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Abstrat: An interesting problem in statistial physis is the ondensation of lassial partilesin droplets or lusters when the pair-interation is given by a stable Lennard-Jones-type potential.We study two aspets of this problem. We start by deriving a large deviations priniple for theluster size distribution for any inverse temperature β ∈ (0,∞) and partile density ρ ∈ (0, ρcp) in thethermodynami limit. Here ρcp > 0 is the lose paking density. While in general the rate funtion isan abstrat objet, our seond main result is the Γ-onvergene of the rate funtion towards an expliitlimiting rate funtion in the low-temperature dilute limit β → ∞, ρ ↓ 0 suh that −β−1 log ρ → νfor some ν ∈ (0,∞). The limiting rate funtion and its minimisers appeared in reent work, wherethe temperature and the partile density were oupled with the partile number. In the de-oupledlimit onsidered here, we prove that just one luster size is dominant, depending on the parameter ν.Under additional assumptions on the potential, the Γ-onvergene along urves an be strengthenedto uniform bounds, valid in a low-temperature, low-density retangle.Contents1. Introdution 12. Proof of the LDP 103. Approximation with an ideal mixture of lusters 224. Bounds for the luster free energy 255. Proof of Γ-onvergene and uniform bounds 286. Appendix: Proof of Lemma 1.3 30Referenes 311. IntrodutionWe onsider interating N -partile systems in a box Λ = [0, L]d ⊂ R
d with interation energy

UN (x1, . . . , xN ) :=
∑

1≤i<j≤N

v(|xi − xj|), (1.1)where v : [0,∞) → R ∪ {∞} is a pair potential of Lennard-Jones type. That is,
• it is large lose to zero, induing a repulsion that prevents the partiles from lumping,
• it has a nondegenerate negative part, induing an attration, i.e., partiles try to assume aertain �xed distane to eah other,
• it vanishes at in�nity, i.e., long-range e�ets are absent.Additionally, we always assume that v is stable and has ompat support. We allow for the possibilitythat v = ∞ in some interval [0, rhc] to represent hard ore interation. See Assumption (V) in Se-tion 1.2 below for details.A partile on�guration x = (x1, . . . , xN ) in the box is randomly strutured into a number of smallersubon�gurations, that is, well separated smaller groups, whih we all lusters. One of our mainquestions is about the joint distribution of the luster sizes, i.e., their ardinalities. Intuitively, if thebox size is large in omparison to the partile number, then one expets many small lusters, and if it issmall, then one expets few large ones. We will analyse this question muh loser in the thermodynamilimit, that is, keeping β ∈ (0,∞) �xed and taking

N → ∞, L = LN → ∞, suh that N

Ld
N

→ ρ, (1.2)1
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Figure 1. The pair potential v(r) = 1.5r−12 − 5r−6 of Lennard-Jones type.

Figure 2. A shemati �gure illustrating the luster deomposition of a partile on�gurationand the indued graph struture.for some �xed partile density ρ ∈ (0,∞), followed by the dilute low-temperature limit
β → ∞, ρ ↓ 0 suh that − 1

β
log ρ → ν, (1.3)for some ν ∈ (0,∞). In this regime, the total entropy of the system is well approximated by the sum ofthe entropies of the lusters, and the exluded-volume e�et between the lusters as well as the mixingentropy may be negleted. As a onsequene, partiles tend to favor one optimal luster size, whihdepends on ν and may be in�nite.In reent work [CKMS10℄, the free energy was analysed in the oupled dilute low-temperature limit

N → ∞, β = βN → ∞, L = LN → ∞ suh that − 1

βN
log

N

Ld
N

→ ν, (1.4)with some onstant ν ∈ (0,∞). It was found that the limiting free energy is a pieewise linear,ontinuous funtion of ν with at least one kink, i.e., non-di�erentiable point. Furthermore, there was
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Figure 3. Two examples of pair interation potentials satisfying assumption (V).a phenomenologial disussion of the interplay between the limiting luster distribution and the kinksin the limiting free energy, on base of a variational representation. See Setion 1.3 for details.In the present paper, we go beyond [CKMS10℄ by onsidering the physially relevant setting of athermodynami limit and by proving limit laws for the quantities of interest. That is, our two mainpurposes are(i) to derive, for �xed β, ρ ∈ (0,∞), a large deviations priniple for the luster size distribution inthe thermodynami limit in (1.2), and(ii) to derive afterwards limit laws (laws of large numbers) for the luster size distribution in thelow-temperature dilute limit in (1.3).In this way, we deouple the limit in (1.4) into taking two separate limits, and we prove limit laws forthe luster sizes in this regime.The organisation of Setion 1 is as follows. In Setion 1.1 we introdue our model and de�ne thethermodynami set-up. Our main result onerning the large deviations priniple for the luster sizedistribution is formulated in Setion 1.2. The low-temperature dilute limit is disussed in Setions 1.3and 1.4. Adopting additional, stronger assumptions we give in Setion 1.5 bounds that are uniform inthe temperature for dilute systems. Finally we disuss in Setion 1.6 some mathematial and physialproblems related to our results.1.1. The model and its thermodynami set-up. Here are our assumptions on the pair interationpotential that will be in fore throughout the paper.Assumption (V). The funtion v : [0,∞) → R ∪ {∞} satis�es the following.(1) v is �nite exept possibly for a hard ore: there is a rhc ≥ 0 suh that v ≡ ∞ on (0, rhc) and
v < ∞ on (rhc,∞).(2) v is stable, that is, UN (x)/N is bounded from below in N ∈ N and x ∈ (Rd)N .(3) The support of v is ompat, more preisely, b := sup supp(v) is �nite.(4) v has an attrative tail: there is a δ > 0 suh that v(r) < 0 for all r ∈ (b − δ, b).(5) v is ontinuous in [rhc,∞).Assumption (V) di�ers from Assumption (V) in [CKMS10℄ in two points: here we drop the require-ment v(rhc) = ∞, and stability was there a onsequene of some umbersome additional assumption.



4 We introdue the Gibbs measure indued by the energy de�ned in (1.1). For β ∈ (0,∞), N ∈ N anda box Λ ⊂ R
d, we de�ne the probability measure P

(N)

β,Λ on ΛN by the Lebesgue density
P

(N)

β,Λ(dx) =
1

ZΛ(β,N)N !
e−βUN (x) dx, x ∈ ΛN , (1.5)where

ZΛ(β,N) :=
1

N !

∫

ΛN

e−βUN (x) dxis the anonial partition funtion at inverse temperature β.We introdue the notions of onnetedness and lusters. Fix R ∈ (b,∞). Given x = (x1, . . . , xN ) ∈
(Rd)N , we introdue on the set {x1, . . . , xN} a graph struture by onneting two points if their distaneis ≤ R. In this way, the notion of R-onnetedness is naturally introdued, whih we also all justonnetedness. The onneted omponents are also alled lusters. A luster of ardinality k ∈ N isalled a k-luster. By Nk(x) we denote the number of k-lusters in x, and by

ρk,Λ(x) :=
Nk(x)

|Λ|the k-luster density, the number of k-lusters per unit volume. We onsider the luster size distribution
ρΛ :=

(
ρk,Λ

)
k∈N

(1.6)as an MN/|Λ|-valued random variable, where
Mρ :=

{
(ρk)k∈N ∈ [0,∞)N

∣∣∣
∑

k∈N

kρk ≤ ρ
}

, ρ ∈ (0,∞). (1.7)On Mρ we onsider the topology of pointwise onvergene, in whih it is ompat. Note that for eah�nite N and any box Λ ⊂ R
d,

N∑

k=1

kρk,Λ(x) =
N

|Λ| , x ∈ ΛN .However, some mass of ρΛ may be lost in the limit N → ∞ to in�nitely large lusters. The distributionof ρΛ under the Gibbs measure P
(N)

β,Λ is the main objet of our study.Introdue the free energy per unit volume as
fΛ(β, N

|Λ|) := − 1

β|Λ| log ZΛ(β,N).It is known [R99℄ that the free energy per unit volume in the thermodynami limit,
f(β, ρ) := lim

N,L→∞

N/Ld→ρ

f[0,L]d(β, N
Ld ). (1.8)exists in R for all ρ > 0 when there is no hard ore, i.e., if rhc = 0. When rhc > 0, there is a threshold

ρcp > 0, the lose paking density, suh that the limit exists and is �nite for ρ ∈ (0, ρcp), and is ∞ for
ρ > ρcp. Sine we are interested in dilute systems, i.e., small ρ, we will always assume that ρ ∈ (0, ρcp).1.2. Large deviations for luster distribution under the Gibbs measure. Our �rst main resultis a large deviations priniple (LDP) for the luster size distribution under the Gibbs measure. Forthe onept of large deviations priniples see the monograph [DZ98℄.Theorem 1.1 (Large deviation priniple with onvex rate funtion). Fix β ∈ (0,∞) and ρ ∈ (0, ρcp).Then, in the thermodynami limit N → ∞, L → ∞, N/Ld → ρ, the distribution of ρΛ under P

(N)

β,Λwith Λ = [0, L]d satis�es a large deviations priniple on Mρ+ε with speed |Λ| = Ld, where ε > 0 issuh that N/Ld ≤ ρ + ε. The rate funtion Jβ,ρ : Mρ+ε → [0,∞] is onvex, and its e�etive domain
{Jβ,ρ(·) < ∞} is ontained in Mρ. For ρ su�iently small, {Jβ,ρ(·) < ∞} is equal to Mρ.



5The proof of Theorem 1.1 is in Setion 2. De�ne f(β, ρ, ·) : Mρ → [0,∞] through the equality
Jβ,ρ

(
ρ
)
=: β

(
f(β, ρ,ρ) − f(β, ρ)

)
. (1.9)Then the LDP may be rewritten, formally, as

1

N !

∫

ΛN

e−βUN (x)1l
{

ρΛ(x) ≈ ρ

}
dx ≈ exp

(
−β|Λ|f(β, ρ,ρ)

)
.Thus f(β, ρ,ρ) may be onsidered as the free energy assoiated with the luster size distribution ρΛ,thought of as an order parameter. The identity inf Jβ,ρ = 0 translates into

f(β, ρ) = inf
Mρ

f(β, ρ, ·).In words: the (unonstrained) free energy is reovered as in�mum of the onstrained free energy as theorder parameter is varied, a relation in the spirit of Landau theory.It is a general fat from large deviations theory that an LDP implies tightness. More spei�ally, theLDP of Theorem 1.1 implies a limit law for the luster size distribution towards the set of minimisersof the rate funtion. This is even a law of large numbers if this set is a singleton. Hene, Theorem 1.1gives us ontrol on the limiting behaviour of the luster size distribution under the Gibbs measure inthe thermodynami limit. However, in the general ontext of Theorem 1.1, we annot o�er any formulafor the rate funtion Jβ,ρ. We have to restrit ourselves to the low-temperature dilute limit (1.3). Inthis setting we obtain expliit asymptoti formulae in Setion 1.3 below, and this is our seond mainresult.1.3. The dilute low-temperature limit of the rate funtion. In this setion, we formulate andomment on our main result about the limiting behaviour of the LDP rate funtion Jβ,ρ introduedin Theorem 1.1 and of its minimisers in the dilute low-temperature limit in (1.3). This behaviour isexpliitly identi�ed in terms of the ground-state energy of UN ,
EN := inf

x∈(Rd)N
UN (x), N ∈ N.It an be seen like in the proof of [CKMS10, Lemma 1.1℄ using subadditivity that the limit

e∞ := lim
N→∞

EN

N
∈ (−∞, 0)exists. It lies in the nature of the regime in (1.3) that it is not the luster size distribution ρk thatwill onverge towards an interesting limit (atually, these will vanish), but the term qk = kρk/ρ, whiharries the interpretation of the probability that a given partile lies in a k-luster. Therefore, let

Q :=
{

(qk)k∈N ∈ [0, 1]N
∣∣∣

∑

k∈N

qk ≤ 1
}and introdue, for ν ∈ (0,∞), the map gν : Q → R de�ned by

gν

(
(qk)k

)
:=

∑

k∈N

qk
Ek − ν

k
+

(
1 −

∑

k∈N

qk

)
e∞. (1.10)Our seond main result is the following.Theorem 1.2 (Γ-onvergene of the rate funtion). Let ν ∈ (0,∞). In the limit β → ∞, ρ → 0 suhthat −β−1 log ρ → ν, the funtion

Q → R ∪ {∞}, (qk)k 7→ 1

ρ
f
(
β, ρ, (ρqk

k )k∈N

)

Γ-onverges to gν.



6 For the notion of Γ-onvergene, see the monograph [dM93℄. Theorem 1.2 is proved in Setion 5.1.The physial intuition is the following: at low density, the partile system an be approximated byan ideal gas of lusters, see [H56, Chapter 5℄ or [S03℄. `Ideal' means that we neglet the `exludedvolume', i.e., the onstraint that lusters have mutual distane ≥ R. As an be seen from the proof ofLemma 3.1, this means that the rate funtion f(β, ρ, ·) is well-approximated by the ideal free energy
f ideal(β, ρ, (ρk)k) :=

∑

k∈N

kρkf
cl
k (β) +

(
ρ −

∑

k∈N

kρk

)
f cl
∞(β) +

1

β

∑

k∈N

ρk(log ρk − 1). (1.11)Here f cl
k (β) and f cl

∞(β) should be thought of as free energies per partile in lusters of size k (resp., inin�nitely large lusters), see Setion 3 for the preise de�nitions. The funtional ρgν is obtained from
f ideal by two simpli�ations, justi�ed at low temperatures.

• First, we approximate luster internal free energies by their ground state energies.
• Seond, we split the entropi term as

1

β

∑

k∈N

ρk(log ρk − 1) =
∑

k∈N

ρk
log ρ

β
+

1

β

∑

k∈N

ρk

(
log

ρk

ρ
− 1

)and keep only the �rst sum. Thus we keep the entropi ontribution oming from the ways toplae the lusters (their enters of gravity) in the box and disard the mixing entropy.In lassial statistial physis, the approah we take here goes under the name of a geometri, ordroplet, piture of ondensation [H56, S03℄. This is losely related to the well-known ontour pitureof the Ising model and lattie gases [R99℄. Lattie gas luster sizes have been studied, for example,in [LP77℄, ontinuous systems were investigated in [M75, Z08℄. The fous of these works was onparameter regions where only small lusters our. Our delared goal, in ontrast, is to derive boundsthat over both the small luster and the large luster regimes (in the notation introdued below, thismeans both ν > ν∗ and ν < ν∗).Under additional assumptions on the pair potential, we an replae the somewhat abstrat Γ-onvergene result with more onrete uniform error bounds, see Theorem 1.8.The rate funtion gν appeared in [CKMS10℄ in the desription of the behaviour of the partitionfuntion Z(N)

β,Λ in the oupled dilute low-temperature limit in (1.4). More preisely, it was shown therethat, in this limit, for any ν ∈ (0,∞),
− 1

NβN
log Z(N)

βN ,ΛN
→ µ(ν).It was phenemonologially disussed, but it was not given mathematial substane to, the onjeturethat the random variable qΛN

= (kρk,ΛN
/ρ)k∈N under P

(N)

βN ,ΛN
with ΛN = [0, LN ]d satis�es an LDPwith speed NβN and rate funtion given by gν(·)− µ(ν). This would be in line with Theorem 1.1 andTheorem 1.2, and we do believe that this is indeed true, but we make no attempt to prove this.1.4. Limit laws in the dilute low-temperature limit. The minimiser(s) of the rate funtion

f(β, ρ, ·) are of high interest, sine they desribe the limiting behaviour of the luster size distributionunder the Gibbs measure. It is a general fat from the theory of Γ-limits that Γ-onvergene impliesthe onvergene of minima over ompat subsets and the minimiser(s). For the limiting rate funtion
gν , the global minimiser has been identi�ed in [CKMS10℄. The minimum is

µ(ν) = inf
Q

gν = inf
N∈N

EN − ν

N
, (1.12)and the minimisers are given as follows.



7Lemma 1.3 (Minimizers of gν). The number ν∗ := infN∈N(EN − Ne∞) is stritly positive. The map
ν 7→ µ(ν) is ontinuous, pieewise a�ne and onave. Let N ⊂ (0,∞) be the set of points where µ(·)hanges its slope. Then N is bounded, and µ(ν) = −ν for ν > maxN and µ(ν) = e∞ for ν < ν∗.Furthermore,(1) ν∗ ∈ N ⊂ [ν∗,∞), and N is at most ountable with ν∗ as only possible aumulation point.(2) For ν > ν∗, we have µ(ν) < e∞ and every minimiser (qk)k of gν satis�es ∑

k∈N
qk = 1. If

ν /∈ N , then gν has the unique minimiser q
(ν) = (q(ν)

k )k with q(ν)

k = δk,k(ν) with k(ν) the uniqueminimiser of k 7→ (Ek −ν)/k over N. The map ν 7→ k(ν) is onstant between subsequent pointsin N .(3) For ν < ν∗, we have µ(ν) = e∞ and the unique minimiser of gν is the onstant zero sequene
(qk)k∈N with qk = 0 for any k.This is essentially [CKMS10, Theorem 1.5℄, the proof is found in the appendix. If, as in [CKMS10℄,the point ∞ is added to the state spae N of the measures in Q, then the minimisers of gν areonentrated on N for ν > ν∗ and on {∞} for ν < ν∗; it was left open in [CKMS10℄ whether or notthe latter regime is non-void.The set N is in�nite if and only if (Ek − ke∞)k∈N has no minimiser. In dimensions d ≥ 2, it isexpeted (and shown in some ases in, see [R81, YFS09℄) that Ek − ke∞ ≥ cst. k1−1/d → ∞, ensuringthat N is a �nite set.Now we an draw a onlusion from Theorem 1.2 about the limiting behaviour of the minimisersof the rate funtion in the dilute low-temperature limit. The following assertions are well-knownonsequenes from the Γ-onvergene of Theorem 1.2, see [dM93, Theorem 7.4 and Corollary 7.24℄.Corollary 1.4. In the situation of Theorem 1.2,(1) the free energy per partile onverges to µ(ν):

1

ρ
f(β, ρ) → µ(ν)(2) if µ(·) is di�erentiable at ν (that is, for ν ∈ (0,∞) \ N ), any minimiser ρ

(β,ρ) = (ρ(β,ρ)

k )k of
Jβ,ρ onverges to the minimiser of gν:

kρ(β,ρ)

k

ρ
→ q(ν)

k , k ∈ N.Another important onsequene of Theorem 1.2, together with the LDP of Theorem 1.1, is a kindof law of large numbers for the luster size distribution ρΛN
in the thermodynami limit, followed bythe low-temperature dilute limit. A onvenient formulation is in terms of the vetor qΛ = (qk,Λ)k∈Nwith qk,Λ = kρk,Λ/ρ, the frequeny of partiles in k-lusters, if |Λ| = N/ρ.Corollary 1.5. For any ν ∈ (0,∞) \ N , any K ∈ N and any ε > 0, if β is su�iently large, ρsu�iently small and − 1

β log ρ is su�iently lose to ν, then, for boxes ΛN with volume N/ρ,
lim

N→∞
P

(N)

β,ΛN

(
|qk(ν),ΛN

− 1| ≥ ε
)

= 0 if ν > ν∗, (1.13)and
lim

N→∞
P

(N)

β,ΛN

( K∑

k=1

qk,ΛN
≥ ε

)
= 0 if ν < ν∗. (1.14)
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Figure 4. A diagram illustrating the expeted relationship of the slope ondition
−T log ρ = −β−1 log ρ → ν and the minimisers of the rate funtion in the dilute low-temperature limit.Proof. We prove (1.13) and (1.14) simultaneously. Consider the set

A =





{
ρ ∈ Mρ :

∣∣∣k(ν)ρk(ν)

ρ − 1
∣∣∣ ≥ ε

} for ν > ν∗,{
ρ ∈ Mρ :

∑K
k=1

kρk,Λ

ρ ≥ ε
} for ν < ν∗.Then the Γ-onvergene of Theorem 1.2 implies [dM93, Theorem 7.4℄ that

lim inf
β,ρ

1

ρ
inf
A

f(β, ρ, ·) ≥ − inf
A

gν ,where lim infβ,ρ refers to the limit in Theorem 1.2. Furthermore, it is easy to see from Lemma 1.3 that
δ = infA gν − inf gν is positive. We pik now β so large and ρ so small and −β−1 log ρ so lose to ν that
1
ρ infA f(β, ρ, ·)− infA gν ≥ −δ/4 and 1

ρf(β, ρ)−µ(ν) ≤ δ/4 (the latter is possible by Corollary 1.4(1)).Now the LDP of Theorem 1.1 yields that
lim sup
N→∞

1

|ΛN | log P
(N)

β,ΛN

(
ρΛN

∈ A
)
≤ − inf

A
Iβ,ρ = −β

[
inf
A

f(β, ρ, ·) − f(β, ρ)
]

≤ −βρ
[
inf
A

gν − µ(ν) − δ
4 − δ

4

]
= −βρδ/2 < 0.Hene, limN→∞ P

(N)

β,ΛN
(ρΛN

∈ A) = 0. Noting that this probability is idential to the two probabilitieson the left of (1.13) and (1.14) for our two hoies of A, �nishes the proof. �It may ome as a surprise that, for most values of the parameter ν, the luster size distribution isasymptotially onentrated on just one partiular luster size that depends only on ν. This may bevaguely explained by the fat that the zero-temperature limit β → ∞ fores the system to beomeasymptotially `frozen' in a state in whih every luster size assumes the globally optimal on�gurationsize, whih is unique for ν ∈ (ν∗,∞) \ N . Furthermore, note that Corollary 1.5 does not give theexistene of `in�nite large ' lusters (i.e., lusters whose size diverges with N) for any value of β and
ρ, not even for ν < ν∗ and −β−1 log ρ ≈ ν.



91.5. Uniform bounds. Under some natural additional assumptions on the pair potential, the asser-tions of Theorem 1.2 an be strengthened, see Theorem 1.8 below. Indeed, we will assume that theground states of the funtional UN onsist of well-separated partiles, whih are ontained in a ballwith volume of order N , and we assume some more regularity of the interation funtion v. Thenwe show that the Γ-onvergene in Theorem 1.2 in the oupled limit in (1.3) an be strengthened toestimates that are uniform in some low-temperature, low-density retangle (β,∞) × (0, ρ). This leadsto orresponding uniform estimates on |1ρf(β, ρ) − µ(ν)| and on minimisers. We now formulate this.Assumption 1.6 (Minimum interpartile distane, Hölder ontinuity).(i) There is rmin ≥ rhc suh that, for all N ∈ N, every minimiser (x1, . . . , xN ) ∈ (Rd)N of theenergy funtion UN has interpartile distane lower bounded as |xi − xj| ≥ rmin, i 6= j.(ii) The pair potential v is uniformly Hölder ontinuous in [rmin,∞).The existene of a uniform lower bound rmin for ground state interpartile distane is, of ourse,trivial when the potential has a hard ore rhc > 0. A su�ient ondition for the existene of rmin > 0for a potential without hard ore is, for example, that v(r)/rd → ∞ as r → 0, as an be shownalong [T06, Lemma 2.2℄.Assumption 1.7 (Maximum interpartile distane). There is a onstant c > 0 suh that for all
N ∈ N every minimiser (x1, . . . , xN ) ∈ (Rd)N of the energy funtion UN has interpartile distaneupper bounded by |xi − xj | ≤ cN1/d.This assumption looks deeptively simple; on physial grounds, we would expet that it is truefor every reasonable potential. To the best of our knowledge, however, non-trivial rigorous resultsare available in dimension two only, for Radin's soft disk potential [R81℄ and for potentials satisfyingonditions (H1) to (H3) from [YFS09℄. These potentials satisfy Assumption 1.6 as well.Theorem 1.8. Suppose that in addition to Assumption (V) the pair potential also satis�es Assump-tions 1.6 and 1.7. Then there are ρ, β,C > 0 suh that for every (β, ρ) ∈ [β,∞) × (0, ρ], putting
ν := −β−1 log ρ, the following holds.(1) Estimate on the rate funtion:

∣∣∣
1

ρ
f(β, ρ, (ρqk

k )k∈N) − gν

(
(qk)k

)∣∣∣ ≤ C

β
log β, (qk)k∈N ∈ Q. (1.15)(2) Estimate on the free energy:

∣∣∣
1

ρ
f(β, ρ) − µ(ν)

∣∣∣ ≤ 2
C

β
log β. (1.16)(3) Minimizers: For any minimizer ρ

(β,ρ) of f(β, ρ, ·), put q
(β,ρ) := (kρ(β,ρ)

k /ρ)k∈N. Then, if ν < ν∗,
∑

k∈N

q(β,ρ)

k

k
≤ 2

C

ν∗ − ν

1

β
log β. (1.17)If ν > ν∗, then

∑

k∈M(ν)

q(β,ρ)

k ≥ 1 − 2
C

∆(ν)

1

β
log β, (1.18)where

∆(ν) := inf
{Ek − ν

k

∣∣∣ k ∈ N\M(ν)
}
− µ(ν) > 0is the gap above the minimum, and M(ν) ⊂ N is the set of minimisers of ((Ek −ν)/k)k∈N (thus

M(ν) = {k(ν)} for ν /∈ N ).



10 Theorem 1.8 is proved in Setion 5.2. One an see from the proof that one an hoose ρ = (2α+2R)−d.It follows in partiular that the Γ-onvergene and the two onvergenes from Corollary 1.4 an bestrengthened to onvergene for just taking β → ∞, uniformly in ρ ∈ (0, ρ], with an error of order
β−1 log β. This form of the error order term is an artefat of the assumption of Hölder ontinuity; theonstant C depends on the Hölder parameter.Note that (1.17) implies that, in the ase ν < ν∗, for every K ∈ N, the fration of partiles in lustersof size ≤ K is bounded by

∑

k≤K

kρ(β,ρ)

k

ρ
=

∑

k≤K

q(β,ρ)

k ≤ 2C

ν∗ − ν
K

1

β
log β.This shows that, as β → ∞, for some hoies of K = Kβ → ∞, the fration of partiles in lusters ofsize ≤ Kβ vanishes, i.e., the average luster size beomes very large. Note that the law of large numbersin (1.14) in Corollary 1.5 may, under Assumptions 1.6 and 1.7, be proved also with K replaed by Kβ .1.6. Some remarks onerning related mathematial and physial problems. Our prob-lem is onneted with ontinuum perolation problems for interating partile systems, see the re-view [GHM01℄. In our setting of �nite systems, the term `perolation' should be replaed with `forma-tion of unbounded omponents', i.e., lusters whose size diverges as the number of partiles goes goin�nity. The problem of perolation or non-perolation for ontinuous partile systems in an in�nite-volume Gibbs state (that is, in a grand-anonial setting) is studied in [PY09℄. They prove that, forsu�iently high hemial potential and su�iently low temperature, perolation does our. How-ever, they do not give any information on the densities at whih perolation ours. This hinders thephysial interpretation, sine one annot say whether the perolation is due to high density or strongattration. In this light, our results are stronger and at the same time weaker: we do show that atransition from bounded to unbounded lusters happens at low density, but only in a limiting sensealong low-temperature, low-density urves; there is no �xed temperature or density at whih we provethe formation of unbounded lusters.In addition, our work has an interesting relationship to quantum Coulomb systems. In the simplestase, a gas of protons and eletrons, we may ask whether we observe a fully ionized gas, where protonsand eletrons stay for themselves, or a gas of neutral moleules, with protons and eletrons paired uptogether. Rigorous mathematial results were given by [F85℄, see also [CLY89℄, in the Saha regime, alsoalled atomi or moleular limit : when the temperature goes to 0 at �xed, negative enough hemialpotential, the Coulomb gas behaves like an ideal gas of di�erent types of moleules or partiles. Thehemial omposition is determined by the hemial potential.Our results adapt this quantum Coulomb system piture to a lassial setting. From this point ofview, the key novelty is that we work in the anonial rather than the grand-anonial ensemble; thisallows us to extend results to the region where formation of large lusters ours.The remainder of this paper is organised as follows. In Setion 2 we prove the LDP of Theorem 1.1,in Setion 3 we ompare the rate funtion with an expliit ideal rate funtion, and in Setion 4 weompare temperature-depending quantities with the ground states. Finally, the proofs of Theorems 1.2and 1.8 are given in Setion 5. 2. Proof of the LDPIn this setion, we prove Theorem 1.1. We �x β ∈ (0,∞) and ρ ∈ (0, ρcp) throughout this setion. InSetion 2.1 we explain our strategy and formulate the main steps, and in Setions 2.2�2.4 we provethese steps. The proof of Theorem 1.1 is �nished in Setion 2.5.



112.1. Strategy. The main idea is to derive �rst a large deviations priniple for the distribution of
(ρk,Λ)k=1,...,j for �xed j ∈ N, that is, for the projetion of ρΛ on the �rst j omponents, and applythe Dawson-Gärtner theorem for the transition to the projetive limit as j → ∞. From the proofof the priniple for the projetion, we isolate an important step, see Proposition 2.1: using standardsubadditivity arguments, we prove the existene of thermodynami limit for onstrained free energy,the onstraint referring to luster size onentrations of size ≤ j. The priniple for the projetion of
ρΛ appears in Proposition 2.2.Given N,N1, . . . , Nj ∈ N0 de�ne the onstrained partition funtion with �xed luster numbers ofsize ≤ j,

ZΛ(β,N,N1, . . . , Nj) :=
1

N !

∫

ΛN

e−βUN (x)
j∏

k=1

1l{Nk(x) = Nk}dx. (2.19)Note that ZΛ(β,N,N1, . . . , Nj) = 0 if ∑j
k=1 kNk > N .In the following we shall often be interested in the interior or boundary of subsets A ⊂ [0,∞)j+1 forsome j ∈ N. Unless expliitly stated otherwise, IntA and ∂A refer to the interior and boundary of Aonsidered as a subset of R

j+1. In partiular, if 0 ∈ A, then 0 is automatially a boundary point.We denote by dom h = {x : h(x) < ∞} = {h(·) < ∞} the e�etive domain of an (−∞,∞]-valuedfuntion h.Proposition 2.1. Fix j ∈ N. Then there is a funtion fj(β, ·) : [0,∞)j+1 → R ∪ {∞} suh that
• fj(β, ·) is onvex and lower semi-ontinuous;
• its e�etive domain has non-empty interior ∆j := IntRj+1 dom fj(β, ·) and fj(β, ·) is ontinuousin ∆j ;
• its e�etive domain is ontained in

dom fj(β, ·) ⊂ ∆j ⊂
{
(ρ, ρ1, . . . , ρj) ∈ [0,∞)j+1

∣∣∣ρ ∈ [0, ρcp],

j∑

k=1

kρk ≤ ρ
}

,and, moreover, if |ΛN |, N,N (N)

1 , . . . , N (N)

j → ∞ in suh a way that
N

|ΛN | → ρ,
N (N)

1

|ΛN | → ρ1, . . . ,
N (N)

j

|ΛN | → ρj, (2.20)then
• If (ρ, ρ1, . . . , ρj) ∈ ∆j,

lim
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) = −βfj(β, ρ, ρ1, . . . , ρj). (2.21)and the limit is �nite.
• If (ρ, ρ1, . . . , ρj) ∈ ∂∆j (boundary of ∆j), then

lim sup
N→∞

1

|ΛN |ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≤ −βfj(β, ρ, ρ1, . . . , ρj) ∈ R ∪ {−∞}. (2.22)
• If (ρ, ρ1, . . . , ρj) ∈ ∆j

c, then (2.21) holds true and the limit is −βfj(β, ρ, ρ1, . . . , ρj) = −∞.This proposition is proved in Setion 2.2.The set ∆1 is related to lose-paking situations. For example, when j = 1 and the density ρ ishigher than 1/|B(0, R)| (where we reall that R is the parameter in our notion of onnetedness), it isimpossible to have a gas formed only of 1-lusters and we have f1(β, ρ, ρ) = ∞.



12 Analogously to (1.9), let
Iβ,ρ,j(ρ1, . . . , ρj) := β

(
fj(β, ρ, ρ1, . . . , ρj) − f(β, ρ)

)
.We will prove in Setion 2.4 the following.Proposition 2.2 (LDP for projetion of ρΛ). Fix j ∈ N. Then, in the thermodynami limit N → ∞,

L → ∞, N/Ld → ρ, the distribution of (ρ1,Λ, . . . , ρj,Λ) under the Gibbs measure P
(N)

β,Λ with Λ = [0, L]dsatis�es a large deviations priniple with sale |Λ| and rate funtion Iβ,ρ,j. Moreover, the rate funtionis good and onvex.Reall that a rate funtion is alled good if its level sets are ompat. In this ase, it is in partiularlower semiontinuous. The large deviations priniple means that, for any open set O ⊂ [0,∞)j andany losed set C ⊂ [0,∞)j , with Λ = [0, L]d,
lim inf

N,L→∞,N/Ld→ρ

1

|Λ| log P
(N)

β,Λ

(
(ρ1,Λ, . . . , ρj,Λ) ∈ O

)
≥ − inf

O
Iβ,ρ,j, (2.23)

lim sup
N,L→∞,N/Ld→ρ

1

|Λ| log P
(N)

β,Λ

(
(ρ1,Λ, . . . , ρj,Λ) ∈ C

)
≤ − inf

C
Iβ,ρ,j. (2.24)We refer to (2.23) as to the lower bound for open sets and to (2.24) as to the upper bound for losedsets.2.2. Proof of Proposition 2.1 � subadditivity arguments. In this setion we prove Proposi-tion 2.1. For the remainder of this setion, we �x j ∈ N.The ruial point is the following supermultipliativity of partition funtions, whih translates intosubadditivity of free energies: Let N ′, N ′′ ∈ N. Let Λ′,Λ′′ be two disjoints measurable sets whih havemutual distane larger than the potential range b, and Λ large enough to ontain the union of the two.Then

ZΛ(β,N ′ + N ′′) ≥ ZΛ′∪̇Λ′′(β,N ′ + N ′′) ≥ ZΛ′(β,N ′)ZΛ′′(β,N ′′). (2.25)This standard trik leads to a proof of the existene of the thermodynami limit by subadditivitymethods [R99℄ (where subadditivity is applied to the miroanonial ensemble instead of anonial,but the method is the same).The starting point of our proof is the observation that a similar inequality holds for onstrainedpartition funtions ZΛ(β,N,N1, . . . , Nj) provided Λ′ and Λ′′ have mutual distane > R, where wereall that R ∈ (b,∞) was piked arbitrarily. Therefore we an prove existene of the onstrained freeenergy by adapting the standard methods. Let us reall, roughly, the standard strategy of proof:(1) As a �rst step, one proves existene of limits of − 1
β|Λ| log ZΛ(β,N,N1, . . . ,Nj) along speialsequenes of ubes - roughly, the sequene is de�ned in an iterative way by doubling the ube'sside length and adding a `seurity margin', and multiplying partile numbers by 2d. This usessubadditivity and yields a densely de�ned, onvex funtion η.(2) Then one shows that the funtion η is loally bounded in some region of non-empty interior,and therefore an be extended to a ontinuous funtion f in some non-empty open set ∆.(3) At last, one proves the onvergene of − 1

β|Λ| log ZΛ(β,N,N1, . . . ,Nj) to f along general ubes.Our proof follows these steps, with some ompliations. Notably, an extra argument is requiredin Step (2) (see Lemma 2.6 below). Moreover, we make the hoie � onvenient in view of the largedeviations framework � to assign values to the free energy not only in ∆ and outside ∆ (where f is
∞) but also in ∂∆ by requiring global lower semi-ontinuity and onvexity.



132.2.1. Convergene along speial sequenes. Let R′ > R and L∗
0 > 0 be �xed, and de�ne (L∗

n)n∈N0reursively by L∗
n+1 = 2L∗

n + R′. Expliitly, L∗
n = −R′ + 2n(L∗

0 + R′). Let Λ∗
n = [0, L∗

n]d. Thus Λ∗
n+1an be onsidered as the union of 2d opies of Λn with a orridor of width R′ between them. Let

Dj :=
{
ρ = (ρ, ρ1, . . . , ρj) ∈ [0,∞)j+1 | ρ > 0, ∃q ∈ N0 : 2qd(L∗

0 + R′)dρ ∈ N
j+1
0

}
.Lemma 2.3 (Introdution of ηj(β, ·)). Let (ρ, ρ1, . . . , ρj) ∈ Dj and put for n ∈ N

N (n) := 2nd(L∗
0 + R′)dρ, N (n)

k := 2nd(L∗
0 + R′)dρk (k = 1, . . . , j). (2.26)The following limit exists in R ∪ {∞} and is equal to an in�mum:

ηj(β, ρ, ρ1, . . . , ρj) := − lim
n→∞

1

β|Λ∗
n|

log ZΛ∗
n
(β,N (n),N (n)

1 , . . . ,N (n)

j )

= inf
n∈N

(
− 1

β|Λ∗
n|

log ZΛ∗
n
(β,N (n),N (n)

1 , . . . ,N (n)

j )
)
.

(2.27)This limit is �nite as soon as ZΛ∗
n
(β,N (n),N (n)

1 , . . . ,N (n)

j ) > 0 for some n ∈ N. In partiular,
{ηj(β, ·) < ∞} ⊂

{
(ρ, ρ1, . . . , ρj) ∈ Dj :

j∑

k=1

kρk ≤ ρ ≤ ρcp

}
. (2.28)Proof. We an plae 2d shifted opies of Λ∗

n in Λ∗
n+1 in suh a way that the opies have distane ≥ R′to eah other. Hene we have

ZΛ∗

n+1

(
β,N (n+1), N (n+1)

1 , . . . ,N (n+1)

j

)
≥

(
ZΛ∗

n

(
β,N (n),N (n)

1 , . . . ,N (n)

j

))2d

.Abbreviating
un = − 1

|Λ∗
n|

log ZΛ∗
n

(
β,N (n),N (n)

1 , . . . ,N (n)

j

) and 1 + εn :=
2d|Λ∗

n|
|Λ∗

n+1|
,this is just the inequality un+1 ≤ (1 + εn)un. Our goal is to show that limn→∞ un exists and is equalto u := infn∈N un. Remark that

1 + εn =
2d|Λ∗

n|
|Λ∗

n+1|
=

(
2n+1(L∗

0 + R′) − 2R′

2n+1(L∗
0 + R′) − R′

)d

= 1 + O(2−n),whih yields ∑∞
n=1 |εn| < ∞. The ase u = −∞ is exluded by exploiting the stability of the energy:for some C ∈ (0,∞), we have

ZΛ∗
n

(
β,N (n), N (n)

1 , . . . , N (n)

j

)
≤ ZΛ∗

n
(β,N (n)) ≤ 1

N (n)!
e−βE

N(n) |Λ∗
n|N

(n) ≤ eCN(n)
,and hene u ≥ −Cρ.If u = ∞, then un = ∞ for all n and in partiular un → ∞ = u. Consider now the ase u ∈ R. For

δ > 0, let q ∈ N suh that uq ≤ ℓ + δ and 1 − δ ≤ ∏n
k=q(1 + εk) ≤ 1 + δ for all n ≥ q. Then for n ≥ q,

u ≤ un ≤ uq

n−1∏

k=q

(1 + εk) ≤ (u + δ) (1 + δ).Letting �rst n → ∞ and then δ → 0 we onlude that un → u. The additional assertion is lear from theproof and from the fat that, for ρ > ρcp, we have ∞ = f(β, ρ) = − 1
β limn→∞

1
|Λ∗

n|
log ZΛ∗

n
(β,N (n)). �



142.2.2. Properties of the limit funtion ηj(β, ·). The next lemma essentially states that ηj(β, ·) is aonvex funtion. The preise formulation needs some are sine the domain Dj of this funtion is notlosed under taking arbitrary onvex ombinations.Lemma 2.4. Let ρ,ρ′ ∈ Dj . Let t ∈ (0, 1) be a dyadi fration, i.e., of the form t = p/2q for some
p, q ∈ N0. Then tρ + (1 − t)ρ′ ∈ Dj and

ηj(β, tρ + (1 − t)ρ′) ≤ tηj(β,ρ) + (1 − t)ηj(β,ρ′). (2.29)Proof. Consider the ubes Λ∗
n de�ned as above. Λ∗

n+1 is the union of two sets of 2d−1 opies of Λ∗
n plussome margin spae. We �rst onsider t = 1

2 . We an lower bound
ZΛ∗

n+1

(
β, 2(n+1)d(L∗

0 + R′)d(ρ + ρ
′)/2

)

≥
(
ZΛ∗

n

(
β, 2nd(L∗

0 + R′)dρ
))2d−1(

ZΛ∗
n

(
β, 2nd(L∗

0 + R′)dρ′
))2d−1

.We divide by |Λ∗
n+1| and pass to the limit, this gives Eq. (2.29) for the ase t = 1

2 . The general ase isobtained by iterating the inequality. �The following is a tehnial preparation for the proof of the loal boundedness of ηj(β, ·) in Lemma 2.6and will also be used later. We de�ne a luster partition funtion with volume onstraint: for a, β > 0,
k ∈ N, let

Zcl,a
k (β) :=

1

k!ad

∫

([0,a]d)k

e−βU(x1,x2,...,xk)1
{
{x1, x2, . . . , xk} onneted}

dx1 · · · dxk. (2.30)Lemma 2.5. Let δ ∈ (0, [R − rhc]/3). There is a C(δ) ∈ R suh that for all k ∈ N and ak >

δ + k1/d(rhc + 2δ),
ad

k Zcl,ak

k (β) ≥ |B(0, δ/2)|k exp(−βC(δ)k). (2.31)Proof. The ube [0, ak]d is large enough so that, for some h ∈ (rhc + 2δ,R − δ) and some θ ∈ R
d, theubi lattie [0, ak]d ∩

(
θ + (hZ)d) ontains at least k points all having distane ≥ δ/2 to the boundaryof the box. By plaing partiles in the lattie, we obtain an (R − δ)-onneted referene on�guration

(x1, . . . , xk) ∈ ([0, ak]d)k with the following properties:
• All points have distane ≥ δ/2 to the boundary of [0, ak]d.
• Distint points xi, xj have distane > rhc + δ to eah other.We an lower bound Zcl,ak

k (β) by integrating only over those on�gurations with exatly one partileper ball B(xi, δ/2). Suh a on�guration is always R-onneted. Moreover the energy of suh aon�guration an be upper bounded by C(δ)k with
C(δ) :=

∑

ℓ∈Zd\{0}

sup
s∈(rhc+δ,R)

∣∣v
(
s|ℓ|

)∣∣ < ∞,and Eq. (2.31) follows. �Lemma 2.6 ({ηj(β, ·) < ∞} has non-empty interior). For ρ ∈ (0,∞), let
Aj(ρ) :=

{
(ρ, ρ1, . . . , ρj) ∈ (0,∞) × [0,∞)j

∣∣∣ ρ ≤ ρ,

j∑

k=1

kρk ≤ ρ
}

.Let δ ∈ (0, (R − rhc)/3) and C(δ) be as in Lemma 2.5. Fix ρ(δ) := (rhc + R + 2δ)−d. Then for all
ρ ∈ Aj(ρ(δ)) ∩ Dj, we have ηj(β,ρ) ≤ C(δ) − β−1 log |B(0, δ/2)| < ∞. In partiular,

Aj(ρ(δ)) ∩ Dj ⊂ {ηj(β, ·) < ∞}.



15Proof. We �rst give an appropriate lower bound for the onstrained partition funtion for the twoextreme ases when (1) all lusters have the same size k ∈ {1, . . . , j}, and (2) all lusters are largerthan j. Afterwards, we use the onvexity of ηj(β, ·) (see Lemma 2.4) to handle all other ases.Thus �x ρ = (ρ, ρ1, . . . , ρj) ∈ Dj ∩ Aj(ρ(δ)). In the �rst ase, let k ∈ {1, . . . , j} and ρ = ρ
(k) with

ρ
(k)

k = ρk = ρ/k and ρ
(k)

i = ρi = 0 for i 6= k. It follows that the N (n), N (n)

i 's de�ned as in Eq. (2.26)satisfy N (n) = kN (n)

k and N (n)

i = 0 for i 6= k. Furthermore, let ak > δ + k1/d(rhc + 2δ) suh that
ρ(ak + R)d < k. We are going to use the boxes Λ∗

n de�ned above. In Λ∗
n, we plae ubes of side-length

ak with mutual distane ≥ R. As n → ∞, the number of suh boxes behaves like
ℓn :=

⌊ |Λ∗
n|

(ak + R)d

⌋
∼ N (n)/ρ

(ak + R)d
>

N (n)

k
.Thus we an lower bound the partition funtion by requiring that eah k-luster lies entirely in one ofthe above boxes, and there is at most one luster in eah suh box. This gives

ZΛ∗
n
(β,N (n), N (n)

1 , . . . , N (n)

j ) ≥
(

ℓn

N (n)/k

)(
ad

k Zcl,ak

k (β)
)N(n)/k

≥ |B(0, δ/2)|N(n)
exp(−βN (n)C(δ)),(2.32)where in the last step we used Lemma 2.5 and estimated the ounting term against one. Thus we �nd

lim
n→∞

1

|Λ∗
n|

log ZΛ∗
n
(β,N (n), N (n)

1 , . . . ,N (n)

j ) ≥ ρ
(
−βC(δ) + log |B(0, δ/2)|

)
.Thus,

ηj(β,ρ(k)) ≤ ρ
(
C(δ) − β−1 log |B(0, δ/2)|

)
.In the next step, we assume that ρ = ρ

(0) with ρ
(0)

k = ρk = 0 for all k = 1, . . . , j. Again, we de�ne
N (n) and the N (n)

i by (2.26). We now lower bound the onstrained partition funtion by putting allpartiles into one luster.
ZΛ∗

n
(β,N (n), N (n)

1 , . . . , N (n)

j ) ≥ |Λ∗
n|Zcl,L∗

n

N(n) (β) for N (n) ≥ j + 1.Observe that an := L∗
n satis�es the onditions from Lemma 2.5, thus we also have

ηj(β,ρ(0)) ≤ ρ
(
C(δ) − β−1 log |B(0, δ/2)|

)
.In the general ase, let qk := kρk/ρ for k ∈ {1, . . . , j} and q0 := 1 − ∑j

k=1 qk. Then q0, q1, . . . , qj ≥
0 are dyadi frations and satisfy ∑j

k=0 qk = 1. Furthermore, ρ =
∑j

k=0 qkρ
(k). It follows fromLemma 2.4 that

ηj(β,ρ) ≤
j∑

k=0

qkηj(β,ρ(k)) ≤ ρ
(
C(δ) − β−1 log |B(0, δ/2)|

)
.

�2.2.3. Extension of ηj(β, ·) to R
j+1. We now extend ηj(β, ·) : Dj → R ∪ {∞} to a onvex, lower semi-ontinuous funtion fj(β, ·) : R

j+1 → R ∪ {∞}. We follow the proof of [R99, Prop. 3.3.4, p. 45℄. Let
Γj be the losure of {ηj(β, ·) < ∞}, and let ∆j be the interior of Γj. Note that Γj ⊂ [0,∞)j+1, as
ηj(β, ·) = ∞ on R

j+1 \ [0,∞)j+1.Lemma 2.7. (1) The interior ∆j of Γj is non-empty.(2) The restrition of ηj(β, ·) to Dj ∩ ∆j has a unique ontinuous extension f̃j(β, ·) : ∆j → R.



16 (3) De�ne fj(β, ·) : R
j+1 → R ∪ {∞} by

fj(β,ρ) =





f̃j(β,ρ) if ρ ∈ ∆j ,

+∞ if ρ ∈ ∆
c
j ,

lim inf ρ′
→ρ

ρ′
∈∆j

fj(β,ρ′) if ρ ∈ ∂∆j .
(2.33)Then fj(β, ·) is onvex and lower semi-ontinuous, and

fj(β,ρ) = lim
t↓0

fj

(
β,ρ + t(ρ′ − ρ)

)
, ρ ∈ ∂∆j,ρ

′ ∈ ∆j. (2.34)(4)
{fj(β, ·) < ∞} ⊂ ∆j ⊂

{
(ρ, ρ1, . . . , ρj) ∈ [0,∞)j+1

∣∣∣ ρ ∈ [0, ρcp],

j∑

k=1

kρk ≤ ρ
}

. (2.35)Proof. (1) This follows from Lemma 2.6.(2) For the existene and uniqueness of a ontinuous extension in ∆j, follow [R99, p. 45℄. The keypoint is that in ∆j, ηj(β, ·) is a loally uniformly bounded, densely de�ned, onvex funtion in thesense of Lemma 2.4.(3) Let us extend f̃j(β, ·) to R
j+1 with f̃j(β,ρ) = ∞ for ρ ∈ R

j+1\∆j . Then f̃j(β, ·) is onvex, butmay fail to be lower semi-ontinuous. Furthermore, f̃j(β, ·) and fj(β, ·) an di�er only on ∂∆j. Thelower semi-ontinuous hull of f̃j(β, ·) is
cl f̃j(β,ρ) := lim inf

ρ′→ρ
f̃j(β,ρ′), ρ ∈ R

j+1,see [HL01, Def. 1.2.4, p. 79℄. This is a onvex, lower semi-ontinuous funtion whih oinides with
f̃j(β,ρ) in ∆j [HL01, Prop. 1.2.6, p. 80℄. It follows that cl f̃j(β,ρ) oinides with fj(β, ·) in ∆j . Itis elementary to see that in the de�nition of cl f̃j(β, ·), the limit inferior an be restrited to those
ρ
′ → ρ that are in ∆j. In other words, cl f̃j(β, ·) and fj(β, ·) oinide throughout R

j+1. This showsthat fj(β, ·) is onvex and lower semiontinuous. Eq. (2.34) follows from [HL01, Prop. 1.2.5℄.(4) The �rst inlusion follows from the de�nition of fj(β, ·), and the seond from (2.28). �2.2.4. Limit behavior along general sequenes.Lemma 2.8. Fix (ρ, ρ1, . . . , ρj) ∈ (0,∞)j+1. Let (N (N)

1 )N∈N, . . . , (N (N)

j )N∈N be N0-valued sequenesand (ΛN )N∈N a sequene of ubes suh that as N → ∞, (2.20) holds. Then, if (ρ, ρ1, . . . , ρj) is in ∆j,
lim

N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) = −βfj(β, ρ, ρ1, . . . , ρj) ∈ R. (2.36)Proof. We proeed as in [R99, pp. 47℄. We �rst prove the lower bound in (2.36). We will approximate
(ρ, ρ1, . . . , ρj) with (ρ∗, ρ∗1, . . . , ρ

∗
j ) ∈ Dj satisfying ρ∗ > ρ and ρ∗1 ≤ ρ1, . . . , ρ

∗
j ≤ ρj. The idea is topik the size parameter n = n(N) → ∞ of the speial sequene of ubes Λ∗
n(N) introdued at thebeginning of Setion 2.2.1 in suh a way that the ubes are small ompared to ΛN . Hene, we anplae a lot of them inside ΛN at mutual distane ≥ R. Afterwards, we distribute the partiles andlusters inside a ertain number of speial ubes aording to the distribution (ρ∗, ρ∗1, . . . , ρ

∗
j ) and plaethe few remaining partiles somewhere else in ΛN .Let (n(N))N∈N be an integer-valued sequene suh that

n(N) → ∞ and |Λ∗
n(N)|2/|ΛN | → 0.



17We de�ne N (n(N))
∗ and N (n(N))

∗,k by (2.26) with n replaed by n(N) and ρ, ρ1, . . . , ρj replaed by
ρ∗, ρ∗1, . . . , ρ

∗
j . Let mN ∈ N0 and r(N) ∈ {0, . . . ,N (n(N))

∗ − 1} be suh that
N = mNN (n(N))

∗ + r(N).This is possible beause ρ > ρ∗ and therefore N > N (n(N))
∗ for all su�iently large N . For k ∈ {1, . . . , j},de�ne r(N)

k by
N (N)

k = mNN (n(N))

∗,k + r(n(N))

k .We laim that, for su�iently large N , the r(N)

k are non-negative integers. Indeed, this follows from
N (N)

k ∼ ρk|ΛN | and mNN (n(N))

∗,k ∼ ρ|ΛN |
ρ∗|Λ∗

n(N)|
ρ∗k|Λ∗

n(N)| =
ρ

ρ∗
ρ∗k|ΛN |in ombination with ρk ≥ ρ∗k > ρ

ρ∗ ρ∗k. Moreover, we an plae mN + r(N) opies of Λ∗
n(N) with mutualdistane ≥ R inside ΛN . This is so beause

mN |Λ∗
n(N)| ∼

ρ

ρ∗
|ΛN | and r(N)|Λ∗

n(N)| = O(N (n(N))
∗ |Λ∗

n(N)|) = O(ρ∗|Λn(N)|2) = o(|ΛN |).We lower bound the onstrained partition funtion with parameters N,N (N)

1 , . . . ,N (N)

j by distributing�rst partiles and lusters in the mN boxes following the distribution N (n(N))

∗,k . This leaves r(N) partiles.Of those we distribute �rst k r(N)

k as lusters of size k, one per speial ube, and then we distributethe remaining s(N) partiles into lusters of size j + 1 exept maybe for one of size between j + 2 and
2j + 1. Pretend for simpliity that they all have size j + 1. Then we get

log ZΛN
(β,N,N (N)

1 , . . . , N (N)

j ) ≥ mN log ZΛ∗

n(N)
(β,N (n(N))

∗ ,N (n(N))

∗,1 . . . ,N (n(N))

∗,j )

+

j+1∑

k=1

r(N)

k log Z
cl,L∗

n(N)

k (β),where L∗
n(N) denotes the side length of Λ∗

n(N). Using that ∑j+1
k=1 r(N)

k ≤ r(N) ≤ N (n(N))
∗ = o(|ΛN |), weget

lim inf
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≥ −β
ρ

ρ∗
fj(β, ρ∗, ρ∗1, . . . , ρ

∗
j ).Now let (ρ∗, ρ∗1, . . . , ρ

∗
j) → (ρ, ρ1, . . . , ρj) and use the ontinuity of fj(β, ·) in ∆j, to obtain

lim inf
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≥ −βfj(β, ρ, ρ1, . . . , ρj).Now we prove the upper bound in (2.36). First of all, let us observe that the lower bound holdsnot only for sequenes of ubes, but more generally for sequenes of domains Λ′′
N that onverge toin�nity in the Fisher sense, as an be shown along the lines of our proof and [R99℄. We shall need thestatement not for general Fisher domains but only for Λ′′

N de�ned below, whih is an L-shaped domainthat is a di�erene of two ubes.Now �x C ∈ (0, 1
2). For N ∈ N, let n(N) ∈ N be so large thatΛ∗

n(N) ontains ΛN and satis�es
0 < C ≤ |ΛN |

|Λ∗
n(N)

| ≤
1

2
, n ∈ N.Let Λ′′

N be the set of points in Λ∗
n(N) having distane > R′ to ΛN . Then (|ΛN | + |Λ′′

N |)/|Λ∗
n(N)| → 1.Let ρ

∗ = (ρ∗, ρ∗1, . . . , ρ
∗
j ) ∈ ∆j ∩Dj suh that ρ∗k > 0. De�ne N (n(N))

∗ and N (n(N))

∗,k as in Eq. (2.26) with
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n replaed by n(N) and ρ, ρ1, . . . , ρj replaed by ρ∗, ρ∗1, . . . , ρ

∗
j . Then

ZΛ∗

n(N)
(β,N (n(N))

∗ , N (n(N))

∗,1 , . . . , N (n(N))

∗,j )

≥ ZΛN
(β,N,N (N)

1 , . . . , N (N)

j ) × ZΛ′′

N
(β,N (n(N))

∗ − N,N (n(N))

∗,1 − N (N)

1 , . . . ,N (n(N))

∗,j − N (N)

j ).(2.37)Assume for simpliity that |ΛN |/|Λ∗
n(N)| → α ∈ (0, 1/2] (otherwise go to suitable subsequenes). Then

N (n(N))
∗ − N

|Λ′′
N | ∼

ρ∗|Λ∗
n(N)| − ρ|ΛN |
|Λ′′

N | → ρ∗ − ρα

1 − α
=: ρ′′.De�ne ρ′′1, . . . , ρ

′′
j in an analogous way and put ρ

′′ = (ρ′′, ρ′′1 , . . . , ρ
′′
j ). Thus ρ

∗ = αρ + (1 − α)ρ′′ and
|ρ′′ − ρ| = (1 − α)−1|ρ − ρ

∗| ≤ 2|ρ − ρ
∗|,with | · | the Eulidean norm. Let ε > 0 suh that Bε(ρ) ⊂ ∆j. Now additionally assume that

ρ
∗ ∈ Bε/2(ρ). Thus ρ

′′ ∈ ∆j. In Eq. (2.37), we take logarithms, divide by |Λ∗
n(N)| and pass to thelimit N → ∞, whih gives

−βfj(β,ρ∗) ≥ α lim sup
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) − (1 − α)βfj

(
β,ρ′′

)
.To onlude we let ρ

∗ → ρ (hene ρ
′′ → ρ) and use α > 0 and the ontinuity of fj(β, ·) at ρ. �Lemma 2.9. Assume the situation of Lemma 2.8. If ρ = (ρ, ρ1, . . . , ρj) is in ∆

c
j or in ∂∆j, then

lim sup
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≤ −βfj(β,ρ).(Reall that fj(β,ρ) = ∞ in the �rst ase.)Proof. We proeed as in [R99, Prop. 3.3.8, p. 48℄. One an show that there is an α ∈ (0, 1/2] suh thatfor ρ
∗ ∈ Dj satisfying ρ∗k > 0 whenever ρk > 0, and ρ

′′ ∈ ∆j satisfying
ρ

∗ = αρ + (1 − α)ρ′′, (2.38)it holds that
−βηj(β,ρ∗) ≥ α lim sup

N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) − (1 − α)βfj(β,ρ′′). (2.39)The proof of this is similar to the proof of the upper bound in Lemma 2.8.a) Consider the ase ρ ∈ ∆
c
j . For ρ

′′ ∈ ∆j, we de�ne ρ
∗ by (2.38). By hoosing ρ

′′ lose enough to
∂∆j , we an ensure that ρ

∗ ∈ Dj ∩ ∆
c
j . Thus we onlude from (2.39) that

lim sup
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) = −∞.b) If ρ ∈ ∂∆j, let ρ
′(ε) ∈ ∆j ∩ Bε(ρ) be suh that fj(β,ρ′(ε)) → fj(β,ρ) as ε ↓ 0. By [HL01,Lemma 2.1.6, p. 35℄, the half-open line segment (ρ,ρ′(ε)] is ontained in ∆j . Sine Dj is dense andbeause of the ontinuity of fj(β, ·) at ρ

′(ε), we an �nd ρ
′′(ε) ∈ ∆j ∩ Bε(ρ) suh that

• ρ
∗(ε), de�ned by (2.38) with ρ

′′ replaed by ρ
′′(ε), is in ∆j ∩Dj ∩ Bε(ρ).

• |fj(β,ρ′(ε)) − fj(β,ρ′′(ε))| ≤ ε, so that fj(β,ρ′′(ε)) → fj(β,ρ) as ε → 0.It follows from Eq. (2.39) that
α lim sup

N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≤ lim sup
ε→0

(
−βfj(β,ρ∗(ε)) + (1 − α)βfj(β,ρ′′(ε))

)

≤ −αβfj(β,ρ).

�



19Proof of Prop. 2.1. This is now straightforward from the previous lemmas. �2.3. The ρ-setions of ∆j. We already saw that the set {fj(β, ·) < ∞} has non-empty interior ∆j .In view of the large deviations priniple we are interested in properties of the map (ρ1, . . . , ρj) 7→
fj(β, ρ, ρ1, . . . , ρj) at �xed β and ρ. This means that we look at the restrition of fj(β, ·) to thehyperplane of onstant density ρ.Now, this restrited map inherits the onvexity and lower semi-ontinuity from fj(β, ·). The questionwhether the set where it is �nite has non-empty interior is, however more subtle. Closely related is thequestion whether ∆j has non-empty intersetion with the hyperplane of onstant density ρ.To this aim onsider the ρ-setion of ∆j,

Cj(ρ) :=
{
(ρ1, . . . , ρj) ∈ (0,∞)j

∣∣ (ρ, ρ1, . . . , ρj) ∈ ∆j

}
. (2.40)Put di�erently, {ρ} × Cj(ρ) is the intersetion of ∆j with the hyperplane of onstant density ρ. Thehyperplane always uts through the interior of ∆j, i.e., annot be tangent to ∆j :Lemma 2.10. For any ρ ∈ (0, ρcp), the set Cj(ρ) is non-empty, onvex and open. Moreover,

Cj(ρ) = {(ρ1, . . . , ρj) ∈ [0,∞)j | (ρ, ρ1, . . . , ρj) ∈ ∆j}. (2.41)This last equation says that it does not matter whether we take �rst the ρ-setion and then losethe set, or if we lose �rst and then take the setion.The essential ingredients of the proof of Lemma 2.10 are the onvexity of fj(β, ·), Lemma 2.6 andthe following.Lemma 2.11. Let ρ ∈ (0, ρcp). Then there is at least one point (ρ1, . . . , ρj) ∈ [0,∞)j suh that
fj(β, ρ, ρ1, . . . , ρj) < ∞.Proof. Let N/|ΛN | → ρ. Let (N (N)

1 , . . . , N (N)

j ) be suh that
ZΛN

(β,N,N (N)

1 , . . . , N (N)

j ) = max
(N1,...,Nj)∈N

j
0

ZΛN
(β,N,N1, . . . ,Nj).Aording to the Hardy-Ramanujan formula, the number of partitions of N is not larger than

exp(O(
√

N)). Thus we �nd
ZΛN

(β,N) ≤ exp(O(
√

N))ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ).Passing to a suitable subsequene, we may assume that N (N)

k /|ΛN | → ρk, k = 1, . . . , j, for some
(ρ1, . . . , ρj) ∈ [0,∞)j . The previous inequality then yields

−∞ < −βf(β, ρ) ≤ −βfj(β, ρ, ρ1, . . . , ρj).

�Proof of Lemma 2.10. Let ρ ∈ (0, ρcp). Let ρ′ ∈ (ρ, ρcp) and (ρ′1, . . . , ρ
′
j) ∈ [0,∞)j suh that fj(β,ρ′) <

∞, where ρ
′ = (ρ′, ρ′1, . . . , ρ

′
j). Hene, ρ

′ ∈ ∆j . Let ρ(δ) and A(ρ(δ)) be as in Lemma 2.6. Let
C ⊂ [0,∞)j+1 be the one with apex ρ

′ and base A(ρ(δ)), i.e., the set of onvex ombinations of pointsin A(ρ(δ)) and ρ
′. By onvexity, C ⊂ ∆j. Looking at the ρ-setions of C we �nd that Cj(ρ) is notempty.Convexity and openness of Cj(ρ) are inherited from ∆j.Now we prove (2.41). Let Hρ = {ρ} × R

j ⊂ R
j+1 be the hyperplane of density ρ. By [HL01,Prop. 2.1.10, p. 37℄,

∆j ∩ Hρ = ∆j ∩ Hρ.The left-hand side is identi�ed as {ρ}×Cj(ρ) while the right-hand side is {ρ}×A with A the set fromthe right-hand side in Eq. (2.41). �



202.4. Proof of Proposition 2.2 � LDP for the projetion of ρΛ. In this setion, we prove the largedeviations priniple for (ρ1,Λ, . . . , ρj,Λ) under the Gibbs measure, as formulated in Proposition 2.2.This is equivalent to showing the two bounds in (2.23) and (2.24) and the laimed properties of
Iβ,ρ,j. Observe that the distribution of (ρ1,Λ, . . . , ρj,Λ) under the Gibbs measure is onentrated on theompat set Mρ. Hene, the family of these distributions is in partiular exponentially tight. Hene, itis enough to prove the upper bound in (2.24) for ompat sets. From this, in partiular the ompatnessof the level sets of Iβ,ρ,j follows, but we will also give an independent proof.For the remainder of this setion, we �x ρ ∈ (0, ρcp).2.4.1. Properties of Iβ,ρ,j. Reall the funtion Iβ,ρ,j : [0,∞)j → R ∪ {∞} from (2.1) and the ρ-setion
Cj(ρ) of ∆j from (2.40). Reall from Lemma 2.10 that Cj(ρ) is non-empty, open and onvex.Lemma 2.12. (1) Iβ,ρ,j is onvex, and its level sets are ompat.(2) Iβ,ρ,j is �nite in Cj(ρ) and in�nite in the omplement of the losure of Cj(ρ).(3) For every open set O ⊂ [0,∞)j ,

inf
O

Iβ,ρ,j =

{
infO∩Cj(ρ) Iβ,ρ,j if O ∩ Cj(ρ) 6= ∅,

∞ if O ∩ Cj(ρ) = ∅.
(2.42)Remark 2.13. Eq. (2.42) will be needed in the proof of the lower bound for the large deviationspriniple. The onvexity enters in a ruial way in Eq. (2.42). Lower semi-ontinuity alone would notsu�e! � (3) proves that the open set Cj(ρ) is a Iβ,ρ,j-ontinuity set, see [DZ98, p. 5℄.Proof. (1) Convexity and lower semi-ontinuity are immediate onsequenes of the properties for

fj(β, ·), sine the restrition of a onvex, lower semi-ontinuous funtion to a hyperplane is also onvexand lower semi-ontinuous. Thus the level sets of Iβ,ρ,j are losed. By Eq. (2.35),
{Iβ,ρ,j < ∞} ⊂

{
(ρ1, . . . , ρj) ∈ [0,∞)j

∣∣∣
j∑

k=1

kρk ≤ ρ
}
.It follows that the level sets are also bounded, hene ompat.(2) If (ρ1, . . . , ρj) is in Cj(ρ), then (ρ, ρ1, . . . , ρj) ∈ ∆j by de�nition of Cj(ρ), and therefore

fj(β, ρ, ρ1, . . . , ρj) < ∞. Hene, Iβ,ρ,j(ρ1, . . . , ρj) < ∞.If (ρ1, . . . , ρj) is in the omplement of the losure of Cj(ρ), then by Eq. (2.41), (ρ, ρ1, . . . , ρj) is inthe omplement of the losure of ∆j, from whih Iβ,ρ,j(ρ1, . . . , ρj) = ∞ follows.(3) If O and Cj(ρ) are disjoint, Iβ,ρ,j = +∞ on O by (2). If the sets are not disjoint, we know that
inf
O

Iβ,ρ,j = inf
O∩Cj(ρ)

Iβ,ρ,j ≤ inf
O∩Cj(ρ)

Iβ,ρ,j, (2.43)and it remains to prove the opposite inequality. Thus let ρ = (ρ1, . . . , ρj) ∈ O∩∂Cj(ρ). Let ρ
′ ∈ Cj(ρ).By Eq. (2.34),

Iβ,ρ,j(ρ) = lim
t↓0

Iβ,ρ,j(ρ + t(ρ′ − ρ)).Beause O is open and by [HL01, Lemma 2.1.6, p. 35℄, for su�iently small t, ρ+t(ρ′−ρ) ∈ O∩Cj(ρ).Thus for some suitable t0 > 0,
Iβ,ρ,j(ρ) = lim

t↓0
Iβ,ρ,j(ρ + t(ρ′ − ρ)) ≥ inf

t∈(0,t0)
Iβ,ρ,j(ρ + t(ρ′ − ρ)) ≥ inf

O∩Cj(ρ)
Iβ,ρ,j.

�



212.4.2. The two bounds in (2.23) and (2.24). For A ⊂ [0,∞)j , let
PN (j,A) :=

{
(N1, . . . , Nj) ∈ N

j
0

∣∣∣
(
N1/|ΛN |, . . . ,NN/|ΛN |

)
∈ A,

j∑

k=1

kNk ≤ N
}

.We note that the probability of �nding (ρ1,ΛN
, . . . , ρj,ΛN

) in the set A is a sum of onstrained partitionfuntions:
P

(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ A

)
=

1

ZΛN
(β,N)

∑

(N1,...,NN )∈PN (j,A)

ZΛN
(β,N,N1, . . . ,Nj).Upper bound in (2.24) for ompat sets. Let K ⊂ [0,∞)j be a ompat set. Let (N (N)

1 , . . . ,N (N)

j ) ∈
PN (j,K) maximize the onstrained partition funtion over PN (j,K), i.e.,

ZΛN
(β,N,N (N)

1 , . . . , N (N)

j ) = max
(N1,...,Nj)∈PN (j,K)

ZΛN
(β,N,N1, . . . ,Nj).Then

P
(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ K

)
≤ |PN (j,K)|

ZΛN
(β,N)

ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ).Now, the ardinality of PN (j,K) is smaller than the number of partitions of N , and therefore notlarger than exp(O(
√

N)), whih is eo(N). The sequene (N (N)

1 /|ΛN |, . . . ,N (N)

j /|ΛN |)N∈N takes valuesin the ompat set K and therefore, going to a subsequene, we an assume that it onverges to some
(ρ1, . . . , ρj) ∈ K. Applying Proposition 2.1 we �nd

lim sup
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≤ −βfj(β, ρ, ρ1, . . . , ρj) ≤ −β inf
K

fj(β, ρ, ·).This yields the upper bound in (2.24) for K = C.Lower bound in (2.23) for open sets. Let O ⊂ [0,∞)j be an open set. Let (ρ1, . . . , ρj) ∈ O. We anhoose (N (N)

1 , . . . , N (N)

j ) ∈ PN (j,O) so that N (N)

k /|ΛN | → ρk, k = 1, . . . , j, and have
P

(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ O

)
≥ 1

ZΛN
(β,N)

ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ).If (ρ, ρ1, . . . , ρj) is in ∆j or in the omplement of the losure of ∆j, we onlude from Prop. 2.1 that
lim inf
N→∞

1

|ΛN | log P
(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ O

)
≥ −Iβ,ρ,j(ρ1, . . . , ρj).Thus, taking on the right-hand side the supremum over all suh (ρ1, . . . , ρj), we obtain

lim inf
N→∞

1

|ΛN | log P
(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ O

)
≥ − inf

O∩Cj(ρ)
Iβ,ρ,j = − inf

O
Iβ,ρ,j.The last equality uses Lemma 2.12 for the ase O ∩ Cj(ρ) 6= ∅, and (2.23) is proved in this ase. If

O and Cj(ρ) are disjoint, then infO Iβ,ρ,j = ∞, and (2.23) is trivially true. This ends the proof ofProposition 2.2.2.5. The �nish � proof of the LDP for (ρΛN
)N∈N. The proof of Theorem 1.1 follows essentiallyfrom Proposition 2.2 and the Dawson-Gärtner theorem, the LDP for projetive limits, see [DZ98,Theorem 4.6.1℄. More preisely, let

Iβ,ρ

(
(ρk)k∈N

)
= β

(
f
(
β, ρ, (ρk)k∈N

)
− f(β, ρ)

)with
f
(
β, ρ, (ρk)k∈N

)
:= sup

j∈N

fj(β, ρ, ρ1, . . . , ρj).



22Consider �rst Iβ,ρ as a funtion from [0,∞)N to R∪{∞} and endow [0,∞)N with the produt topology,By the Dawson-Gärtner theorem, Iβ,ρ is a good rate funtion and (ρΛN
)N∈N satis�es a large deviationspriniple with rate funtion Iβ,ρ.Now for all N , P

(N)

β,ΛN
(ρΛN

∈ Mρ+ε) = 1. Moreover, Mρ+ε is losed as a subset of ([0,∞)N in theprodut topology. Thus by [DZ98, Lemma 4.1.5℄ we onlude that (ρΛN
)N∈N satis�es a large deviationspriniple also as an Mρ+ε-valued random variable in this topology.Next, one easily sees that on Mρ+ε the produt topology and the ℓ1 topology oinide. It followsthat (ρΛN

) satis�es the LDP also in this topology with the good rate funtion Iβ,ρ.
Iβ,ρ is onvex beause it is the supremum of a family of onvex funtions.Finally, if Iβ,ρ((ρk)k∈N) is �nite, then, for all j ∈ N, we have fj(β, ρ, ρ1, . . . , ρj) < ∞ and hene byProposition 2.1, ∑j

k=1 kρk ≤ ρ. Letting j → ∞ we obtain ∑∞
k=1 kρk ≤ ρ. This proves that {Iβ,ρ < ∞}is ontained in Mρ. 3. Approximation with an ideal mixture of lustersIn this setion, we ompare the rate funtion f(β, ρ, ·) de�ned in (1.9) with an ideal rate funtion.This rate funtion desribes a uniform mixture of lusters that do not interat with eah other. Thisfuntion has a partiularly simple shape, sine the ombinatorial omplexity does not take are of theexluded-volume e�et, i.e., di�erent lusters do not repel eah other.One of the ruial points is a lower estimate for the ombinatorial omplexity of putting a givennumber of lusters into a large box in a well separated way. For this, we need to ontrol the free energyof lusters that �t into some box of a ertain volume. It is relatively easy to ahieve this if the radius ofthat box is of order of the ardinality of the luster, i.e., under the sole ondition Assumption (V). Thiswill turn out in Setion 5.1 to be su�ient for the regime in (1.3), i.e., for the proof of Theorem 1.2.However, in order to handle also the muh more �exible bounds in Theorem 1.8, we will have to useboxes with volume of order of the luster ardinality and to make use of Assumption 1.7.We onsider the luster partition funtion, whih is de�ned, for β > 0 and k ∈ N, by

Zcl
k (β) =

1

k!

∫

(Rd)k−1

e−βUk(0,x2,...,xk)1
{
{0, x2, . . . , xk} onneted}

dx2 · · · dxk.Reall the luster partition funtion Zcl,a
k (β) with restrition to [0, a]d and additional fator a−d intro-dued in (2.30) above. The reader easily heks that

lim
a→∞

Zcl,a
k (β) = Zcl

k (β), k ∈ N, β ∈ (0,∞).We also de�ne assoiated luster free energies per partile:
f cl

k (β) := − 1

βk
log Zcl

k (β), f cl,a
k (β) := − 1

βk
log Zcl,a

k (β). (3.44)Let
f cl
∞(β) := lim inf

k→∞
f cl

k (β) and f cl
∞(β, ρ) := lim sup

k→∞
f cl,Lk

k (β), (3.45)where Lk is suh that the volume of [0, Lk]
d is equal to k/ρ. We will see in Setion 4, see Lemma 4.3and (4.54), that these quantities are �nite. One an atually show that they exist as limits, but wewill not need that.Now we an state our bounds. The �rst one expresses the (simple) bound that omes from droppingthe exluded-volume e�et. Reall the de�nition (1.11) of the ideal free energy f ideal.



23Lemma 3.1 (Lower bound). For all β, ρ > 0 and ρ ∈ Mρ,
f
(
β, ρ,ρ

)
≥ f ideal

(
β, ρ,ρ

)
. (3.46)Proof. Reall the de�nition (2.19) of the onstrained partition funtions ZΛ(β,N,N1, . . . ,NN ). Weshow �rst that

ZΛ(β,N,N1, . . . ,NN ) ≤
N∏

k=1

(|Λ|Zcl
k (β))Nk

Nk!
, (3.47)for all N,N1, . . . , NN ∈ N0 with ∑N

k=1 kNk = N . Fix suh a vetor (N,N1, . . . ,NN ). Let x =

(x1, . . . , xN ) ∈ ΛN with N1 lusters of size 1, N2 lusters of size 2, et. Consider the graph withverties {1, . . . , N} and edges those {i, j}, i 6= j, where |xi − xj| ≤ R. The graph splits into onnetedomponents; this indues a partition I(x) of the index set {1, . . . ,N}. The set partition has N1 sets ofsize 1, N2 sets of size 2, et. Let J = J ((Nk)k) be the olletion of suh set partitions of {1, . . . ,N}.Note that the integral of e−βUN over {x : I(x) = I} does not depend on I ∈ J . The ardinality of Jis
|J | =

N !
∏N

k=1

(
Nk! k!Nk

) .Therefore, for any I (0) ∈ J , we may write
ZΛ(β,N,N1, . . . , NN ) =

1

N !

∑

I∈J

∫

ΛN

e−βUN (x)1l
{
I(x) = I

}
dx

=
1

∏N
k=1

(
Nk! k!Nk

)
∫

ΛN

e−βUN (x)1l
{
I(x) = I (0)

}
dx.The indiator funtion in the last integral an be upper bounded by dropping the requirement thatlusters have mutual distane ≥ R. This leads to a produt of indiator funtions, one for eah luster,enoding that the luster is onneted and stays inside Λ. Noting that

1

k!

∫

ΛN

e−βU(x1,...,xk)1l
{
{x1, . . . , xk} onneted}

dx1 · · · dxk ≤ |Λ|Zcl
k (β)(integrate �rst over x2, . . . , xk at �xed x1, and then over x1), we dedue Eq. (3.47).Next, we note that n! ≥ (n/e)n for all n ∈ N. Therefore, (3.47) gives that

ZΛ(β,N,N1, . . . , NN ) ≤ exp
(
−β|Λ|f ideal

(
β, N

|Λ| ,
(

Nk

|Λ|

)
k∈N

))
, (3.48)where we have set Nk = 0 for k ≥ N + 1, and f ideal is de�ned in (1.11).Now we turn to a lower bound for the rate funtion. Let O ⊂ Mρ be an open set. For N ∈ N, let

ρ
(N) be a luster size distribution in Mρ of the form ρ(N)

k = Nk/|ΛN | with integer Nk, and minimising
f ideal(β,N/|Λ|,ρ) among distributions of this type. Summing Eq. (3.48) over partitions related to O,we obtain

− inf
O

Iβ,ρ ≤ lim inf
N→∞

1

|ΛN | log P
(N)

β,ΛN
(ρΛN

∈ O) ≤ −β lim inf
N→∞

f ideal
(
β, N

|ΛN | ,ρ
(N)

)
+ βf(β, ρ).We have used that the number of integer partitions of N , by the Hardy-Ramanujan formula, is of order

exp(O(
√

N)) and therefore does not ontribute at the exponential sale onsidered here. Sine Mρ isompat, we may assume, up to hoosing subsequenes, that ρ(N)

k → ρk for all k, i.e., ρ
(N) onvergesto some ρ ∈ Mρ. Sine the funtional (ρ,ρ) 7→ f ideal(β, ρ,ρ) is lower semi-ontinuous, it follows that,along the hosen subsequene,

f ideal(β, ρ,ρ) = lim inf
N→∞

f ideal
(
β, N

|ΛN | ,ρ
(N)

)
≥ inf

O
f ideal(β, ρ, ·).



24We dedue
inf
O

f(β, ρ, ·) ≥ inf
O

f ideal(β, ρ, ·),for every open set O ⊂ Mρ. To onlude, for ρ ∈ Mρ, noting that Mρ is metrizable, we an hoose openenvironments O ց {ρ} and omplete the proof by exploiting the lower semi-ontinuity of f ideal(β, ρ, ·).
�Our seond bound ontrols the error when dropping the exluded-volume e�et. This was muheasier in [CKMS10℄ and was hidden in the proof of Proposition 2.2 there.Proposition 3.2 (Upper bound). For eah k ∈ N, let ak > 0 be suh that (ak + R)d < k/ρ. Then, forany ρ = (ρk)k∈N,

f
(
β, ρ,ρ

)
≤

∑

k∈N

kρkf
cl,ak

k (β) +
(
ρ −

∑

k∈N

kρk

)
f cl
∞(β, ρ) +

1

β

∑

k∈N

ρk log ρ

+
1

β

∑

k∈N

ρk

(
− log(1 − ρ

k (ak + R)d) + log(1 + R
ak

)d
)
.

(3.49)Proof. We �rst remark that it is enough to show (3.49) for ρ replaed by ρ
ke

(k) for any k ∈ N (where
e

(k) = (δk,j)j∈N) and for ρ replaed by 0, the sequene onsisting of zeros. Indeed, reall from Theo-rem 1.1 that f(β, ρ, ·) is onvex, note that an arbitrary ρ an be written as the onvex ombination
(ρk)k∈N =

∑

k∈N

kρk

ρ
ρ
ke

(k) +
(
1 −

∑

k∈N

kρk

ρ

)
0,and note that the right-hand side of (3.49) is a�ne in ρ. Hene, we only have to show that

f
(
β, ρ, ρ

ke
(k)

)
≤ ρf cl,ak

k (β)+
1

β

ρ

k
log ρ+

1

β

ρ

k

(
− log

(
1− ρ

k (ak+R)d
)
+log

(
(1+ R

ak
)d

))
, k ∈ N, (3.50)and that

f
(
β, ρ,0

)
≤ ρf cl

∞(β, ρ). (3.51)We now prove (3.51). Let O ⊂ Mρ be an open set ontaining 0, and O its losure. By the LDP,
lim sup
N→∞

1

|ΛN | log P
(N)

β,ΛN
(ρΛN

∈ O) ≤ − inf
O

Iβ,ρ.For N ∈ N, onsider the luster size distribution obtained by putting all partiles into one large luster:
ρ(N)

1 = · · · = ρ(N)

N−1 = 0, ρ(N)

N = 1/|ΛN |. Note that ρ
(N) = (ρ(N)

k )k∈N lies in Mρ for any N ∈ N. We have
ρ

(N) → 0 as N → ∞ and thus ρ
(N) ∈ O ⊂ O for su�iently large N . As a onsequene, we an lowerbound

P
(N)

β,ΛN
(ρΛN

∈ O) ≥ P
(N)

β,ΛN
(ρΛN

= ρ
(N)) =

|ΛN |Zcl,LN

N (β)

ZΛN
(β,N)

.Realling that |ΛN | = N/ρ, it follows that
− inf

O
Iβ,ρ ≥ lim sup

N→∞

1

|ΛN | log
|ΛN |Zcl,LN

N (β)

ZΛN
(β,N)

≥ −βρf cl
∞(β, ρ) + βf(β, ρ).Sine Iβ,ρ(·) = βf(β, ρ, ·) − βf(β, ρ), this implies infO f(β, ρ, ·) ≤ ρf cl

∞(β, ρ). This holds for all opensets O ontaining 0. Letting O ց {0} and using the lower semi-ontinuity of f(β, ρ, ·), we dedue(3.51).Now let us turn to (3.50). We proeed in a way analogous to Lemma 2.6. Fix k ∈ N. Let N be amultiple of k. Consider the luster size distribution obtained by putting all partiles into lusters ofsize k, i.e., put N (N)

j = (N/k)δj,k for j ∈ N. We divide the box ΛN into ℓN boxes of side length ak with



25mutual distane at least R. Hene, ℓN ∼ N
ρ (ak + R)−d. The assumption (ak + R)d < k/ρ guaranteesthat ℓN > N/k for su�iently large N . Therefore, we an lower bound

ZΛN
(β,N,N (N)

1 , . . . ,N (N)

N ) ≥
(

ℓN

N/k

)(
ad

kZ
cl,ak

k (β)
)N/k

.Therefore, using that |ΛN | = N/ρ and Stirling's formula,
lim inf
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

N )

≥ ρ

k
log Zcl,ak

k (β) − ρ

k
log ρ +

ρ

k
log

( ad
k

(ak + R)d
− ρad

k

k

)
.

(3.52)Multiplying the right-hand side with −β−1, the right-hand side of (3.50) arises. In the same way asin the proof of (3.51), one derives, with the help of Lemma 2.8, that f(β, ρ, ρ
ke

(k)) is not larger than
−β−1 times the left-hand side of (3.52). This ends the proof of (3.50). �4. Bounds for the luster free energyIn this setion we give some more bounds that will later be used in the proofs of Theorems 1.2 and1.8. We further estimate some entropy terms, and we give bounds that ontrol the replaement oftemperature-depending terms by the orresponding ground-state terms. Throughout this setion weassume that the pair potential v satis�es Assumption (V).We will later replae the term ∑

k ρk(log ρk − 1) in f ideal(β, ρ, (ρk)k) by ∑
k ρk log ρk. To this aimthe following will be useful.Lemma 4.1 (Entropy bound). For any probability distribution (pk)k∈N on N,

0 ≤ −
∑

k∈N

pk log pk ≤ 1 + log
∑

k∈N

kpk.Proof. We may assume that the expetation ∑
k∈N

kpk is �nite. It is elementary to see that themaximizer of the entropy among the set of probability distributions with a given �nite expetationis a geometri distribution. For pk = (1 − u)uk−1, k ∈ N, for some u ∈ (0, 1), the expetation is∑
k∈N

kpk = 1/(1 − u) and the entropy is
−

∑

k∈N

pk log pk = − log(1 − u) − (1 − u)
∑

k∈N

uk−1(k − 1) log u

= − log(1 − u) − u log u

1 − u
= log

∑

k∈N

kpk +
u log u

u − 1
.We onlude by observing that x log x ≥ x − 1 for all x > 0 and realling that u < 1. �Lemma 4.2. For any ρ ∈ (0,∞) and any ρ = (ρk)k∈N ∈ Mρ,

∑

k∈N

ρk log
ρk

ρ
≥ −2ρ.Proof. Put m :=

∑
k∈N

ρk and pk := ρk/m. Then
∑

k∈N

ρk log
ρk

ρ
=

∑

k∈N

mpk log
mpk

ρ
= m log

m

ρ
+ m

∑

k∈N

pk log pk

≥ m log
m

ρ
− m − m log

∑

k∈N

kpk ≥ 2m log
m

ρ
− m,where we applied Lemma 4.1 and that ∑

k∈N
kpk ≤ ρ/m. Now use the inequality x log x ≥ x − 1 anddrop the term m. �



26 In our bounds in Lemma 3.1 and Proposition 3.2, we will later replae the luster free energies withground state energies; in this setion we give bounds that will allow us to ontrol the replaementerror. We also prove that f cl
∞(β) and f cl

∞(β, ρ) are �nite.Lemma 4.3 (Lower bound for f cl
k (β) and f cl

∞(β)). There is a onstant C > 0 suh that for all
β ∈ (0,∞),

f cl
k (β) ≥ Ek

k
− C

β
, k ∈ N, β ∈ (0,∞).In partiular, f cl

∞(β) ≥ e∞ − C
β for any β ∈ (0,∞).Proof. We follow [CKMS10, Se. 2.4℄. First, note that

Zcl
k (β) ≤ e−βEk

1

k!

∣∣∣
{
(x2, ..., xk) ∈ (Rd)k−1 : {0, x2, ..., xk} R-onneted}∣∣∣with | · | the Lebesgue volume. Now, with eah x

′ = (x2, . . . , xk) suh that x := (0,x′) is R-onneted,we an assoiate a tree T (x′) with vertex set {1, . . . , k} and edge set E(T (x′)) ⊂ {{i, j} : i 6= j}, andsuh that
{i, j} ∈ E(T (x′)) =⇒ |xi − xj | ≤ R.Note that for a given x

′, there are in general several trees satisfying this ondition; we pik arbitrarilyone of them and all it T (x′). Now we have
∣∣∣
{
x

′ ∈ (Rd)k−1 | (0,x′) R-onneted}∣∣∣

=
∑

T tree∣∣∣{x
′ ∈ (Rd)k−1 | (0,x′) R-onneted, T (x′) = T

}∣∣∣

≤
∑

T tree∣∣∣{x
′ ∈ (Rd)k−1 | (0,x′) R-onneted, {i, j} ∈ E(T ) ⇒ |xj − xi| ≤ R

}∣∣∣.For eah given tree T , the Lebesgue volume of the set in the last line above is upper bounded by
|B(0, R)|k−1. By Cayley's theorem, see [AZ98, pp. 141�146℄, the number of labeled trees with k vertiesis kk−2. Thus

Zcl
k (β) ≤ e−βEk

kk−2

k!
|B(0, R)|k−1.and the proof is easily onluded. �Now we show that the volume onstraint in the luster partition funtion is immaterial for large βif the radius of the on�ning box is of order of the partile number with a su�iently large prefator.Lemma 4.4 (Low-temperature behavior of f cl,a

k (β)). For any k ∈ N and any hoie of ak(β) in
[kR,∞),

lim
β→∞

f
cl,ak(β)
k (β) =

Ek

k
.Proof. The lower bound, `≥', is trivial sine Zcl,a

k (β) ≤ Zcl
k (β) for any a. For ak(β) ≥ kR, the box

[0, ak(β)]d is ertainly large enough to ontain a minimiser of x 7→ Uk(x). Therefore, lower boundingthe integral by an integral in a neighborhood of the minimiser, we �nd
lim inf
β→∞

1

β
log Z

cl,ak(β)
k ≥ −Ek

k
,whih is the upper bound `≤'. �Under additional assumptions, most importantly Assumption 1.7, it will be enough to pik ak oforder k1/d instead of k, with some error of order 1

β log β:



27Lemma 4.5 (Uniform low-temperature bounds for f cl,a
k (β)). Suppose that the pair potential also sat-is�es Assumptions 1.6 and 1.7. There is an α > 0 and a β > 0 suh that for all β ∈ [β,∞), and everysequene of ak's satisfying ak > αk1/d,

f cl,ak

k (β) ≤ Ek

k
+

C

β
log β, k ∈ N. (4.53)In partiular, for any ρ ∈ (0, 1/αd) and β ∈ [β,∞),

f cl
∞(β, ρ) ≤ e∞ +

C

β
log β. (4.54)Proof. The strategy of the proof is as follows. Aording to Assumption 1.7, we may pik a minimiserfor Uk that �ts into some ball whose volume is of order of the partile number. Then we restrit theintegral in the de�nition of the luster partition funtion to some neighbourhood of this minimiserand ontrol the error with the help of the Hölder ontinuity from Assumption 1.6. Let us turn to thedetails.Let c > 0 be as in Assumption 1.7, δ > 0 as in Lemma 2.5. Then α := 2(c + δ) satis�es αk1/d ≥

δ + ck1/d for all k ∈ N. Fix t ∈ (1, R/b). Let nmax ∈ N be the maximal number of partiles that anbe plaed in B(0, R), keeping mutual distane ≥ rmin, with rmin as in Assumption 1.6.For k ∈ N, let ak > αk1/d and let x
(0) = (x(0)

1 , . . . , x(0)

k ) be a minimiser of the energy Uk that �tsinto the ube with side length ak − δ. Thus x
(0) is b-onneted, and |xi − xj| ≥ rmin for every i 6= j.The saled state tx(0) is tb-onneted and has minimum interpartile distane ≥ trmin. By the Hölderontinuity of the potential v,

|U(tx(0)) − U(x(0))| ≤ 1

2

k∑

i=1

∑

j 6=i

∣∣∣v(t|x(0)

i − x(0)

j |) − v(|x(0)

i − x(0)

j |)
∣∣∣

≤ k nmax sup
{
|v(r′) − v(r)| : r ≥ rmin, r′ ≥ rmin, |r − r′| ≤ (t − 1)b

}

≤ Cknmax(t − 1)sbswith C and s suh that |v(r′) − v(r)| ≤ C|r′ − r|s for any r, r′ ≥ rmin. Let ε ∈ (0, 1) suh that
ε ≤ δ/2, rmin ≤ trmin − 2ε, and tb + 2ε ≤ R.We will obtain a lower bound for Zcl,ak

k (β) by onsidering on�gurations (x1, . . . , xk) with exatly onepartile per ε-ball around tx(0)

j for j = 2, . . . , k. To this end, put
M′ :=

⋃

σ∈S′

k−1

(
B(tx(0)

σ(2), ε) × · · · × B(tx(0)

σ(k), ε)
)
,where S

′
k−1 denotes the set of permutations of 2, . . . , k, and let M be the set of on�gurations inthe ube of side length ak − δ obtained by rigid shifts from on�gurations in {x(0)

1 } ×M′. For smallenough ε, the balls B(tx(0)

σ(2), ε), . . . , B(tx(0)

σ(k), ε) do not overlap, and M′ has therefore Lebesgue volume
(k − 1)! |B(0, ε)|k−1. Moreover,

|M| ≥ |M′| (ak − δ − ck1/d)d ≥ ad
k

2
|M′|.Now x ∈ M is R-onneted and has minimum interpartile distane ≥ rmin. Thus

|U(x) − U(tx(0))| ≤ Cknmaxε
s, x ∈ M.Restriting the integral in the de�nition (2.30) of Zcl,ak

k (β) to M, we obtain
ad

kZ
cl,ak

k (β) ≥ ad
k

2k
|B(0, ε)|k−1 exp

(
−β(Ek + Cknmaxε

s)
)
.



28This implies, for |B(0, ε)| ≤ 1,
f cl,ak

k (β) ≤ Ek

k
+

Cnmaxε
s

β
− 1

β
log |B(0, ε)| + log 2

β
.Now we pik ε = 1/β for de�niteness and obtain that (4.53) is satis�ed for su�iently large β. �5. Proof of Γ-onvergene and uniform boundsIn this setion, we prove Theorems 1.2 and 1.8. Reall that Theorem 1.2 is proved under the soleAssumption (V) and that we additionally suppose that Assumptions 1.6 and 1.7 hold for Theorem 1.8.5.1. Proof of Theorem 1.2. Fix ν ∈ (0,∞) and let (0,∞) ∋ s 7→ (β(s), ρ(s)) be a urve in (0,∞)2suh that, as s → ∞,

β(s) → ∞, ρ(s) → 0, − 1

β(s)
log ρ(s) → ν.We need to show that, for any q = (qk)k∈N ∈ Q,Lower bound : For all urves q

(s) → q,
lim inf
s→∞

1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≥ gν(q). (5.55)Upper bound / reovery sequene: there is a urve q

(s) → q suh that
lim sup

s→∞

1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≤ gν(q). (5.56)Proof of the lower bound. We write q

(s) = (q(s)

k )k ∈ Q. De�ne ρ
(s) = (ρ(s)

k )k∈N by q(s)

k = kρ(s)

k /ρ. Let
C > 0 and β > 0 suh that kf cl

k (β) ≥ Ek−Ckβ−1 for any k ∈ N∪{∞} and β ∈ [β,∞), see Lemma 4.3.Then Lemma 3.1 gives
1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≥

∑

k∈N

ρ(s)

k

ρ(s)
Ek +

(
1 −

∑

k∈N

k
ρ(s)

k

ρ(s)

)
e∞ +

1

β(s)

∑

k∈N

ρ(s)

k

ρ(s)

(
log ρ(s)

k − 1
)
− C

β(s)

=
∑

k∈N

ρ(s)

k

ρ(s)

(
Ek − 1

β(s)
log ρ(s)

)
+

(
1 −

∑

k∈N

k
ρ(s)

k

ρ(s)

)
e∞

+
1

β(s)

∑

k∈N

ρ(s)

k

ρ(s)

(
log

ρ(s)

k

ρ(s)
− 1

)
− C

β(s)
.The term in the seond line onverges to gν(q) beause of the ontinuity of the map q 7→ ∑

k∈N
qk(Ek−

ν)/k + (1 − ∑
k∈N

qk)e∞; here enters the property Ek/k → e∞. The terms in the last line are, byLemma 4.2, of order 1/β(s) and therefore onverge to 0. �Proof of upper bound / existene of a reovery sequene. We hoose ρ-dependent box sizes ak(ρ) suhthat (ak(ρ) + R)d < k/(2ρ), ak > R, and ak > δ + k1/d(rhc + δ), with δ as in Lemma 2.5. Suh ahoie is possible for small enough ρ, and ompatible with the additional requirement that ak(ρ) → ∞as ρ → 0, for every k ∈ N. Lemma 2.5 tells us that
f

cl,ak(ρ(s))
k ≤ C(δ) − 1

β(s)
log |B(0, δ/2)| + log(k/ρ(s))

dβ(s)k
.whih an be upper bounded by some onstant C, uniformly in k ∈ N and su�iently large s.



29Now we apply Prop. 3.2. This gives, for su�iently large s and any sequene ρ = (ρk)k,
1

ρ(s)
f(β(s), ρ(s),ρ) ≤

∑

k∈N

k
ρk

ρ(s)
f

cl,ak(ρ(s))
k (β(s)) +

(
1 −

∑

k∈N

k
ρk

ρ(s)

)
f cl
∞(β(s), ρ(s))

+
1

β(s)

∑

k∈N

ρk

ρ(s)
log ρ(s) +

1

β(s)

∑

k∈N

ρk(d + 1) log 2. (5.57)Consider �rst the ase ∑∞
k=1 qk = 1. Let q

(s) := q. We have, for any K ∈ N,
1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≤

K∑

k=1

qk

(
f

cl,ak(ρ(s))
k (β(s)) − log ρ(s)

β(s)k

)
+ C

∞∑

k=K+1

qk +
log 2d+1

β(s)
.Sine ak(ρ(s)) → ∞ as s → ∞ for any k ∈ {1, . . . ,K}, using Lemma 4.4, we get

lim sup
s→∞

1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≤

K∑

k=1

qk
Ek − ν

k
+ C

∞∑

k=K+1

qk.Letting K → ∞ we �nd that lim sups→∞ ρ(s)−1f(β(s), ρ(s),ρ(s)) ≤ gν(q).Next, onsider the ase qk = 0 for all k ∈ N. For n ∈ N, let sn > 0 large enough so that for s ≥ sn,
|f cl,an(ρ(s))

n − En/n| ≤ 1/n. The sequene (sn)n∈N an be hosen inreasing and diverging. We set
k(s) := n for s ∈ [sn, sn+1) and n ∈ N. It follows that k(s) → ∞ as s → ∞, and

∣∣∣f cl,ak(s)(ρ(s))

k(s) (β(s)) −
Ek(s)

k(s)

∣∣∣ ≤ 1

k(s)
, s ∈ [s1,∞),from whih we dedue f

cl,ak(s)(ρ(s))

k(s) (β(s)) → e∞ as s → ∞. Set qk(s) := δk,k(s). Then we �nd
lim sup

s→∞

1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≤ e∞ = gν(q).To onlude, we observe that every q ∈ Q an be written as a onvex ombination of a vetor q

′with ∑
k∈N

q′k = 1 and the zero vetor, and a reovery sequene is onstruted by taking the onvexombination of q
′ and the reovery sequene for the zero vetor. �5.2. Proof of Theorem 1.8. Proof of (1): We prove (1.15) in terms of ρk's instead of qk's. Then itreads

∣∣∣f(β, ρ, (ρk)k∈N) −
[∑

k∈N

ρk

(
Ek +

log ρ

β

)
+

(
ρ −

∑

k∈N

kρk

)
e∞

]∣∣∣ ≤ C

β
ρ log β, (ρk)k∈N ∈ Mρ. (5.58)Lemmas 3.1, 4.2, and 4.3 yield that there is C ∈ (0,∞) suh that, for all β, ρ ∈ (0,∞) and ρ =

(ρk)k∈N ∈ Mρ,
f(β, ρ,ρ) ≥ f ideal(β, ρ,ρ)

≥
∑

k∈N

kρk

(Ek

k
− C

β

)
+

(
ρ −

∑

k∈N

kρk

)(
e∞ − C

β

)
+

1

β

∑

k∈N

ρk log
ρk

ρ
+

log ρ − 1

β

∑

k∈N

ρk

≥
∑

k∈N

ρk

(
Ek +

log ρ

β

)
+

(
ρ −

∑

k∈N

kρk

)
e∞ − (C + 3)

ρ

β
. (5.59)This is `≥' in (5.58). For proving `≤', we pik, for ρ ∈ (0,∞) and k ∈ N, box diameters ak(ρ) suhthat ak(ρ) > αk1/d, with α as in Lemma 4.5, and (ak(ρ) + R)d < k/2ρ, for all k ∈ N. This is possibleprovided ρ < k/2(αk1/d + R)d for any k ∈ N, and this is, by monotoniity in k, guaranteed for ρ < ρ,where we put ρ = 1

2(α+R)d . We may also assume, without loss of generality, that α > R, whih implies



30that ak(ρ) > R for all k ∈ N. We obtain, for (β, ρ) ∈ [β,∞) × (0, ρ), and C > 0 as in Lemma 4.5, forany ρ ∈ Mρ, with the help of Proposition 3.2,
f(β, ρ,ρ) ≤

∑

k∈N

kρk

(Ek

k
− C

β
log β

)
+

(
ρ −

∑

k∈N

kρk

)(
e∞ − C

β
log β

)
+

log ρ

β

∑

k∈N

ρk

+
1

β

∑

k∈N

ρk

(
− log(1 − 1

2) + log
k

2ρak(ρ)d

)

≤
∑

k∈N

ρk

(
Ek +

log ρ

β

)
+

(
ρ −

∑

k∈N

kρk

)
e∞ +

Cρ

β
log β + (d + 1)

ρ

β
log 2,

(5.60)
whih is the orresponding upper bound in (5.58).Proof of (2): Let ρ = (ρk)k be a minimiser of f(β, ρ, ·) and q := (kρk/ρ)k∈N. Write ν = −β−1 log ρ.Then

1

ρ
f(β, ρ) =

1

ρ
f(β, ρ,ρ) ≥ gν(q) − C

β
log β ≥ µ(ν) − C

β
log β.Similarly, let q be a minimiser of gν(·) and ρ := (ρqk/k)k∈N. Then

µ(ν) = gν(q) ≥ 1

ρ
f(β, ρ,ρ) − C

β
log β ≥ 1

ρ
f(β, ρ) − C

β
log β.Proof of (3): Let ρ = (ρk)k be a minimiser of f(β, ρ, ·) and q := (kρk/ρ)k∈N. Write ν = −β−1 log ρ.Then (1) and (2) yield

gν(q) − µ(ν) ≤ 1

ρ
f(β, ρ,ρ) +

C

β
log β −

(1

ρ
f(β, ρ) − C

β
log β

)
≤ 2

C

β
log β.Hene,

2
C

β
log β ≥ gν(q) − µ(ν) =

∑

k∈N

(Ek − ν

k
− µ(ν)

)
qk +

(
e∞ − µ(ν)

)(
1 −

∑

k∈N

qk

)
. (5.61)For ν < ν∗, we use that µ(ν) = e∞ and estimate

Ek − ν

k
− µ(ν) =

Ek − ke∞ − ν

k
≥ ν∗ − ν

k
.Substituting this in (5.61), this yields the �rst laim, (1.17).For ν > ν∗, we restrit the �rst sum on the right of (5.61) to k ∈ N \M(ν), where we lower estimatethe brakets against ∆(ν), and we estimate e∞ − µ(ν) ≥ ∆(ν). This gives

2
C

β
log β ≥

∑

k∈N\M(ν)

∆(ν)qk + ∆(ν)
(
1 −

∑

k∈N

qk

)
= ∆(ν)

∑

k∈M(ν)

qk.This yields the seond laim, (1.18).6. Appendix: Proof of Lemma 1.3Here we prove Lemma 1.3. With the exeption of the positivity of ν∗, this has been proved in [CKMS10,Theorem 1.5℄; that proof works under the slightly di�erent assumption on v that we have here. Toobtain the positivity of ν∗, this proof needs a slight modi�ation, whih we brie�y indiate now. Fix
M,N ∈ N. Let x

(N) = (x1, . . . , xN ) ∈ (Rd)N be a minimiser of UN and y
(M) = (y1, . . . , yM ) aminimiser of UM . Reall that b is the potential range and let δ > 0 be suh that v < 0 on (b − δ, b).Let ε ∈ (0, δ/2). Let a ∈ R

d be suh that the shift ỹ
(M) := (ỹ1, . . . , ỹM) := (y1 +a, . . . , yM +a) satis�es

• all points from ỹ
(M) and x

(N) have distane |xi − ỹj| ≥ b − δ + ε (and hene v(|xi − ỹj|) ≤ 0),
• there is at least one pair of partiles (xi, ỹj) with distane |xi − ỹj| ≤ b − ε.



31Let x
(N+M) := (x(N), ỹ(M)) ∈ (Rd)N+M . Let c := − supr∈[b−δ+ε,b−ε] v(r) > 0. Then we have

EN+M ≤ U(x(N+M)) ≤ U(x(N)) + U(ỹ(M)) − c = EN + EM − c.In partiular, the sequenes (EN )N∈N and (EN − c)N∈N are subadditive, whene
e∞ = lim

N→∞

EN

N
= lim

N→∞

EN − c

N
= inf

N∈N

EN − c

N
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