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Abstract

Suggested by conversations in 1991 (Mark Krasnosel’skiı̆ and Aleksei Pokrovskiı̆ with
TIS), this paper generalizes earlier work [7] of theirs by defining a setting of hybrid sys-
tems with isotone switching rules for a partially ordered set of modes and then obtaining
a periodicity result in that context. An application is given to a partial differential equation
modeling calcium release and diffusion in cardiac cells.

1 Introduction

This work was inspired by discussions in 1991 with Mark Krasnosel’skiı̆ and Alexei Pokrovskiı̆,
considering periodic solutions of systems involving discontinuous modal switching through the
standard relay operator of ideal hysteresis. In comparison with other early work on periodic
solutions of such systems, Krasnosel’skiı̆ and Pokrovskiı̆ drew attention to their paper [7]: where
the other work (cf., e.g., [2, 3, 4, 10, 13, 12, 14] had focused on the thermostat setting (using
continuity between switching times to seek a two-phase periodic solution, i.e., with a pair of
complementary modal switches in each period), the paper [7] used the known order preserving
property of the standard relay to avoid dependence on continuity. Since the thermostat setting is
intended to provide stabilizing negative feedback, it involved antitone use of the relay, whereas
with isotone use of the operator, one may hope to apply the Birkhoff Fixpoint Theorem:

BFT [1]: “Every isotone selfmap of a complete lattice has a fixed point,”

The principal result in [7] concerned scalar systems of the form

Py = f̂(t, y, w) w(·) = W[y(·)] (1.1)

where P is an ordinary differential operator p(d/dt) and W is a standard relay operator; one
assumes, of course, that f̂ is periodic in any explicit dependence on t. [Both the differential
equation and the relay operator are normally expressed as initial value problems so, although
we are seeking periodic solutions of (1.1), we would need initial data [η, ω] for y, w.] More
generally, a hybrid system considers a state which evolves by some mode (e.g., given by a dif-
ferential equation — in (1.1) determined by the function f̂ ) on time intervals where the modal
specification w(t) remains constant. Note that it has long been known (cf., e.g., [8]) that the
standard relay operator is isotone and, while generalized relays embodying switching rules for
more general sets of modes than {0, 1} have been discussed in the literature of hybrid sys-
tems (cf., e.g., [5]), there seems not to have been consideration1 of these from the viewpoint of
isotonicity in connection with periodicity.

1It seems plausible that arguments along our present line could give existence of periodic solutions for the use
of a Preisach operator replacing W in (1.1), but this does not quite fit the present formulation and we have not
pursued the possibility.
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The argument of [7] involves defining a suitable period map F. Due to involvement of the relay,
the map F is not continuous. Nevertheless, as F can be shown to be an isotone selfmap of a
complete lattice, the Birkhoff Fixpoint Theorem can be applied to provide a periodic solution of
the system. This use of the BFT remains the core of our present argument, although we use a
slightly stronger statement:

Theorem 1.1. If X is a complete lattice and F : X → X is isotone, then x̄ = inf{x : Fx ≺
x} is a fixed point of F, hence the minimum fixed point.

Those discussions, seeking some interesting application in a more general setting, never re-
sulted in joint publication on this topic. In this paper, in comparison with [7],

1 we replace the scalar state variable by a vector or function,

2 we take into consideration more recent development of hybrid systems and formulate the
problem with a generalized relay operator W[·, ·], presented in terms of switching rules
among a set M of modes,

3 we consider more general dynamics, e.g., defined through evolutionary partial differential
equations,

4 we assume a sensor map Y (not necessarily continuous) and distinguish between the
state x(t) determined by the dynamics and the sensor values y(t) used to determine the
modal switching,

5 we include application to a model problem of some biological interest, involving calcium
waves in cardiac cells.

2 Isotone generalized relay operators

To some extent we are following [10, 11, 5] here in the description of generalized relay operators
through switching rules.2 We will impose assumptions on the switching rules to ensure that the
modal index function w(·) will be piecewise constant with a finite number of pieces (non-Zeno),
although allowing degenerate interswitching intervals.

We must define W : M ×Y →M where Y is a space of left-continuous Y -valued functions
and M is a space of non-Zeno M -valued functions with M a finite set of modes, the state
space of the generalized relay. Later we will also introduce spaces X,Z and spaces X ,Z
of admissible X,Z-valued functions3 which will be needed for the dynamics, then restricting
attention to subsets X∗ ⊂ X and Z∗ ⊂ Z . We will make the assumptions:

2Note that our present concerns are rather different from those: for example, it was important in [10, 5] to
preserve closure by admitting ambiguities leading to multi-valued operators whereas that is inconsistent with our
focus here.

3We will work with these as functions on [0, T ], but also view them as defined on [0,∞) — either by considering
a differential equation there or repeating [0, T ] periodically.
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(A)

1 The spaces M,X, Y,Z are partially ordered (so also X ×M is partially ordered
with the product order); we take the partial order of the function spaces X ,Y as
induced pointwise. With this,X andZ are to be conditionally complete lattices (i.e.,
each nonempty bounded subset has a sup and inf).

2 M,X∗,Z∗ are complete lattices (i.e., every nonempty subset has a sup and inf).

3 X, Y are Hausdorff spaces; X consists of continuous functions and Y consists
of functions having at most jump discontinuities: both y(t−) and y(t+) exist; we
assume y(t) = y(t−) and that y(T+) is also given.

[Note that we do not require that Y , X , Z , or the function spacesM,X ,Y should have the
inf, sup property considered in (A-2).] For verifying the completeness in (A-2) it may be useful
to note that

Lemma 2.1. If I is any conditionally complete lattice, then each order interval (I∗ = {s ∈ I :
s− ≺ s ≺ s+} with s− ≺ s+ in I) will be a complete lattice. If F : I → I is isotone and
there exist s− ≺ s+ in I with F(s−) � s− and F(s+) ≺ s+, then F is a selfmap of this order
interval I∗.

PROOF: The first part is immediate. For s ∈ I∗ so s � s−, the isotonicity of F gives
F(s) � F(s−) � s−; similarly, F(s) ≺ s+. Thus F(s) ∈ I∗.

The key to the definition4 of a generalized relay operator W : y(·) 7→ w(·) will then be the
specification of a collection S of subsets of the observation space Y :

S = {C(ω, ω̂) : ω, ω̂ ∈M} (2.1)

so w = W[ω∗, y] is to be determined by the switching rules:

� an initial state ω∗ is given.

� y(t) ∈ C(ω, ω) on every open interval on which w(·) ≡ ω — equivalently, w remains
constant = ω so long as y(·) remains in C(ω, ω).

� switching ω y ω̂ occurs at t∗ if y(·) enters C(ω, ω̂), giving w(t∗) = ω̂.

Statically, these rules simply characterize an admissibility relation between y(·) and w(·). We
actually expect application of these rules (assumingw(·) is to be piecewise constant5) to enable
the dynamic construction of w(·) from y(·) and it is this input/output map W, when properly
defined, which we call a generalized relay operator.

We recognize that y(·) will also be undergoing dynamic construction so we will need still further
assumptions on the coupled dynamics to ensure that this will work properly to define the pair

4Because of the nature of our arguments, we view W as associated with a fixed interval [0, T ], but, being
concerned with periodicity, think of the arguments as potentially defined on R so it would be meaningful to consider
y(0−) and ω∗ = w(0−). There is nothing special about the initial and terminal times, so we admit the possibility
that t∗ = 0, T could be switching times.

5We permit some of the ‘pieces’ here to be degenerate intervals (i.e., length 0): the point is a finite number of
switches.
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[x(·), w(·)]. At this point, however, we make the following assumptions on the switching rules
and inputs:

(B)

1 For each ω the collection Sω = {C(ω, ω̂) : ω̂ ∈ M} is a partition of Y with
C(ω, ω) open and nonempty. For each ω̂ we have C(ω, ω̂) ⊂ C(ω̂, ω̂).

2 Suppose η, η′ ∈ Y , ω, ω′, ω̂, ω̂′ ∈ M with η ∈ C(ω, ω̂), η′ ∈ C(ω′, ω̂′)
Then [η � η′, ω � ω′] implies ω̂ � ω̂′.

3 For some M̂ ⊂M×M , there is a bound on the length of a sequence [ω1, ω2, . . .]
such that: ωk+1 6= ωk, C(ωk, ωk+1) 6= ∅, and [ωk, ωk+1] 6∈ M̂ .

4 There is some ε > 0 such that: if y(·) ∈ Y with y(t∗) ∈ C(ω, ω̂) for some
[ω, ω̂] ∈ M̂ , then y stays in C(ω̂, ω̂) for t∗ < t < t∗ + ε.

It is, of course, (B-2) which constitutes the isotonicity of the switching rules; we will easily ob-
serve that this ensures isotonicity in ω∗, y(·) of the operator W. The conditions (A-3) and
(B-3,4) take the form given here since we wish to allow for the occurrence of discontinuous
observation functions y(·) in the example of Section 5; it is then necessary6 to verify these
assumptions for such examples. We will take the construction below as uniquely defining the
operator W and our interpretation of the switching rules.

Theorem 2.2. The operator W : [ω∗, y(·)]→ w(·) : M × Y →M with

M :=
{
w : [0, T ]→M

∣∣ ∃ 0 = t0 < · · · < tK = T, ω0, . . . , ω2K ∈M :

w(·) ≡ ω2k+1 on (tk, tk+1), for k = 0, . . . , K − 1, (2.2)

w(tk) = ω2k for k = 0, . . . , K
}

7

is well-defined and isotone.

PROOF: Let ω∗ ∈ M and y(·) ∈ Y be given. We construct a (finite) set t0 = 0 < t1 <
. . . < tK = T and corresponding {ωk} such that w of the form considered in (2.2) satisfis the
switching rules.

Start with t0 = 0 and k = 0. There is a unique ω0 such that y(0) ∈ C(ω∗, ω0). If y(·) in
C(ω0, ω0) on (0, s′) for some s′ > 0, then set ω1 := ω0. Otherwise, there is a unique ω̂ 6= ω0

such that y(0+) ∈ C(ω0, ω̂), and we set ω1 := ω̂.

Now, we proceed recursively in k. Given tk, sk and ω2k+1, let t∗ be the maximal element in
(tk, T ] such that y(t) ∈ C(ω2k+1, ω2k+1) on (tk, t∗); set tk+1 = t∗. BecauseC(ω2k+1, ω2k+1)
is open, maximality of t∗ ensures, by (A-3), that one must have either

� t∗ = T , in which case set ω2k+2 := ω̂ with ω̂ satisfying y(t∗) ∈ C(ω2k+1, ω̂), set
K = k + 1, and stop, or

6Here we have not required that Y : X → Y be continuous. If y were continuous, one ensures avoidance
of Zeno phenomena by having each C(ω, ω) open, but, when inputs may jump, the last of the switching rules
requires some interpretation.

7The condition in the last line of (2.2) is equivalent to request that w(·) ≡ ω2k on the degenerate interval
[tk, tk] for k = 0, . . . ,K .
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� y(t∗) ∈ C(ω2k+1, ω2k+1), t∗ < T and y(t∗+) ∈ C(ω2k+1, ω̂) with ω2k+1 6= ω̂ in
which case set ω2k+2 := ω2k+1 and ω2k+3 = ω̂, or

� y(t∗) ∈ C(ω2k+1, ω̂) with ω̂ 6= ω2k+1, t∗ < T . In this case set ω2k+2 := ω̂.

� If in this case y(·) ∈ C(ω̂, ω̂) holds on (t∗, s
′) for some s′ ∈ (t∗, T ], then set

ω2k+3 := ω̂.

� Otherwise, consider ω′ with y(t∗+) ∈ C(ω̂, ω′) and set ω2k+3 := ω′.

(B-1) ensures that each ωi is uniquely determined and that when using y(t∗+) to define ω2k+3,
we have some s′ > t∗ such that y(·) is in the open set C(ω̂, ω̂) on (t∗, s

′). (B-3,4) ensures
that this recursion must terminate with K finite and tK = T with a well-defined terminal value
w(T ) = ω2K .

To see the isotonicity, we take ω∗ ≺ ω′∗ and y ≺ y′ and, for t∗ defined by maximality for one of
(either) w1 or w2, we must verify the appropriate comparisons. In each of the cases (all combi-
nations of the construction and of the determination of t∗) one easily sees that the assumption
(B-2) ensures the correctly isotonic comparison of the “new” values8 ω̂ and ω̂′ so we again pro-
ceed recursively in k to get w = W(ω∗, y) ≺ w′ = W(ω′∗.y

′).

[It is also interesting to observe that — with w = W(ω∗, y) and defining yτ (s) = y(s+ τ) —
we then get

W(w(τ), yτ ) (t) = W(ω∗, y)(t+ τ) (τ > 0).] (2.3)

It will be convenient to consider Cartesian products: if W1 and W2 are given by switching sets
S1 in Y1 and S2 in Y2, we may let W = W1 ⊗W2 be the generalized relay operator induced
by taking M = M1 × M2 and Y = Y1 × Y2 with9 C([ω1, ω2], [ω′1, ω

′
2]) = C(ω1, ω

′
1) ×

C(ω2, ω
′
2) ⊂ Y, etc. Obviously one could similarly consider products W = W1⊗· · ·⊗WN .

It is again easy to verify that

Lemma 2.3. Suppose each of the factors W1, . . .WN is an isotone generalized relay operator.
Then the product W = W1 ⊗ · · · ⊗WN is also an isotone generalized relay operator.

3 Coupled dynamics

We are considering problems here in which, for piecewise constant w ∈ M, we have an X-
valued state x which, on each (nondegenerate) interval of constancy of w(·) (interswitching
interval), is to satisfy an abstract ODE of the form

ẋ = Lx+ Bz with z(t) = f(t, x, w). (3.1)

8Note that we take ω̂ = ω if t∗ would not be a switching time for w1, etc.
9Observe that whenever we might have simultaneous switchings in W1 and in W2, the pair here appears in

the product W1 ⊗W2 as a single switch to the resultant pair.
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Here B : Z → X and L : X ⊃ D(L)→ X are suitable linear operators and f : [0, T ]×X×
M → Z ; we use z(t) = f(t, x(t), w(t)) pointwise to define Φ : [x,w] 7→ z for functions.

We actually wish to construct x(·) and w(·) simultaneously. We begin by assuming

(C)

1 Given ξ ∈ X∗ and a function z(·) ∈ Z∗, there is a (unique) solution x(·) ∈ X
(with each x(t) ∈ X∗) of the ODE

ẋ = Lx+ Bz with x(0) = ξ. (3.2)

2 We assume 1. gives10 Y(x) ∈ Y .

Lemma 3.1. Under the hypotheses above, there is a well-defined map

G : [ξ, ω, z] 7−→ [x(·), w(·)] : X∗ ×M ×Z∗ → X ×M

defined dynamically so that x(·) satisfies (3.2) (with the given z) and withw(·) = W(ω∗,Y(x(·)) ∈
M given by the switching rules.

PROOF: Given ξ, z we solve (3.2), noting (C-1), to get x ∈ X . By (C-2) and Theorem 2.2
we then get w = W(ω, y), defined dynamically.

We denote the resulting [x,w] by G[ξ∗,ω∗](z), to emphasize consideration of the map: z 7→
[x,w] for fixed initial data.

Using z(t) = f(t, x(t), w(t)) pointwise in t to define Φ : [x,w] 7→ z, the coupled dynamics
for a solution with data [ξ∗, ω∗] take the implicit form

[x,w] = G[ξ∗,ω∗](z) with z = Φ(x,w). (3.3)

[This is just the distinction between (3.1) and (3.2).] Rather than working with the state taken
implicitly as in (3.3) above, it is convenient to introduce the composition

Ψ[ξ∗,ω∗] = Φ ◦G[ξ∗,ω∗]. (3.4)

Any fixed point of this map is a solution of (3.3) with the given data. We now impose isotonicity
assumptions:

(D)

1 The nonlinearity f(t, ·, ·) is isotone11 from X∗ ×M for t ∈ [0, T ].

2 For [x,w] = G[ξ,ω](z) with z ∈ Z∗, one has Φ(x,w) ∈ Z∗, i.e., Z∗ is invariant
under Ψ.

3 The ordinary differential equation defining G is isotone, i.e., if ξ � ξ′ in X∗ and
z(t) � z′(t) in Z for each t ∈ [a, b] ⊂ [0, T ], then the solutions x, x′ of ẋ =
Lx+Bz with x(0) = ξ and of ẋ′ = Lx′+Bz′ with x′(0) = ξ′ give x(t) � x′(t)
on [0, T ].

10We expect x ∈ X to be continuous in t for the X-topology but, since we have not assumed that Y : X → Y
is continuous, having Y(x) ∈ Y is a more delicate assumption.

11Note that we have no need to assume any continuity of f .
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4 The sensor map Y : X∗ → Y is isotone.

Lemma 3.2. Under the hypotheses above the implicit system (3.3) has a unique miniimum
solution for each initial [ξ∗, ω∗] ∈ X∗ ×M .

PROOF: By (D-2), each Ψ[ξ∗,ω∗] is a selfmap of the complete lattice Z∗. Since the par-
tial orders of X ,M,Z were defined pointwise, (D-1) gives isotonicity of Φ. Similarly, the as-
sumed isotonicities of (D-1,3) ensure isotone dependence of x(t) on ξ and on z whence
y(t) = Y(x(t)) will depend isotonically on these by (D-4). As W is isotone, we also have
isotonicity of the w-component. Thus, the map G of Lemma 3.1 is isotone in all variables, and
therefore also Ψ[·,·], whence Ψ[ξ∗,ω∗] is isotone in z and so has a minimum fixed point, necessar-
ily unique, by the Birkhoff Fixpoint Theorem 1.1. For any fixed point of Ψ[ξ∗,ω∗], (3.2) and (3.1)
are equivalent, so we have a solution of (3.3) and the minimum fixed point given by Theorem 1.1
is necessarily unique.

Lemma 3.3. Under our hypotheses,the map

Z : [ξ, ω] 7−→ z =
[
minimum fixed point of Ψ[ξ,ω]

]
: X∗ ×M → Z∗ , (3.5)

is well-defined and isotone.

PROOF: That Z is well-defined follows from the proof of Lemma 3.2 and we must show
isotonicity, using Theorem 1.1: given [ξ, ω] � [ξ′, ω′] in X∗ ×M and setting

z = Z[ξ, ω] = Ψ[ξ,ω](z) z′ = Z[ξ′, ω′] = Ψ[ξ′,ω′](z
′),

we show that z � z′. Since z = Z(ξ, ω) is the minimum fixed point of Ψ[ξ,ω], and Ψ[·,·] is
isotone by the proof of Lemma 3.2 we have Ψ[ξ′,ω′](z) ≺ Ψ[ξ,ω](z) = z so z ∈ {ẑ ∈ Z∗ :
Ψ[ξ′,ω′](ẑ) ≺ ẑ}. Hence z � inf{ẑ ∈ Z∗ : Ψ[ξ′,ω′](ẑ) ≺ ẑ} = Z(ξ′, ω′) = z′.

The solution of the initial value problem (3.3) with data [ξ∗, ω∗] is given by

[x,w] = G[ξ∗,ω∗](Z(ξ∗, ω∗)) (3.6)

and to consider periodicity, we consider the Poincaré period map for the coupled dynamics:

F : [ξ∗, ω∗] 7→ [x(T ), w(T )] with x,w given by (3.6). (3.7)

With this machinery we are now ready for the periodicity theorem.

Theorem 3.4. Assume the coupled dynamics are as described with all the hypotheses above
satisfied. Then the map F is isotone and has a fixed point. If, also, any explicit t-dependence
of f is T -periodic, i.e., if

f(T + t, ξ, ω) = f(t, ξ, ω) for each t ∈ R, (3.8)

then the system has at least one periodic solution with period T .
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PROOF: Starting with [ξ∗, ω∗] ∈ X∗ ×M , we begin by observing that z = Z(ξ∗, ω∗) is
well defined in Z∗ by Lemma 3.3 so [x,w] = G[ξ∗,ω∗](z) is well defined by Lemma 3.1. Since
x(·) is continuous by (A-1), there is no difficulty in evaluating it at T ; we note that x(T ) ∈ X∗
by (C-1). Similarly, the construction in the proof of Theorem 2.2 ensures that we have a well
defined value for w(T ). Thus, F is well defined by (3.7) as a selfmap of X∗ ×M .

Since Z is isotone in [ξ, ω] and G is isotone in its variables by Lemmas 3.3, 3.1, we have
isotonicity of F and so existence of a fixed point by the Birkhoff Fixpoint Theorem.

Given (3.8), it is quite standard to note that a solution of (3.3), now viewed as periodically ex-
tended to all of R, is a periodic solution when the data [ξ∗, ω∗] is a fixed point of the Poincaré
period map F.

4 The example of [7]

As our first example of the use of Theorem 3.4, we return to (1.1) and [7].

It would be standard to rewrite (1.1) as a first order system ẋ = Ax + f where A is the d× d
companion matrix of p for p of degree d so the state space is X = Rd. We set Dt : y(·) 7→
[y(t), . . . , y[d−1](t)] so, letting y(·) be the solution (denoted by S(z, ξ) ) of

p(d/dt)y = z D0y = ξ, (4.1)

the state x(t) is Dty.

We use the somewhat unusual partial ordering of Rd defined by setting

ξ � 0 ⇐⇒ S(0, ξ)(t) ≥ 0 for each t ≥ 0.

Assuming that p has only (distinct) real roots r1, . . . , rd, we set bk = [1, rk, . . .] and note that
each S(0, bk) = erkt will be positive; thus,

∑
k ηkbk � 0 if each ηk ≥ 0, although the converse

does not hold. As {bk} is a basis, we can now define a norm ‖
∑

k ηkbk‖ = maxk{|ηk|} and
note that ± ξ ≺ (‖ξ‖ b∗) with b∗ =

∑
k bk. We now take X = Rd with this partial order,

Y : ξ 7→ y = ξ1, Z = R and then X = C([0, T ] → X), Z = L∞([0, T ] → Z). Note that
(4.1) becomes

ẋ = Lx+ Bz x(0) = ξ (4.2)

with L = diag{r1, . . .} using the basis {bk}, i.e., L
(∑d

k=1 ηkbk

)
=
∑d

k=1 rkηkbk. Thus,

with −α = max{rk}, we have

‖x(t)‖ ≤ e−αt‖ξ‖+

∫ t

0

e−α(t−s)‖Bz(s)‖ ds. (4.3)

Lemma 4.1. If z ≥ 0 and ξ � 0, then y = S(z, ξ) ≥ 0 and x(τ) = Dτy � 0 for each τ ≥ 0

PROOF: It is sufficient to take ξ = 0 and we then proceed by induction on d. For d = 1,
y′ − ry = z ≥ 0 gives y(t) =

∫ t
0
er(t−s)z(s) ≥ 0. Next write p(r) = (r − r1)p̂(r) so

8



y = S(z, 0) satisfies y′−r1y = ŷ with p̂(d/dt)ŷ = z; the inductive hypothesis gives ŷ ≥ 0 as
p̂ has degree (d−1) whence y ≥ 0. For τ > 0 we can apply this to zτ = {z on [0, τ ]; 0 else}
so yτ = S(zτ , 0) ≥ 0 and yτ (· + τ) = S(0, Dτyτ ) ≥ 0 whence Dτyτ � 0 by our definition
of the partial order; since Dτyτ = Dτy, we have x(τ) � 0.

We are considering the standard relay so we have M = {0, 1} with, e.g., switching at 0, 1 so,
in terms of switching rules, we have set

C(0, 0) = (−∞, 1), C(0, 1) = [1,∞),

C(1, 1) = (0,∞), C(1, 0) = (−∞, 0].
(4.4)

Note that (B-2) holds as well as (B-1).

We next introduce the nonlinearity f̂ . If we assume that this is isotone and Lipschitzian, then
the ODE with suitable initial data is well-posed. [Further, the solution y(·) will be Lipschitzian;
there is then a lower bound ε > 0 (uniform in the presence of a bound on the data) on each
interswitching interval as y moves between 0, 1 so we have (B-4) with M̂ = {[0, 1], [1, 0]};
there can be no Zeno phenomenon.] We also assume that f̂ satisfies the growth condition

‖Bf̂(t,Y(ξ), ω)‖ ≤ κ+ λ‖ξ‖ (4.5)

with 0 ≤ λ < α = −max{rk} (requiring each rk < 0).

To define X∗,Z∗ as order intervals as in Lemma 2.1, we first take ξ+ of the form ξ+ = cb∗ and
consider the solution x+ of (4.2) with z = f̂(t,Y(x+), 1) and x+(0) = ξ+. Using (4.5) with
(4.3) gives ‖x+(t)‖ ≤ [ϑ + (1 − ϑ)e−αt] ≤ c+ for ϑ ≤ 1 with ϑ = (λ + κ/c+)/α. Thus,
x(t) ≺ ‖x(t)‖ b∗ ≤ c+b∗ = ξ+ (and, similarly, x+(t) � 0) if we take c+ large enough. Taking
ξ− = −c−b∗ and so x− for z = f̂(t,Y(x−), 0), we have ξ− ≺ x−(t) ≺ 0 for large enough
c−. We let X∗ be the order interval in X between ξ− and ξ+ (noting ξ− ≤ 0 ≤ ξ+) and let
Z∗ be the order interval inZ between z− = f̂(t,Y(x−), 0) and z+ = f̂(t,Y(x+), 1) (noting
x− ≤ 0 ≤ x+ so z− ≤ 0 ≤ z+ by the isotonicity of f̂ ). This gives (C-1) and the isotonicity
then shows the invariance ofZ∗ under Ψ[ξ∗,ω∗] for ξ∗ ∈ X∗, as required in (D-2). The remaining
hypotheses are easy to verify.

Since the ODE here is autonomous, the Periodicity Theorem 3.4 then applies to show existence
of a periodic solution.

5 Ca2+ waves in cardiac cells

As another example of the use of Theorem 3.4, we consider a model (somewhat modified
from [6]) of the spread of calcium (Ca2+) in cardiac cells.

Let x(t, ·) be the concentration of Ca2+ at time t in a cardiac cell represented by Ω ⊂ R3.
Here x satisfies the diffusion equation

xt = ∆x− λx+ S on Ω
x = x∗ at ∂Ω.

for t ≥ 0 (5.1)
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with x = ξ ≥ 0 on Ω at t = 0. We assume the boundary data is T -periodic and satisfies
0 ≤ x∗ ≤ β.

For this model the source S is given by a set N of Calcium Release Units, indexed by their
positions ν ∈ N ⊂ Ω; with N = #N possibly large, but finite. These provide distinct point
sources of calcium when active. The source S in (5.1) is then

S =
∑
N

zνδν = Bz (5.2)

where δν denotes the delta function (unit point source) at the point ν ∈ Ω and z = [zν : ν ∈
N ] ∈ [0, 1]N gives the release rates at each CRU. [Note that B mapsN -tuples to measures on
Ω.] Independently for each CRUν , a transition to activity is triggered by the local concentration
x(·, ν) rising to a threshold level η+

ν .

We begin by introducing sensors Yν , for each ν ∈ N ⊂ Ω, giving

yν (x(t, ·)) = x(t, ν), Y =
⊗

ν∈N Yν (5.3)

so y (x(t, ·)) = [x(t, ν1), · · · , x(t, νN)]. Fixing thresholds η−ν < η+
ν and considering a relay

operator with these thresholds, the switching rules are now given, as earlier, by switching sets,
separately for each ν:

Cν(0, 1) = [η+
ν ,∞], Cν(1, 0) = [0, η−ν ]

with Cν(0, 0), Cν(1, 1) complementary in Yν = [0,∞] to those so (B-1). We easily verify
(B-1,2) here — indeed, this is essentially the standard relay for each ν and, collectively, this
defines an isotone generalized relay operator W as in Lemma 2.3, driven by the input y = [yν ].
[Note that we have taken Yν = [0,∞] to include +∞ since the pointwise12 concentration at
a release point is infinite whenever there is calcium release: allowing yν = ∞ when zν 6= 0.]
In the model of [6], activation of each CRU (wν : 0 y 1) is (stochastically) triggered when the
ambient calcium level reaches a threshold η+

ν and the CRU then remains active for a period
of some fixed length. Since we have been unable to arrange this (and retain isotonicity) within
our present hybrid formulation, we are retaining this trigger, albeit deterministically, but use a
different mechanism to turn off the release. Somewhat arbitrarily, our version of this model will
take the supply sν(t) to the CRU to be an exogenously varied part of the state, as part of our
periodic forcing, and it is then this which will (indirectly) control the shutoff: we assume sν takes
values 0 (no supply) or 1 (adequate supply) and the CRUν will release calcium (at a fixed rate,
say 1) only when it is both active and supplied. Thus, we are taking

zν = fν(t, wν) =

{
1 when wν = 1 and sν(t) = 1

0 else: wν = 0 or sν(t) = 0.
(5.4)

Note that the dependence of fν on the exogenous variable sν is interpreted here as dependence
on t so f is independent of x and isotone in w. We are assuming sν(·) is piecewise constant
and T -periodic in t.

12Each yν is the sum of a smooth function and the convolution of the heat kernel (at x = 0) with zν . Since zν is
non-negative, taking values in {0, 1}, we have yν continuous except for possible jumps up to +∞. Thus, we have
(A-3).
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We recall some facts about the diffusion equation (5.1), first noting that it is well-posed to, e.g.,
x ∈ X = L2([0, T ] × Ω) for z ∈ Z = [L∞(0, T )]N and ξ∗ ∈ X = L2(Ω). Indeed, letting
ξ∗ be the solution of the steady state equation

−∆ξ∗ + λξ∗ =
∑
N

δν ξ∗|∂Ω = β,

we setX∗ = {ξ ∈ L2(Ω) : 0 ≤ ξ ≤ ξ∗(·)} and note that the Maximum Principal ensures that
we will have x(t, ·) ∈ X∗ for any x(0, ·) ∈ X∗ and any z ∈ Z∗ = {z ∈ Z : z(t) ∈ {0, 1}N}.
Note that both X∗ and Z∗ are complete lattices. By standard comparison results for diffusion
equations, the solution of the resulting (5.1), (5.2) depends isotonically on z, as well as on
the initial data x(0) = ξ∗ and Z∗ is invariant under G[ξ,ω] for [ξ, ω] ∈ X∗ × M . Finally,
we note that local regularity (see, e.g., [9](Thm.16.3)) shows that x is smooth between the
singularities of S — including smoothness at ν for zν(t) 6= 1 — so each yν = x(·, ν) is well-
defined and13 continuous to the extended R+, i.e., to [0,∞], justifying the use of (5.3) when
constructing Wν(ω

∗, yν) dynamically. We thus see that we have well-posed coupled dynamics
for (5.1) coupled with W(ω∗,Y(x)); (C) and (D) hold. Indeed, all the hypotheses are now
easily verifiable and, as an immediate application of Theorem 3.4, we then obtain:

Theorem 5.1. The cardiac cell model described here must support at least one T -periodic cal-
cium distribution.

REMARK: Of course this is only of interest if we would have a nontrivial solution, such
that w(·) is not constant in t, and we note that the possibility of a solution being trivial can
be eliminated by imposing appropriate conditions on the data. To see this, we begin with the
observation:

Lemma 5.2. Assume λ > 0. Then for T -periodic z the equation (5.1) with S = Bz given by
(5.2) has a unique T -periodic solution on R, which we denote by x(·, ·; z). The resulting map:
z 7→ x(·, ·; z) is isotone; we also have isotone dependence on the periodic boundary data
x∗(·).

PROOF: Considering the equation with arbitrary initial data, the dissipativity ensures conver-
gence to a periodic solution, since we have assumed x∗, z are periodic. Using the isotonicity of
the initial value problem, as earlier, then gives the isotonicity in z asserted here. A similar use
of the Maximum Principal gives the isotone dependence on the data x∗.

We now let z0 = f(t, 0) ≡ 0, z1 = f(t, 1) = [sν(t) : ν ∈ N ] and then set x0 =
x(·, ·; z0), x1 = x(·, ·; z1) with y0 = Y(x0), etc. [Note that these do not involve w (or any
switching), but do depend on the data.] We now observe that: if [ξ∗, ω∗] — and so [x,w] and
z — are obtained through Theorem 3.4, then z0 ≺ z ≺ z1 so x0 ≺ x = x(·, ·; z) ≺ x1 and

13Except for the possibility of an impulsive jump up to +∞ if sν goes from 0 to 1 while wν = 1 — which, we
observe, would leave yν ∈ C(1, 1), consistent with (A-1). Note that we have (B-3,4) with M̂ = {[1, 0]}.

11



y0 ≺ y = Y(x) ≺ y1 whence w0 = W[0, y0] ≺ w = W[ω∗, y] ≺ w1 = W[1, y1]. If x∗

is such that x0(t, ν) ≥ η+
ν for some t ∈ [0, T ] — as will necessarily be the case if x∗ is large

enough on some long enough subinterval of [0, T ] — then we must have w0
ν 6≡ 0. On the other

hand, if x∗ is such that x1(t, ν) ≤ η−ν for some t ∈ [0, T ] — as will necessarily be the case if
x∗ is small enough and sν(t) ≡ 0 on some long enough subinterval of [0, T ] — then we must
have w1

ν 6≡ 1. Imposing both these as conditions on the data then ensures that there will not
be any periodic solution with w(·) constant in t, so the periodic solution given by Theorem 3.4
would necessarily be nontrivial.
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