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ABSTRACT

We consider Kolmogorov’s model for the turbulent motion of an incompressible fluid in R3.
This model consists in a Navier-Stokes type system for the mean flow w and two further partial
differential equations: an equation for the frequency w and for the kinetic energy k each. We
investigate this system of partial differential equations in a cylinder Qx]0,7[ (2 C R? cube,
0 < T < +00) under spatial periodic boundary conditions on 9€2x ]0, 7' [ and initial conditions
in Q x {0}. We present an existence result for a weak solution {u,w, k} to the problem under
consideration, with w, k obeying the inequalities ¢; +t < % <t+co and %/2 > 03t1/2 (c1,c9,c3 =
const > 0).

1. Introduction In [7], Kolmogorov postulated the following system of partial differential equations as a
model for the turbulent motion of an incompressible fluid in R3:

. ou . (kK

divu=0, S+ (u-V)u = div (; D(u)) —Vp+f, (1)
Ow (kK s Ok (K k 2
E—Fu-Vu}—dlv(;Vu})—w, a—}-u-Vk—dlv(;Vk)-i-E’D(uﬂ — kw. (2)

Here, u = (u1,ug,u3) denotes the mean velocity, p the mean pressure, k = %W the mean turbulent kinetic
energy (u = fluctuation velocity) and w > 0 denotes a frequency associated with the dissipation of turbulent
kinetic energy (D(u) = 1(Vu + (Vu)') mean strain-rate). f represents a given external force. The paper
[7] originated from Kolmogorov’s theory of turbulence published in 1941. A detailed presentation of this
theory is given, e.g., in [5] (see also the article by Yaglom [15, pp. 488-503]). A discussion of (1), (2) and
other two-equation models of turbulence can be found in [14], [16, Chap. 4.3].

Instead of studying (1), (2) in the whole R3, we consider this system in a cube Q = (]0,a[)? (0 < a < +o0
fixed) and complete it by spatial periodic boundary conditions with respect to . Let 02 denote the
boundary of 2. We define I'; = 0Q N {z; =0}, Tiys =02 N{z; =a} (i =1,2,3).

Let 0 < T < 4o00. We study system (1), (2) in the cylinder Q7 = ©2x ]0,T' [ with the following conditions:

- 1 ly f k
u I x]0,T Tyssx]0,T] , analogously tor p,w, K,
(3)
b =D 1 ly fi k
(u) T, x]0,T| (u) Froax 02 analogously for Vw,VEk,
u = up, W = wo, :ko in QX{O} (4)

The aim of this Note is to present an existence result for a weak solution {u,w, k} to (1)—(4).

2. Statement of the main result Let X denote a real normed space with norm |- |x, let X* be its
dual and let (z*,x)x denote the dual pairing of z* € X* and € X. The symbol C,([0,T]; X) stands for
the vector space of all mappings u : [0,7] — X such that, for every z* € X*, the function ¢ — <x*, u(t)>X
is continuous on [0,7]. Next, by LP(0,7;X) (1 < p < 400) we denote the vector space of all equivalence
classes of Bochner measurable mappings w : [0,7] — X such that the function ¢ — |u(t)|, is in LP(0,T)
(cf. [2, Chap. III, §3, Chap. IV, §3], [3, App.], [4]).

For bounded domains 2 C R™ (n > 2) with Lipschitz boundary we denote by W1P(Q) (1 < p < +o0) the
usual Sobolev space.

In what follows, let 2 = (]0,a[)® be the cube introduced above. We define

) x

17p — 1717 . — ) —
W@ = {ueW@) | =ul (=123)},
W;gdiv(ﬁ) = {ue W%,’epr(Q); divu =0 a. e in Q}

(bold-faced letters refer to vector valued mappings as well as to Banach spaces of such mappings). The
conditions on the data are:

FeLQr): woe O @) @ (5)

per,div



(6)

ko € LY(Q), ko(x) > ky« = const >0 for a.e. x €.

The following theorem is the main result of our paper.

wo measurable in Q, wy, < wg(r) <w* for a.e. x €N (wi,w* = const > 0), }

Theorem Assume (5) and (6). Then there exists a triple of measurable functions {u,w,k} in Qr such
that

Wy w* k.«
1+tw* w(x t>_1+t =, k<x’t)_1+tw* for a.e. (z,t) € Qr, (7)
1 1 EY2(x,t) ke N\1/2
E_thw(x,t) —I—wf* WZ (Et) for a.e. (z,t) € Qr, (8)
u € Cy([0,T]; L*(Q)) N L2(0, T; W2 4,(Q) o)
9
w € Cy([0,T]; LA(Q)) N L2(0, T Wit (), k € L=(0,T;LY(R))

/(k4p/3+’Vk;|p)<+oo V1<p<2, /(k|Vk)q<+oo v1§q<§

7 b
Qr
/W<+oo VOo<d<l,; /k(|D(u)\2+|Vw|2) < 400 1o
(11 k)iro N !
Qr Qr
u € U 1,80/ (4p+3) (0, T; (W;ﬁfc/li(jpi:%)(ﬂ))*) LW e U 1,80/ (4p+3) (0,T; (Wgéfp/(‘ip*?’)(fl))*) ,(11)
1<p<2 1<p<2
r k
! _ : r : _
/<u (t)’v(t)>W11:-’e:,divdt /(u® u): Vo + / » D(u) : D(v)
0 Gr Gr (12)
/f v Vv e U L™(0,T; WSQZ(Q)), u(-,0) =ug a.e in Q,
r>16/5
r k
/ Iiegalt/wu-ch+/Wch-chz
0 Qr Qr (13)
—/w p Ve U L"(0,T; WSJ(Q)) w(-,0) =wp a.e. in Qr,
Qr 7‘>16/5
3 bounded Radon measure i on the Borel o-algebra of Qp such that
0z k k 2
ka - /ku-Vz+/ka.Vz: /ko(x)z(x,O)dm+ / (; |D(u)| —kw)z—l—/zd,u (14)
Qr Qr Qr Q Qr Qr
Vzel (QT)? ZFiX]O,T[ Tyrsx]0,T (Z ) 73)7 Z(7 ) 0

In addition, the following inequalities hold for a.e. t €]0,T [:

;Q/|u(x,t)|2dac+0/;/i|D(u)‘2 < ;Q/|uo|2+0/;/f.u, (15)
t

/(;‘u(x,t)‘2+k(x,t)>dm+/t/k‘wS/(;’U0’2+/€0> +/ fu, (16)
Q 0Q Q 0Q



Remarks 1. Obviously, (8) follows from (7). Except for the additive constants - and w% in (8), the

estimates for % are in coincidence with Kolmogorov’s theory of turbulence (cf. [5, pp. 100-103], [8, Chap.
33)).
The function L := >~ ? characterizes the “external length scale” of the turbulent motion (see [5, Chap. 7],
[8, Chap. 33], [167 Chap. 8.1]). Instead of the growth of L in (8), Kolmogorov [7] claims the weaker growth
L > cot?" (cg = const > 0).

2. The integral relations in (11) and (12) represent a weak formulation of the u-equation and the w-
equation, respectively, with spatial periodic boundary condition (cf. (1), (2), (3)). The derivatives u’ and

W' in (11) (and (12), (13)) have to be understood in the sense of distributions from ]0,7'[ into the spaces

1,8p/(4 —3)
(Wper],)divp

()" and (W, Walde/(p= 3)(9))*, respectively. An analogous remark refers to {ul,w’, k.} below.

3. The defect measure p in (14) arises from our approximation method for the proof the existence of a
weak solution to (1)—(4). The measure p vanishes, provided the weak solution under consideration satisfies
appropriate regularity properties. More precisely:

Let the triple {u,w, k} satisfy w > 0, k > 0 a.e. in Qr and let (9)—(1 ) be fulfilled. If equality holds in
both (15) and (16), then (i) p=0 and (i) Ik € () L0, T; (Wpe(Q)").

1<s<8/7

To prove (i), let o be any Lipschitz function on [0,7], a(t) = 0 for all ¢t € [ts,T] (0 < to < T). Then (14)
continues to hold for functions z = z(x,t) = ((z)a(t), where ¢ € Wpi(Q) (s > 8, observe (10)). Given

t €]0,T [ and m > = (m € N), define

1 if 0<7<t,
t 1 if ¢ t 1
om(r)={ mtt=7) VRS
0 if t+—<7<T.
m

We insert z =1 - ayy, into (14) and obtain

t+1/m t+1/m
m / /k(x,T)d:L‘dTZ /ko—i— / /<i|D(U)‘2—kUJ>Oém+M(QX [0,]) .
t Q Q 0 Q

Letting m — 400 it follows that
/ k
/k(x,t)dx > /ko +/ (; |D(w)|* - kw) + (@ x [0,4)
Q Q 0Q

for all Lebesgue points ¢ of the function 7 +— / k(xz,7)dx. Adding this inequality to (15) [with equality
Q
therein] one finds

t

/(|umt| +k:ct dm+/ kw/(é’u0’2+ko>o/; fru > ,u(ﬁx[o,t]).

Q Q

From (16) [with equality therein] it follows (2 x [0,%]) = 0. Thus, u(Qr) =

The claim (ii) can be easily established by routine arguments (cf. [3, A pendlce Prop. A6], [4 ])

With (i) and (i) in hand we obtain k € C([0, T]; (Wi (2))*) and k(-,0) = ko in the sense of (W (€2))*.
Now, (14) turns into the weak formulation of the k-equation.

4. The defect measure u in (14) reflects the deep problem to establish an energy equality for weak solutions
to the Navier-Stokes equations (see also [12], [13]). In [9], the author studies a simplified one-equation model
of turbulence, where a defect measure appears on p. 397 and 416. We notice that defect measures also occur
for other types of nonlinear partial differential equations (cf., e.g., [1], [6], [10]).



3. Sketch of proof Let ® € C([0,4+00[) be a fixed, non-increasing function fulfilling the conditions
0<®<1in[0,400[, ®=11in[0,1] and ® = 0 in [2,4+00[. For 0 < ¢ < 1, define ®.(§) = P(&f),
0<€< 4.

1° Existence of an approrimate solution. Fix any 6 < p < +00, 3 < o < Ll For every 0 < € < +00 there
exist measurable functions {u.,ws, k:} in Qp such that w. > 0, k. > 0 a.e. in Qr,

{ue,we, ke } € LP(0, T, WEHE L (Q)) x L0, T; Whki(Q)) x L7 (0, T; Wha(Q))

per,div per per

{ul,wl K} € L7(0,T5 (W2 4, (Q)") x LY3(0,T5 (Wih(Q))") x L7 (0,15 (WpeZ (2))7)

per per

_/Qﬂ%ﬁ@%®%yV0+/( Y D)) Dl) : D) =

5+w5
Q Q (17)
:/f'v for a.e. t€]0,T[, Vv € Wil(Q); u.(-0) =uo,

<u;(t), U>W1,p

per,div

per

k
CIOR —/weus-vw/(sjws + 2| Verf?) V. - Vip =

X . (13)
_ /wgcp fora.e. t€]0,T[, Ve W;e‘ﬁ(g) we(+,0) = wo,
Q
(R0, 2)ypae — [ eue- T2+ [ ke ook 772) k. - V2 =
S Wk o €+ we : c
k y 2 . . (19)
= / (6 o |D(u5)| — kawg)z forae. t€]0,T[, V2eWyl(Q); ko(,0)=ko.

Q

This result can be proved by reformulating (17)—(19) in terms of an abstract operator equation and
applying [11, Chap. 3.1.4, Théoreme 1.2]. For this we have to pass from the data {ug,wp, ko} to zero initial
data. With regard to wo, this is easily done by (5) and with regard to wg, ko by routine arguments.

2° A-priori estimates a.e. in Qp for we and k.. For every e > 0 there holds

Wi w

T <we(z,t) < i’ ke(z,t) > 1 —I—;kfw* for a.e. (z,t) € Qr (wi,w"™ and ks« as in (6)).(20)
We establish the estimate from below for w.. Set w(t) := 1 _;'_ut ,0<t<T. Then
W*

(we(-,t) —w(t)) € e WLi(Q) forae te]0,T], (we(x,0) —w(0)) =0 forae. z€Q.

per

We take ¢ = (we(+,t) —w(t))” in (18), add the term —w(t)/ (we(®,t) — w(t)) dz (w = derivative of w) to
Q
both sides and integrate over the interval [0,¢]. It follows that

;/((wg(x,t) —w(t)))de—/t/wgug-V( / w? — w?)(we —w)” <0
0Q

Q
for a.e. t €]0,T [ (notice that w = —w?). Since

[ et syucls) - 9wl ) - w(s)) de =

Q

= / (we(®,5) —w(s)) ue(z,s) V(we(z,s) —w(s)) dz+w(s)

Q

u(z, ) V(we(z,s)—w(s)) dz =0

{O\



for a.e. s €]0,¢[, the estimate from below for w, follows.

The estimate for w. from above by @(t) := (0 <t <T) can be proved by testing (18) with ¢ =

14 tw*
(We(.,t) — E(t))f To prove the estimate from below for k., set x(t) := 1+’;W*7 0<t<T. We insert
z = (ke(-,t) — k(t)) " into (19), make use of 4 = —kw and obtain
t
;/((k:g(:[;,t)-/{(t dx—//kus. V(k: — k)~ / (kW — kewe ) (ke — k)™ <0
Q

t
for a.e. t €]0,T[. By an analogous reasoning as above, // kcue - V(ke — k)~ = 0. Thus, k. > k a.e. in
0JQ

Q.
3° Integral estimates We insert v = u(-,t) into (17) and z = 1 into (19). This gives

k -2 2
”u&?H%oo(O,T;L?) + / (E +€w5 +e ‘D(u&?)‘p ) ‘D(U‘E)} <c, Hk&?HLOO(O,T;Ll) <c (21)
Qr

(by ¢ we denote different positive constants which do not depend on €).

¢ 1
Next, define ¥(§) :/ (1 - m)ds (0 < &< 400,0<d<1). We take 2 = ¥/ (k-(-, 1)) in (19).
0
With the help of (21) we obtain
o—2 |Vk€‘2 <
5/ ( V| )(1+/<;€)1+5 ¢
Qr

From this estimate it follows that

/(kép/3+|w:5|?)§c Vi<p<2, /(kE|Vk5|)q§c V1§q<§,

Qr Qr
5/|Vk5|”1|Vz| < MVl ¥z LT(0,TsW(9).
Qr
4 1 11-3
where r = Ka_ﬂl, K= gp . m (O <d< 3(07_;)). The integral estimates for w. are straight-

forward.
Estimates for u. and w. with respect to appropriate dual norms are easily derived. Finally, given
8 < s < 400, there exists a constant ¢(s) such that |\kg|\L1(0 ki) S c(s).
s4s per

4° Passage to the limit e — 0 From (21), (22), the estimates for w, and the estimates for u’, w. and k. we
obtain the existence of a subsequence of {u.,we, k. } which converges weakly [or weakly*] to a triple {u,w, k}
in the respective spaces as well as a.e. in Qp. Then (8)—(13), (15) and (16) are readily seen.

Finally, there exists a bounded Radon measure p on the Borel g-algebra of Q such that, for all z € C(Q7),

/a—i—w ’Dus)}z—>/|D /Zdu as € — 0.

Qr Qr

The passage to the limit € — 0 in (19) is now easily done by routine arguments.
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