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Abstract

Scattering of time-harmonic electromagnetic plane waves by a doubly periodic sur-
face structure in R3 can be simulated by a boundary value problem of the time-harmonic
curl-curl equation. For a truncated FEM domain, non-local boundary value conditions are
required in order to satisfy the radiation conditions for the upper and lower half spaces.
Alternatively to boundary integral formulations, to approximate radiation conditions and
absorbing boundary methods, Huber et al. [11] have proposed a coupling method based
on an idea of Nitsche. In the case of profile gratings with perfectly conducting substrate, the
authors have shown previously that a slightly modified variational equation can be proven
to be equivalent to the boundary value problem and to be uniquely solvable. Now it is
shown that this result can be used to prove convergence for the FEM coupled by truncated
wave mode expansion. This result covers transmission gratings and gratings bounded by
additional multi-layer systems.

1 Introduction

The diffraction of light by biperiodic gratings, e.g., by doubly periodic surface structures can be
simulated by the time-harmonic Maxwell equations. Eliminating the magnetic field, the electric
field is the solution of a boundary value problem for the time-harmonic curl-curl equation. For
finite element methods (FEM), this problem is reduced to a finite domain, where quasi-periodic
lateral boundary conditions and non-local boundary conditions over the upper and lower bound-
ary face are required. The first idea for the solution of the boundary value problem is to express
the non-local boundary conditions by integral operators and to couple FEM with boundary ele-
ments (cf. [7, 14]). With this approach, for the solution of the boundary value problem, either the
case of wave modes propagating parallel to the surface is to be excluded or standard methods
for integral operators with non-trivial null space are to be applied. Alternatively to integral opera-
tors, a saddle point type formulation (cf. e.g. [1]) or absorbing boundary conditions (cf. e.g. [20])
can be used.

On the other hand, the radiation conditions mean that the functions can be extended in form of
a Rayleigh series expansion of upward resp. downward radiating Fourier modes. So the idea
to couple finite elements and Rayleigh expansions is natural. Huber et al. [11] propose such
a method, where the finite elements and the Rayleigh series are coupled employing a mortar
technique of Nitsche (cf. [16, 23]). In [10], the case of perfectly conducting profile gratings has
been considered and the coupling terms of [11] have been slightly modified. It has been proved
that the variational equation for the coupling of FEM and Rayleigh expansions is equivalent
to the boundary value problem for the scattering by gratings. If the last problem is uniquely
solvable, then the operator of the variational equation is uniquely solvable too.
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The subject of the present paper is first to generalize the results on the variational formulation of
[10] to the case of transmission gratings and, second, to analyze the corresponding numerical
scheme, i.e., the coupling of FEM with truncated Rayleigh series expansions. We formulate
the boundary value problem and some solvability results in Sect. 3. In Sect. 4 we define the
variational form and derive the Fredholm property for the operator corresponding to this form.
The numerical discretization of the variational equation is introduced in Sect. 5. The stability and
convergence of this method is proved. Of course, edge elements (cf. e.g. [13]) are employed for
the FEM. In Sect. 6 we discuss the case of multi-layer systems beneath the grating structure.
Instead of an extention of the FEM domain by the layers of the multi-layer system, we replace
the downgoing Fourier modes by special wave modes of the multi-layer system. Note that this
idea goes back to the authors of [11]. The convergence analysis of Sect. 5 can be generalized
to the multi-layer case too. Finally, we add a simple test showing that our method converges
to the same solution as the 2D FEM for periodic 2D gratings and to the same solution as the
method of [11].

2 Preliminaries

Throughout the paper, the symbols ej (j = 1, 2, 3) denote the unit coordinate vectors in
the three dimensional Cartesian coordinate system. The symbol (·)⊤ denotes the transpose
of a vector in C2 or C3, while the symbol a⊥b means the orthogonality of the vectors a =
(a1, a2, a3), b = (b1, b2, b3) ∈ C3 in the sense that

∑3
j=1 ajbj = 0. Denote the unit sphere

by S2 := {x = (x1, x2, x3)
⊤ ∈ R3 : ||x|| = 1}, and define x′ := (x1, x2) for x ∈ R3. The

branch of the square root
√
a is chosen such that the imaginary part of

√
a is always positive,

i.e.
√
a = i

√
−a if a < 0.

3 Diffraction problem

Consider the scattering of a time-harmonic electromagnetic plane wave by a biperiodic struc-
ture (diffraction grating) which consists of at least two optical materials. By biperiodic or doubly
periodic structure (cf. Fig. 1), we mean that the structure is periodic in two orthogonal directions
x1 and x2 and bounded in x3. The optical material inside the grating can be completely char-
acterized by its dielectric coefficient and its magnetic permeability. For simplicity we assume
that the medium is nonmagnetic with a constant magnetic permeability µ(x) = µ0 > 0 in R3.
However, our arguments can be adapted to the case where µ(x) is a periodic and piecewise
constant function. The electric permittivity ϵ(x) and the conductivity σ(x) are supposed to be
Λj-periodic in xj (j = 1, 2) inside the grating and are homogeneous above and below the
grating structure. More precisely, we assume that there exists a constant b > 0 such that

ϵ(x1 + n1Λ1, x2 + n2Λ2, x3) = ϵ(x1, x2, x3),

σ(x1 + n1Λ1, x2 + n2Λ2, x3) = σ(x1, x2, x3)
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Figure 1: Geometry of grating.

in Ω̃ := {x : |x3| < b} for any n = (n1, n2) ∈ Z2, and

ϵ(x) = ϵ+0 > 0, σ(x) = 0 in x3 > b,

ϵ(x) = Re ϵ−0 , σ(x) = ωIm ϵ−0 > 0 in x3 < −b

with the circular frequence ω > 0. Further, we restrict ourselves to the mostly used gratings,
where ϵ(x) and σ(x) are piecewise constant functions satisfying

0 < ϵ0 < ϵ(x) < ∞, 0 ≤ σ(x) < ∞ in R3. (3.1)

Set Ω̃± := {x : x3 ≷ ±b}. Suppose that a time-harmonic electromagnetic plane wave
Ein(x)e−iωt with Ein of the form

Ein(x) := q exp(ik+x · θ̂) = q exp
(
i(x′ · α− βx3)

)
, i :=

√
−1 (3.2)

is incident on the grating from Ω̃+. Here k+ :=ω
√
ϵ+0 µ0 (resp. k− :=ω

√
ϵ−0 µ0) is defined as

the wavenumber characterizing the homogenous medium in Ω̃+ (resp. Ω̃−). In (3.2), the symbol
θ̂ denotes the direction of incidence

θ̂ := (sin θ1 cos θ2, sin θ1 sin θ2,− cos θ1)
⊤∈ S2,

with the incident angles θ1 ∈ [0, π/2), θ2 ∈ [0, 2π). Further, in (3.2), the three dimensional
vector q = (q1, q2, q3)

⊤ ∈ S2 stands for the direction of polarization satisfying q⊥θ̂, and

α=(α1, α2)
⊤ :=k(sin θ1 cos θ2, sin θ1 sin θ2)

⊤∈R2, β :=k cos θ1.
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Eliminating the magnetic field from the reduced time-harmonic Maxwell’s equations, we end up
with the electric curl-curl equation

curl curlE(x)− k2(x)E(x) = 0 for x∈R3, (3.3)

where k2(x) := ω2µ0(ϵ(x)+iσ(x)/ω) and the electric field E in Ω̃+ is the sum of the incident
field Ein and the scattered field Esc. The periodicity of the grating together with the form of Ein

motivates us to look for α-quasiperiodic solutions in the sense that E(x) exp(−iα · x′) is
(Λ1,Λ2)-periodic in x′. In other words, it is required that

E(x1 + Λ1, x2, x3) = exp(iΛ1α1)E(x1, x2, x3),
(3.4)

E(x1, x2 + Λ2, x3) = exp(iΛ2α2)E(x1, x2, x3)

for all x ∈ R3. Since the domain is unbounded in the x3-direction, a radiation condition must
be imposed. Noting that k(x) = k± in Ω̃±, we suppose that the scattered field Esc in Ω̃+ and
the electric field E in Ω̃− are composed of bounded outgoing plane waves in the form of

Esc(x) =
∑
n∈Z2

E+
n exp

(
i(αn ·x′+β+

n x3)
)

for x3 > b, E+
n ⊥(αn, β

+
n )

⊤,

(3.5)
E(x) =

∑
n∈Z2

E−
n exp

(
i(αn ·x′−β−

n x3)
)

for x3 < −b, E−
n ⊥(αn,−β−

n )
⊤,

where αn := (α
(1)
n , α

(2)
n )∈R2, with α

(j)
n =αj + 2πnj/Λj, j = 1, 2 for n = (n1, n2)

⊤ ∈Z2,
and

β±
n = β±

n (k
±, α) :=

√
(k±)2 − |αn|2.

We say that the scattered fields satisfy the radiation condition if expansions of the form (3.5)
exist. These expansions are also referred to as the Rayleigh series expansions. The constant
vectors E±

n are called Rayleigh coefficients. Since β±
n are real-valued only for finitely many in-

dices n, we observe that only a finite number of wave modes in (3.5) propagate into the far field,
while the remaining part consists of evanescent (or surface) waves decaying exponentially as
x3 → ±∞. Thus, the above expansion for Esc resp. E converges uniformly with all derivatives
in the half space {x3 > a} resp. {x3 < −a} for any a > b.

Since the squared wavenumber k2(x) is (Λ1,Λ2)-periodic in x′ and both the incident and
scattered fields are quasiperiodic, we can reduce the scattering problem to a single periodic
cell. To this end, we introduce the following notation

Γ̃±
b :=

{
(x1, x2, x3)

⊤ ∈ R3: x3 = ±b
}
,

Γ±
b :=

{
(x1, x2, x3)

⊤ ∈ Γ̃±
b : 0 < xj < Λj, j = 1, 2,

}
,

Ω± :=
{
(x1, x2, x3)

⊤ ∈ Ω̃±: 0 < xj < Λj, j = 1, 2
}
,

Ω :=
{
x ∈ Ω̃ : 0 < xj < Λj, j = 1, 2}.
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We next introduce some scalar and vector valued α-quasiperiodic Sobolev spaces. Let Hs(Γ̃±
b )

be the complex valued L2-based Sobolev spaces of order s over Γ̃±
b . Write

Hloc(curl , Ω̃) :=
{
G : χG, curl (χG) ∈ L2(Ω̃)3, ∀χ ∈ C∞

0 (R3)
}
,

Hs
loc(Γ̃

±
b ) :=

{
G : χG ∈ Hs(Γ̃±

b ), ∀χ ∈ C∞
0 (Γ̃±

b )
}
,

Hs
t,loc(Γ̃

±
b ) :=

{
G ∈ Hs

loc(Γ̃
±
b )

3: e3 ·G = 0
}
,

Hs
t,loc(Div , Γ̃

±
b ) :=

{
G : G ∈ Hs

t,loc(Γ̃
±
b ), DivG ∈ Hs

t,loc(Γ̃
±
b )
}
,

Hs
t,loc(Curl , Γ̃

±
b ) :=

{
G : G ∈ Hs

t,loc(Γ̃
±
b ), CurlG ∈ Hs

t,loc(Γ̃
±
b )
}
,

and

H(curl ,Ω) :=
{
G|Ω: G ∈ Hloc(curl , Ω̃), G is α-quasiperiodic

}
,

Hs
qp(Ω) :=

{
g|Ω: g ∈ Hs

loc(Ω̃), g is α-quasiperiodic
}
,

Hs
t (Γ

±
b ) :=

{
G|Γ±

b
: G ∈ Hs

t,loc(Γ̃
±
b ), G is α-quasiperiodic

}
,

Hs
t (Div ,Γ

±
b ) :=

{
G|Γ±

b
: G ∈ Hs

t,loc(Div , Γ̃
±
b ), G is α-quasiperiodic

}
,

Hs
t (Curl ,Γ

±
b ) :=

{
G|Γ±

b
: G ∈ Hs

t,loc(Curl , Γ̃
±
b ), G is α-quasiperiodic

}
,

where Div (·) and Curl (·) stand for the surface divergence and the surface scalar rotational
operators, respectively. Note that, for x′ 7→ E(x′,±b) in Hs

t (Γ
±
b ), s ∈ R, we have the Fourier

series expansion

E(x′,±b) =
∑
n∈Z2

E±
n exp(iαn · x′),

E±
n := (Λ1Λ2)

−1

∫ Λ1

0

∫ Λ2

0

E(x′,±x3) exp(−iαn · x′)dx1dx2 ∈ C3.

Then, the spaces Hs
t (Γ

±
b ), H

s
t (Div ,Γ

±
b ) and Hs

t (Curl ,Γ
±
b ) can be equipped with the follow-

ing equivalent Sobolev norms

||E||Hs
t (Γ

±
b ) =

(∑
n∈Z2

|E±
n |2
(
1 + |αn|2

)s)1/2

,

||E||Hs
t (Div ,Γ±

b ) =

(∑
n∈Z2

(
1 + |αn|2

)s (|E±
n |2 + |E±

n · (αn, 0)
⊤|2
))1/2

,

||E||Hs
t (Curl ,Γ±

b ) =

(∑
n∈Z2

(
1 + |αn|2

)s (|E±
n |2 + |E±

n ×(αn, 0)
⊤|2
))1/2

.
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Recall that the space dual to Hs
t (Div ,Γ

±
b ) w.r.t. the L2-scalar product is Hs

t (Div ,Γ
±
b )

′ =
H−s−1

t (Curl ,Γ±
b ), and that, for s = −1/2,

H
−1/2
t (Div ,Γ±

b ) =
{
(e3×E)|Γ±

b
: E∈H(curl ,Ω)

}
,

H
−1/2
t (Curl ,Γ±

b ) =
{
(e3×E)|Γ±

b
×e3 : E∈H(curl ,Ω)

}
.

Further, the trace mappings from H(curl ,Ω) to the tangential spaces H
−1/2
t (Div ,Γ±

b ) and

H
−1/2
t (Curl ,Γ±

b ) are continuous and surjective (see [6, 13] and the references there). Finally,
define our variational space

X = Xb :=
{
E : Ω → C3 : E ∈ H(curl ,Ω)

}
endowed with the norm

||E||X := ||E||H(curl ,Ω) =
(
||E||2L2(Ω)3 + ||curlE||2L2(Ω)3

)1/2
.

The boundary value problem for our scattering problem can be stated as follows.

(BVP): Given an incident electric field Ein, determine the quasiperiodic total electric field
E ∈ Hloc(curl ,R3) such that E(x)|Ω satisfies the curl- curl equation (3.3) in Ω in
the distributional sense and that the scattered field Esc = E −Ein in x3 > b as well as
the transmitted field E in x3 < −b admit a Rayleigh expansion of the form (3.5).

Introduce the set

Υres := Υ+
res ∪Υ−

res, Υ±
res :=

{
n ∈ Z2: β±

n (k
±, α) = 0

}
. (3.6)

An incident angular frequency ω with Υres ̸= ∅ is called Rayleigh frequency. Note that the set
F of all Rayleigh frequencies depends on k±, Λ1 and Λ2 but not on the shape of Γ.

Below we collect some uniqueness and existence results of (BVP) for a broad class of incident
plane waves. Assume that the incident electric wave takes the form

Ein
gen :=

∑
n:βn>0

Qn exp
(
αn · x′ − βnx3

)
, (3.7)

where Qn ∈ C3 satisfies Qn⊥(αn,−βn)
⊤. Note that Ein of (3.2) is of the form (3.7), where

Qn = q for n = (0, 0)⊤ and Qn = (0, 0, 0)⊤ else.

Theorem 3.1. Consider the scattering problem (BVP) with Ein replaced by Ein
gen.

(i) There exists a unique solution to (BVP) for all ω ∈ R+\D, where D ⊃ F is a discrete set
with the only accumulating point at infinity.

(ii) The problem (BVP) admits at least one solution for any ω ∈ R+. Moreover, the far-field
part of the solution scattered into the half space x3 ≷ ±b is unique, i.e., the Rayleigh
coefficients of the plane wave modes propagating into the half space x3 ≷ ±b (namely,
those E±

n with β±
n > 0) are unique.
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(iii) There exists a small frequency ω0 > 0 such that the problem (BVP) admits a unique
solution for all ω ∈ (0, ω0].

The assertions (i) and (ii) follow from the existence and uniqueness of the magnetic field in
the space H1(Ω)3 (see [4, 5, 8, 21, 22]). Note that the constant magnetic permeability implies
the piecewise H1-regularity of the magnetic field, which is not true for the electric field. In the
non-resonance case (i.e. Υres = ∅), (i) and (ii) can also be proved by studying the following
variational formulation for the electric field E in Ω: find E ∈ X such that∫

Ω

[
curlE · curlφ− k2(x)E · φ

]
dx−

∫
Γ+
b

R+(e3×E) · (e3×φ)ds

+

∫
Γ−
b

R−(e3×E) · (e3×φ)ds

=

∫
Γ+
b

[
(curlEin)T −R+(e3×Ein)

]
· (e3×φ)ds (3.8)

for all φ ∈ X , where (·)T := [e3 × (·)]|Γ+
b
× e3 and the operators R±: H

−1/2
t (Div ,Γ±

b ) →
H

−1/2
t (Curl ,Γ±

b ) are the Dirichlet-to-Neumann maps defined by

(R±Ẽ)(x′) = ∓
∑
n∈Z2

1

iβ±
n

[
k2Ẽ±

n − (αn · Ẽ±
n )αn

]
exp(iαn · x′), (3.9)

for Ẽ(x′) =
∑

n∈Z2 Ẽ±
n exp(iαn · x′) ∈ H

−1/2
t (Div ,Γ±

b ), Ẽ
±
n ∈ C2; see [1, 2]. Note that

the operator R+ maps e3×Esc to (curlEsc)T on Γ+
b and that R− maps −e3×E to the trace

(e3×curlE)×e3 on Γ−
b . If the incident frequency ω is sufficiently small, then the set Υres is

always empty and one can prove that the sesquilinear form generated by the left-hand side of
(3.8) is positive coercive over X ×X under the assumption (3.1). We refer to [10, Lemma 6.1]
for the proof of the third assertion for perfectly conducting grating profiles using a variational
formulation analogously to (3.8) but posed only in the upper half space. These results can be
easily extended to transmission gratings.

There are two drawbacks in using (3.8) to compute the electric field. First, the transparent
boundary operators R± do not make sense if β±

n = 0 (i.e. in the resonance case). Thus
Rayleigh frequencies must be excluded. Second, in practice, R± cannot be computed straight-
forwardly from (3.8). Instead, they must be approximated by taking sufficiently many terms in
the expansions (see [5, Section 6] for the error estimates). Motivated by the variational formu-
lations proposed in [11, 19] and based on the mortar technique of Nitsche (see Nitsche [16]
and Sternberg [23]), we employ a consistent coupling of the electric field E on the interfaces
Γ±
b as a replacement of the Dirichlet-to-Neumann maps. This way we propose a more gen-

eral variational formulation than (3.8) for the electric field, which allows us not only to handle
(BVP) in the resonance case but also to approximate the non-local boundary operators on Γ±

b .
Numerical experiments and convergence rate for a similar variational formulation were already
reported in [11]. The goals of this paper are to provide a theoretical justification of the modified
Nitsche’s method and to prove the convergence of its numerical discretization using Nédélec’s
finite elements.
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4 Variational formulation based on a coupling method

In this section we propose a variational formulation equivalent to (BVP). We begin with the fact
that any column vector E+

n ∈C3 satisfying (αn, β
+
n )

⊤⊥E+
n for some n=(n1, n2)

⊤∈Z2 can
be represented as a linear combination of two vectors E+

n,0, E
+
n,1 ∈ C3:

E+
n = C+

n,0 E
+
n,0 + C+

n,1 E
+
n,1, C+

n,0, C
+
n,1 ∈ C,

where

E+
n,0 :=

{
(−α

(2)
n , α

(1)
n , 0)⊤/|αn| ∈ S2 if |αn| ̸= 0

(0, 1, 0)⊤ else,
(4.1)

E+
n,1 :=

{
|αn|
h+
n
(αn, β

+
n )

⊤×E+
n,0=(−α

(1)
n β+

n ,−α
(2)
n β+

n , |αn|2)⊤/h+
n if |αn| ̸=0

(−1, 0, 0)⊤ else,
(4.2)

with h+
n := |αn|

√
|αn|2 + |β+

n |2. Obviously, it holds that (αn, β
+
n )

⊤ ⊥ E+
n,l, |E

+
n,l| = 1 for

l = 0, 1, n ∈ Z2. One can observe further that E+
n,1 ∈ S2 if β+

n ∈ R, and that E+
n,1 = e3 if

β+
n = 0. The above decomposition of E+

n allows us to rewrite the Rayleigh expansion (3.5) for
Esc as (see also [19, Section 2.5])

Esc(x) =
∑

n∈Z2, l=1,2

C+
n,l U

+
n,l(x), U

+
n,l := E+

n,l exp
(
i[αn · x′ + β+

n x3]
)
, C+

n,l∈C (4.3)

for x3 > b. Analogously, there holds

E(x) =
∑

n∈Z2, l=1,2

C−
n,l U

−
n,l(x), U

−
n,l := E−

n,l exp
(
i[αn · x′ − β−

n x3]
)
, C−

n,l∈C (4.4)

for x < −b, where E−
n,0 = E+

n,0 and

E−
n,1 :=

{
|αn|
h−
n
(αn,−β−

n )
⊤×E−

n,0=(α
(1)
n β−

n , α
(2)
n β−

n , |αn|2)⊤/h−
n if |αn| ̸=0

(−1, 0, 0)⊤ else,

with h−
n := |αn|

√
|αn|2+|β−

n |2. Define the layers D± of height one above Γ+
b and below Γ−

b

by

D+ :=
{
x ∈ R3: 0 < xj < Λj, j = 1, 2, b < x3 < b+ 1

}
,

D− :=
{
x ∈ R3: 0 < xj < Λj, j = 1, 2, −b− 1 < x3 < −b

}
.

Now we introduce the Sobolev spaces Y ±
l as follows:

Y ±
l :=

{
U ∈ H(curl , D±) : U(x) =

∑
n∈Z2

C±
n,l U

±
n,l(x), C

±
n,l ∈ C

}
, l = 0, 1. (4.5)

Then we see that the function E+(x) := Esc|D+ belongs to the space Y + := Y +
0 ⊕ Y +

1 , and
that E−(x) := E|D− belongs to the space Y − := Y −

0 ⊕ Y −
1 . Hence, the following problem is

equivalent to (BVP):

8



(BVP’): Given an incident electric field Ein, find the α-quasiperiodic fields (E,E+, E−) ∈
H := X×Y +×Y − such that E satisfies the curl-curl equation (3.3) in Ω in a distribu-
tional sense and the transmission conditions

e3×(E − Ein − E+) = 0, e3×curl (E − Ein − E+) = 0 on Γ+
b , (4.6)

e3×(E − E−) = 0, e3×curl (E − E−) = 0 on Γ−
b .

Motivated by the arguments in [19, Section 3.2] and the variational formulations in [10, 11], we
propose a new variational formulation that is equivalent to (BVP’). For the triples of functions
(E,E+, E−),(V, V +, V −) ∈ H, define the sesquilinear form a(·, ·) : H×H → C by

a
(
(E,E+, E−), (V, V +, V −)

)
(4.7)

:=

∫
Ω

{
curlE · curlV − k2(x)E · V

}
dx

−
∫
Γ+
b

{
curlE+ · e3×V − e3×(E−E+) · curlV +

}
ds

+

∫
Γ−
b

{
curlE− · e3×V − e3×(E−E−) · curlV −

}
ds

−η+
∑
n∈Υ+

[∫
Γ+
b

e3×(E−E+) · (e3×U
+

n,0) ds

∫
Γ+
b

e3×V + · (e3×U
+

n,0)ds

]

−η−
∑
n∈Υ−

[∫
Γ−
b

e3×(E−E−) · (e3×U
−
n,0) ds

∫
Γ−
b

e3×V − · (e3×U
−
n,0)ds

]
,

where η± > 0 are constant factors. The set Υ± is a finite fixed subset of Z2 with Υ±
res ⊆ Υ±

(cf. (3.6)). Our variational formulation is to find (E,E+, E−) ∈ H such that

a
(
(E,E+, E−), (V, V +, V −)

)
= −a

(
(0, Ein, 0), (V, V +, V −)

)
(4.8)

for all (V, V +, V −) ∈ H. Note that terms like
∫
Γ±
b
curlE± · e3×V ds are bounded. Indeed,

since E± is the solution of the curl-curl equation in D±, we get curlE± ∈ H(curl , D±) and
(curlE±)|Γ±

b
∈ H−1/2(Curl ,Γ±

b ). Further, note that the second part of the second and third
terms on the right-hand side of (4.7) both have opposite signs than the corresponding terms
in [11]. Moreover, the integrals with factor η± in (4.7) are modifications of the following terms
involved in the variational equation of [11]:

η±
∫
Γ±
b

e3×(E − E±) · e3×(V − V ±)ds. (4.9)

The expressions in (4.9) are not meaningful for general (E,E+, E−), (V, V +, V −) ∈ H, since

both e3×(E − E±) and e3×(V − V ±) belong to the space H
−1/2
t (Div ,Γ±

b ). Integrals like
η
∫
Γ±
b
e3×u · e3×v ds in the mortar approach make sense for finite element methods, where u

9



and v are finite element functions and η tends to zero with the meshsize. The idea employed in
[19] is to replace the integral (4.9) by the Galerkin approximation∑

n,l:|n|2<N

β±
n ̸=0or l=0

[
η±
∫
Γ±
b

e3×(E − E±) · e3×U
±
n,lds

∫
Γ±
b

e3×(V − V ±) · e3×U
±
n,lds

]
(4.10)

+η±
∑

n:β±
n =0

[∫
Γ±
b

e3×(E − E±) · U±
n,0ds

∫
Γ±
b

e3×(V − V ±) · U±
n,0ds

]
(4.11)

with a sufficiently large number N > 0. It is also mentioned in [19] that the summation in (4.10)
and (4.11) can even be restricted to all n ∈ Z2 with β±

n = 0. In the present paper, we only use
the terms of (4.10) with n ∈ Υ± and simplify them to get the last two terms in (4.7). Note that
choosing Υ± larger than Υ±

res makes the numerical scheme more stable in the near-resonance
case.

Arguing similarly to [10, Lemma 3.3], we can prove the equivalence of the variational formulation
(4.8) and the problem (BVP’). Moreover, in the non-resonance case, i.e. Υres = ∅, and for
Υ = Υres, the variational formulations (4.8) and (3.8) are equivalent (see [10, Remark 3.4]).
Thus, the variational formulation (4.8) is indeed more general than (3.8). It is worth to mention
that, using (4.8), we can also prove the solvability results in Theorem 3.1, since the arguments
in [10] for perfectly conducting grating profiles can be easily adapted to transmission gratings. To
prepare the convergence analysis of the finite element discretization, in this paper we only check
the Fredholm property of the operator A : H → H′ generated by the bounded sesquilinear form
a(·, ·) defined in Section 4, i.e. A is given by

a
(
(E,E+, E−), (V, V +, V −)

)
=
⟨
A(E,E+, E−), (V, V +, V −)

⟩
. (4.12)

Here H′ denotes the space dual to H with respect to the duality ⟨·, ·⟩ extending the scalar
product in L2(Ω)3 × L2(D+)3 × L2(D−)3. The rest of this section is devoted to verify

Theorem 4.1. The operator A defined by (4.12) is a Fredholm operator with index zero.

First we recall

Definition 4.2. A bounded sesquilinear form l(·, ·) given on some Hilbert space Y is called
strongly elliptic if there exists a compact form l̃(·, ·) and a constant c > 0 such that

Re l(u, u) ≥ c ||u||2Y − l̃(u, u), ∀ u ∈ Y.

To prove Theorem 4.1, we need a periodic analogue of the Hodge decomposition of X .

Lemma 4.3. (i) We have X = X0 ⊕X1, where

X1 :=
{
∇p : p ∈ H1

qp(Ω)
}
⊂ X,

X0 :=
{
E0∈X :

∫
Ω

k2(x)∇p · E0 dx = 0 for all ∇p ∈ X1

}
.

and the space X0 is compactly embedded into L2(Ω)3.
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(ii) We have div (k2(x)E0) = 0 in Ω and e3 · E0 = 0 on Γ±
b for any E0 ∈ X0.

Proof. See e.g. [3, Sect. 3.1] for the proof of the first assertion in more general periodic chiral
structures and [13, Sect. 4.4] in the case of non-periodic structures where k2(x) is allowed to
be a complex valued function. Using integration by parts, it follows from the definition of X0

that div (k2(x)E0) = 0 in Ω and e3 · k2(x)E0 = 0 on Γ±
b . Since k2(x) is a non-vanishing

piecewise constant function in Ω, we obtain e3 · E0 = 0 on Γ±
b .

By Lemma 4.3 and the definitions of Y ±
l , we can decompose our space H into six subspaces

H = (X0 ⊕X1)× (Y +
0 ⊕ Y +

1 )× (Y −
0 ⊕ Y −

1 ).

For (E,E+, E−), (V, V +, V −) ∈ H, we may assume that

E = ∇p+ E0, E
± = E±

0 + E±
1 , where ∇p ∈ X1, E0 ∈ X0, E

±
l ∈ Y ±

l , l=0, 1,

V = ∇ξ + V0, V ± = V ±
0 + V ±

1 , where ∇ξ ∈ X1, V0 ∈ X0, V ±
l ∈ Y ±

l , l=0, 1.

For the analysis of form a, we define several sesquilinear forms as follows. Let

a1(∇p,∇ξ) :=

∫
Ω

k2(x)∇p · ∇ξ dx, ∀ ∇p,∇ξ ∈ X1,

a2(E0, V0) :=

∫
Ω

{
curlE0 · curlV0 − k2(x)E0 · V0

}
dx, ∀ E0, V0 ∈ X0,

a±3 (E
±
0 , V

±
0 ) := ±

∫
Γ±
b

e3×E±
0 · curlV ±

0 ds, ∀ E±
0 , V

±
0 ∈ Y ±

0 ,

a±4 (E
±
1 , V

±
1 ) := ±

∫
Γ±
b

e3×E±
1 · curlV ±

1 ds, ∀ E±
1 , V

±
1 ∈ Y ±

1 ,

and let

a±5

(
(E,E+, E−), (V, V +, V −)

)
:= ±

∫
Γ±
b

e3×E · curlV ±
ds,

a±6

(
(E,E+, E−), (V, V +, V −)

)
:= −η±

∑
n∈Υ±

{∫
Γ±
b

e3×(E − E±) · (e3×U
±
n,0) ds

∫
Γ±
b

(e3×V ±) · (e3×U
±
n,0) ds

}

for any (E,E+, E−), (V, V +, V −) ∈ H. For brevity we write

a±5

(
(E,E+, E−), (V, V +, V −)

)
= a±5 (E, V ±), ∀ E ∈ X, V ± ∈ Y ±. (4.13)

Lemma 4.4. For any ∇ξ ∈ X1 and V ±
0 ∈ Y ±

0 , we have a±5 (∇ξ, V ±
0 ) = 0.

Proof. Assume that ∇ξ ∈ X1 and V +
0 ∈ Y +

0 . Without loss of generality ξ can be assumed to
be smooth. We can expand the function ξ(x) into the series

ξ(x) =
∑
n∈Z2

fn(x3) exp(iαn · x′), fn ∈ C2(R+),

11



in a sufficiently small neighborhood of Γ+
b . This implies that

(e3 ×∇ξ)|Γ+
b
=
∑
n∈Z2

ifn(b)(−α(2)
n , α(1)

n , 0)⊤ exp(iαn · x′). (4.14)

Making use of curlU+
n,0 = iU+

n,1

√
|αn|2 + |β+

n |2 (see [10, Lemma 3.1]), and recalling the
definition of U+

n,1 and the sesquilinear form a+5 , we end up with the identity

a+5 (∇ξ, V +
0 ) =

∫
Γ+
b

(e3×∇ξ) · curlV +
0 ds = 0.

The proof for a−5 can be carried out analogously.

Note the last proof is a new and simpler proof for [10, Lemma 4.3]. Using Lemmas 4.3 and 4.4,
the definition of a and a simple calculation imply (see Table 1)

a
(
(E,E+, E−), (V, V +, V −)

)
= a

(
(∇p+ E0, E

+
0 + E+

1 , E
−
0 + E−

1 ), (∇ξ + V0, V
+
0 + V +

1 , V −
0 + V −

1 )
)

= −a1(∇p,∇ξ)+a2(E0, V0)−a+3 (E
+
0 , V

+
0 )−a+4 (E

+
1 , V

+
1 )+a+5 (E0, V

+
0 )

−a+5 (V0, E
+
0 ) + a+5 (E0, V

+
1 )−a+5 (V0, E

+
1 ) + a+5 (∇p, V +

1 )−a+5 (∇ξ, E+
1 )

+a+6

(
(E,E+, E−), (V, V +, V −)

)
+a−3 (E

−
0 , V

−
0 ) +a−4 (E

−
1 , V

−
1 )−a−5 (E0, V

−
0 )

+a−5 (V0, E
−
0 )− a−5 (E0, V

−
1 )+a−5 (V0, E

−
1 )− a−5 (∇p, V −

1 )+a−5 (∇ξ, E−
1 )

+a−6

(
(E,E+, E−), (V, V +, V −)

)
. (4.15)

Proof of Theorem 4.1. Obviously, we have

� a1 is coercive on X1, i.e. there exists some constant C > 0 such that

Re [a1(∇p,∇p)] ≥ C||∇p||X , ∀ ∇p ∈ X1.

� a2 is strongly elliptic over X0, due to the estimate

Re [a2(E0, E0)] ≥ ||E0||X − [1 + ||k2||L∞(Ω)] ||E0||2L2(Ω)3

for any E0 ∈ X0 and the compact imbedding of X0 into L2(Ω)3 (see Lemma 4.3).

� a±6 are compact forms over H, since each of them corresponds to a finite rank operator
over H.

To demonstrate the Fredholm property of the sesquilinear form a, we now need to study the
other forms a±3 , a

±
4 and a±5 . Concerning a+3 and a+4 , it is shown in [10, Lemma 4.5] that, there

exist compact forms ã+3 : Y +
0 ×Y +

0 → C and ã+4 : Y +
1 ×Y +

1 → C such that

−Re a+3 (E
+
0 , E

+
0 ) ≥ C+

3 ||E+
0 ||2H(curl ,D+) − ã+3 (E

+
0 , E

+
0 ), ∀E+

0 ∈ Y +
0 ,

(4.16)
Re a+4 (E

+
1 , E

+
1 ) ≥ C+

4 ||E+
1 ||2H(curl ,D+) − ã+4 (E

+
1 , E

+
1 ), ∀E+

1 ∈ Y +
1
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for some constants C+
3 , C

+
4 > 0, i.e., the sesquilinear forms −a+3 and a+4 are strongly elliptic

over Y +
0 and Y +

1 , respectively. The proof of the estimates in (4.16) can be easily extended to
the sesquilinear forms a−3 and a−4 . That is, we can find compact forms ã−3 : Y −

0 ×Y −
0 → C and

ã−4 : Y −
1 ×Y −

1 → C such that

Re a−3 (E
−
0 , E

−
0 ) ≥ C−

3 ||E−
0 ||2H(curl ,D−) − ã−3 (E

−
0 , E

−
0 ), ∀E−

0 ∈ Y −
0 ,

(4.17)
−Re a−4 (E

−
1 , E

−
1 ) ≥ C−

4 ||E−
1 ||2H(curl ,D−) − ã−4 (E

−
1 , E

−
1 ), ∀E−

1 ∈ Y −
1

for some constants C−
3 , C

−
4 > 0. Hence the strong ellipticity of a−3 and −a−4 follows. Finally, in

view of [10, Lemma 4.7] we have

� a+5 is compact over X0×Y +
1 ,

and analogously

� a−5 is compact over X0×Y −
1 .

To prove the Fredholm property of the variational formulation (4.8), it suffices to verify that the
operator corresponding to the sesquilinear form a − a+6 − a−6 is Fredholm over H with index
zero. For this purpose, we define the spaces Hj = Xj×Y +

j ×Y −
j for j = 0, 1, so that we can

rewrite H = X×Y +×Y − = H0 ⊕H1. Define the sesquilinear forms

b0

(
(E0, E

+
0 , E

−
0 ), (V0, V

+
0 , V −

0 )
)

:= a2(E0, V0)− a+3 (E
+
0 , V

+
0 ) + a−3 (E

−
0 , V

−
0 )

+a+5 (E0, V
+
0 )− a+5 (V0, E

+
0 )− a−5 (E0, V

−
0 ) + a−5 (V0, E

−
0 )

for all (E0, E
+
0 , E

−
0 ), (V0, V

+
0 , V −

0 ) ∈ H0, and

b1

(
(∇p, E+

1 , E
−
1 ), (∇ξ, V +

1 , V −
1 )
)

:= −a1(∇p,∇ξ)− a+4 (E
+
1 , V

+
1 ) + a−4 (E

−
1 , V

−
1 )

+a+5 (∇p, V +
1 )− a+5 (∇ξ, E+

1 )− a−5 (∇p, V −
1 ) + a−5 (∇ξ, E−

1 )

for all (∇p, E+
1 , E

−
1 ), (∇ξ, V +

1 , V −
1 ) ∈ H1. Now split the form in Table 1 in blocks correspond-

ing to the splitting H = H1×H2. Then the restriction to H1 is the form b0 with the strongly elliptic
quadratic form

Re b0

(
(E0, E

+
0 , E

−
0 ), (E0, E

+
0 , E

−
0 )
)

= Re a2(E0, E0)− Re a+3 (E
+
0 , E

+
0 ) + Re a−3 (E

−
0 , E

−
0 ).

The restriction to H1 is the form b1, and −b1 has the strongly elliptic quadratic form

−Re b1

(
(∇p, E+

1 , E
−
1 ), (∇p, E+

1 , E
−
1 )
)

= Re a1(∇p,∇p) + Re a+4 (E
+
1 , E

+
1 )− Re a−4 (E

−
1 , E

−
1 ).

Consequently, the diagonal blocks of the splitting into 2×2 blocks of size 3×3 correspond to
Fredholm operators with index zero. On the other hand, the full form in Table 1 differs from the
diagonal block matrix only by compact terms. Hence the form a generates a Fredholm operator
with index zero. 2
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5 Numerical analysis of Finite Element Method

5.1 Finite element space and FEM

As mentioned in the introduction, we assume that the optical medium in R3 is piecewise smooth.
For the convergence analysis, we suppose that the interface between any two different materials
is a polyhedral surface. Let τh = τh(Ω) be a partition of Ω by tetrahedrons K of diameter hK ,
i.e. Ω = ∪K∈τhK , where h denotes the maximum diameter of the elements in τh. Of course,
we suppose that ϵ and k are constant over each K ∈ τh. We will use standard Nédélec’s
edge elements (cf. [13]) and analyze convergence for h → 0. For each element K ∈ τh and
k> 1, denote by P k the polynomials of maximal total degree k and by P̃k the homogeneous
polynomials of total degree k. Define the subspace Sk of homogeneous vector polynomials of
degree k by Sk :={p∈ (P̃k)

3| x · p(x)=0}. The curl conforming edge elements of Nédélec
rely on the use of the vector polynomial space RK := (P k−1)

3 ⊕ Sk. More precisely, the
Nédélec finite element space of edge elements of degree k are defined by

Definition 5.1. Let Xh⊂X be the set of functions Eh : Ω → C3 such that:

(i) For any K ∈ τh, we have Eh|K ∈ RK .

(ii) For any edge e of the FE partition and for any K,K ′ ∈ τh s.t. e ⊆ K ∩ K
′
, we have∫

e
(Eh|K) · τ q de=

∫
e
(Eh|K′) · τ q de for any q ∈ P k−1. Here τ is the unit vector

pointing into the direction of e.

(iii) For any face f of the FE partition and for any K,K ′ ∈ τh such that f ⊆ K ∩K ′, there
holds

∫
f
(Eh|K) · q ds=

∫
f
(Eh|K′) · q ds for any q ∈ (P k−2)

3 with q · νf = 0. Here
νf denotes the normal to the face f .

To define the discretized spaces for Y ±
l , we introduce the finite set Υh :={n∈Z2 : |n|≤C/h}

for some constant C > 0. Then, set

Y ±
h := Y ±

h,0 ⊕ Y ±
h,1, Y ±

h,l := span
{
U±
n,l : n ∈ Υh

}
, l = 0, 1.

The discretized full space is defined as Hh := Xh × Y +
h × Y −

h . Now the finite element ap-
proximation associated to (4.8) can be formulated as follows: find (Eh, E

+
h , E

−
h ) ∈ Hh such

that

a
(
(Eh, E

+
h , E

−
h ), (Vh, V

+
h , V −

h )
)
= −a

(
(0, Ein, 0), (Vh, V

+
h , V −

h )
)

(5.1)

for all (Vh, V
+
h , V −

h ) ∈ Hh.

5.2 Auxiliary notation and facts

Let (F, F+, F−) ∈ H′
h be defined as the right-hand side of Equation (5.1), and let Ph :=

(PXh , P Y +
h , P Y −

h ) be the orthogonal projection of H onto Hh. Then we obtain the operator
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equation of the FEM

Ah(Eh, E
+
h , E

−
h ) = (Ph)

∗(F, F+, F−), Ah := (Ph)
∗A|Hh

, (5.2)

where A: H → H′ is given in (4.12). Note that the operators Ah : Hh → H′
h are uniformly

bounded in h > 0. It follows from [13, Lemma 10.10] that PXh −→ I in X , and by the
definitions of Y ±

h we see P Y ±
h −→ I in Y ±

h . This implies the strong convergence of Ph to I in
H. Consequently, the convergence (Ph)

∗ −→ I holds in H′ and AhPh −→ A.

Definition 5.2. The operators Ah : Hh −→ H′
h are called stable if there exists an h0 > 0 such

that Ah is invertible for all h ≤ h0 and if ||A−1
h || ≤ c for some constant c > 0 independent of

h ∈ (0, h0).

Note that the operator norm of the inverse operator A−1
h can be computed as

||A−1
h ||= inf

(0,0,0) ̸=(Eh,Eh
+,Eh

−)∈Hh

sup
(0,0,0) ̸=(Vh,Vh

+,Vh
−)∈Hh

∣∣∣a((Eh, E
+
h , E

−
h ), (Vh, V

+
h , V −

h )
)∣∣∣

∥(Eh, Eh
+, Eh

−)∥H ∥(Vh, V
+
h , V −

h )∥H
.

Definition 5.3. We say that the FEM for (4.8) is convergent if, for any (F, F+, F−) ∈ H′ and
for all h < h0, the approximate solution (Eh, E

+
h , E

−
h ) to

a
(
(Eh, E

+
h , E

−
h ), (Vh, V

+
h , V −

h )
)
=
⟨
(F, F+, F−), (Vh, V

+
h , V −

h )
⟩

(5.3)

for all (Vh, V
+
h , V −

h ) ∈ Hh exists and is unique, and if (Eh, E
+
h , E

−
h ) converges strongly in

H to the exact solution (E,E+, E−) of the continuous variational problem A(E,E+, E−) =
(F, F+, F−).

Now we recall two well-known results on the convergence and perturbations (cf. e.g. [17, Chap-
ter 1], [18]), which are our main tools for analyzing the discrete variational problem (5.1). Lemma
5.4 is a simple consequence of the Banach-Steinhaus theorem and, for the reader’s conve-
nience, we provide a short proof of Lemma 5.5.

Lemma 5.4. Suppose the strong convergence Ph −→ I . Then the finite element scheme (5.3)
is convergent if and only if the operators Ah defined in (5.2) are stable.

Lemma 5.5. Suppose Ph → I . Furthermore, suppose that the operators Bh : Hh −→ H′
h

are stable, and that the convergence BhPh −→ B holds as h → 0 with some operator
B : H −→ H′. Moreover, let T : H → H′ be a compact operator such that C := B + T is
invertible. Let the operators Ch : Hh −→ H′

h be small perturbations of Bh + (Ph)
∗T |Hh

, i.e.,

Ch = Bh + (Ph)
∗T |Hh

+Dh, ||Dh|| → 0 as h → 0.

Then the Ch are stable.

Proof. The small perturbations Dh can be treated by the usual Neumann series argument.
Hence, it suffices to prove that the operators Bh + (Ph)

∗T |Hh
: Hh −→ H′

h are stable, i.e. that
the inverse operators of the Bh + (Ph)

∗T |Hh
exist and are uniformly bounded.
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We first show that B−1 exists. Since C is invertible and T is compact, B is a Fredholm operator
with index zero. Hence we only need to show that KerB = {0}. Noting that the Bh are stable,
we get, for any u ∈ H, ||Phu||H = ||B−1

h BhPhu||H ≤ c ||BhPhu||H′ with a constant c > 0
independent of h. Letting h → 0, we obtain ||u||H ≤ c||Bu||H′ which implies KerB = {0}.

Now the pointwise convergence B−1
h (Ph)

∗ → B−1 is easy to see, and thus the norm conver-
gence ||[B−1

h (Ph)
∗ −B−1]T || → 0 as h → 0 follows. A simple calculation shows

Bh + (Ph)
∗T |Hh

= Bh[I|Hh
+B−1

h (Ph)
∗T |Hh

]

= Bh

{
Ph(I +B−1T )|Hh

+ Ph[B
−1
h (Ph)

∗ −B−1]T |Hh

}
.

To prove the stability of Bh + (Ph)
∗T |Hh

, we only need to prove that of Ph(I + B−1T )|Hh
,

because the second term in the curly brackets of the previous identity tends to zero as h → 0.
From the invertibility of C it follows the existence of (I +B−1T )−1. Then, we can check that

[Ph(I +B−1T )−1|Hh
][Ph(I +B−1T )|Hh

]

= [Ph(I +B−1T )−1(Ph − I)(I +B−1T )|Hh
] + I|Hh

= [Ph(I +B−1T )−1(Ph − I)B−1T |Hh
] + I|Hh

,

where ||Ph(I+B−1T )−1(Ph−I)B−1T |Hh
|| ≤ c ||(Ph−I)B−1T || → 0. Hence, the product

of ([Ph(I+B−1T )−1(Ph−I)B−1T |Hh
]+I|Hh

)−1 and [Ph(I+B−1T )−1|Hh
] is the uniformly

bounded inverse of Ph(I +B−1T )|Hh
.

Remark 5.6. The projection Ph in Lemma 5.5 can even be replaced by operators which are
not projections. If the Ph are orthogonal projections and if Bh = (Ph)

∗B|Hh
, then Lemma 5.5

reduces to the classical stability property of projection methods (see e.g. [12, Theorem 13. 7]).

5.3 Convergence analysis of FEM

To prove the convergence of the FEM, we need the Hodge decomposition of the discrete func-
tions in Xh. Define Sh := {ph ∈ H1

qp(Ωb) : ph|K ∈ P k for all K ∈ τh}. We have the discrete
Hodge decomposition Xh = Xh,0 ⊕Xh,1 analogously to Lemma 4.3, where

Xh,1 :=
{
∇ph : ph ∈ Sh

}
⊆ X1,

Xh,0 :=
{
Eh ∈ Xh : 0 =

∫
Ω

k2(x)Eh · ∇ph dx for all ∇ph ∈ Xh,1

}
.

Unfortunately, it is not true that Xh,0 ⊂ X0. This causes difficulties in our convergence analysis.
The following property of discrete compactness will help us to overcome these difficulties.

Definition 5.7. We say the Xh,0 have the discrete compactness property if, for any sequence
En,0 ∈ Xhn,0, n = 1, 2, · · · such that ∥En,0∥X < c with some c independent of index n,
there is an element E0 ∈ X0 and a subsequence of En,0 converging in L2(Ω)3 to E0.

Definition 5.8. Let ρK denote the diameter of the largest sphere inscribed in the tetrahedron
K . We say that the partitions τh are regular as h → 0 if there exist constants c, h0 > 0 such
that maxK∈τh(hK/ρK) ≤ c for all h ∈ (0, h0).
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Analogously to [13, Theorems 7.17, 7.18 and 11.11], we can prove

Lemma 5.9. Suppose that the partitions τh are regular. Then the subspaces Xh,0 posses the
property of discrete compactness.

Finally, the main convergence result is

Theorem 5.10. Suppose that there only exists the trivial solution to the homogeneous varia-
tional equation (4.8) and that the partitions τh of Ω are regular. Then the finite element method
(5.1) with Nédélec’s edge elements coupled to truncated Rayleigh series expansions converges.

Proof. Define the discrete subspaces Hh,l := Xh,l × Y +
h,l × Y −

h,l ⊂ Hh for l = 0, 1. Let

P Y ±
h,l: H −→ Y ±

h,l, P
Xh,l: H −→ Xh,l and PHh,l: H −→ Hh,l be the orthogonal projections.

Note that PXh,1 −→ PX1 as h → 0, where PX1 is the orthogonal projection from H to X1.
Indeed, for ∇p ∈ X1, the problem of finding ∇ph ∈ Xh,1 such that ⟨∇ph,∇qh⟩ = ⟨∇p,∇qh⟩
for all ∇qh ∈ Xh,1 corresponds to the finite element scheme for the quasi-periodic boundary
value problem of finding f ∈ H1

qp(Ω) such that

∆f = ∆p in Ω, e3 · ∇f = e3 · ∇p, on Γ±
b .

This boundary value problem only admits the unique quasiperiodic solution f = p if X does
not contain constant functions. If X contains constants, i.e., if the direction of incidence is θ̂ =
(0, 0,−1)⊤, then the finite element scheme ⟨∇ph,∇qh⟩ = ⟨∇p,∇qh⟩ can be considered in
the factor space H1

qp(Ω)/C. In any case, we have ∇ph → ∇p in L2(Ω)3 and PXh,1 −→ PX1

as h → 0. This together with PX
h −→ PX implies the convergence PXh,0 −→ PX0 as

h → 0. It is easy to see that P Y ±
h,l −→ P Y ±

l .

Let operator A : H → H′ be given as in (4.12). To prove the convergence of the FEM, by
Lemma 5.4 we only need to prove the stability of (Ph)

∗A|Hh
. For clarity, we divide our proof

into five steps by introducing several auxiliary operators and then applying Lemma 5.5.

Step 1. Introduce a new operator B1: H1 → H′
1 as⟨

B1(∇p, E+
1 , E

−
1 ), (∇ξ, V +

1 , V −
1 )
⟩

:=
⟨
A|H1(∇p, E+

1 , E
−
1 ), (∇ξ, V +

1 , V −
1 )
⟩
− ã+4 (E

+
1 , V

+
1 )− ã−4 (E

−
1 , V

−
1 )

−a+6
(
(∇p, E+

1 , E
−
1 ), (∇ξ, V +

1 , V −
1 )
)
− a−6

(
(∇p, E+

1 , E
−
1 ), (∇ξ, V +

1 , V −
1 )
)
.

where the sesquilinear forms ã±4 are given in (4.17). Obviously, −B1 is positively coercive over
H1, i.e.

−Re
⟨
B1(∇p, E+

1 , E
−
1 ), (∇p, E+

1 , E
−
1 )
⟩

= a1(∇p,∇p) + [a+4 (E
+
1 , E

+
1 ) + ã+4 (E

+
1 , E

+
1 )] + [−a−4 (E

−
1 , E

−
1 ) + ã−4 (E

−
1 , E

−
1 )]

≥ c
(
||∇p||2H(curl ,Ω) + ||E+

1 ||2H(curl ,D+) + ||E−
1 ||2H(curl ,D−)

)
for some constant c > 0. Thus the operators [(Ph,1)

∗B1|Hh,1
] are stable as the Galerkin ap-

proximations of B1.
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Define the operator B0 : Z → Z ′, Z := H0 ×X1 by⟨
B0(E0 +∇p, E+

0 , E
−
0 ), (V0 +∇ξ, V +

0 , V −
0 )
⟩

=− a+3 (E
+
0 , V

+
0 )+ã+3 (E

+
0 , V

+
0 ) +a+5 (E0, V

+
0 ) − a+5 (V0, E

+
0 )

− a−5 (E0, V
−
0 ) + a−5 (V0, E

−
0 ) +a−3 (E

−
0 , V

−
0 )+ ã−3 (E

−
0 , V

−
0 )

+

∫
Ω

[
curlE0 · curlV 0 + k2(x)E0 · V 0 + k2(x)∇p · ∇ξ

]
dx,

with the sesquilinear forms ã±3 given in (4.16). From the proof of Theorem 4.1, B0 is positively
coercive over Z , i.e.

Re
⟨
B0(E,E+

0 , E
−
0 ), (E,E+

0 , E
−
0 )
⟩

≥ c
(
||E||2H(curl ,Ω) + ||E+

0 ||2H(curl ,D+) + ||E−
0 ||2H(curl ,D−)

)
(5.4)

where E = E0 + ∇p. Consequently, the operators (PHh,0)∗B0|Hh,0
inherit the coercivity of

B0 in (5.4). Note that, although Hh,0 ⊂ H0 does not hold in general, we have Hh,0 ⊂ Z .
Therefore, the (PHh,0)∗B0|Hh,0

: Hh,0 → H′
h,0 are stable.

Next, we define the operators B : H → H′ and Bh : Hh → H′
h as follows:⟨

B(E,E+, E−), (E,E+, E−)
⟩

:=
⟨
B0(E0, E

+
0 , E

−
0 ), (V0, V

+
0 , V −

0 )
⟩
+
⟨
B1(∇p, E+

1 , E
−
1 ), (∇p, E+

1 , E
−
1 )
⟩
, (5.5)

Bh(Eh, E
+
h , E

−
h ) :=

(
(PHh,0)∗B0|Hh,0

0
0 (PHh,1)∗B1|Hh,1

)(
(Eh,0, E

+
h,0, E

−
h,0)

(∇ph, E
+
h,1, E

−
h,1)

)
.

Obviously, the Bh are stable and the limit operator limh→0 BhPh is equal to B. If we introduce
the operators Tj : H → H′, j = 0, 1, by⟨

T0(E,E+, E−), (V, V +, V −)
⟩

:= −2

∫
Ω

k2(x)E · V dx,⟨
T1(E,E+, E−), (V, V +, V −)

⟩
:=

−ã+3 (E
+
0 , V

+
0 )− ã−3 (E

−
0 , V

−
0 ) + ã+4 (E

+
1 , V

+
1 ) + ã−4 (E

−
1 , V

−
1 )

+a+5 (E0, V
+
1 )− a−5 (E0, V

−
1 )− a+5 (V0, E

+
1 ) + a−5 (V0, E

−
1 )

+a+6
(
(E,E+, E−), (V, V +, V −)

)
+ a−6

(
(E,E+, E−), (V, V +, V −)

)
,

then we arrive at

(Ph)
∗A|Hh

= Bh + (Ph)
∗T1|Hh

+

(
(PHh,0)∗T0|Hh,0

(PH0
h )∗(A− T1)|Hh,1

(PHh,1)∗(A− T1)|Hh,0
0

)
. (5.6)

Step 2. It is easy to see that T1 is compact over H, and the term (Ph)
∗T1|Hh

can be treated by
Lemma 5.5. Next we show that (PHh,0)∗T0|Hh,0

can be treated by Lemma 5.5 as well. Denote
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by Π the orthogonal projection from the space X into X0 with respect to the inner product
⟨E, V ⟩X =

∫
Ω
{curlE · curlV + E · V }dx. Then, Π is also an orthogonal projection in the

L2(Ω)3 sense. Moreover, by the proof of Lemma 4.3, the operator I − Π: X −→ X1 is an
orthogonal projection too. By the definitions of T0 and Π,[

(PHh,0)∗T0|Hh,0

]
PHh,0|Hh

= (Ph)
∗T2|Hh

+D
(0)
h +D

(1)
h , (5.7)

D
(0)
h := −2(PXh,0)∗[k2(x)(I − Π)]|Xh,0

PXh,0 |Hh
,

D
(1)
h := −2(Ph)

∗(PXh,0 − PX0)∗[k2(x)Π]|Xh,0
PXh,0 |Hh

−2(Ph)
∗(PX0)∗[k2(x)Π]|Xh,0

(PXh,0 − PX0)|Hh
,

T2 := −2(PX0)∗[k2(x)Π]PX0 .

Here T2 is compact due to Lemma 4.3. Again (Ph)
∗T2|Hh

can be treated by Lemma 5.5 and it

remains to show ∥D(j)
h ∥Hh→H′

h
→ 0 for j = 0, 1.

The convergence ∥D(1)
h ∥ → 0 follows easily since [k2(x)Π] : X → X ′ is compact and

since (PXh,0 −PX0) → 0. Consequently, it remains to prove that ∥D(0)
h ∥ → 0 as h → 0. It

suffices to show that ∥(I − Π)|Xh,0
∥Xh,0→X′ → 0 with h → 0, i.e., that, for any sequence

∥(I − Π)|Xhn,0
∥Xhn,0→X′ with hn → 0, there is a subsequence tending to zero. Choose

Ehn,0 ∈ Xhn,0 such that ∥Ehn,0∥X = 1 and ∥(I −Π)Ehn,0∥X′ = ∥(I −Π)|Xhn,0
∥Xhn,0→X′ .

Recalling Lemma 5.9, without loss of generality we can assume the convergence Ehn,0 −→
E0 ∈ X0 in L2(Ω)3. Since Π is bounded in L2, we have (I −Π)Ehn,0 → (I −Π)E0 = 0 in
L2(Ω)3. Noting that X ⊆ L2(Ω)3 and L2(Ω)3 ⊆ X ′, we finally conclude

∥(I − Π)Ehn,0∥X′ ≤ ∥(I − Π)Ehn,0∥L2(Ω)3 → ∥(I − Π)E0∥L2(Ω)3 = 0.

This gives ||D(0)
h || → 0 as h → 0.

Step 3. For Eh, Vh ∈ Xh, recall the decompositions

Eh = Eh,0 +∇ph = Π(Eh,0) + (I − Π)(Eh,0) +∇ph,

Vh = Vh,0 +∇ξh = Π(Vh,0) + (I − Π)(Vh,0) +∇ξh,

with Eh,0, Vh,0 ∈ Xh,0 and ∇ph,∇ξh ∈ Xh,1. We set T := T0 + T1 and claim that

(Ph)
∗A|Hh

= Bh + (Ph)
∗T |Hh

+D
(0)
h +D

(1)
h +D

(2)
h , (5.8)

where D
(2)
h : Hh → H′

h is defined by⟨
D

(2)
h (Eh, E

+
h , E

−
h ), (Vh, V

+
h , V −

h )
⟩

:= a+5
(
(I − Π)(Eh,0), V

+
h,1

)
− a−5

(
(I − Π)(Eh,0), V

−
h,1

)
−a+5

(
(I − Π)(Vh,0), E

+
h,1

)
+ a−5

(
(I − Π)(Vh,0), E

−
h,1

)
.

In fact, the formulas (5.6) and (5.7) imply (5.8) if we can show that the operator D(2)
h is the

off-diagonal part of the matrix on the right-hand side of (5.6). Hence, it suffices to prove D
(2)
h =
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[(PHh,0)∗(A− T1)|Hh,1
]PHh,1 + [(PHh,1)∗(A− T1)|Hh,0

]PHh,0 . We conclude⟨
(PHh,1)∗(A− T1)|Hh,0

(Eh, E
+
h , E

−
h ), (Vh, V

+
h , V −

h )
⟩

= −a1
(
(I−Π)(Eh,0),∇ξh

)
+ a+5

(
(I−Π)(Eh,0), V

+
h,1

)
− a−5

(
(I−Π)(Eh,0), V

−
h,1

)
= a+5

(
(I−Π)(Eh,0), V

+
h,1

)
− a−5

(
(I−Π)(Eh,0), V

−
h,1

)
, (5.9)

where we have used the identity

a1
(
(I − Π)(Eh,0),∇ξh

)
=

∫
Ω

k2(x)Eh,0 · ∇ξhdx−
∫
Ω

k2(x)Π(Eh,0) · ∇ξhdx = 0.

Analogously, it can be seen that⟨
(PHh,0)∗(A− T1)|Hh,1

(Eh, E
+
h , E

−
h ), (Vh, V

+
h , V −

h )
⟩

= −a+5
(
(I − Π)(Vh,0), E

+
h,1

)
+ a−5

(
(I − Π)(Vh,0), E

−
h,1

)
. (5.10)

Eqns. (5.9) and (5.10) imply that [(PHh,0)∗(A−T1)|Hh,1
]PHh,1+[(PHh,1)∗(A−T1)|Hh,0

]PHh,0

coincides with D
(2)
h . Formula (5.8) is thus proven.

Step 4. We shall prove ||D(2)
h || → 0. First we derive ||(PHh,1)∗(A−T1)|Hh,0

|| → 0. By (5.9),
we choose functions Eh,0 and V ±

h,1 with ||Eh,0||H(curl ,Ω) = 1, ||V ±
h,1||H(curl ,D±) = 1 such that

||(PHh,1)∗(A−T1)|Hh,0
|| = a+5 (∇qh, V

+
h,1)− a−5 (∇qh, V

−
h,1), ∇qh := (I − Π)Eh,0.

Using the definition of a+5 , we get

a+5 (∇qh, V
+
h,1) = −

∫
Γ+
b

e3×∇qh · curlV +
h,1 ds,

|a+5 (∇qh, V
+
h,1)| ≤ ||e3 ×∇qh||H−1/2

t (Γ+
b )
||curlV +

h,1||H1/2
t (Γ+

b )
. (5.11)

On the one hand, we have for any a ∈ C,

||e3 ×∇qh||H−1/2
t (Γ+

b )
= ||∇Γ+

b
(qh + a)||

H
−1/2
t (Γ+

b )
≤ c ||qh + a||H1/2(Γ+

b )

≤ c ||qh + a||H1(Ω),

where ∇Γ+
b

denotes the surface gradient operator over Γ+
b . Hence,

||e3 ×∇qh||H−1/2
t (Γ+

b )
≤ c inf

a∈C
||qh + a||H1(Ω) ≤ c ||∇qh||L2(Ω)3 . (5.12)

On the other hand, for V +
h,1 =

∑
n: |n|≤C/|h| cnU

+
n,1 ∈ Y +

1 , there holds

||curlV +
h,1||H1/2

t (Γ+
b )

≤ ||curlV +
h,1||H1(D+)3 =

∥∥∥ ∑
n: |n|≤C/|h|

cn curlU
+
n,1

∥∥∥
H1(D+)3

. (5.13)
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In view of the identity curlU+
n,1 = −i(k+)2/

√
|αn|2 + |β+

n |2 U+
n,0 (see [10, Lemma 3.1]) and

the relation
√

|αn|2 + |β+
n |2 = O(|n|) as |n| → ∞, we get

∥∥∥ ∑
n: |n|≤C/|h|

cn curlU
+
n,1

∥∥∥
H1(D+)3

≤ c

 ∑
n: |n|≤C/|h|

|cn|2|n|−2||U+
n,0||H1(D+)3

1/2

≤ c

 ∑
n: |n|≤C/|h|

|cn|2 ||U+
n,0||L2(D+)3

1/2

≤ c

 ∑
n: |n|≤C/|h|

|cn|2 ||U+
n,1||L2(D+)3

1/2

,

where the last two equalities follow from the estimates derived in the proof of [10, Lemma 4.5].
Recalling (5.13) and the representation of V +

h,1 as an expansion with respect to the basis func-
tions U+

n,1, we obtain

||curlV +
h,1||H1/2

t (Γ+
b )

≤ c ||V +
h,1||L2(D+)3 ≤ c ||V +

h,1||H(curl ,D+) ≤ c. (5.14)

Inserting the estimates (5.12) and (5.14) into (5.11) yields |a+5 (∇qh, V
+
h,1)| ≤ c+5 ||∇qh||L2(Ω)3

for some c+5 > 0, and analogously, there exists another non-negative constant c−5 such that
|a−5 (∇qh, V

−
h,1)| ≤ c−5 ||∇qh||L2(Ω)3 . Thus, to prove ||(PHh,1)∗(A− T1)|Hh,0

|| → 0, we only
need to verify ||∇qh||L2(Ω)3 → 0 as h → 0. However, we can choose Eh,0 with ∥Eh,0∥X = 1
such that ||(PHh,1)∗(A− T1)Eh,0|| = ||(PHh,1)∗(A− T1)|Hh,0

||. From the discrete compact-
ness of the space Xh,0 in Lemma 5.9, for any sequence Ehn,0, we can always find a subse-
quence converging in L2(Ω)3 to an E0 ∈ X0. We denote this subsequence again by Ehn,0.
Then ||∇qhn||L2(Ω)3 = ||(I − Π)Ehn,0||L2(Ω)3 → ||(I − Π)E0||L2(Ω)3 = 0. In other words,
any sequence ||(PHhn,1)∗(A− T1)Ehn,0|| has a subsequence tending to zero. Consequently,
||(PHh,1)∗(A− T1)Eh,0|| converges to zero.

Arguing analogously, one can prove the convergence ||(PHh,0)∗(A−T1)|Hh,1
||→ 0 as h→ 0

via the identity (5.10). Hence, it holds that ||D(2)
h ||→0.

Step 5. Setting Dh := D
(0)
h + D

(1)
h + D

(2)
h , Equ. (5.8) is the representation of Lemma 5.5.

It can be concluded from Steps 1- 4 that the Bh are stable operators, T is compact and that
Dh is only a small perturbation. By the uniqueness assumption in Theorem 5.10, we see from
Theorem 3.1 that A is invertible. Now, applying Lemma 5.5 yields the stability of (Ph)

∗A|Hh
.

The proof of the convergence of the FEM is thus completed.

6 Multi-layer system beneath the grating structure

In many applications there is an adjacent multi-layer system beneath the lower face x3=−b of
the grating. More precisely (cf. Fig. 2), for a sequence bk, k=0, . . . , K of x3-coordinates such
that −b= b0 >b1 > . . . > bK , the function ϵ(x) + iσ(x)/ω in the layer bk−1 >x3 >bk takes
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Figure 2: Grating with multi-layer system.

the constant value ϵk with Im ϵk≥ 0 such that Re ϵk> 0 for Im ϵk=0. Of course, in the lower
half space bK>x3 we suppose ϵ(x) + iσ(x)/ω=ϵ−0 .

For a variational formulation adapted to the multi-layer system, we need modified spaces Y −
l ,

l=0, 1. Clearly, the tangential traces of E and curlE are continuous over the interfaces x3=
bk. Solving these transmission problems, each downward propagating E = exp(−iβ−

n b)U
−
n,l

in the half space bK > x3 corresponds to an extended field E in b0 > x3 such that E(x) =
κup
n,l,kU

up
n,l,k(x) + κdo

n,l,kU
do
n,l,k(x) for bk−1>x3>bk, k = 1, 2, . . . , K , where κup

n,l,k, κ
do
n,l,k ∈ C

and

Uup
n,0,k(x) := ei[αn·x′+βn,k(x3+b)]


(0,−1, 0)⊤ if |αn|=0
1+i(x3+b)

|αn| (−α
(2)
n , α

(1)
n , 0)⊤ if βn,k=0

1
|αn|(−α

(2)
n , α

(1)
n , 0)⊤ else

,

Uup
n,1,k(x) := ei[αn·x′+βn,k(x3+b)]


(1, 0, 0)⊤ if |αn|=0

1√
|αn|2+|αn|4

(
− αn, |αn|2

(
1+i(x3+b)

))⊤
if βn,k=0

1

|αn|
√

|αn|2+|βn,k|2
(−βn,kαn, |αn|2)⊤ else

,
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Udo
n,0,k(x) := ei[αn·x′−βn,k(x3+b)]


(0, 1, 0)⊤ if |αn|=0
1−i(x3+b)

|αn| (α
(2)
n ,−α

(1)
n , 0)⊤ if βn,k=0

1
|αn|(α

(2)
n ,−α

(1)
n , 0)⊤ else

,

Udo
n,1,k(x) := ei[αn·x′−βn,k(x3+b)]


(−1, 0, 0)⊤ if |αn|=0

1√
|αn|2+|αn|4

(
αn, |αn|2

(
1−i(x3+b)

))⊤
if βn,k=0

1

|αn|
√

|αn|2+|βn,k|2
(βn,kαn, |αn|2)⊤ else

,

βn,k :=
√
ω2µ0ϵk − |αn|2, βn,K+1 := β−

n .

Fix n and l. It is not hard to see (cf. [15, Sect. III.4]) that, for each linear combination of Uup
n,l,K+1

and Udo
n,l,K+1 in the half space x3<bK , there exist unique linear combinations of the Uup

n,l,k and

Udo
n,l,k in the layers bk<x3<bk−1, k=1, . . . , K such that the tangential traces over the inter-

faces x3= bk, k=1, . . . , K of the functions and of their curls in the adjacent layers coincide.
Similarly, to each linear combination of Uup

n,l,1 and Udo
n,l,1 in the layer b1 < x3 < b0 there exist

unique linear combinations of the Uup
n,l,k and Udo

n,l,k in the layers bk<x3<bk−1, k=2, . . . , K
and in the half space x3<bK such that the tangential traces of the functions and of their curls
in adjacent layers coincide. Hence, the coefficients κup

n,l,k, κ
do
n,l,k are uniquely determined. For

instance, if all the βn,k are non-zero and |αn| ̸= 0, then(
κup
n,l,1

κdo
n,l,1

)
= Mn,l,1 Mn,l,2 . . . Mn,l,K

(
0
1

)
, (6.1)

Mn,0,k :=

(
βn,k+1+βn,k

2βn,k
ei[βn,k+1−βn,k]bk βn,k+1−βn,k

2βn,k
e−i[βn,k+1+βn,k]bk

βn,k+1−βn,k

2βn,k
ei[βn,k+1+βn,k]bk βn,k+1+βn,k

2βn,k
e−i[βn,k+1−βn,k]bk

)
,

Mn,1,k :=

√
|αn|2 + |βn,k|2
|αn|2 + |βn,k+1|2

[
|αn|2+β2

n,k+1

|αn|2+β2
n,k

+
βn,k+1

βn,k

]
ei[βn,k+1−βn,k]bk

[
|αn|2+β2

n,k+1

|αn|2+β2
n,k

− βn,k+1

βn,k

]
e−i[βn,k+1+βn,k]bk[

|αn|2+β2
n,k+1

|αn|2+β2
n,k

− βn,k+1

βn,k

]
ei[βn,k+1+βn,k]bk

[
|αn|2+β2

n,k+1

|αn|2+β2
n,k

+
βn,k+1

βn,k

]
e−i[βn,k+1−βn,k]bk

.

Note that the coefficients κup
n,l,1 and κdo

n,l,1 can be computed by numerically stable algorithms
(cf. e.g. [15, Sect. III.6]).

Setting Ũ−
n,l := κdo

n,l,1U
do
n,l,1 + κup

n,l,1U
up
n,l,1, we define the modified spaces Y −

l by (4.5) but with

U−
n,l replaced by Ũ−

n,l. Now the new variational formulation for the transmission problem is just
(4.8) with a modified (4.7) defined over H := X × Y + × (Y −

0 ⊕ Y −
1 ) including the modified

spaces Y −
l . The modified sesquilinear form is the sum of (4.7) and the additional term

−η−
1∑

l=0

∑
n: e3×Ũ−

n,l=0

[∫
Γ−
b

e3×(E−E−) · (e3×U
−
n,l) ds

∫
Γ−
b

(curlV −) · (curlU −
n,l) ds

]
.

.
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Remark 6.1. All the results for the variational formulation and for the FEM coupled by the wave
modes remain true for the case of multi-layer systems beneath the grating structure and the
new variational form.

Indeed, we sketch the proof now. From the definitions of the Uup
n,l,1 and Udo

n,l,1, we observe

e3×Uup
n,l,1=−e3×Udo

n,l,1 and (curlUup
n,l,1)T =(curlUdo

n,l,1)T over the curve Γ−
b . Consequently,

the traces entering the sesquilinear forms satisfy

e3×Ũ−
n,l = [κdo

n,l,1 − κup
n,l,1] e3×Udo

n,l,1, (6.2)
(curl Ũ−

n,l)T = [κdo
n,l,1 + κup

n,l,1] (curlU
do
n,l,1)T .

If βn,1 = 0, then [κdo
n,1,1−κup

n,1,1] ̸= 0 since otherwise e3× Ũ−
n,1 = 0, which together with

(curl Ũ−
n,1)T =0 would contradict to the one-to-one mapping between the linear combinations

of wave modes mentioned above. This fact and the special choice of the additional term in
the modified sesquilinear form guarantee (cf. [10, proof of Lemma 3.3]) the equivalence of the
boundary value problem and the variational equation in the case of multi-layer systems.

Fredholm property with index zero for the variational operator and convergence of the FEM
coupled by wave modes follow from the fact that the operator corresponding to the modified
variational form is a compact perturbation of that of the original form. To see this fact, we observe
βn,k/|n| → i for |n| →∞ and βn,k − βn,k+1 = (k2

k − k2
k+1)/(βn,k + βn,k+1) ∼ |n|−1 with

kk := ω
√
ϵkµ0. Consequently, Equ. (6.1) implies κdo

n,l,1→1, κup
n,l,1→0 and [κdo

n,l,1±κup
n,l,1]→1

for the factors in (6.2). In other words, the difference between the modified operator and the
original is the multiplication by operators represented with respect to the wave mode basis by
the diagonal matrices ([κdo

n,l,1 ± κup
n,l,1]δn,n′)n,n′ . In view of Udo

n,l,1 = exp(−iβ−
n b)U

−
n,l and∥∥∥∥∥∑

n∈Z2

1∑
l=0

cn,lU
−
n,l

∥∥∥∥∥
H(curl ,D−)

∼

(∑
n∈Z2

1∑
l=0

e−2|n|b 1 + |n|2l

1 + |n|
|cn,l|2

)1/2

(cf. [10, Lemma 3.1]) such a diagonal operator is a compact perturbation of the identity.

7 Numerical example

For a simple numerical test we consider two profile gratings on the surface of a SiO2 body. The
echelle grating (cf. the left of Fig. 3) is designed to deflect light into the direction specular with
respect to the inclined upper faces. The idea of blaces (cf. the right of Fig. 3) with the width
b less and the length l larger than the wavelength of light λ, is to provide a similar effective
medium distribution and to function like an echelle grating. Hopefully, such blaces are of better
stability (cf. [9]).

In Table 2 we compare the new 3D coupling algorithm (4.8) of Sect. 5.1 applied to the 2D
echelle grating with the reliable results of the 2D FEM code solving the Helmholtz equation. The
efficiencies

e+n :=
β+
n

β+
(0,0)

|E+
n |2 , e+n :=

(k+)2

(k−)2
β−
n

β+
(0,0)

|E−
n |2
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Figure 3: Geometry of grating: left - echelle grating, right - blaces.

meshsize e+−2,0 e+0,0 e−1,0 e−2,0
125.0 nm 4.82 0.0027 43.23 3.78
62.5 nm 4.530 0.0022 45.0080 4.1289
31.2 nm 4.5039 0.0019 45.0559 4.1142
2D code 4.5025 0.0019 45.0630 4.1145

Table 2: Computation of efficiencies for echelle grating. Comparison of FEM from Sect. 5.1
with two-dimensional FEM simulation.

of the electric field solution are computed for wavelength λ= 500 nm, period l = 10µm, and
height h = 0.5µm. The grating is illuminated exactly from above under TE polarization. The
FEM of Sect. 5.1 is applied with quadratic edge elements. The upper coupling modes n =
(n1, n2) are restricted to |n1| ≤ 22 and |n2| ≤ 2, the lower modes to |n1| ≤ 32 and |n2| ≤ 2.
Moreover, the coupling parameters η± are set to zero. For the mesh-size tending to zero, the 3D
results converge to those of the 2D simulation. Adding more coupling modes does not improve
the accuracy.

Next we apply the same 3D algorithm to the blaces and compare the results with those obtained
by the algorithm of Huber et al. (cf. [11]). Here the periods are chosen as Λ1= l=10µm and
Λ2 = b= λ/2 and the other parameters like for the echelle grating. The resulting efficiencies
coincide upto numerical errors.

meshsize e+0,0 e+0,0 e+1,0 e+1,0 e−0,0 e−0,0 e−1,0 e−1,0
125.0 nm 2.8328 3.0985 0.1661 0.1661 75.2800 76.289 10.1503 10.1465

62.5 nm 2.8172 2.8333 0.1918 0.1918 75.5412 75.553 10.7248 10.7197
31.2 nm 2.8119 2.8136 0.1944 0.1944 75.4717 75.490 10.7787 10.7711

Table 3: Computation of efficiencies for blaces. Comparison of FEM from Sect. 5.1 (left numbers
in column) with FEM of [11] (right numbers).
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