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Abstract

We consider a thermodynamically consistent diffuse interface model describing two-phase flows
of incompressible fluids in a non-isothermal setting. The model was recently introduced in [12]
where existence of weak solutions was proved in three space dimensions. Here, we aim at study-
ing the properties of solutions in the two-dimensional case. In particular, we can show existence
of global in time solutions satisfying a stronger formulation of the model with respect to the one
considered in [12]. Moreover, we can admit slightly more general conditions on some material
coefficients of the system.

1 Introduction

We consider here a mathematical model for two-phase flows of non-isothermal incompressible fluids in
a bounded container Ω in R2 during a finite time interval (0, T ). The model consists in a PDE system
describing the evolution of the unknown variables u (macroscopic velocity), ϕ (order parameter), µ
(chemical potential), ϑ (absolute temperature), and it takes the form

div u = 0, (1.1)

ut + u · ∇u +∇p = ∆u− div(∇ϕ⊗∇ϕ), (1.2)

ϕt + u · ∇ϕ = ∆µ, (1.3)

µ = −∆ϕ+ F ′(ϕ)− ϑ, (1.4)

ϑt + u · ∇ϑ+ ϑ
(
ϕt + u · ∇ϕ

)
− div(κ(ϑ)∇ϑ) = |∇u|2 + |∇µ|2. (1.5)

Relation (1.2), with the incompressibility constraint (1.1), represents a variant of the Navier-Stokes
system; (1.3)-(1.4) correspond to a form of the Cahn-Hilliard system [11] for phase separation, while
(1.5) is the internal energy equation describing the evolution of temperature. Note that transport effects
are admitted for all variables in view of the occurrence of material derivatives in (1.2), (1.3), and (1.5).
As usual, the variable p in the Navier-Stokes system (1.2) represents the (unknown) pressure. The
function F whose derivative appears in (1.4) is a possibly non-convex potential whose minima repre-
sent the least energy configurations of the phase variable. Here we will assume that F is smooth and
has at most a power-like growth at infinity. Indeed, it is not clear whether our result could be extended
to other classes of physically significant potential, having nonsmooth or singular character (like, e.g.,
the so-called logarithmic potential F (r) = (1+r) log(1+r)+(1−r) log(1−r)−r2 which typically
appears in Cahn-Hilliard-based models, see, e.g., [31]). Finally, the coefficient κ(ϑ) in (1.5) stands for
the heat conductivity of the fluid. Here we shall assume that κ grows at infinity like a sufficiently high
power of ϑ (see (2.11) below).

The PDE system (1.1)-(1.4) in the case of a constant temperature ϑ, refereed in the literature
as Model H, is a diffuse interface model for incompressible isothermal two-phase flows which consists
of the Navier-Stokes equations for the (averaged) velocity u nonlinearly coupled with a convective
Cahn-Hilliard equation for the phase variable ϕ (cf., for instance, [3, 19, 20, 21, 22, 23, 26] and the ref-
erences [1, 2, 4, 5, 16, 17, 18, 28, 36, 42, 43] for the study of the resulting evolution system). However,
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even if many authors considered the isothermal Model H, up to our knowledge no contributions are so
far present in the literature in the non-isothermal case, except for [37] where a linearization of (1.5) is
considered and our previous paper [12] where we introduced system (1.1)-(1.5) in the 3D case.

The above model was indeed proposed in our recent work [12] starting from the balance laws
for internal energy and entropy; in particular, thermodynamical consistence was shown to hold for any
(positive) value of the absolute temperature ϑ. Moreover, existence of solutions for a weak formulation
of (1.1)-(1.5) was proved when the system is settled in a smooth bounded domain Ω ⊂ R3 and
complemented with no-flux conditions for ϕ, µ and ϑ and with slip conditions for u. Mathematically
speaking, the main source of difficulty in system (1.1)-(1.5) comes from the quadratic terms on the
right hand side of (1.5). Their occurrence is physically motivated as one considers the derivation of the
model in terms of the energy and entropy balances (cf. [12, Sec. 2]). Roughly speaking, one can say
that these terms represent a source of thermal energy coming from the dissipation of kinetic energy
due to viscosity (cf. (1.2)) and of configuration energy due to action of micro-forces (cf. (1.3)-(1.4)).
This energy dissipation, as expected, happens in such a way to increase the entropy of the system.

From the analytical viewpoint, the quadratic terms in (1.5) can be controlled only in the L1-
norm, at least in the 3D-case. For this reason, proving existence for the formulation (1.1)-(1.5) appears
to be out of reach. Actually, the notion of weak solution considered in [12] is based on a suitable
reformulation of the model along the lines of an idea originally developed in [8, 13] for dealing with
heat conduction in fluids, in [14] for solid-liquid phase transitions, and more recently in [34] for damage
phenomena. In such a setting, the “heat” equation (1.5) is replaced with a relation describing the
balance of total energy (i.e., not only of thermal energy), which does no longer contain quadratic
terms. This is complemented with a distributional version of the entropy inequality. It is worth observing
that the weak formulation considered in [12] is consistent with the standard (strong) one (1.1)-(1.5).
Indeed, it is not difficult to prove that, at least for sufficiently smooth weak solutions, the total energy
balance together with the entropy inequality imply the original form of the heat (or, more precisely,
internal energy balance) equation (1.5). However, as noted above, the required regularity in the 3D
case is not at all known.

Looking at the 2D model, whose analysis is the aim of this paper, it is well-known that, for the
Navier-Stokes system (1.2), additional regularity is available provided that the forcing term (here given
by − div(∇ϕ ⊗ ∇ϕ)) lies in L2 (cf., e.g., [33]). Fortunately, this seems to happen in our case, as
one can readily check starting from the available energy and entropy estimates; hence, there is hope
to get additional summability for the quadratic term |∇u|2 in (1.5). This was the motivation which led
us to investigate whether it is possible to prove existence of a solution to the original (strong) system
(1.1)-(1.5) in two space dimensions. Indeed, we may give a positive answer to this question, but the
argument we use for arriving at this conclusion is far from being a straighforward one. So, let us try to
give some ideas of the mathematical difficulties we met.

To make things clear, we start by introducing some basic assumptions. First of all, in order
to avoid technical complications related with the choice of boundary data, we ask the system to be
settled in the unit torus Ω := [0, 1]× [0, 1] and complemented with periodic boundary conditions for
all unknowns. It is worth noting that, at the price of some notational change and of limited technical
complications, other types of boundary conditions could be assumed. For instance, we may take no-
flux (i.e., homogeneous Neumann) conditions for ϕ, µ and ϑ (as it is physically reasonable if one
assumes the container Ω to be insulated from the exterior), whereas for u we may consider any
conditions that could allow the transport terms to have zero spatial mean and are compatible with
the existence of smooth solutions to the 2D Navier-Stokes system (cf. estimate (3.29) below). This
is the case, for instance, of homogeneous Dirichlet conditions (cf., e.g., [38, Thm. 3.10, p. 314]). The
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evolution is assumed to take place on a given reference interval (0, T ), with no restrictions on the
magnitude of the final time T > 0.

Coming to our mathematical argument, once additional regularity for u has been obtained,
we need to get further bounds for the other variables, with the aim of proving an estimate for the
remaining nonlinear terms in the system (and, particularly, for the quadratic term |∇µ|2 on the right
hand side of (1.5)). Actually, due to the strong coupling between the energy balance equation (1.5) and
the Cahn-Hilliard system (1.3)-(1.4), getting a regularity estimate for the variables ϕ, µ and ϑ requires
to manage all equations simultaneously in a non-straighforward way. This further regularity estimate
represents, in our view, the main novelty of the present paper.

Referring to Section 3 for more details, we just give here some brief explanation of the proce-
dure. The first thing one can naturally do is to differentiate in time the Cahn-Hilliard relation (1.4), and
to test the result by ϕt. However, this trick works only if one is able to control the product ϑtϕt. In view
of the highly nonlinear structure of (1.5), getting a bound for ϑt by working directly on the “heat” equa-
tion seems difficult. Hence, the only possibility seems that of testing (1.5) by ϕt in order to cancel the
bad term. However, we then need to control the quadratic terms |∇u|2 and |∇µ|2 on the right hand
side, and particularly the latter one, for which only an L1-estimate is available at this level. Actually,
in order to provide a bound for |∇µ|2, we have to use some duality technique, and, more precisely,
we need to rely on a sharp two-dimensional interpolation-embedding inequality which is proved in the
Appendix. This property follows from well-known two-dimensional embedding theorems; however we
were not able to find it anywhere in the literature. The underlying idea stands in optimizing with respect
to q the embedding constant of the immersion ‖v‖H1(Ω)′ ≤ cq‖v‖Lq(Ω) which holds true in 2D for
every q ∈ (1,+∞] and v ∈ Lq(Ω) (cf. [39, (17), p. 479]). Then, applying the embedding inequality to
the term |∇µ|2, and performing a notable amount of technical work, we can actually prove the desired
enhanced a-priori bounds. These estimates permit us to pass to the limit in a suitable approximation
scheme (which is just sketched, for brevity), obtaining in this way a solution to the original (strong)
system (1.1)-(1.5), in a proper regularity class, coupled with periodic boundary conditions and with the
initial conditions.

It is finally worth noting that, while in [12] we needed to assume non-constant specific heat and
heat conductivity, both having a suitable growth at 0 and at∞ (the reasons were mainly of mathemat-
ical type; namely, we needed to get a sufficient summability for ϑ), here we just need a sufficiently fast
growing heat conductivity, but we can allow for a constant specific heat. Even if this choice is mainly
motivated by mathematical reasons, a physical justification for it can be found, e.g., in [41].

The arguments given in this paper may also be adapted to deal with other interesting related
models. For instance, we could consider the case when the “Cahn-Hilliard” relations (1.3)-(1.4) are
replaced by their “Allen-Cahn” equivalent (cf. [10])

ϕt + u · ∇ϕ−∆ϕ+ F ′(ϕ)− ϑ = 0. (1.6)

Moreover, as a byproduct of our results, one can deduce the existence of solutions in 2D for the so-
called Frémond’s model of phase transitions with microscopic effects introduced in [15], at least in the
case of power-like heat conductivity. The Frémond model basically corresponds to system (1.1)-(1.5)
where the velocity u is assumed to be identically equal to 0. Indeed, for this model, in the case of
Neumann boundary conditions and standard Fourier heat flux law, existence of global in time “strong”
solutions was known only in the one-dimensional setting (cf. [29, 30]), while weak solutions were
proved to exist in 3D (cf. [14]) when (1.5) is replaced by the total energy balance and an entropy
inequality. Hence, this paper covers the missing 2D case, at least for the case of power-like heat
conductivity and periodic boundary conditions.

3



Let us finally note that uniqueness of solutions, as well as their long-time behavior (both in
terms of trajectories and of attractors) for the whole system (1.1)-(1.5), are still open issues, which will
be the subject of further investigations.

Here is the plan of the paper: in the next Section 2 we specify our assumptions on coefficients
and data and state the precise mathematical formulation of our problem together with the related
existence theorem. The remainder of the paper is devoted to the proof of the theorem. In particu-
lar, the core of our argument is given in Section 3, where we provide the a-priori estimates and the
compactness argument necessary to pass to the limit in the approximation scheme. Indeed, in order
to avoid technicalities, the estimates are obtained in a formal way leaving the details of a possible
regularization in the subsequent Section 4. Finally, the Appendix contains the proof of the mentioned
two-dimensional interpolation-embedding inequality, which plays a key role in the derivation of the
a-priori bounds.

2 Assumptions and main results

In order to state the precise mathematical formulation of our problem we first need to introduce some
functional spaces. Recalling that Ω = [0, 1]× [0, 1], we note asH := L2

per(Ω) the space of functions
in L2(R2) which are Ω-periodic (i.e., 1-periodic both in x1 and in x2). Analogously, we set V :=
H1

per(Ω). The spaces H and V are endowed with the norms of L2(Ω) and H1(Ω), respectively.
For brevity, the norm in H will be simply indicated by ‖ · ‖. We will note by ‖ · ‖X the norm in the
generic Banach space X . The symbol 〈·, ·〉 will indicate the duality between V ′ and V and (·, ·) will
stand for the scalar product of H . We also write Lp(Ω) in place of Lpper(Ω), and the same for other
spaces; indeed, no confusion should arise since periodic boundary conditions are assumed to hold for
all unknowns. Still for brevity, we use the same notation for indicating vector-valued (or tensor-valued)
function spaces and related norms. For instance, writing u ∈ H , we will in fact mean u ∈ L2

per(Ω)2.
Also the incompressibility constraint (1.1) will not be emphasized in the notation for functional spaces
(hence, the notation u ∈ H will also implicitly subsume that div u = 0 in the sense of distributions).
These simplifications will allow us to shorten a bit some formulas.

For any function v ∈ H , we will note as

vΩ :=
1

|Ω|

∫
Ω

v =

∫
Ω

v (2.1)

the spatial mean of v. Replacing the integral with a duality pairing, the same notation will be used
in case v ∈ V ′. The symbols V0, H0 and V ′0 denote the subspaces of V , H and, respectively, V ′

containing the function(al)s having zero spatial mean. We notice that the distributional operator (−∆)
is invertible if seen as a mapping from V0 to V ′0 . In the sequel we shall denote by N its inverse
operator.

Moreover, in the following we will frequently use the following 2D interpolation inequalities:

‖v‖L4(Ω) ≤ c‖v‖1/2
V ‖v‖

1/2, (2.2)

‖v‖L∞(Ω) ≤ c‖v‖1/2

H2(Ω)‖v‖
1/2, (2.3)

‖v‖Lr(Ω) ≤ c‖v‖1−α
Ls(Ω)‖v‖

α
L∞(Ω), α = 1− s

r
, (2.4)

holding for any sufficiently smooth function v and for suitable embedding constants, all denoted by the
same symbol c > 0 for brevity.
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We will also use the following nonlinear version of the Poincaré inequality

‖vp/2‖2
V ≤ cp

(
‖v‖pL1(Ω) + ‖∇vp/2‖2

)
, (2.5)

holding for all nonnegative v ∈ L1(Ω) such that ∇vp/2 ∈ L2(Ω), and for all p ∈ [2,∞). We also
note that

‖v‖ ≤ c‖∇v‖1/2‖v‖1/2
V ′ for all v ∈ V0. (2.6)

This property can be proved by combining the standard interpolation inequality ‖v‖ ≤ c‖v‖1/2
V ‖v‖

1/2
V ′

with the Poincaré-Wirtinger inequality.

In the sequel we will frequently use the continuous embedding V ⊂ Lp(Ω), holding for all
p ∈ [1,∞). Actually, using interpolation of Lp-spaces and Young’s inequality, it is not difficult to see
that (2.6) implies

‖v‖2
Lp(Ω) ≤ ε‖∇v‖2 + cε‖v‖2

V ′ for all v ∈ V0, (2.7)

for all (small) ε > 0 and correspondingly large cε > 0 whose value additionally depends on p ∈
[1,∞).

With the above notation at disposal, we can present our main assumptions. First of all, we ask
the configuration potential F to satisfy:

F ∈ C2(R; R), lim inf
|r|→∞

F (r)

|r|
> 0, (2.8)

F ′′(r) ≥ −λ for some λ ≥ 0 and all r ∈ R, (2.9)

|F ′′(r)| ≤ cF
(
1 + |r|pF

)
for some cF ≥ 0, pF ≥ 0, and all r ∈ R. (2.10)

In other words, we ask for F to be a smooth, coercive (in view of (2.8)), λ-convex (cf. (2.9)) func-
tion, with at most polynomial growth at infinity (cf. (2.10)). These conditions may probably be relaxed
(admitting, for instance, functions with exponential growth at infinity), at the price, however, of tech-
nical complications. On the other hand, it is not clear whether it would be possible to admit singular
potentials like the logarithmic function mentioned in the Introduction.

Next, we assume the heat conductivity to be given by

κ(r) = 1 + rq, q ∈ [2,∞), r ≥ 0. (2.11)

Correspondingly, we define

K(r) :=

∫ r

0

κ(s) ds = r +
1

q + 1
rq+1, r ≥ 0. (2.12)

In the sequel we will often need to estimate the value ‖K(ϑ)‖2
V . To this aim, we first observe that, for

some kq > 0, ∫
Ω

κ(ϑ)2|∇ϑ|2 = ‖∇K(ϑ)‖2 ≥ ‖∇ϑ‖2 + kq‖∇ϑq+1‖2. (2.13)

Then, exploiting (2.5) with the choice p = 2 we obtain

‖K(ϑ)‖2
V ≤ cq

(∫
Ω

(ϑ+ ϑq+1)

)2

+ cq

(∫
Ω

∣∣∣∣∇ϑ+∇
(
ϑq+1

q + 1

)∣∣∣∣2
)

=: I + II (2.14)

for some cq > 0. Now, using again (2.5), this time with the choice p = 2(q + 1), we deduce

I ≤ cq‖ϑ‖2
L1(Ω) + cq

(
‖ϑ‖2(q+1)

L1(Ω) + ‖∇ϑq+1‖2
)
≤ cq

(
1 + ‖ϑ‖2(q+1)

L1(Ω) + ‖∇ϑq+1‖2
)
. (2.15)
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Estimating II with the help of (2.13) we then conclude

‖K(ϑ)‖2
V ≤ cq

(
1 + ‖ϑ‖2(q+1)

L1(Ω) +

∫
Ω

κ2(ϑ)|∇ϑ|2
)
. (2.16)

Finally we come to our assumptions on the initial data:

u0 ∈ V, div u0 = 0, (2.17)

ϕ0 ∈ H3
per(Ω), (2.18)

ϑ0 ∈ V, ϑ0 ≥ ϑ > 0 a.e. in Ω, (2.19)

where ϑ is some positive constant (actually the last condition in (2.19) could be relaxed by asking
ϑ0 > 0 almost everywhere with log ϑ ∈ L1(Ω)).

With the above machinery at disposal, we can conclude this section by stating our main exis-
tence theorem, whose proof will occupy the remainder of the paper:

Theorem 2.1. Let us assume (2.8)-(2.10), (2.11), and (2.17)-(2.19). Let also T > 0. Then, there
exists at least one strong solution to the non-isothermal model for two-phase fluid flows, namely, one
quadruple (u, ϕ, µ, ϑ) with

u ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), (2.20)

ϕ ∈ W 1,∞(0, T ;V ′) ∩H1(0, T ;V ) ∩ L2(0, T ;H3(Ω)), (2.21)

µ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)), (2.22)

ϑ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;Lq+2(Ω)) ∩ L2(0, T ;V ), ϑ > 0 a.e. in (0, T )× Ω, (2.23)

K(ϑ) ∈ L2(0, T ;V ), (2.24)

such that the equations of the system (1.1)-(1.4) hold in the sense of distributions as well as almost
everywhere in (0, T )× Ω, while (1.5) holds, for a.e. t ∈ (0, T ), as the following relation in V ′:

ϑt + u · ∇ϑ+ ϑ
(
ϕt + u · ∇ϕ

)
−∆K(ϑ) = |∇u|2 + |∇µ|2, (2.25)

where ∆ is a weak form of the Laplace operator with periodic boundary conditions. Moreover, the
quadruple (u, ϕ, µ, ϑ) complies with the initial condition

u|t=0 = u0, ϕ|t=0 = ϕ0, ϑ|t=0 = ϑ0, (2.26)

almost everywhere in Ω.

3 Global existence

We start by deriving the a-priori estimates leading to existence of weak solutions. As noted in the
Introduction, we shall work directly, though formally, on the original system (1.1)-(1.5) without referring
to any approximation or regularization. Indeed, this permits us to make the argument more readable
and to avoid technical complications. The details of a possible regularization scheme are posponed to
Section 4 below. In the following, the letter c will denote a generic positive constant depending only on
the data of the problem, whose value is allowed to vary on occurrence. In particular, c is intended to
be independent of all regularization parameters.
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Energy estimate. This basic property corresponds, in the physical derivation of the model, to the
energy conservation principle. To deduce it from the equations, we test (1.2) by u, (1.3) by µ, (1.4)
by −ϕt, (1.5) by 1, integrate over Ω, and sum all the obtained relations together. Then, using the fact
that

(u · ∇ϕ)µ = (u · ∇ϕ)(−∆ϕ+ F ′(ϕ)− ϑ) (3.1)

thanks to (1.4), and performing standard integration by parts (cf. [12, Sec. 2] for more details), it is not
difficult to arrive at the relation

d

dt
E(u, ϕ, ϑ) = 0, where E(u, ϕ, ϑ) :=

∫
Ω

(
1

2
|u|2 +

1

2
|∇ϕ|2 + F (ϕ) + ϑ

)
(3.2)

is the total energy of the system, given by the sum of the kinetic, interfacial, configuration, and thermal
energies (the four summands in E ).

Relation (3.2), in turn, yields the following a priori estimates:

‖u‖L∞(0,T ;H) ≤ c, (3.3)

‖ϕ‖L∞(0,T ;V ) ≤ c, (3.4)

‖ϑ‖L∞(0,T ;L1(Ω)) ≤ c, (3.5)

where the control of the full V -norm of ϕ (and not only of the L2-norm of the gradient) is reached
thanks to the superlinear growth of F at infinity (cf. (2.8)). Note that, for getting (3.5) from (3.2),
the nonnegativity of ϑ is exploited (which holds as a consequence of the approximation scheme,
cf. Lemma 4.3 below). We also observe that, thanks to (3.4) and Sobolev’s embeddings, there follows

‖ϕ‖L∞(0,T ;Lp(Ω)) ≤ cp for all p ∈ [1,∞). (3.6)

Conservation properties. Integrating (1.2) and (1.3) over Ω, and using (1.1) together with the peri-
odic boundary conditions, we obtain

d

dt

∫
Ω

u =
d

dt

∫
Ω

ϕ = 0 a.e. in (0, T ). (3.7)

In other words, the spatial mean values of the velocity and of the phase variable are constant in time.
This basically corresponds to the physical principles of conservation of momentum and of mass. Of
course, (3.7) can be equivalently rewritten as

(ut(t))Ω = (ϕt(t))Ω = 0 for a.e. t ∈ (0, T ). (3.8)

Entropy estimate. The following estimate corresponds to the entropy production principle. It is simply
obtained by testing (1.5) by −ϑ−1 and integrating over Ω. As before, in order for the procedure to be
rigorous, we need that ϑ is strictly positive in the approximation. Recalling also (2.11), we then obtain

d

dt

∫
Ω

(− log ϑ− ϕ) +

∫
Ω

1

ϑ

(
|∇u|2 + |∇µ|2

)
+

∫
Ω

(
|∇ log ϑ|2 + kq|∇ϑq/2|2

)
= 0, (3.9)

where kq > 0 only depends on the exponent q (cf. (2.11)). Integrating in time and recalling (3.4)-(3.5),
we get the a priori bounds

‖ log ϑ‖L∞(0,T ;L1(Ω)) + ‖ log ϑ‖L2(0,T ;V ) ≤ c, (3.10)

‖∇ϑq/2‖L2(0,T ;H) ≤ c. (3.11)
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In particular, (3.10) entails that the strict positivity (almost everywhere in (0, T )×Ω) of ϑ is preserved
also in the limit. Note also that, from (3.11), (3.5) and inequality (2.5), there follows

‖ϑq/2‖L2(0,T ;V ) ≤ c. (3.12)

Now, (3.12) entails in particular
‖ϑ‖L2(0,T ;H) ≤ c. (3.13)

On the other hand, arguing in a similar way as in [12, Sec. 4.2], by the elementary inequality

1 ≤ c

(
1

x2
+ xq−2

)
for all x ≥ 0, (3.14)

holding for q ≥ 2, we obtain from (3.10)-(3.11) the additional bound

‖∇ϑ‖L2(0,T ;H) ≤ c. (3.15)

Putting together (3.13) and (3.15), we deduce

‖ϑ‖L2(0,T ;V ) ≤ c. (3.16)

Temperature estimate. While the bounds obtained above basically correspond to physical principles,
in order to get weak stability of families of solutions we need to derive more refined a-priori estimates
by properly managing the equations of the system. To this aim, we first integrate (1.5) over Ω with
the purpose of obtaining some information from the quadratic terms on the right hand side. Using the
periodic boundary conditions, we actually infer∫

Ω

(
|∇u|2 + |∇µ|2

)
=

d

dt

∫
Ω

ϑ+

∫
Ω

ϑ(ϕt + u · ∇ϕ) (3.17)

and we aim at controlling the terms on the right hand side. Actually, the first one, after integration in
time, is estimated simply recalling (3.5). Using (1.3) and Hölder’s and Young’s inequalities, we control
the second integral as follows:∫

Ω

ϑ(ϕt + u · ∇ϕ) =

∫
Ω

ϑ∆µ = −
∫

Ω

∇ϑ · ∇µ ≤ 1

2

(
‖∇µ‖2 + ‖∇ϑ‖2

)
. (3.18)

The first term on the right hand side is absorbed by the corresponding one on the left hand side of
(3.17), while the latter is estimated thanks to (3.16). Hence, we get

‖u‖L2(0,T ;V ) ≤ c, (3.19)

‖∇µ‖L2(0,T ;H) ≤ c. (3.20)

Now, integrating (1.4) in space, using (3.5), (3.6) and (2.10), and taking the (essential) supremum with
respect to time, we readily infer

‖µΩ‖L∞(0,T ) ≤ c. (3.21)

This property, combined with (3.20), yields

‖µ‖L2(0,T ;V ) ≤ c. (3.22)

The estimates proved up to this point basically correspond (up to the slightly different assumptions
on coefficients and data) to the procedure used in [12] to get existence of at least one solution to a
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suitable reformulation of the problem. In particular, we recall that, in the approach of [12], the “heat”
equation (1.5) was restated in the form of a total energy balance complemented with an energy pro-
duction inequality. Indeed, in that formulation the troublesome quadratic terms characterizing the right
hand side of (1.5) do no longer appear.

It is worth noting that, in spite of the better embeddings we have at disposal, the above esti-
mates do not seem sufficient to prove anything better in our 2D case, because, still, the right hand side
of (1.5) is controlled only in L1 (thanks to (3.19)-(3.20)). In view of these considerations, it is natural to
investigate whether higher order a-priori estimates could hold in the 2D case. As we will see in a while,
such estimates can, indeed, be obtained, but the argument is not at all straighforward. For clarity, the
procedure will be split into several steps.

Remark 3.1. To be more precise, a further difference in our assumptions stands in the choice of a
linear latent heat (namely, we have no coefficient in front of ϑt in (1.5)), while in [12] we required
to have a power-like function multiplying ϑt, which yielded some additional summability of ϑ. Ac-
tually, even in 2D, it is not clear whether one could prove existence of weak solutions (i.e., solutions
complying with the formulation given in [12]) in the case of a linear latent heat. Nevertheless, this
assumption is allowed as one looks for strong solutions, as we are doing now.

Second estimate for ϕ. We test (1.4) by ∆2ϕ and integrate over Ω. Recalling (2.10), we get

‖∇∆ϕ‖2 =

∫
Ω

F ′′(ϕ)∇ϕ · ∇∆ϕ−
∫

Ω

∇(ϑ+ µ) · ∇∆ϕ

≤ c‖∇∆ϕ‖
(
‖∇ϕ‖+ ‖ϕ‖pF

L2pF (Ω)
‖∇ϕ‖L∞(Ω) + ‖∇ϑ‖+ ‖∇µ‖

)
≤ c‖∇∆ϕ‖

(
1 + ‖ϕ‖1/2

V ‖ϕ‖
1/2

H3(Ω) + ‖∇ϑ‖+ ‖∇µ‖
)

≤ c‖∇∆ϕ‖
(
1 + ‖ϕ‖V + ‖ϕ‖1/2

V ‖∇∆ϕ‖1/2 + ‖∇ϑ‖+ ‖∇µ‖
)

≤ 1

2
‖∇∆ϕ‖2 + c

(
1 + ‖∇ϑ‖2 + ‖∇µ‖2

)
. (3.23)

Note that (2.3) (applied to v = ∇ϕ) and estimates (3.4), (3.6) have been used. Integrating (3.23) in
time and using (3.16) and (3.20), we then obtain

‖ϕ‖L2(0,T ;H3(Ω)) ≤ c. (3.24)

This property has some notable consequences. Firstly, testing (1.3) by nonzero v ∈ V , recalling also
(3.3), we can notice that

〈ϕt, v〉 = −
∫

Ω

∇µ · ∇v − (u · ∇ϕ, v) ≤ ‖∇µ‖‖∇v‖+ ‖u‖‖∇ϕ‖L∞(Ω)‖v‖

≤ c
(
‖∇µ‖+ ‖ϕ‖H3(Ω)

)
‖v‖V . (3.25)

Hence, dividing by ‖v‖V , passing to the supremum with respect to v ∈ V \{0}, squaring, integrating
in time, and using (3.22) and (3.24), we obtain

‖ϕt‖L2(0,T ;V ′) ≤ c. (3.26)

Moreover, (3.24) permits us to get a useful bound for the last term in (1.2). Indeed, using twice (2.2),
we have ∥∥ div(∇ϕ⊗∇ϕ)

∥∥ ≤ c‖D2ϕ‖L4(Ω)‖∇ϕ‖L4(Ω) ≤ c‖ϕ‖1/2

H3(Ω)‖ϕ‖H2(Ω)‖ϕ‖1/2
V

≤ c‖ϕ‖H3(Ω)‖ϕ‖V ≤ c‖ϕ‖H3(Ω), (3.27)
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where the last inequality follows from (3.4). Then, squaring and integrating over (0, T ), thanks to
(3.24) we infer ∥∥ div(∇ϕ⊗∇ϕ)

∥∥
L2(0,T ;H)

≤ c. (3.28)

Second estimate for u. Property (3.28) allows us to apply standard regularity results to the 2D Navier-
Stokes system (1.1)-(1.2), (see for instance [33, Sec. 9.6]), basically corresponding to testing (1.2) by
−∆u. As a consequence, we infer

‖u‖H1(0,T ;H) + ‖u‖L∞(0,T ;V ) + ‖u‖L2(0,T ;H2(Ω)) ≤ c. (3.29)

Key estimate: ϕ. We start now with the key regularity estimate, which is obtained by combining in a
suitable way equations (1.3), (1.4) and (1.5). At first, we deal with the Cahn-Hilliard system. Namely,
we take (1.3), differentiate it with respect to time, and test the result by Nϕt. Correspondingly, we
differentiate (1.4) in time and test by −ϕt. Summing the obtained relations, noting that a couple of
terms cancel in view of

(∆µt,Nϕt) = −
(
(−∆)(µt − (µt)Ω), (−∆)−1ϕt

)
= −

(
µt − (µt)Ω, ϕt

)
= −(µt, ϕt), (3.30)

where we have used also (3.8), we then get

1

2

d

dt
‖ϕt‖2

V ′ + ‖∇ϕt‖2 +

∫
Ω

(F ′′(ϕ) + λ)|ϕt|2

= λ‖ϕt‖2 − 〈ut · ∇ϕ,Nϕt〉 − 〈u · ∇ϕt,Nϕt〉+ (ϑt, ϕt). (3.31)

Thanks to (2.9), the last term on the left hand side is nonnegative. On the other hand, we need to
control the right hand side. To this aim, we first notice that, by (2.6) and (3.8), we can estimate the first
term as

λ‖ϕt‖2 ≤ 1

8
‖∇ϕt‖2 + c‖ϕt‖2

V ′ . (3.32)

Next, using (2.3) and standard embeddings, we infer

−〈ut · ∇ϕ,Nϕt〉 = ((ut · ∇ϕ, ϕt))V ′0 ≤ ‖ut · ∇ϕ‖V ′‖ϕt‖V ′ ≤ c‖ut · ∇ϕ‖‖ϕt‖V ′
≤ c‖ut‖‖∇ϕ‖L∞(Ω)‖ϕt‖V ′ ≤ c‖ut‖2 + c‖ϕ‖2

H3(Ω)‖ϕt‖2
V ′ (3.33)

and

−〈u · ∇ϕt,Nϕt〉 = ((u · ∇ϕt, ϕt))V ′0 ≤ ‖u · ∇ϕt‖V ′‖ϕt‖V ′ ≤ c‖u · ∇ϕt‖‖ϕt‖V ′

≤ c‖u‖L∞(Ω)‖∇ϕt‖‖ϕt‖V ′ ≤
1

8
‖∇ϕt‖2 + c‖u‖2

H2(Ω)‖ϕt‖2
V ′ . (3.34)

In the above formulas we noted by ((·, ·))V ′0 the scalar product of V ′0 and used the fact that (−∆)
corresponds to the Riesz operator from V0 to V ′0 .

Hence, on account of (3.32)-(3.34), relation (3.31) takes the form

1

2

d

dt
‖ϕt‖2

V ′ +
3

4
‖∇ϕt‖2 +

∫
Ω

(F ′′(ϕ) + λ)|ϕt|2 ≤M1(t)‖ϕt‖2
V ′ +M2(t) + (ϑt, ϕt), (3.35)

where the functions

M1(t) = c
(
1 + ‖ϕ‖2

H3(Ω) + ‖u‖2
H2(Ω)

)
, M2(t) = c

(
1 + ‖ut‖2

)
(3.36)
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lie (or, more precisely, are uniformly bounded w.r.t. all approximation parameters) in L1(0, T ) thanks
to (3.24) and (3.29). It remains to control the last term on the right hand side. This, however, requires
to work with the energy equation (1.5), which is our next task.

Key estimate: ϑ. We start testing (1.5) by ϕt in order to compute the last term in (3.35). We get

(ϑt, ϕt) +

∫
Ω

ϑϕ2
t =

∫
Ω

ϑu · ∇ϕt −
∫

Ω

ϑϕt u · ∇ϕ

−
∫

Ω

κ(ϑ)∇ϑ · ∇ϕt +

∫
Ω

(
|∇u|2 + |∇µ|2

)
ϕt, (3.37)

where we have used (1.1). Let us provide an estimate for the terms on the right hand side. Firstly, we
have ∫

Ω

ϑu · ∇ϕt ≤ ‖ϑ‖L4(Ω)‖u‖L4(Ω)‖∇ϕt‖ ≤
1

16
‖∇ϕt‖2 + c‖ϑ‖2

V , (3.38)

where we have also used estimate (3.29).

Next, by (2.7) and Hölder’s and Young’s inequalities, thanks also to (3.4) and (3.29), we have

−
∫

Ω

ϑϕt u · ∇ϕ ≤ ‖ϑ‖L∞−(Ω)‖ϕt‖L2+(Ω)‖u‖L∞−(Ω)‖∇ϕ‖ ≤ c‖ϑ‖V ‖ϕt‖L2+(Ω)

≤ c‖ϑ‖2
V + c‖ϕt‖2

L2+(Ω) ≤ c‖ϑ‖2
V +

1

16
‖∇ϕt‖2 + c‖ϕt‖2

V ′ . (3.39)

Here (and below) the notation∞− stands for an exponent which is chosen as large (i.e. as close as
infinity) as we need (in view of the fact that V ⊂ Lp(Ω) for all p ∈ [1,∞)). Correspondingly, 2+ turns
out to be larger than, but close to 2. Next,

−
∫

Ω

κ(ϑ)∇ϑ · ∇ϕt ≤ 4

∫
Ω

κ2(ϑ)|∇ϑ|2 +
1

16
‖∇ϕt‖2. (3.40)

Finally, using interpolation (cf. (2.2) and (2.6)), Young’s inequality, and (3.29),∫
Ω

|∇u|2ϕt ≤ c‖ϕt‖L4(Ω)‖∇u‖‖∇u‖L4(Ω) ≤ c‖ϕt‖1/2‖∇ϕt‖1/2‖u‖H2(Ω)

≤ c‖ϕt‖1/4
V ′ ‖∇ϕt‖

3/4‖u‖H2(Ω) ≤ c+ c‖u‖2
H2(Ω) + c‖ϕt‖2

V ′ +
1

16
‖∇ϕt‖2. (3.41)

Thanks to (3.38)-(3.41), (3.37) gives

(ϑt, ϕt) +

∫
Ω

ϑϕ2
t ≤ c

(
1 + ‖u‖2

H2(Ω) + ‖ϑ‖2
V + ‖ϕt‖2

V ′

)
+

1

4
‖∇ϕt‖2 + 4

∫
Ω

κ2(ϑ)|∇ϑ|2 +

∫
Ω

|∇µ|2ϕt. (3.42)

The last two terms on the right hand side are still to be controlled. The quadratic term in∇µ, which is
the most difficult one, will be dealt with at the end. In order to treat the term in ∇ϑ, we need another
estimate. Namely, we test (1.5) by 8K(ϑ) (cf. (2.12)). Let us set

J (r) :=

∫ r

0

K(s) ds =
r2

2
+

1

(q + 1)(q + 2)
rq+2, r ≥ 0. (3.43)
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Then, we obtain

8
d

dt

∫
Ω

J (ϑ) + 8

∫
Ω

u · ∇J (ϑ) + 8

∫
Ω

κ2(ϑ)|∇ϑ|2

= −8

∫
Ω

ϑK(ϑ)(ϕt + u · ∇ϕ) + 8

∫
Ω

K(ϑ)
(
|∇u|2 + |∇µ|2

)
, (3.44)

where, in fact, the second integral on the left hand side is zero in view of (1.1) and the periodic
boundary conditions. Again, we need to provide an estimate for the terms on the right hand side. At
first, recalling (2.12) and using (2.6), we have

−8

∫
Ω

ϑK(ϑ)ϕt ≤ c

∫
Ω

(
ϑ2 + ϑq+2

)
|ϕt| ≤ c

∫
Ω

(
1 + ϑq+2

)
|ϕt|

≤ c‖ϕt‖+

∫
Ω

ϑq+2|ϕt| ≤ c+
1

16
‖∇ϕt‖2 + c‖ϕt‖2

V ′ + c

∫
Ω

ϑq+2|ϕt|. (3.45)

The last term needs to be managed accurately. We start by noting that

c

∫
Ω

ϑq+2|ϕt| ≤ c‖ϑq+2‖‖ϕt‖ ≤ c‖ϑ‖q+2
L2q+4(Ω)‖ϕt‖

1/2
V ′ ‖∇ϕt‖

1/2. (3.46)

Next, we observe that, using (2.4) with the choices r = 2q + 4 and s = 1, we would obtain

‖ϑ‖L2q+4(Ω) ≤ ‖ϑ‖
1

2q+4

L1(Ω)‖ϑ‖
2q+3
2q+4

L∞(Ω). (3.47)

However the above interpolation exponents do not work in our case and need to be modified slightly.
Actually, recalling also (3.5), we can continuate (3.46) as follows:

c

∫
Ω

ϑq+2|ϕt| ≤ c
(
‖ϑ‖

1
2q+4

−
L1(Ω) ‖ϑ‖

2q+3
2q+4

+

L∞−(Ω)

)q+2

‖ϕt‖1/2
V ′ ‖∇ϕt‖

1/2

≤ c‖ϑ‖
2q+3

2
+

L∞−(Ω)‖ϕt‖
1/2
V ′ ‖∇ϕt‖

1/2 ≤ c‖ϑq+1‖
2q+3
2q+2

+

L∞−(Ω)‖ϕt‖
1/2
V ′ ‖∇ϕt‖

1/2. (3.48)

As above,∞− stands for an exponent P ∈ [1,∞) (which we can choose as large as we need) and
the number 2q+3

2
+ depends on the choice of P and will be closer to 2q+3

2
as larger is taken P . The

same applies to 2q+3
2q+2

+ and other exponents below. Of course, also the constants c will depend on
the choice of P (and will be larger for larger P ). Then, recalling (2.5) and subsequently using Young’s
inequality with exponents 8, 4, and 8/5, computation (3.48) can be continued this way:

c

∫
Ω

ϑq+2|ϕt| ≤ c‖ϕt‖1/2
V ′ ‖∇ϕt‖

1/2
(
1 + ‖∇ϑq+1‖

2q+3
2q+2

+
)

≤ c+ c‖ϕt‖4
V ′ +

1

16
‖∇ϕt‖2 + c‖∇ϑq+1‖

4(2q+3)
5(q+1)

+, (3.49)

and, thanks to (2.11) (actually, q > 1 would be enough at this level), we can take P so large that
4(2q+3)
5(q+1)

+ is strictly smaller than 2. Hence, using Young’s inequality again, and recalling (2.13), we
conclude that

−8

∫
Ω

ϑK(ϑ)ϕt ≤ c+
1

8
‖∇ϕt‖2 + c‖ϕt‖2

V ′ + c‖ϕt‖4
V ′ + c‖∇ϑq+1‖

4(2q+3)
5(q+1)

+

≤ c+
1

8
‖∇ϕt‖2 + c‖ϕt‖4

V ′ +

∫
Ω

κ2(ϑ)|∇ϑ|2. (3.50)

12



The estimation of the subsequent summand in (3.44) is simpler. Actually, recalling also (3.4), (3.5) and
(3.29), and using once more (2.5), (2.13) and Young’s inequality, we get

−8

∫
Ω

ϑK(ϑ)u · ∇ϕ ≤ c

∫
Ω

(1 + ϑq+2)|u| |∇ϕ| ≤ c
(
1 + ‖ϑq+2‖L2+(Ω)

)
‖u‖L∞−(Ω)‖∇ϕ‖

≤ c
(

1 + ‖ϑq+1‖
q+2
q+1

L
2(q+2)

q+1 +
(Ω)

)
≤ c
(
1 + ‖∇ϑq+1‖

q+2
q+1
)
≤ c+

∫
Ω

κ2(ϑ)|∇ϑ|2,

(3.51)

since, clearly, q+2
q+1

< 2. Next, recalling (3.29) and (2.16) and arguing analogously to (3.41), we have

8

∫
Ω

|∇u|2K(ϑ) ≤ c‖K(ϑ)‖L4(Ω)‖∇u‖‖∇u‖L4(Ω) ≤ c+ c‖u‖2
H2(Ω) +

∫
Ω

κ2(ϑ)|∇ϑ|2. (3.52)

Collecting (3.45)-(3.52), (3.44) gives

8
d

dt

∫
Ω

J (ϑ) + 5

∫
Ω

κ2(ϑ)|∇ϑ|2

≤ c+ c‖u‖2
H2(Ω) +

1

8
‖∇ϕt‖2 + c‖ϕt‖4

V ′ + 8

∫
Ω

K(ϑ)|∇µ|2. (3.53)

Summing (3.42) and (3.53) we then get

(ϑt, ϕt) +

∫
Ω

ϑϕ2
t + 8

d

dt

∫
Ω

J (ϑ) +

∫
Ω

κ2(ϑ)|∇ϑ|2

≤ c
(
1 + ‖u‖2

H2(Ω) + ‖ϑ‖2
V + ‖ϕt‖4

V ′

)
+

3

8
‖∇ϕt‖2 +

∫
Ω

(8K(ϑ) + ϕt)|∇µ|2. (3.54)

Hence, summing (3.35) and (3.54) we obtain

1

2

d

dt
‖ϕt‖2

V ′ + 8
d

dt

∫
Ω

J (ϑ) +
3

8
‖∇ϕt‖2 +

∫
Ω

(F ′′(ϕ) + λ)|ϕt|2

+

∫
Ω

ϑϕ2
t +

∫
Ω

κ2(ϑ)|∇ϑ|2 ≤M1(t)‖ϕt‖2
V ′ +M2(t)

+ c
(
1 + ‖u‖2

H2(Ω) + ‖ϑ‖2
V + ‖ϕt‖4

V ′

)
+

∫
Ω

(8K(ϑ) + ϕt)|∇µ|2. (3.55)

Neglecting some positive terms in the left hand side and rearranging, we then arrive at

1

2

d

dt
‖ϕt‖2

V ′ + 8
d

dt

∫
Ω

J (ϑ) +
3

8
‖∇ϕt‖2 +

∫
Ω

κ2(ϑ)|∇ϑ|2

≤M3(t)‖ϕt‖2
V ′ +M4(t) +

∫
Ω

(8K(ϑ) + ϕt)|∇µ|2, (3.56)

where we have set

M3(t) = c
(
1+‖ϕ‖2

H3(Ω) +‖u‖2
H2(Ω) +‖ϕt‖2

V ′

)
, M4(t) = c

(
1+‖ut‖2 +‖u‖2

H2(Ω) +‖ϑ‖2
V

)
.

(3.57)

Key estimate: quadratic terms. The most difficult part of our argument concerns the control of the
last term in the right hand side of (3.56). This is based on the embedding inequality (A.1) proved in
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Lemma A.1 below. Indeed, applying (A.1) to ξ = |∇µ|2 and using once more (2.16) together with
(3.8) and the Poincaré-Wirtinger inequality, we get∫

Ω

(8K(ϑ) + ϕt)|∇µ|2 ≤ c
(
‖K(ϑ)‖V + ‖∇ϕt‖

)∥∥|∇µ|2‖V ′
≤ c+

1

2

∫
Ω

κ2(ϑ)|∇ϑ|2 +
1

8
‖∇ϕt‖2 + c

∥∥|∇µ|2‖2
V ′

≤ c+
1

2

∫
Ω

κ2(ϑ)|∇ϑ|2 +
1

8
‖∇ϕt‖2 + c

∥∥|∇µ|2∥∥2

L1(Ω)
log
(
e+

∥∥|∇µ|2∥∥
L2(Ω)

)
. (3.58)

Now, let us notice that ψ(r) = er, r ∈ R and ψ∗(s) = s(log s−1), s > 0 (extended by continuity to
s = 0 by setting ψ∗(0) = 0) are convex conjugate functions. Consequently, for any r ∈ R, s ≥ 0, we
have (cf., e.g., [6, Sec. 1.4]) rs ≤ ψ(r)+ψ∗(s). Applying this property to r = log

(
e+‖|∇µ|2‖L2(Ω)

)
and s = c

∥∥|∇µ|2∥∥2

L1(Ω)
, the last term (let us note it as I) in (3.58) can be controlled as follows:

I ≤ c
∥∥|∇µ|2∥∥2

L1(Ω)

(
log
(
c
∥∥|∇µ|2∥∥2

L1(Ω)

)
− 1
)

+ e+
∥∥|∇µ|2∥∥

L2(Ω)

≤ c+ c‖∇µ‖4 log
(
e+ ‖∇µ‖2

)
+ ‖∇µ‖2

L4(Ω), (3.59)

where, observing that
∥∥|∇µ|2∥∥2

L1(Ω)
= ‖∇µ‖4, we used the fact that∥∥|∇µ|2∥∥2

L1(Ω)
log
(
c
∥∥|∇µ|2∥∥2

L1(Ω)

)
= ‖∇µ‖4 log

(
c‖∇µ‖4)

= ‖∇µ‖4
(

log c+ 2 log ‖∇µ‖2
)

≤ c‖∇µ‖4
(
1 + log ‖∇µ‖2

)
≤ c‖∇µ‖4 log

(
e+ ‖∇µ‖2

)
; (3.60)

the last line is based on the elementary inequality 1 + log λ ≤ c log(e+ λ), holding for λ > 0. Now,
to manage the last term of (3.59), we use equation (1.3), estimate (3.4), and inequalities (2.2) and
(2.6):

‖∇µ‖2
L4(Ω) ≤ c‖∇µ‖‖µ‖H2(Ω) ≤ c‖∇µ‖

(
‖µ‖V + ‖∆µ‖

)
≤ c‖µ‖2

V + c‖ϕt‖2 + c‖u · ∇ϕ‖2

≤ c‖µ‖2
V +

1

8
‖∇ϕt‖2 + c‖ϕt‖2

V ′ + c‖u‖2
L∞(Ω)‖∇ϕ‖2

≤ c‖µ‖2
V +

1

8
‖∇ϕt‖2 + c‖ϕt‖2

V ′ + c‖u‖2
H2(Ω). (3.61)

On the other hand, the first nonconstant term on the right hand side of (3.59) needs a further manip-
ulation. Namely, we have to test equation (1.3) by −µ. Then, noting that both terms on the left hand
side of (1.3) have zero spatial mean and using the Poincaré-Wirtinger inequality, we get

‖∇µ‖2 = −
∫

Ω

(ϕt + u · ∇ϕ)µ = −
∫

Ω

(ϕt + u · ∇ϕ)(µ− µΩ) ≤ ‖µ− µΩ‖V ‖ϕt + u · ∇ϕ‖V ′

≤ 1

2
‖∇µ‖2 + c‖ϕt‖2

V ′ + c‖u · ∇ϕ‖2
V ′ ≤

1

2
‖∇µ‖2 + c‖ϕt‖2

V ′ + c‖u · ∇ϕ‖2
L4/3(Ω)

≤ 1

2
‖∇µ‖2 + c‖ϕt‖2

V ′ + c‖u‖2
L4(Ω)‖∇ϕ‖2 ≤ 1

2
‖∇µ‖2 + c‖ϕt‖2

V ′ + c, (3.62)

where in the last line we also used (3.29). Consequently,

c‖∇µ‖4 log
(
e+ ‖∇µ‖2

)
≤ c
(
1 + ‖ϕt‖4

V ′

)
log
(
e+ c

(
1 + ‖ϕt‖2

V ′

))
≤ c+ c‖ϕt‖4

V ′ log
(
e+ ‖ϕt‖2

V ′

)
. (3.63)
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Hence, collecting (3.59)-(3.63), (3.58) gives∫
Ω

(8K(ϑ) + ϕt)|∇µ|2 ≤ c+
1

2

∫
Ω

κ2(ϑ)|∇ϑ|2 +
1

4
‖∇ϕt‖2 + c‖ϕt‖2

V ′ + c‖µ‖2
V

+ c‖u‖2
H2(Ω) + c‖ϕt‖4

V ′ log
(
e+ ‖ϕt‖2

V ′

)
. (3.64)

Plugging (3.64) into (3.56) we then get

1

2

d

dt
‖ϕt‖2

V ′ + 8
d

dt

∫
Ω

J (ϑ) +
1

8
‖∇ϕt‖2 +

1

2

∫
Ω

κ2(ϑ)|∇ϑ|2

≤M5(t)‖ϕt‖2
V ′ +M6(t) + c‖ϕt‖4

V ′ log
(
e+ ‖ϕt‖2

V ′

)
. (3.65)

where

M5(t) = c
(
1 + ‖ϕ‖2

H3(Ω) + ‖u‖2
H2(Ω) + ‖ϕt‖2

V ′

)
, (3.66)

M6(t) = c
(
1 + ‖ut‖2 + ‖u‖2

H2(Ω) + ‖ϑ‖2
V + ‖µ‖2

V

)
. (3.67)

Let us now set

Y1(t) :=
1

2
‖ϕt(t)‖2

V ′ , Y2(t) := 8

∫
Ω

J (ϑ(t)). (3.68)

Then, from (3.64) we obtain the following differential inequality:

Y ′1(t) + Y ′2(t) ≤M5(t)Y1(t) +M6(t) + cY 2
1 (t) log

(
e+ Y1(t)

)
. (3.69)

Setting Z(t) := e+ Y1(t) + Y2(t), and dividing both hand sides of (3.69) by Z logZ , it is then easy
to get

d

dt
log logZ(t) =

Z ′(t)

Z(t) logZ(t)
≤M5(t) +

M6(t)

Z(t) logZ(t)
+ cY1(t). (3.70)

Now, let us notice that, in view of the a-priori estimates (3.12), (3.16), (3.22), (3.24), (3.26), and (3.29),
we have

‖Y1‖L1(0,T ) + ‖M5‖L1(0,T ) + ‖M6‖L1(0,T ) ≤ c. (3.71)

Moreover, we can notice that, at least formally,

Z(0) = e+
1

2
‖ϕt(0)‖2

V ′ + 8

∫
Ω

J (ϑ0)

≤ c+ c‖∆µ(0)‖2
V ′ + c‖u0 · ∇ϕ0‖2

V ′ + c

∫
Ω

J (ϑ0)

≤ c+
1

2
‖µ(0)‖2

V + c‖u0‖2
V ‖ϕ0‖2

H3(Ω) + c‖ϑ0‖2 + c‖ϑ0‖q+2
Lq+2(Ω)

≤ c+ c‖∆ϕ0‖2
V + c‖F ′(ϕ0)‖2

V + c‖ϑ0‖q+2
V <∞, (3.72)

where in the second row we used equation (1.3), in the third we used standard interpolation and
embeddings and the definition of J , and in the fourth we used equation (1.4) and the assumptions
(2.10) on the potential and (2.26) on the initial data.

Hence, thanks to (3.71) and to (3.72), we can integrate (3.70) over (0, T ) to obtain

‖Z‖L∞(0,T ) ≤ c. (3.73)

In particular, as often happens in 2D models, Z turns out to grow with respect to time (at most) as
fast as a double exponential; however it does not explode in finite times. This is the key point in our
existence proof.
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Key estimate: consequences. Recalling also (3.43), (3.73) gives

‖ϕt‖L∞(0,T ;V ′) ≤ c, (3.74)

‖ϑ‖L∞(0,T ;Lq+2(Ω)) ≤ c. (3.75)

Using (1.3) we can estimate, as in (3.62), the H-norm of ∇µ in terms of the V ′-norm of ϕt. Hence,
recalling also (3.21), we get

‖µ‖L∞(0,T ;V ) ≤ c. (3.76)

With these properties at disposal, we can go back to relation (3.65). Integrating it over (0, T ), we infer
(cf. also (2.12), (3.8))

‖ϕt‖L2(0,T ;V ) ≤ c, (3.77)

‖K(ϑ)‖L2(0,T ;V ) ≤ c. (3.78)

In addition to that, an easy interpolation argument and estimates (3.24), (3.29) permit us to check that

‖u · ∇ϕ‖L2(0,T ;V ) ≤ c‖u‖L∞(0,T ;V )‖ϕ‖L2(0,T ;H3(Ω)) ≤ c. (3.79)

Hence, viewing (1.3) as a time-dependent family of elliptic problems and using standard regularity
results with (3.79) and (3.77), we infer

‖µ‖L2(0,T ;H3(Ω)) ≤ c. (3.80)

Remark 3.2. The argument given in (3.72) in order to estimate ϕt(0) in terms of u0, ϑ0 and µ0 is just
formal since, at least in principle, it is not clear whether equation (1.3) holds pointwise for all values
of the time variable. However, as will be clear from the approximation scheme detailed in the next
section, at least locally in time we can get an approximate solution which is essentially as smooth
as we need. Hence, at the price of some additional technicalities, the argument could be made fully
rigorous with a limited effort.

Estimate of µt and ϑt. In order to pass to the limit in the nonlinear terms involving ϑ and µ we will
apply the Aubin-Lions lemma. To this aim, we need to deduce some a-priori estimates on µt and ϑt.
Hence, we (formally) differentiate (1.4) with respect to time and use (1.5) to get

µt = −∆ϕt + F ′′(ϕ)ϕt + u · ∇ϑ+ ϑ(ϕt + u · ∇ϕ)−∆K(ϑ)− |∇u|2 − |∇µ|2. (3.81)

Here, to justify the procedure, one could make similar observations as in Remark 3.2 (see also Re-
mark 4.7 below). Let us test the above relation by nonzero v ∈ V . We get, using our choice of
boundary conditions,

〈µt, v〉 =

∫
Ω

∇(ϕt +K(ϑ)) · ∇v +
(
F ′′(ϕ)ϕt + u · ∇ϑ+ ϑ(ϕt + u · ∇ϕ)− |∇u|2 − |∇µ|2, v

)
≤ ‖v‖V

(∥∥∇(ϕt +K(ϑ))
∥∥

+
∥∥F ′′(ϕ)ϕt + u · ∇ϑ+ ϑ(ϕt + u · ∇ϕ)− |∇u|2 − |∇µ|2

∥∥
L3/2(Ω)

)
. (3.82)

Dividing by ‖v‖, passing to the supremum with respect to v ∈ V \ {0}, squaring, and integrating in
time, we would then obtain

‖µ‖H1(0,T ;V ′) ≤ c, (3.83)
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provided we could prove that∥∥∇(ϕt +K(ϑ))
∥∥
L2(0,T ;H)

≤ c, (3.84)∥∥F ′′(ϕ)ϕt + u · ∇ϑ+ ϑ(ϕt + u · ∇ϕ)− |∇u|2 − |∇µ|2
∥∥
L2(0,T ;L3/2(Ω))

≤ c, (3.85)

where the exponent 3/2 is chosen just for simplicity (any number strictly greater than 1 would be
allowed, indeed). Now, (3.84) is an immediate consequence of (3.77)-(3.78), whereas (3.85) follows
by appropriately combining all the above a-priori estimates and using standard inequalities. The details
are lengthy but straighforward; hence, they are left to the reader.

To conclude, we test equation (1.5) by v ∈ V \ {0}. Performing the very same computations
as above we then get

‖ϑ‖H1(0,T ;V ′) ≤ c. (3.86)

This is the last estimate we need.

Weak sequential stability. We assume to have a sequence of solutions (un, ϕn, µn, ϑn) satisfying
the a-priori estimates obtained above uniformly with respect to n. This could be, for instance, a se-
quence of approximate solutions provided by the fixed-point argument performed in the next section.
Then, we aim at proving that, up to the extraction of a subsequence, we can find a limit quadruple
(u, ϕ, µ, ϑ) satisfying (1.1)-(1.5) in the sense of Theorem 2.1. Note that, in view of the uniform char-
acter of the estimates, even though the approximate solutions are defined only locally in time, we will
have global solutions in the limit (cf. also Remark 4.5 below). For this reason, and also for the sake of
simplicity, we shall directly work on the original reference time interval (0, T ).

That said, the above a-priori estimates (cf., in particular, (3.16), (3.24), (3.29), (3.74)-(3.80),
(3.83), and (3.86)), together with standard weak compactness results, entail

un → u weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), (3.87)

ϕn → ϕ weakly star in W 1,∞(0, T ;V ′) ∩H1(0, T ;V ) ∩ L2(0, T ;H3(Ω)), (3.88)

µn → µ weakly star in H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)), (3.89)

ϑn → ϑ weakly star in H1(0, T ;V ′) ∩ L∞(0, T ;Lq+2(Ω)) ∩ L2(0, T ;V ). (3.90)

Here and below, all convergence relations are intended to hold up to the extraction of non-relabelled
subsequences. Note also that (3.88), by interpolation (cf., e.g., [7, formula (2.5.38)]), yields

ϕn → ϕ weakly in Hs(0, T ;H3−2s(Ω)) for all s ∈ [0, 1]. (3.91)

Then, the Aubin-Lions compactness theorem (cf. [27, p. 58] or [35, Cor. 4, Sec. 8]) entails (actually
something more is true)

un → u strongly in C0([0, T ];H) ∩ L2(0, T ;V ), (3.92)

ϕn → ϕ strongly in C0([0, T ];V ) ∩ L2(0, T ;H2(Ω)), (3.93)

µn → µ strongly in C0([0, T ];H) ∩ L2(0, T ;H2(Ω)), (3.94)

ϑn → ϑ strongly in C0([0, T ];V ′) ∩ L2(0, T ;H). (3.95)

Notice that, to deduce the first (3.93), also (3.91) has been used together with the compact embedding
Hs(0, T ) ⊂⊂ C0([0, T ]) (or, more precisely, its vector-valued analogue), holding for s > 1/2.

We now claim that the above relations suffice to take the limit n ↗ ∞ in all equations of our
system (1.1)-(1.5). To see this, we limit ourselves to consider the most troublesome nonlinear terms,
the other ones being in fact almost straighforward to treat. To start with, we note that

∇ϕn ⊗∇ϕn → ∇ϕ⊗∇ϕ strongly in C0([0, T ];L1(Ω)) (3.96)
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thanks to (3.93). Actually, proceeding as in (3.27)-(3.28), we can check that div(∇ϕ ⊗ ∇ϕ) lies in
L2(0, T ;H), which allows for (1.2) to hold pointwise (almost everywhere). Next, we notice that (3.95)
entails ϑn → ϑ a.e. in (0, T )× Ω. Such a property, combined with (3.75), (3.78), and a generalized
version of Lebesgue’s theorem, gives

ϑn → ϑ strongly in Lp(0, T ;L(q+2)−(Ω)) ∩ L(2q+2)−(0, T ;Lp(Ω)) for all p ∈ [1,∞). (3.97)

In particular, recalling (2.12), we get

K(ϑn)→ K(ϑ) strongly in Lp((0, T )× Ω) for a suitable p > 1. (3.98)

Hence,
− div(κ(ϑn)∇ϑn) = −∆K(ϑn)→ −∆K(ϑ) (3.99)

at least in the sense of distributions. More precisely, the limit functionK(ϑ) lies in L2(0, T ;V ) in view
of (3.78), which allows the limit of (1.5) to hold as a relation in L2(0, T ;V ′) as specified by (2.25).

Moreover, recalling that q ≥ 2 and using (3.88), (3.92), (3.93) and (3.97), we can easily check
that

ϑn(ϕn,t+un ·∇ϕn)→ ϑ(ϕt+u·∇ϕ) weakly in Lp((0, T )×Ω) for a suitable p > 1. (3.100)

Next, thanks to (3.92) and (3.94), we get (actually, something more is true)

|∇un|2 + |∇µn|2 → |∇u|2 + |∇µ|2 strongly in L1((0, T )× Ω). (3.101)

Relations (3.96)-(3.99) permit us to let n ↘ ∞ in all equations of the system (with (1.5) replaced
by (2.25) in the limit, as noted above). In particular, the regularity properties (3.92)-(3.95) are a direct
consequence of our argument. Finally, it is worth noting that the limit functions u, ϕ, ϑ also satisfy
the initial conditions (2.26). Indeed, they are continuous with respect to time with values in suitable
Banach spaces (and the corresponding uniform estimates (3.92)-(3.95) hold for the approximating
sequences). Hence, we may conclude that the limit quadruple (u, ϕ, µ, ϑ) solves our system in the
sense of Theorem 2.1, as desired.

4 Approximation and local existence

In this section we give some highlights regarding a possible approximation of system (1.1)-(1.5) and
provide a proof of local existence by means of a fixed point argument of Schauder type. In order to
reduce the length of the exposition we leave most technical details to the reader, just limiting ourselves
to outline the main steps of the procedure.

Regularized system. For (small) ε ∈ (0, 1) we consider the following regularized statement:

div u = 0, (4.1)

ut + u · ∇u +∇p = ∆u− div(∇ϕ⊗∇ϕ), (4.2)

ϕt + u · ∇ϕ = ∆µ, (4.3)

µ = −ε∆ϕt −∆ϕ+ F ′ε(ϕ)− ϑ, (4.4)

ϑt + u · ∇ϑ+ ϑ
(
ϕt + u · ∇ϕ

)
− div(κ(ϑ)∇ϑ) = |∇u|2 + Tε

(
|∇µ|2

)
. (4.5)
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The above system differs from the original one due in view of the additional term −ε∆ϕt in (4.3),
which provides further parabolic regularity to ϕ, and of the truncation operator Tε in (4.5), where

Tε(v) := min
{
ε−1,max

{
− ε−1, v

}}
, for v : (0, T )× Ω→ R, (4.6)

which yields boundedness of the last term in the right hand side of (4.5). Moreover Fε is a smooth
regularization of F such that F ′ε is Lipschitz continuous. We assume that Fε still enjoys the coercivity
property (2.8). We also truncate the initial temperature in such a way that

ϑ0,ε ∈ H1(Ω) ∩ L∞(Ω), ε ≤ ϑ0,ε ≤ ε−1 a.e. in Ω. (4.7)

Then, local existence for (4.1)-(4.5), complemented with the initial data u0, ϕ0 and ϑ0,ε, and with
periodic boundary conditions, is proved via a fixed point argument detailed below. This is essentially
divided into three separate Lemmas. At first, we fix ϑ and u in the Cahn-Hilliard system (4.3)-(4.4).

Lemma 4.1. Let ε ∈ (0, 1) and let R > 0 be a number, depending on the initial data and on ε, such
that

‖ϕ0‖H3(Ω) + ‖u0‖V + ‖ϑ0,ε‖H1(Ω) + ‖ϑ0,ε‖L∞(Ω) ≤ R. (4.8)

Let also

ϑ ∈ L2(0, T ;V ), u ∈ L2(0, T ;L4(Ω)), with ‖ϑ‖L2(0,T ;V ) + ‖u‖L2(0,T ;L4(Ω)) ≤ R. (4.9)

Then there exist unique functions ϕ and µ satisfying, a.e in (0, T )× Ω, the system

ϕt + u · ∇ϕ = ∆µ, (4.10)

µ = −ε∆ϕt −∆ϕ+ F ′ε(ϕ)− ϑ, (4.11)

with the initial condition ϕ|t=0 = ϕ0. Moreover, the following regularity properties hold:

ϕ ∈ H1(0, T ;H3(Ω)), (4.12)

µ ∈ L2(0, T ;H2(Ω)), (4.13)

‖ϕ‖H1(0,T ;H3(Ω)) + ‖µ‖L2(0,T ;H2(Ω)) ≤ Q1(R, T ). (4.14)

Here and below, Qi : (R+)2 → R+, i = 1, 2, . . . , are computable functions, increasingly monotone
in each of their arguments, whose expression may additionally depend on ε.

PROOF. We just give the highlights. Actually, once u and ϑ are assigned, (4.10)-(4.11) is a semilin-
ear pseudo-parabolic system with Lipschitz nonlinearity. Hence, existence is standard. For example,
it could be proved by relying on a Faedo-Galerkin scheme, or on a time-discretization argument. The
a-priori estimates corresponding to the regularity conditions (4.12)-(4.13) are the following ones: first,
one reproduces the energy estimate for the complete system by testing (4.10) by µ and (4.11) by ϕt.
Noticing that∫

Ω

µu·∇ϕ = −
∫

Ω

ϕu·∇µ ≤ ‖ϕ‖L4(Ω)‖u‖L4(Ω)‖∇µ‖ ≤
1

2
‖∇µ‖2+c‖ϕ‖2

V ‖u‖2
L4(Ω), (4.15)

an estimate follows by using (4.9) and applying the Gronwall Lemma. With this estimate at disposal
we can test (4.11) by ∆2ϕt. Thanks to the fact that µ, ϑ ∈ L2(0, T ;V ) due to the energy estimate
and to (4.9), and using the Lipschitz continuity of F ′ε, it is then not difficult to obtain (4.12).
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Subsequently, noting that the left hand side of (4.10) lies in L2(0, T ;H), by elliptic regularity
we obtain (4.13). Then, relation (4.14) is also a direct consequence of the a-priori estimates, as one
can see by writing them in a quantitative way. Finally, uniqueness in the regularity class specified by
(4.12)-(4.13) can be proved by a standard contractive argument. Namely, one may test (the difference
of) (4.10) by ϕ1 − ϕ2 (where (ϕ1, µ1) and (ϕ2, µ2) are two solutions) and (the difference of) (4.11)
by ∆(ϕ1 − ϕ2) and perform standard calculations.

Lemma 4.2. Let us assume that the hypotheses of Lemma 4.1 are satisfied, and let ϕ, µ be the
functions provided by Lemma 4.1. Then, there exists a unique function u such that

u ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), (4.16)

‖u‖H1(0,T ;H) + ‖u‖L∞(0,T ;V ) + ‖u‖L2(0,T ;H2(Ω)) ≤ Q2(R, T ). (4.17)

Moreover, u satisfies, a.e in (0, T )× Ω, the system

div u = 0, (4.18)

ut + u · ∇u +∇p−∆u = − div(∇ϕ⊗∇ϕ), (4.19)

with the initial condition u|t=0 = u0.

PROOF. Also in this case we just give the highlights. Actually, as ϕ is given satisfying (4.12) and
(4.14), it is clear that the right hand side of (4.19) lies in L2(0, T ;H). Hence, existence and unique-
ness of a solution satisfying (4.16) follow from the general theory of Navier-Stokes systems (cf., e.g.,
[33] or [38]). Moreover, writing explicitly the a-priori bounds, one also immediately gets (4.17), where,
in principle, the expression ofQ2 may also depend on a suitable norm of ϕ. However, thanks to (4.14),
Q2 can in fact be written as a (computable and monotone) function of R and T .

Finally, we come to the “heat” equation, which is a little bit more involved to deal with:

Lemma 4.3. Let the assumptions of Lemma 4.1 hold and letϕ, µ, u be the functions provided by Lem-
mas 4.1, 4.2. Then, there exists a unique function ϑ such that

ϑ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩ L∞((0, T )× Ω),

ϑ > 0 a.e. in (0, T )× Ω, (4.20)

‖ϑ‖H1(0,T ;H) + ‖ϑ‖L∞(0,T ;V ) + ‖ϑ‖L2(0,T ;H2(Ω)) ≤ Q3(R, T ). (4.21)

Moreover, ϑ satisfies, a.e in (0, T )× Ω,

ϑt + u · ∇ϑ+ ϑ
(
ϕt + u · ∇ϕ

)
− div(κ(ϑ)∇ϑ) = |∇u|2 + Tε

(
|∇µ|2

)
, (4.22)

with the initial condition ϑ|t=0 = ϑ0,ε.

PROOF. Equation (4.22) enjoys the quasilinear structure

ϑt + u · ∇ϑ+m1ϑ−∆K(ϑ) = f, (4.23)

where K was defined in (2.12), and, in view of estimates (4.17), (4.14) and of interpolation, it is not
difficult to infer

f := |∇u|2 + Tε
(
|∇µ|2

)
∈ Lp((0, T )× Ω) for all p ∈ (1,∞), (4.24)

m1 := ϕt + u · ∇ϕ ∈ L1(0, T ;L∞(Ω)) ∩ L2(0, T ;Lp(Ω)) for all p ∈ (1,∞). (4.25)
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Hence, existence of solutions to the initial-boundary value problem for (4.23) follows, as before, from
standard techniques (as before, one could use time discretization or Faedo-Galerkin approximation).

Moreover, testing (4.23) by ϑ and performing simple calculations, we obtain the a-priori esti-
mates leading to the regularity ϑ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). By virtue of the high summability
of f and m1, a standard application of Moser’s iteration technique (see, e.g., [25, Chap. 5]) yields
ϑ ∈ L∞((0, T )× Ω).

Strict positivity of ϑ follows from the maximum principle. Next, to deduce (4.20)-(4.21) one tests
(4.22) by K(ϑ)t. Recalling (2.11), and using the L∞-bound for ϑ coming from Moser’s iterations, we
then get the estimate∫

Ω

(1 + ϑq)|ϑt|2 +
1

2

d

dt
‖∇K(ϑ)‖2 =

∫
Ω

(f − u · ∇ϑ−m1ϑ)(1 + ϑq)ϑt

≤ 1

2
‖ϑt‖2 + c

∥∥f − u · ∇ϑ−m1ϑ
∥∥2(

1 + ‖ϑ‖2q
L∞(Ω)

)
≤ 1

2
‖ϑt‖2 + c‖f‖2 + c

(
‖u‖2

L∞(Ω) + ‖m1‖2
L4(Ω)

)
‖ϑ‖2

V . (4.26)

Hence, noting that ‖ϑ‖V ≤ c‖K(ϑ)‖V by (2.11), conditions ϑ ∈ H1(0, T ;H) and K(ϑ) ∈
L∞(0, T ;V ) follow from Gronwall’s lemma. Consequently we also have ϑ ∈ L∞(0, T ;V ). In ad-
dition to that, viewing (4.23) as a time-dependent family of elliptic problems (for the variable K(ϑ))
with L2-data and applying standard regularity results, we obtain that K(ϑ) ∈ L2(0, T ;H2(Ω)).

Let now k := K(ϑ) and denote as ηq the inverse function of K over [0,+∞). Observe that
η′q and η′′q are uniformly bounded. Hence

∆ϑ = ∆ηq(k) = η′q(k)∆k + η′′q (k)|∇k|2 (4.27)

belongs to L2(0, T ;H) thanks to the fact that k ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;V ). This entails
(4.20). As before, as one writes explicitly the estimates leading to (4.20), also (4.21) follows.

Finally, to show uniqueness, we take two solutions ϑ1 and ϑ2 to (4.22) with the same initial
datum and the same ϕ, µ,u. Then, the difference ϑ̃ := ϑ1 − ϑ2 solves

ϑ̃t + u · ∇ϑ̃+m1ϑ̃−∆(K(ϑ1)−K(ϑ2)) = 0. (4.28)

Then, testing the above by sign ϑ̃ (more precisely, one should first take an approximation of the sign
function and then pass to the limit), using monotonicity of K , the incompressibility (4.18), and the
periodic boundary conditions, we infer

d

dt
‖ϑ̃‖L1(Ω) ≤ ‖m1‖L∞(Ω)‖ϑ̃‖L1(Ω), (4.29)

whence uniqueness follows from Gronwall’s Lemma recalling the first condition in (4.25).

With the three lemmas at disposal, we can make explicit our fixed-point argument

Theorem 4.4. Let ε ∈ (0, 1) and let us assume (4.6) and (4.7). Then there exist a time T0 (depending
on ε and on the initial data) and at least one quadruple (u, ϕ, µ, ϑ) such that

u ∈ H1(0, T0;H) ∩ L∞(0, T0;V ) ∩ L2(0, T0;H2(Ω)), (4.30)

ϕ ∈ H1(0, T0;H3(Ω)), (4.31)

µ ∈ L2(0, T0;H2(Ω)), (4.32)

ϑ ∈ H1(0, T0;H) ∩ L∞(0, T0;V ) ∩ L2(0, T0;H2(Ω)) ∩ L∞((0, T0)× Ω), (4.33)
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with ϑ > 0 a.e. in (0, T0) × Ω, satisfying system (4.1)-(4.5) a.e. in (0, T0) × Ω and complying with
the initial conditions

u|t=0 = u0, ϕ|t=0 = ϕ0, ϑ|t=0 = ϑ0,ε. (4.34)

PROOF. Given ε > 0, we truncate the initial temperature as specified in (4.7). Then, we choose
R > 0 correspondingly (cf. (4.8)). Hence, we can consider the closed ball (cf. (4.9))

B :=
{

(ϑ, u) : ‖ϑ‖L2(0,T0;V ) + ‖u‖L2(0,T0;L4(Ω)) ≤ R
}
, (4.35)

where T0 ∈ (0, T ] will be chosen later on. Notice that the chosen radius R depends only on the initial
data (and on ε by the truncation applied to ϑ0). Let us consider the fixed point map (also depending
on ε, of course)

T : B → L2(0, T0;V )× L2(0, T0;L4(Ω)), T : (ϑ, u) 7→ (ϑ,u). (4.36)

We aim at applying the Schauder fixed point theorem to the above map, for a sufficiently small choice
of the final time T0 > 0. To this aim, we can observe the following:

(a) The map T is continuous: this follows from the fact that the fixed point equations (4.10)-
(4.11), (4.19) and (4.22) only contain Lipschitz or locally Lipschitz nonlinearities. To give a formal
proof (which is omitted for brevity), one could just put together (and refine a bit) the contractive
arguments used to prove uniqueness in the three fixed point Lemmas.

(b) The map T is compact: this follows immediately from (4.20), (4.16) and the Aubin-Lions
lemma. Indeed, the output of the map T lies in a bounded set of a space which is compactly
embedded into L2(0, T0;V )× L2(0, T0;L4(Ω)).

(c) The map T takes values into B. Indeed, thanks to (4.21), (4.17), and the continuous embed-
ding V ⊂ L4(Ω), we get

‖u‖L∞(0,T0;L4(Ω)) + ‖ϑ‖L∞(0,T0;V ) ≤ Q4(R, T0), (4.37)

for some function Q4(R, T0), whence

‖u‖L2(0,T0;L4(Ω)) + ‖ϑ‖L2(0,T0;V ) ≤ T
1/2
0 Q4(R, T0) ≤ R, (4.38)

provided T0 is small enough.

In view of the above conditions (a)-(c) the assumptions of the Schauder fixed point argument are
satisfied, whence (at least) one solution to (4.1)-(4.5) exists. The regularity conditions (4.30)-(4.33)
follow immediately from the above three Lemmas. Theorem 4.4 is proved.

We conclude this section with three observations aimed at clarifying why the present approximation-
fixed point argument is compatible with the a-priori estimates of the previous section.

Remark 4.5. As usual, the solution provided by the fixed point argument is local in time and the final
time T0 may depend on ε and be smaller as smaller is ε. However, the a-priori estimates performed in
the previous section are uniform with respect to time. Hence, thanks to standard extension arguments,
the (approximate) solution turns out to be defined, in fact, on the whole reference interval (0, T ), and
the same will hold for the limit solution.
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Remark 4.6. It is also worth noting that neither the regularizing term−ε∆ϕt added on the right hand
side of (4.4) nor the truncation operator on the right hand side of (4.5) really interfer with the a-priori
estimates of the previous section, which turn out to be independent of the approximation parameter
ε. Actually, −ε∆ϕt just gives some more information, vanishing as ε goes to 0, in the energy and
subsequent bounds. On the other hand, the truncation operator yields some (positive) remainder term
on the left hand side of the energy estimate, coming from the fact that, as one tests (4.3) by µ and (4.5)
by 1, the contribution of µ does not vanish completely. It is immediate to see that this additional term
compensates exactly the lack of information one gets in the subsequent temperature estimate (due to
the fact that now only the truncated |∇µ|2 appears on the left hand side of (3.17)). Hence, (3.20) can
still be obtained.

Remark 4.7. Finally, we notice that the regularity class (4.30)-(4.33) is not really sufficient in order
for the estimates of the previous section to be rigorous. For instance, in principle we have no infor-
mation on the term µt, which would be needed as we perform the “Key estimate”. However, it is easy
to realize that the regularity given for the local approximate solution is just the outcome of the fixed
point argument and, hence, is not at all optimal. Further regularity properties can be standardly proved
by working separately on the equations of the approximate system and performing simple bootstrap
arguments. This procedure may involve some boring technical details (and may also require some
further regularization of the initial data) and is omitted for brevity. However, it is worth noting at
least that, for what concerns the “heat” equation (which contains the more delicate nonlinearities),
the regularity obtained in the fixed-point argument is sufficient. So, it would be sufficient to bootstrap
regularity for u and ϕ.

A Appendix

We prove here the two-dimensional interpolation-embedding inequality used in the proof of existence.
It is worth noting that the result is independent of the use of periodic boundary conditions and holds in
any smooth bounded subset of R2.

Lemma A.1. LetO a smooth bounded domain in R2. Then, there exists c > 0 depending only onO
such that

‖ξ‖H1(O)′ ≤ c
(

1 + ‖ξ‖L1(O) log1/2
(
e+ ‖ξ‖L2(O)

))
(A.1)

for any ξ ∈ L2(O).

PROOF. We start by recalling (see, e.g., [39, (17), p. 479]) that, for all p ∈ [1,∞),

‖v‖Lp(O) ≤ cp1/2‖v‖H1(O) for all v ∈ H1(O). (A.2)

where the constant c > 0 can be taken independent of p. The above inequality makes precise the
rate of explosion of the embedding constant of H1 into Lp as p becomes large. As before, the value
of c can vary in the computations below; in any case, c will always be intended to be independent of p.

Let us identify, as before, L2(O) with its dual in such a way that L2(O) can be (compactly
and continuously) embedded into H1(O)′. Then, given η ∈ L2(O), we have, for c > 0 as above,

〈η, v〉
‖v‖H1(O)

≤ cp1/2 〈η, v〉
‖v‖Lp(O)

≤ cp1/2‖η‖Lp′ (O), (A.3)
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for all nonzero v ∈ H1(O) and where p′ is the conjugate exponent to p. Hence,

‖η‖H1(O)′ ≤ cp1/2‖η‖Lp′ (O) = cp1/2‖η‖
L

p
p−1 (O)

. (A.4)

Taking p ≥ 2 and using interpolation, it then follows

‖η‖H1(O)′ ≤ cp1/2‖η‖
p−2

p

L1(O)‖η‖
2
p

L2(O). (A.5)

Let us temporarily assume that ‖η‖L2(O) = 1. Then, squaring, we obtain

‖η‖2
H1(O)′ ≤ cp‖η‖

2(p−2)
p

L1(O) = cp‖η‖2
L1(O)‖η‖

− 4
p

L1(O). (A.6)

Now we use the so-called Yudovich’ trick (see, e.g., [40]), namely we optimize the above right hand
side with respect to p ∈ [2,∞). To this aim, let us consider the function

f : [2,∞)→ (0,∞), f(p) := pA−
4
p , (A.7)

where A > 0 is given. Then, clearly,

f ′(p) = A−
4
p

(
1 +

4

p
logA

)
. (A.8)

Now, we have to distinguish between two cases. Firstly, if A ≥ e−1/2, then f is increasing over
[2,+∞), whence its minimum is achieved for p = 2:

min f = f(2) = 2A−2 ≤ 2e. (A.9)

On the other hand, if A ∈ (0, e−1/2), then −4 logA (the zero of f ′) is strictly larger than 2, whence

min f = f(−4 logA) = −4A
1

log A logA = −4e logA. (A.10)

Let us now choose A = ‖η‖L1(O) for η ∈ L2(O) with ‖η‖L2(O) = 1. Then,

‖η‖2
H1(O)′ ≤

{
2ec‖η‖2

L1(O) if ‖η‖L1(O) ≥ e−1/2

−4ec‖η‖2
L1(O) log

(
‖η‖L1(O)

)
if ‖η‖L1(O) < e−1/2.

(A.11)

Let us now take any nonzero ξ ∈ L2(O) and apply the above to η = ξ/‖ξ‖L2(O). If

‖η‖L1(O) ≥ e−1/2, i.e. ‖ξ‖L2(O) ≤ e1/2‖ξ‖L1(O), (A.12)

then it follows from the first (A.11) that

‖ξ‖2
H1(O)′ ≤ 2ec‖ξ‖2

L1(O), (A.13)

and, in particular, (A.1) holds. On the other hand, if

‖η‖L1(O) < e−1/2, i.e. ‖ξ‖L2(O) > e1/2‖ξ‖L1(O), (A.14)

then from the second (A.11) we obtain

‖ξ‖2
H1(O)′ ≤ 4ec‖ξ‖2

L1(O)

(
log ‖ξ‖L2(O) − log ‖ξ‖L1(O)

)
. (A.15)
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Here, we have to distinguish again some cases. First, if it is both ‖ξ‖L2(O) ≥ 1 and ‖ξ‖L1(O) ≥ 1,
then (A.15) is continuated as

‖ξ‖2
H1(O)′ ≤ 4ec‖ξ‖2

L1(O) log ‖ξ‖L2(O), (A.16)

whence (A.1) follows. Second, if ‖ξ‖L2(O) ≥ 1 and ‖ξ‖L1(O) < 1, then, observing that 0 ≤
−r log r ≤ c for all r ∈ (0, 1), we get

‖ξ‖2
H1(O)′ ≤ 4ec‖ξ‖2

L1(O) log ‖ξ‖L2(O)−4ec‖ξ‖2
L1(O) log ‖ξ‖L1(O) ≤ 4ec‖ξ‖2

L1(O) log ‖ξ‖L2(O)+c,
(A.17)

and we still have (A.1). Finally, if it is both ‖ξ‖L2(O) < 1 and ‖ξ‖L1(O) < 1 then, we simply observe
that ‖ξ‖2

H1(O)′ ≤ c‖ξ‖2
L2(O) ≤ c, which concludes the proof.
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