space X such that L1(Ω) ⊂ X and and V ′ ⊂ X with continuous and compact
embeddings. In particular, it is not restrictive to assume X be the dual of a reflexive and separable
space (for instance, in dimension N = 3, one may take X = H−2(Ω)). Hence, we have

‖uεt‖W 1,1(0,T ;X) ≤M, (3.14c)

for all ε ∈ (0, 1).

Step 3. Passage to the limit. Now we aim at letting ε ↘ 0. From (3.12a)-(3.12b) we deduce that
there exists a function u of the regularity specified in (2.28) such that

uε ⇀ u weakly in H1(0, T ;V ), (3.15a)

uε ⇀ u weakly star in W 1,∞(0, T ;H), (3.15b)

and in particular

uε(t)→ u(t) strongly in H for all t ∈ [0, T ], (3.15c)

uε(t) ⇀ u(t) weakly in V for all t ∈ [0, T ]. (3.15d)

It is worth stressing that the above convergence relations, as well as the ones that will follow, are
intended to hold up to extraction of suitable (nonrelabelled) subsequences of ε↘ 0.

Since V is compactly embedded intoH , in view of conditions (3.12b) and (3.14c) we can apply
[31, Corollary 4] with the three spaces V ⊂⊂ H ⊂ X and p = 2 in order to obtain that

uεt → ut strongly in L2(0, T ;H). (3.15e)

Moreover, condition (3.14c) implies that the functions uεt are uniformly bounded in BV (0, T ;X) (for
the properties of vector-valued BV -spaces one can refer, e.g., to [10, Appendix]). In view of the fact
that we may assumeX be the dual of a reflexive and separable space, we can employ a generalization
of Helly’s theorem (cf., e.g., [26, Thm. 3.1] or [13, Lemma 7.2]), providing a function v ∈ BV (0, T ;X)
such that

uεt(t) ⇀ v(t) weakly star in X for all t ∈ [0, T ]. (3.15f)

It is easily seen that v coincides with ut almost everywhere. Hence, up to changing the representative
of ut, we may assume v = ut everywhere on [0, T ]. Moreover, combining (3.15f) with (3.12a), we
obtain

uεt(t) ⇀ ut(t) weakly in H for all t ∈ [0, T ]. (3.15g)

Moreover we get

uεt ⇀ ut weakly star in BV (0, T ;X). (3.15h)

Let us now show that the functions βε(uε) are uniformly bounded (with respect to ε) in V ′. Actually,
writing (3.9) for t = T , and using Holder’s inequality, (3.3), (2.26) and the estimates (3.12a) and
(3.12b), we find∣∣〈〈βε(uε), ϕ〉〉∣∣ ≤ ‖uεt‖L2(0,T ;H)‖ϕt‖L2(0,T ;H) + ‖uεt(T )‖‖ϕ(T )‖

+ ‖∇uεt‖L2(0,T ;H)‖∇ϕ‖L2(0,T ;H) + ‖∇uε‖L2(0,T ;H)‖∇ϕ‖L2(0,T ;H)

+ λ‖uε‖L2(0,T ;H)‖ϕ‖L2(0,T ;H) + ‖uε1‖‖ϕ(0)‖+ ‖g‖L2(0,T ;H)‖ϕ‖L2(0,T ;H) ≤ C‖ϕ‖V ,
(3.15i)
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for all ϕ ∈ V , where C > 0 is independent of ε. Therefore, we can infer that there exists ξ ∈ V ′ such
that

βε(uε) ⇀ ξ weakly in V ′. (3.15j)

Next, recalling the definition (2.15) of X , from (3.14a) we obtain that there exists a measure T ∈ X ′
such that

βε(uε) ⇀ T weakly star in X ′. (3.15k)

In view of the density of X ∩ V both in X and in V , the measure T represents ξ on X , i.e. (2.18)
holds.

Let us now go back to (3.9), now rewritten for general t ∈ (0, T ] and ϕ ∈ Vt. Then, re-
arranging terms, and using the above convergence relations (3.15), we obtain that there exists the
limit

lim
ε↘0
〈〈βε(uε), ϕ〉〉(0,t) = lim

ε↘0

[
((uεt , ϕt))(0,t) − (uεt(t), ϕ(t))− ((∇uεt ,∇ϕ))(0,t) − ((∇uε,∇ϕ))(0,t)

+ λ((uε, ϕ))(0,t) + (uε1, ϕ(0)) + ((g, ϕ))(0,t)

]
= ((ut, ϕt))(0,t) − (ut(t), ϕ(t))− ((∇ut,∇ϕ))(0,t) − ((∇u,∇ϕ))(0,t)

+ λ((u, ϕ))(0,t) + (u1, ϕ(0)) + ((g, ϕ))(0,t). (3.16)

A crucial point in our argument is that the left hand side tends, with no need of extracting a further
subsequence, to a linear and continuous functional on Vt that acts on ϕ as specified by the right hand
side. Noting as ξ(t) such a functional, we have in other words

βε(uε) ⇀ ξ(t) weakly in V ′t. (3.17)

Moreover, (3.16) can be restated as

− ((ut, ϕt))(0,t) + (u(t), ϕ(t)) + ((∇ut,∇ϕ))(0,t) + ((∇u,∇ϕ))(0,t)

+ 〈〈ξ(t), ϕ〉〉(0,t) − λ((u, ϕ))(0,t) = (u1, ϕ(0)) + ((g, ϕ))(0,t). (3.18)

Hence, (2.31) and (2.30), which is a particular case of it, are proved. Note now that, from (3.14a), it
also follows

βε(uε) ⇀ T(t) weakly star in X ′t (3.19)

and also this convergence holds with no need of extracting further subsequences. Indeed, the limit
of the whole (sub)sequence is already identified as ξ(t) on the dense subspace Xt ∩ Vt. This also
implies that the measure T(t) represents ξ(t) on Xt in the sense of (2.18). Using the fact that for any
ϕ ∈ Vt,0 the extension ϕ̃ lies in V , it is easy to check that the functionals ξ and ξ(t) are “compatible”.
Hence, we have checked points (a) and (b1)-(b2) of Definition 2.2 of weak solution.

Let us now show relation (2.35), i.e., point (e) of Definition 2.2. To this aim, we write (2.31)
with ϕ = u for s, t ∈ (0, T ] and take the difference. Note that the choice ϕ = u is admissible since
u ∈ V . We then infer

− ‖ut‖2
L2(s,t;H) + (ut(t), u(t)) +

∫ t

s

(∇ut,∇u) dτ + ‖∇u‖2
L2(s,t;H)

+ 〈〈ξ(t), u〉〉(0,t) − 〈〈ξ(s), u〉〉(0,s) − λ‖u‖2
L2(s,t;H) = (ut(s), u(s)) +

∫ t

s

∫
Ω

gu dx dτ. (3.20)
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Then, computing explicitly the integral on the left hand side, (2.35) readily follows.

Step 4. Identification of ξ. To conclude our proof we need to identify ξ (and ξ(t)) in the sense of
the weak constraint (2.33). This will give (c) of Definition 2.2. We start working on ξ, and, to get the
identification, we shall implement the so-called Minty’s trick in the duality between V ′ and V . This
corresponds to checking the following two conditions:

(i) There holds the lim sup-inequality

lim sup
ε↘0

〈〈βε(uε), uε〉〉 ≤ 〈〈ξ, u〉〉. (3.21)

(ii) The operators βε suitably converge to βw, in such a way that (2.33) may follow as a conse-
quence of (3.21).

We start by checking property (i), postponing the discussion regarding the correct notion of conver-
gence for (ii) and its implications. Writing (3.9) for ϕ = uε and t = T , we obtain

〈〈βε(uε), uε〉〉 = ‖uεt‖2
L2(0,T ;H) − (uεt(T ), uε(T )) + (uε1, u

ε
0)− 1

2
‖∇uε(T )‖2 +

1

2
‖∇uε0‖2

− ‖∇uε‖2
L2(0,T ;H) + λ‖uε‖2

L2(0,T ;H) + ((g, uε)). (3.22)

Now, thanks to (3.15a), (3.15c), (3.15d), (3.15g), and (3.15e), we see that the lim sup (as ε ↘ 0
along a proper subsequence) of the right hand side is less or equal than

‖ut‖2
L2(0,T ;H) − (ut(T ), u(T )) + (u1, u0)− 1

2
‖∇u(T )‖2 +

1

2
‖∇u0‖2 − ‖∇u‖2

L2(0,T ;H)

+ λ‖u‖2
L2(0,T ;H) + ((g, u)). (3.23)

Hence, using (2.35) written for t = T and s = 0, we see that the above expression is equal to 〈〈ξ, u〉〉.
Therefore, (3.21) is proved.

Let us now switch to discussing (ii), which requires the introduction of some additional ma-
chinery. We present it by following the lines of the book by Attouch [1]. At first, we observe that the
restriction to V of the function βε can be seen as a monotone operator from V to V ′ (once one works
in the parabolic Hilbert triplet V ⊂ H ⊂ V ′). Indeed, if v ∈ V , then βε(v) ∈ H ⊂ V ′ by the Lipschitz
continuity of βε. Hence, for any v1, v2 ∈ V , we have

〈〈βε(v2)− βε(v1), v2 − v1〉〉 = ((βε(v2)− βε(v1), v2 − v1)) ≥ 0. (3.24)

Moreover, if v, z ∈ V , then, by definition of subdifferential,

〈〈βε(v), z − v〉〉 = ((βε(v), z−v)) ≤
∫ T

0

∫
Ω

(jε(z)−jε(v)) dx dt = J ε|V(z)−J ε|V(v). (3.25)

In other words, we have the graph inclusion

βε|V ⊂ ∂V,V ′J ε|V , (3.26)

where the notation used on the right hand side stands for the subdifferential of J ε|V with respect to
the duality pairing between V ′ and V . By the standard theory of subdifferentials, this is a maximal
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monotone operator from V to 2V
′
, which includes (in the sense of graphs) the (monotone, but not

necessarily maximal) operator βε|V .

In view of the fact that the family of functionals {J ε|V} (defined on V and taking values
in [0,+∞)) is increasing as ε decreases to 0, applying [1, Thm. 3.20], we obtain

J ε|V → sup
ε∈(0,1)

J ε|V (3.27)

in the sense of Mosco convergence (that is Gamma-convergence both in the strong and in the weak
topology of V). Moreover, by the monotone convergence theorem it is readily seen that the functional
on the right hand side coincides in fact with J |V . Hence, owing to [1, Thm. 3.66], the family of maximal
monotone operators ∂V,V ′J ε|V , identified with the family of their graphs in the product space V ×V ′,
converges in the sense of graphs (cf. [1, Def. 3.58]) to ∂V,V ′J |V = βw. Namely,

∀ [x; y] ∈ ∂V,V ′J |V , ∃ [xε; yε] ∈ ∂V,V ′J ε|V such that [xε; yε]→ [x; y] strongly in V × V ′.
(3.28)

Hence, in view of the facts that [uε; βε(uε)] ∈ J ε|V (thanks to (3.26)), [uε; βε(uε)]→ [u; ξ] weakly
in V × V ′ (thanks to (3.15a) and (3.15j)), and to the lim sup-inequality (3.21), we may apply [1,
Prop. 3.59], yielding that [u; ξ] ∈ ∂V,V ′J ε|V = βw. Hence, (2.33) is proved.

To conclude this part, we need to prove that ξ(t) ∈ βw,(t)(u). To this aim, it is sufficient to
adapt the above argument by working on the subinterval (0, t). Indeed, relations (3.9) and (2.35) (the
latter for s = 0) hold on any subinterval (0, t). Moreover, we can take advantage of (3.15a) (whose
analogue obviously holds also on subintervals) and (3.17).

Step 5. Further properties of solutions. Let us start proving that inequality (3.21) is in fact an
equality. Indeed, owing to (3.28), there exist [xε; yε] ∈ ∂V,V ′J ε|V such that [xε; yε]→ [u; ξ] strongly
in V × V ′. Hence, noting that, by monotonicity,

0 ≤ 〈〈βε(uε)− yε, uε − xε〉〉, (3.29)

taking the lim inf as ε↘ 0, and recalling (3.21), we obtain

lim
ε↘0
〈〈βε(uε), uε〉〉 = 〈〈ξ, u〉〉. (3.30)

As a consequence, the limit of the right hand side of (3.22) exists and coincides with (3.23). In view of
the fact that convergence of most terms of (3.22) is already known from the previous estimates we get
in particular that

lim
ε↘0

(
1

2
‖∇uε(T )‖2 + ‖∇uε‖2

L2(0,T ;H)

)
=

1

2
‖∇u(T )‖2 + ‖∇u‖2

L2(0,T ;H). (3.31)

As before, this argument can be repeated on any subinterval (0, t). Hence, recalling (3.15a) and
(3.15d), we finally arrive at

uε → u strongly in L2(0, T ;V ), (3.32)

uε(t)→ u(t) strongly in V for all t ∈ [0, T ]. (3.33)

Next, let us show that, under assumption (2.42), the additional regularity (2.43) holds. To this
aim, we go back to the approximate problem, and, in the spirit of [28], we test (3.6) byAuε. Indeed, uε
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has sufficient smoothness in order for this procedure to be admissible (cf. (3.7)). Integrating by parts,
and using the monotonicity of βε, we then easily infer

d

dt
(uεt , Au

ε) +
1

2

d

dt
‖Auε‖2 + ‖Auε‖2 = (λuε + g, Auε) + (uεt , Au

ε
t). (3.34)

By some further integration by parts and using Hölder’s and Young’s inequalities (and the definition of
the operator A), the right hand side can be easily estimated as follows:

(λuε + g, Auε) + (uεt , Au
ε
t) ≤

1

2
‖Auε‖2 + C

(
‖g‖2 + ‖uε‖2

)
+ ‖∇uεt‖2. (3.35)

Here and below, C > 0 is a constant independent of ε. Hence, integrating (3.34) over (0, t) for
arbitrary t ∈ (0, T ], using (3.35), and recalling estimate (3.12a), we easily obtain

2(uεt(t), Au
ε(t)) + ‖Auε(t)‖2 +

∫ t

0

‖Auε‖2 ds ≤ C + ‖Auε0‖2. (3.36)

Now, one can immediately check that, under assumption (2.42), if uε0 is defined as in (3.4), then the
right hand side of (3.36) is bounded independently of ε. Hence, noticing that the left hand side is larger
or equal than

1

2
‖Auε(t)‖2 − C‖uεt(t)‖2 +

∫ t

0

‖Auε‖2 ds, (3.37)

where the second term is uniformly controlled due to (3.12a), we readily arrive at

‖uε‖L∞(0,T ;D(A)) ≤M. (3.38)

Letting ε↘ 0, we then infer
u ∈ L∞(0, T ;D(A)) (3.39)

thanks to semicontinuity of norms with respect to weak convergence. Finally, (2.43), i.e., weak con-
tinuity of u with values in D(A), follows by combining (3.39) with the regularity u ∈ C([0, T ];V )
following from (2.28), and applying standard results.

Eventually, we show that weak solutions constructed as limit points of {uε} also satisfy a form
of the energy inequality. We start by proving it on intervals of the form [0, t], t ∈ (0, T ]. To this aim,
we write relation (3.8) for s = 0 and take the lim inf as ε ↘ 0. Then, using standard semicontinuity
arguments together with relations (3.2)-(3.3), (3.15a), and (3.15c)-(3.15d), it is not difficult to infer, for
every t ∈ (0, T ],

1

2
‖ut(t)‖2 +

∫
Ω

j(u(t)) dx− λ

2
‖u(t)‖2 +

1

2
‖∇u(t)‖2 + ‖∇ut‖2

L2(0,t;H)

≤ 1

2
‖u1‖2 +

∫
Ω

j(u0) dx− λ

2
‖u0‖2 +

1

2
‖∇u0‖2 +

∫ t

0

(g, ut) dτ. (3.40)

Note in particular that relation

J(u(t)) =

∫
Ω

j(u(t)) dx ≤ lim inf
ε↘0

∫
Ω

jε(uε(t)) dx = lim inf
ε↘0

Jε(uε(t)) (3.41)

is a consequence of (3.15c) and of the fact that the functionals Jε converge to J in the sense of Mosco
(cf. [1, Par. 3.3]) in the space H . Recalling (2.25), (3.40) reduces to (2.41) in the case s = 0. Let us
now consider a generic interval [s, t] for 0 < s < t ≤ T and let us go back to (3.8) written for this
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choice of s, t. Let us take once more the lim inf as ε↘ 0. Then, the left hand side is treated exactly
as before. On the other hand, when looking at the right hand side, it is easy to check that

−λ
2
‖uε(s)‖2 +

1

2
‖∇uε(s)‖2 +

∫ t

s

(g, uεt) dτ → −λ
2
‖u(s)‖2 +

1

2
‖∇u(s)‖2 +

∫ t

s

(g, ut) dτ

(3.42)
thanks in particular to (3.15a), and (3.33). Next, thanks to (3.15e), and up to extracting a further
subsequence of ε↘ 0, we have

1

2
‖uεt(s)‖2 → 1

2
‖ut(s)‖2 (3.43)

for almost every choice of s ∈ (0, T ). Next, we need to control the component of the energy related
with the constraint. Namely, we would like to prove that, at least for a.e. s ∈ (0, T ),

lim sup
ε↘0

∫
Ω

jε(uε(s)) dx ≤
∫

Ω

j(u(s)) dx (3.44)

(hence, coupling the above with (3.41) written for t = s, we would get convergence of that term). We
can start noticing that∫

Ω

jε(uε(s)) dx =

∫
Ω

(
jε(uε(s))− jε(u(s))

)
dx+

∫
Ω

jε(u(s)) dx. (3.45)

Moreover, ∫
Ω

jε(u(s)) dx→
∫

Ω

j(u(s)) dx (3.46)

by the monotone convergence theorem. Now, by definition of subdifferential, we may write∫
Ω

(
jε(uε(s))− jε(u(s))

)
dx ≤

∫
Ω

βε(uε(s))(uε(s)− u(s)) dx =: µε(s), (3.47)

and we have to discuss the behavior of the functions µε. First, we observe that∫ T

0

µε(s) ds = 〈〈βε(uε), uε − u〉〉 → 0, (3.48)

the latter property following from (3.30) and (3.15j). Moreover, thanks to (3.47), we have

µε(s) ≥ Jε(uε(s))− Jε(u(s)) ≥ Jε(uε(s))− J(u(s)), (3.49)

whence lim infε↘0 µ
ε(s) ≥ 0 thanks to (3.41). Hence, we have in particular limε↘0(µε)−(s) = 0,

(·)− denoting the negative part. Moreover, from (3.49), (3.41) and (3.12c) we infer

µε(s) ≥ −J(u(s)) ≥ − lim inf
δ↘0

Jδ(uδ(s)) ≥ −M, (3.50)

for all ε ∈ (0, 1) and s ∈ (0, T ]. Hence, by the dominated convergence theorem we obtain that
(µε)− → 0 in L1(0, T ). Consequently, thanks to (3.48), we conclude that µε → 0 in L1(0, T ).
Hence, up to a subsequence, µε → 0 almost everywhere in (0, T ), whence (3.44) follows. This
actually implies (2.41) for almost every s ∈ (0, T ) and every t ∈ (s, T ], as desired. The proof of
Theorem 2.5 is concluded.
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Remark 3.2. If the source term g is 0, from (2.41) follows in particular that the energy loss in the
time interval (s, t) is at least as large as the dissipation term D(s, t) := ‖∇ut‖2

L2(s,t;H). Of course,
as commonly occurs situations characterized by bad regularity, the energy dissipated may be in fact
strictly larger than D(s, t). Indeed, we may observe that proving equality in (3.40) appears out of
reach in the present regularity setting.

Remark 3.3. In view of our strategy of proof for Theorem 2.5, we can give some further observation
complementing Remark 2.4. Hence, let us go back to the “toy problem” (2.36), for example with
β = ∂I[−1,1] (but our consideration also apply to different choices of β). Then, implementing our
regularization method we get the equation

uεtt + βε(uε) = 0. (3.51)

Setting vε := uεt , the shape of solution trajectories of the 2D ODE system associated to (3.51)
in the phase space (uε, vε) can be easily described. In particular, since (in this spatially homoge-
neous setting) no dissipation occurs, trajectories are periodic. Moreover, we may notice that, for
ε ↘ 0, (uε, vε) converges in a suitable way to a couple (u, v), where v = ut and u solves (2.36).
Clearly, (u, v) is also a periodic trajectory and its image in the phase space lies in some level set
{j(u) + v2/2 = c}, c ≥ 0, of the “energy” functional. In particular, whenever D(j) = [−1, 1]
(as happens in the case of the indicator function j = I[−1,1], and also for the “logarithmic poten-
tial” mentioned in the introduction), such level sets are (at least for large initial energy, i.e., for large
values of c) not connected. Namely, their shape determines the jumps of ut (which, consequently,
cannot occur in an “arbitrary” way). Note also that taking different choices for the approximations βε

of β does not modify the shape of (u, v). Of course it is clear that, in the case of our equation (1.1),
the situation is much more complicated than for (2.36) in view of the infinite-dimensional setting.
However, the fact that our weak solutions u are still built as limit points of families uε solving a very
natural regularization of the equation suggests that the jumps of ut occurring in the limit may be in
some sense “physical”, i.e., they are determined by the fact that uεt , as ε ↘ 0, may tend to develop
discontinuities. In other words, the occurrence of “spurious” jumps of ut (as are the somehow “arbi-
trary” jumps described in Remark 2.4) should be excluded in view of the fact that our weak solutions
descend from the approximation scheme.

Remark 3.4. Let us give some further observation complementing Remark 2.3. Again, we consider,
just for simplicity, the “toy” model (2.36); however, our considerations also apply to the original
equation (1.1). Actually, from our approximation argument we know that, for any t ∈ (0, T ], (a
subsequence of) βε(uε) (weakly star) converges to a measure T(t) on Qt (in particular, we have
convergence to some T on the whole interval). In the toy case, of course, Qt = [0, t]; moreover, we
are allowed to identify T(t) = ξ(t) ∈ V ′t because Sobolev functions are continuous in 1D. Let us now
consider the particular case when βε(uε) is supported in some interval of the form [tε − ε, tε + ε]
and is 0 outside that interval. Then, assuming that tε converges to some point t ∈ (0, T ) as ε ↘ 0,
and βε(uε) “spikes” around tε in a proper way, it may happen that βε(uε) (weakly star) converges to
T = δt (the Dirac delta concentrated in t) in X ′. This kind of behavior may be (possibly) driven for
instance by inserting a nonzero forcing term g in the equation. Then, in the case when, for instance,
tε = t − 2ε, it turns out that the singularity of T develops before t. Consequently, βε(uε) also
converges to δt in X ′t . In particular, (2.31) holds in [0, t] with ξ(t) = δt. On the other hand, if tε =
t + 2ε, i.e., the singularity of T develops after t, in that case βε(uε) converges to T(t) = 0 in X ′t ,
whence (2.31) holds in [0, t] with ξ(t) = 0. Note that this happens in spite of the fact that the limit
measure T over the whole [0, T ] is the same in the two cases. This fact suggests that the formulation
(2.31) on the subinterval (0, t) contains some additional information that cannot be simply inferred
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by restricting the global formulation (2.30). This is the reason why we decided to include (b2) in our
existence theorem.

Remark 3.5. Let t be one of the (at most countably many) jump points of ut. Then, both the point
value of ut at t and the occurrence of concentration phenomena for the measure T(t) at the same point
also depend on the choice of the approximating problem (i.e., of βε; actually our argument works
provided that βε is smooth and converges to β in the graph sense) and of the selection of converging
subsequences via Helly’s theorem. This can be seen again by looking at the “toy equation” (2.36)
with β = ∂I[−1,1] and initial values u0 = 0 and u1 = 1. Then, we know that the (first) jump of ut
occurs at t = 1. Let us now consider the approximation (3.51) with the choice

βε(r) =


0 if |r| ≤ rε,

ε−2(r − rε) if r > rε,

ε−2(r + rε) if r < −rε,
(3.52)

where, for any ε ∈ (0, 1), one may choose (in an arbitrary way) rε in the interval [1 − επ, 1]. It is
then clear that, whatever are the chosen values of rε, βε tends to β = ∂I[−1,1] in the sense of graphs
as ε↘ 0. Hence, our limit problem is the desired one. Let us notice that, for r ≥ 0, we have

jε(r) =
1

2ε2

(
(r − rε)+

)2
. (3.53)

In particular, jε(1) = 0 if rε = 1, whereas

jε(1) =
(1− rε)2

2ε2
∈
(

0,
π2

2

]
if rε ∈ [1− επ, 1). (3.54)

Then, uε(1) = 1 if rε = 1, whereas in case rε ∈ [1 − επ, 1) one can easily compute uε(t) =
rε+ε sin

(
t−rε

ε

)
for t ∈ (rε, rε+επ], whence uεt(t) = cos

(
t−rε

ε

)
and uεt(1) = cos

(
1−rε

ε

)
. Hence,

choosing appropriately (and somehow “wildly”) rε in the interval [1−επ, 1] as ε varies in (0, 1), one
may obtain the effect that for any number ` ∈ [−1, 1] there exists a subsequence εn ↘ 0 such that
uεn
t (1) tends to `. The use of Helly’s theorem selects one of these subsequences and determines the

limit value ut(1) = ` (and, in turn, how the limit measures T(s) concentrate at the jump point t = 1).

Remark 3.6. As observed in the previous Remark, ξ(t) is not represented, in general, by the restricion
of the measure T to the set Qt. However, we can give a more explicit characterization of this restric-
tion in the following sense. From (3.15h) we have ut ∈ BV (0, T ;X), where we may assume X be
the dual of a separable space. Hence, for all times t ∈ [0, T ] there exists (in the weak star topology
of X) the limit

ut(t
+) := w∗−lim

s→t+
ut(s). (3.55)

Moreover this value coincides with the weak star limit

w∗−lim
s→t+

1

s− t

∫ s

t

ut(r) dr. (3.56)

In particular the limits above must hold with respect to the weak topology of H , since ut is bounded
in H uniformly in time. Let us now write (2.30) with ϕ replaced by ϕhs ∈ X , with ϕ ∈ X ∩ V and
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hs : [0, T ] → [0, 1] be the function such that hs = 1 on [0, t], hs = 0 on [s, T ], and hs be affine in
[t, s]. We obtain

− ((ut, ϕt))(0,t) − ((ut, ϕths))(t,s) +
1

s− t
((ut, ϕ))(t,s) + ((∇ut,∇(ϕhs))) + ((∇u,∇(ϕhs)))

+

∫∫
Q

ϕhs dT − λ((u, ϕhs)) = (u1, ϕ(0)) + ((g, ϕhs)).

Letting s ↘ t, we see that the third term tends to (ut(t
+), ϕ(t)), while the other terms pass to the

limit thanks to the dominated convergence theorem and the fact that ϕhs → ϕχ[0,t] pointwise, so in
particular T -almost everywhere. We then obtain

− ((ut, ϕt))(0,t) + (ut(t
+), ϕ(t)) + ((∇ut,∇ϕ))(0,t) + ((∇u,∇ϕ))(0,t)

+

∫∫
Q

ϕ d(T χ[0,t])− λ((u, ϕ))(0,t) = (u1, ϕ(0)) + ((g, ϕ))(0,t).

Comparing with (2.31), we deduce that ξ(t) is represented by the restriction of T to the closed set Qt

whenever the pointwise value ut(t) coincides with ut(t+), which happens in fact in the complemen-
tary of a countable set of times. In other words, in that case we have T xQt

= T(t).

Remark 3.7. Relation (2.41) implies in particular that, at least when g ≡ 0, the energy functional
coincides almost everywhere with a nonincreasing function. In a sense this fact provides an additional
criterion for selecting which are the “admissible” jumps of ut (cf. Remark 3.3). Namely, jumps may
occur only in such a way that they do not increase the total energy of the system. For g 6= 0 similar
considerations hold, up to the fact that g acts somehow as an additional energy source.

Remark 3.8. It is maybe also worth stressing that Theorem 2.5 states the existence of at least one
weak solution satisfying the properties detailed above. Due to nonuniqueness, there may well exist
“spurious” solutions having worse properties. For example they may be constructed in such a way
that the time derivative ut admits somehow “nonphysical” jumps. However our procedure shows
that every weak solution that is a limit point of our natural regularization scheme is “physical” (for
example, in view of (2.41), energy-increasing jumps cannot occur).
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