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Abstra
t: An interesting problem in statisti
al physi
s is the 
ondensation of 
lassi
al parti
lesin droplets or 
lusters when the pair-intera
tion is given by a stable Lennard-Jones-type potential.We study two aspe
ts of this problem. We start by deriving a large deviations prin
iple for the
luster size distribution for any inverse temperature β ∈ (0,∞) and parti
le density ρ ∈ (0, ρcp) in thethermodynami
 limit. Here ρcp > 0 is the 
lose pa
king density. While in general the rate fun
tion isan abstra
t obje
t, our se
ond main result is the Γ-
onvergen
e of the rate fun
tion towards an expli
itlimiting rate fun
tion in the low-temperature dilute limit β → ∞, ρ ↓ 0 su
h that −β−1 log ρ → νfor some ν ∈ (0,∞). The limiting rate fun
tion and its minimisers appeared in re
ent work, wherethe temperature and the parti
le density were 
oupled with the parti
le number. In the de-
oupledlimit 
onsidered here, we prove that just one 
luster size is dominant, depending on the parameter ν.Under additional assumptions on the potential, the Γ-
onvergen
e along 
urves 
an be strengthenedto uniform bounds, valid in a low-temperature, low-density re
tangle.Contents1. Introdu
tion 12. Proof of the LDP 103. Approximation with an ideal mixture of 
lusters 224. Bounds for the 
luster free energy 255. Proof of Γ-
onvergen
e and uniform bounds 286. Appendix: Proof of Lemma 1.3 30Referen
es 311. Introdu
tionWe 
onsider intera
ting N -parti
le systems in a box Λ = [0, L]d ⊂ R
d with intera
tion energy

UN (x1, . . . , xN ) :=
∑

1≤i<j≤N

v(|xi − xj|), (1.1)where v : [0,∞) → R ∪ {∞} is a pair potential of Lennard-Jones type. That is,
• it is large 
lose to zero, indu
ing a repulsion that prevents the parti
les from 
lumping,
• it has a nondegenerate negative part, indu
ing an attra
tion, i.e., parti
les try to assume a
ertain �xed distan
e to ea
h other,
• it vanishes at in�nity, i.e., long-range e�e
ts are absent.Additionally, we always assume that v is stable and has 
ompa
t support. We allow for the possibilitythat v = ∞ in some interval [0, rhc] to represent hard 
ore intera
tion. See Assumption (V) in Se
-tion 1.2 below for details.A parti
le 
on�guration x = (x1, . . . , xN ) in the box is randomly stru
tured into a number of smallersub
on�gurations, that is, well separated smaller groups, whi
h we 
all 
lusters. One of our mainquestions is about the joint distribution of the 
luster sizes, i.e., their 
ardinalities. Intuitively, if thebox size is large in 
omparison to the parti
le number, then one expe
ts many small 
lusters, and if it issmall, then one expe
ts few large ones. We will analyse this question mu
h 
loser in the thermodynami
limit, that is, keeping β ∈ (0,∞) �xed and taking

N → ∞, L = LN → ∞, su
h that N

Ld
N

→ ρ, (1.2)1
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Figure 1. The pair potential v(r) = 1.5r−12 − 5r−6 of Lennard-Jones type.

Figure 2. A s
hemati
 �gure illustrating the 
luster de
omposition of a parti
le 
on�gurationand the indu
ed graph stru
ture.for some �xed parti
le density ρ ∈ (0,∞), followed by the dilute low-temperature limit
β → ∞, ρ ↓ 0 su
h that − 1

β
log ρ → ν, (1.3)for some ν ∈ (0,∞). In this regime, the total entropy of the system is well approximated by the sum ofthe entropies of the 
lusters, and the ex
luded-volume e�e
t between the 
lusters as well as the mixingentropy may be negle
ted. As a 
onsequen
e, parti
les tend to favor one optimal 
luster size, whi
hdepends on ν and may be in�nite.In re
ent work [CKMS10℄, the free energy was analysed in the 
oupled dilute low-temperature limit

N → ∞, β = βN → ∞, L = LN → ∞ su
h that − 1

βN
log

N

Ld
N

→ ν, (1.4)with some 
onstant ν ∈ (0,∞). It was found that the limiting free energy is a pie
ewise linear,
ontinuous fun
tion of ν with at least one kink, i.e., non-di�erentiable point. Furthermore, there was
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Figure 3. Two examples of pair intera
tion potentials satisfying assumption (V).a phenomenologi
al dis
ussion of the interplay between the limiting 
luster distribution and the kinksin the limiting free energy, on base of a variational representation. See Se
tion 1.3 for details.In the present paper, we go beyond [CKMS10℄ by 
onsidering the physi
ally relevant setting of athermodynami
 limit and by proving limit laws for the quantities of interest. That is, our two mainpurposes are(i) to derive, for �xed β, ρ ∈ (0,∞), a large deviations prin
iple for the 
luster size distribution inthe thermodynami
 limit in (1.2), and(ii) to derive afterwards limit laws (laws of large numbers) for the 
luster size distribution in thelow-temperature dilute limit in (1.3).In this way, we de
ouple the limit in (1.4) into taking two separate limits, and we prove limit laws forthe 
luster sizes in this regime.The organisation of Se
tion 1 is as follows. In Se
tion 1.1 we introdu
e our model and de�ne thethermodynami
 set-up. Our main result 
on
erning the large deviations prin
iple for the 
luster sizedistribution is formulated in Se
tion 1.2. The low-temperature dilute limit is dis
ussed in Se
tions 1.3and 1.4. Adopting additional, stronger assumptions we give in Se
tion 1.5 bounds that are uniform inthe temperature for dilute systems. Finally we dis
uss in Se
tion 1.6 some mathemati
al and physi
alproblems related to our results.1.1. The model and its thermodynami
 set-up. Here are our assumptions on the pair intera
tionpotential that will be in for
e throughout the paper.Assumption (V). The fun
tion v : [0,∞) → R ∪ {∞} satis�es the following.(1) v is �nite ex
ept possibly for a hard 
ore: there is a rhc ≥ 0 su
h that v ≡ ∞ on (0, rhc) and
v < ∞ on (rhc,∞).(2) v is stable, that is, UN (x)/N is bounded from below in N ∈ N and x ∈ (Rd)N .(3) The support of v is 
ompa
t, more pre
isely, b := sup supp(v) is �nite.(4) v has an attra
tive tail: there is a δ > 0 su
h that v(r) < 0 for all r ∈ (b − δ, b).(5) v is 
ontinuous in [rhc,∞).Assumption (V) di�ers from Assumption (V) in [CKMS10℄ in two points: here we drop the require-ment v(rhc) = ∞, and stability was there a 
onsequen
e of some 
umbersome additional assumption.



4 We introdu
e the Gibbs measure indu
ed by the energy de�ned in (1.1). For β ∈ (0,∞), N ∈ N anda box Λ ⊂ R
d, we de�ne the probability measure P

(N)

β,Λ on ΛN by the Lebesgue density
P

(N)

β,Λ(dx) =
1

ZΛ(β,N)N !
e−βUN (x) dx, x ∈ ΛN , (1.5)where

ZΛ(β,N) :=
1

N !

∫

ΛN

e−βUN (x) dxis the 
anoni
al partition fun
tion at inverse temperature β.We introdu
e the notions of 
onne
tedness and 
lusters. Fix R ∈ (b,∞). Given x = (x1, . . . , xN ) ∈
(Rd)N , we introdu
e on the set {x1, . . . , xN} a graph stru
ture by 
onne
ting two points if their distan
eis ≤ R. In this way, the notion of R-
onne
tedness is naturally introdu
ed, whi
h we also 
all just
onne
tedness. The 
onne
ted 
omponents are also 
alled 
lusters. A 
luster of 
ardinality k ∈ N is
alled a k-
luster. By Nk(x) we denote the number of k-
lusters in x, and by

ρk,Λ(x) :=
Nk(x)

|Λ|the k-
luster density, the number of k-
lusters per unit volume. We 
onsider the 
luster size distribution
ρΛ :=

(
ρk,Λ

)
k∈N

(1.6)as an MN/|Λ|-valued random variable, where
Mρ :=

{
(ρk)k∈N ∈ [0,∞)N

∣∣∣
∑

k∈N

kρk ≤ ρ
}

, ρ ∈ (0,∞). (1.7)On Mρ we 
onsider the topology of pointwise 
onvergen
e, in whi
h it is 
ompa
t. Note that for ea
h�nite N and any box Λ ⊂ R
d,

N∑

k=1

kρk,Λ(x) =
N

|Λ| , x ∈ ΛN .However, some mass of ρΛ may be lost in the limit N → ∞ to in�nitely large 
lusters. The distributionof ρΛ under the Gibbs measure P
(N)

β,Λ is the main obje
t of our study.Introdu
e the free energy per unit volume as
fΛ(β, N

|Λ|) := − 1

β|Λ| log ZΛ(β,N).It is known [R99℄ that the free energy per unit volume in the thermodynami
 limit,
f(β, ρ) := lim

N,L→∞

N/Ld→ρ

f[0,L]d(β, N
Ld ). (1.8)exists in R for all ρ > 0 when there is no hard 
ore, i.e., if rhc = 0. When rhc > 0, there is a threshold

ρcp > 0, the 
lose pa
king density, su
h that the limit exists and is �nite for ρ ∈ (0, ρcp), and is ∞ for
ρ > ρcp. Sin
e we are interested in dilute systems, i.e., small ρ, we will always assume that ρ ∈ (0, ρcp).1.2. Large deviations for 
luster distribution under the Gibbs measure. Our �rst main resultis a large deviations prin
iple (LDP) for the 
luster size distribution under the Gibbs measure. Forthe 
on
ept of large deviations prin
iples see the monograph [DZ98℄.Theorem 1.1 (Large deviation prin
iple with 
onvex rate fun
tion). Fix β ∈ (0,∞) and ρ ∈ (0, ρcp).Then, in the thermodynami
 limit N → ∞, L → ∞, N/Ld → ρ, the distribution of ρΛ under P

(N)

β,Λwith Λ = [0, L]d satis�es a large deviations prin
iple on Mρ+ε with speed |Λ| = Ld, where ε > 0 issu
h that N/Ld ≤ ρ + ε. The rate fun
tion Jβ,ρ : Mρ+ε → [0,∞] is 
onvex, and its e�e
tive domain
{Jβ,ρ(·) < ∞} is 
ontained in Mρ. For ρ su�
iently small, {Jβ,ρ(·) < ∞} is equal to Mρ.



5The proof of Theorem 1.1 is in Se
tion 2. De�ne f(β, ρ, ·) : Mρ → [0,∞] through the equality
Jβ,ρ

(
ρ
)
=: β

(
f(β, ρ,ρ) − f(β, ρ)

)
. (1.9)Then the LDP may be rewritten, formally, as

1

N !

∫

ΛN

e−βUN (x)1l
{

ρΛ(x) ≈ ρ

}
dx ≈ exp

(
−β|Λ|f(β, ρ,ρ)

)
.Thus f(β, ρ,ρ) may be 
onsidered as the free energy asso
iated with the 
luster size distribution ρΛ,thought of as an order parameter. The identity inf Jβ,ρ = 0 translates into

f(β, ρ) = inf
Mρ

f(β, ρ, ·).In words: the (un
onstrained) free energy is re
overed as in�mum of the 
onstrained free energy as theorder parameter is varied, a relation in the spirit of Landau theory.It is a general fa
t from large deviations theory that an LDP implies tightness. More spe
i�
ally, theLDP of Theorem 1.1 implies a limit law for the 
luster size distribution towards the set of minimisersof the rate fun
tion. This is even a law of large numbers if this set is a singleton. Hen
e, Theorem 1.1gives us 
ontrol on the limiting behaviour of the 
luster size distribution under the Gibbs measure inthe thermodynami
 limit. However, in the general 
ontext of Theorem 1.1, we 
annot o�er any formulafor the rate fun
tion Jβ,ρ. We have to restri
t ourselves to the low-temperature dilute limit (1.3). Inthis setting we obtain expli
it asymptoti
 formulae in Se
tion 1.3 below, and this is our se
ond mainresult.1.3. The dilute low-temperature limit of the rate fun
tion. In this se
tion, we formulate and
omment on our main result about the limiting behaviour of the LDP rate fun
tion Jβ,ρ introdu
edin Theorem 1.1 and of its minimisers in the dilute low-temperature limit in (1.3). This behaviour isexpli
itly identi�ed in terms of the ground-state energy of UN ,
EN := inf

x∈(Rd)N
UN (x), N ∈ N.It 
an be seen like in the proof of [CKMS10, Lemma 1.1℄ using subadditivity that the limit

e∞ := lim
N→∞

EN

N
∈ (−∞, 0)exists. It lies in the nature of the regime in (1.3) that it is not the 
luster size distribution ρk thatwill 
onverge towards an interesting limit (a
tually, these will vanish), but the term qk = kρk/ρ, whi
h
arries the interpretation of the probability that a given parti
le lies in a k-
luster. Therefore, let

Q :=
{

(qk)k∈N ∈ [0, 1]N
∣∣∣

∑

k∈N

qk ≤ 1
}and introdu
e, for ν ∈ (0,∞), the map gν : Q → R de�ned by

gν

(
(qk)k

)
:=

∑

k∈N

qk
Ek − ν

k
+

(
1 −

∑

k∈N

qk

)
e∞. (1.10)Our se
ond main result is the following.Theorem 1.2 (Γ-
onvergen
e of the rate fun
tion). Let ν ∈ (0,∞). In the limit β → ∞, ρ → 0 su
hthat −β−1 log ρ → ν, the fun
tion

Q → R ∪ {∞}, (qk)k 7→ 1

ρ
f
(
β, ρ, (ρqk

k )k∈N

)

Γ-
onverges to gν.



6 For the notion of Γ-
onvergen
e, see the monograph [dM93℄. Theorem 1.2 is proved in Se
tion 5.1.The physi
al intuition is the following: at low density, the parti
le system 
an be approximated byan ideal gas of 
lusters, see [H56, Chapter 5℄ or [S03℄. `Ideal' means that we negle
t the `ex
ludedvolume', i.e., the 
onstraint that 
lusters have mutual distan
e ≥ R. As 
an be seen from the proof ofLemma 3.1, this means that the rate fun
tion f(β, ρ, ·) is well-approximated by the ideal free energy
f ideal(β, ρ, (ρk)k) :=

∑

k∈N

kρkf
cl
k (β) +

(
ρ −

∑

k∈N

kρk

)
f cl
∞(β) +

1

β

∑

k∈N

ρk(log ρk − 1). (1.11)Here f cl
k (β) and f cl

∞(β) should be thought of as free energies per parti
le in 
lusters of size k (resp., inin�nitely large 
lusters), see Se
tion 3 for the pre
ise de�nitions. The fun
tional ρgν is obtained from
f ideal by two simpli�
ations, justi�ed at low temperatures.

• First, we approximate 
luster internal free energies by their ground state energies.
• Se
ond, we split the entropi
 term as

1

β

∑

k∈N

ρk(log ρk − 1) =
∑

k∈N

ρk
log ρ

β
+

1

β

∑

k∈N

ρk

(
log

ρk

ρ
− 1

)and keep only the �rst sum. Thus we keep the entropi
 
ontribution 
oming from the ways topla
e the 
lusters (their 
enters of gravity) in the box and dis
ard the mixing entropy.In 
lassi
al statisti
al physi
s, the approa
h we take here goes under the name of a geometri
, ordroplet, pi
ture of 
ondensation [H56, S03℄. This is 
losely related to the well-known 
ontour pi
tureof the Ising model and latti
e gases [R99℄. Latti
e gas 
luster sizes have been studied, for example,in [LP77℄, 
ontinuous systems were investigated in [M75, Z08℄. The fo
us of these works was onparameter regions where only small 
lusters o

ur. Our de
lared goal, in 
ontrast, is to derive boundsthat 
over both the small 
luster and the large 
luster regimes (in the notation introdu
ed below, thismeans both ν > ν∗ and ν < ν∗).Under additional assumptions on the pair potential, we 
an repla
e the somewhat abstra
t Γ-
onvergen
e result with more 
on
rete uniform error bounds, see Theorem 1.8.The rate fun
tion gν appeared in [CKMS10℄ in the des
ription of the behaviour of the partitionfun
tion Z(N)

β,Λ in the 
oupled dilute low-temperature limit in (1.4). More pre
isely, it was shown therethat, in this limit, for any ν ∈ (0,∞),
− 1

NβN
log Z(N)

βN ,ΛN
→ µ(ν).It was phenemonologi
ally dis
ussed, but it was not given mathemati
al substan
e to, the 
onje
turethat the random variable qΛN

= (kρk,ΛN
/ρ)k∈N under P

(N)

βN ,ΛN
with ΛN = [0, LN ]d satis�es an LDPwith speed NβN and rate fun
tion given by gν(·)− µ(ν). This would be in line with Theorem 1.1 andTheorem 1.2, and we do believe that this is indeed true, but we make no attempt to prove this.1.4. Limit laws in the dilute low-temperature limit. The minimiser(s) of the rate fun
tion

f(β, ρ, ·) are of high interest, sin
e they des
ribe the limiting behaviour of the 
luster size distributionunder the Gibbs measure. It is a general fa
t from the theory of Γ-limits that Γ-
onvergen
e impliesthe 
onvergen
e of minima over 
ompa
t subsets and the minimiser(s). For the limiting rate fun
tion
gν , the global minimiser has been identi�ed in [CKMS10℄. The minimum is

µ(ν) = inf
Q

gν = inf
N∈N

EN − ν

N
, (1.12)and the minimisers are given as follows.



7Lemma 1.3 (Minimizers of gν). The number ν∗ := infN∈N(EN − Ne∞) is stri
tly positive. The map
ν 7→ µ(ν) is 
ontinuous, pie
ewise a�ne and 
on
ave. Let N ⊂ (0,∞) be the set of points where µ(·)
hanges its slope. Then N is bounded, and µ(ν) = −ν for ν > maxN and µ(ν) = e∞ for ν < ν∗.Furthermore,(1) ν∗ ∈ N ⊂ [ν∗,∞), and N is at most 
ountable with ν∗ as only possible a

umulation point.(2) For ν > ν∗, we have µ(ν) < e∞ and every minimiser (qk)k of gν satis�es ∑

k∈N
qk = 1. If

ν /∈ N , then gν has the unique minimiser q
(ν) = (q(ν)

k )k with q(ν)

k = δk,k(ν) with k(ν) the uniqueminimiser of k 7→ (Ek −ν)/k over N. The map ν 7→ k(ν) is 
onstant between subsequent pointsin N .(3) For ν < ν∗, we have µ(ν) = e∞ and the unique minimiser of gν is the 
onstant zero sequen
e
(qk)k∈N with qk = 0 for any k.This is essentially [CKMS10, Theorem 1.5℄, the proof is found in the appendix. If, as in [CKMS10℄,the point ∞ is added to the state spa
e N of the measures in Q, then the minimisers of gν are
on
entrated on N for ν > ν∗ and on {∞} for ν < ν∗; it was left open in [CKMS10℄ whether or notthe latter regime is non-void.The set N is in�nite if and only if (Ek − ke∞)k∈N has no minimiser. In dimensions d ≥ 2, it isexpe
ted (and shown in some 
ases in, see [R81, YFS09℄) that Ek − ke∞ ≥ cst. k1−1/d → ∞, ensuringthat N is a �nite set.Now we 
an draw a 
on
lusion from Theorem 1.2 about the limiting behaviour of the minimisersof the rate fun
tion in the dilute low-temperature limit. The following assertions are well-known
onsequen
es from the Γ-
onvergen
e of Theorem 1.2, see [dM93, Theorem 7.4 and Corollary 7.24℄.Corollary 1.4. In the situation of Theorem 1.2,(1) the free energy per parti
le 
onverges to µ(ν):

1

ρ
f(β, ρ) → µ(ν)(2) if µ(·) is di�erentiable at ν (that is, for ν ∈ (0,∞) \ N ), any minimiser ρ

(β,ρ) = (ρ(β,ρ)

k )k of
Jβ,ρ 
onverges to the minimiser of gν:

kρ(β,ρ)

k

ρ
→ q(ν)

k , k ∈ N.Another important 
onsequen
e of Theorem 1.2, together with the LDP of Theorem 1.1, is a kindof law of large numbers for the 
luster size distribution ρΛN
in the thermodynami
 limit, followed bythe low-temperature dilute limit. A 
onvenient formulation is in terms of the ve
tor qΛ = (qk,Λ)k∈Nwith qk,Λ = kρk,Λ/ρ, the frequen
y of parti
les in k-
lusters, if |Λ| = N/ρ.Corollary 1.5. For any ν ∈ (0,∞) \ N , any K ∈ N and any ε > 0, if β is su�
iently large, ρsu�
iently small and − 1

β log ρ is su�
iently 
lose to ν, then, for boxes ΛN with volume N/ρ,
lim

N→∞
P

(N)

β,ΛN

(
|qk(ν),ΛN

− 1| ≥ ε
)

= 0 if ν > ν∗, (1.13)and
lim

N→∞
P

(N)

β,ΛN

( K∑

k=1

qk,ΛN
≥ ε

)
= 0 if ν < ν∗. (1.14)
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Figure 4. A diagram illustrating the expe
ted relationship of the slope 
ondition
−T log ρ = −β−1 log ρ → ν and the minimisers of the rate fun
tion in the dilute low-temperature limit.Proof. We prove (1.13) and (1.14) simultaneously. Consider the set

A =





{
ρ ∈ Mρ :

∣∣∣k(ν)ρk(ν)

ρ − 1
∣∣∣ ≥ ε

} for ν > ν∗,{
ρ ∈ Mρ :

∑K
k=1

kρk,Λ

ρ ≥ ε
} for ν < ν∗.Then the Γ-
onvergen
e of Theorem 1.2 implies [dM93, Theorem 7.4℄ that

lim inf
β,ρ

1

ρ
inf
A

f(β, ρ, ·) ≥ − inf
A

gν ,where lim infβ,ρ refers to the limit in Theorem 1.2. Furthermore, it is easy to see from Lemma 1.3 that
δ = infA gν − inf gν is positive. We pi
k now β so large and ρ so small and −β−1 log ρ so 
lose to ν that
1
ρ infA f(β, ρ, ·)− infA gν ≥ −δ/4 and 1

ρf(β, ρ)−µ(ν) ≤ δ/4 (the latter is possible by Corollary 1.4(1)).Now the LDP of Theorem 1.1 yields that
lim sup
N→∞

1

|ΛN | log P
(N)

β,ΛN

(
ρΛN

∈ A
)
≤ − inf

A
Iβ,ρ = −β

[
inf
A

f(β, ρ, ·) − f(β, ρ)
]

≤ −βρ
[
inf
A

gν − µ(ν) − δ
4 − δ

4

]
= −βρδ/2 < 0.Hen
e, limN→∞ P

(N)

β,ΛN
(ρΛN

∈ A) = 0. Noting that this probability is identi
al to the two probabilitieson the left of (1.13) and (1.14) for our two 
hoi
es of A, �nishes the proof. �It may 
ome as a surprise that, for most values of the parameter ν, the 
luster size distribution isasymptoti
ally 
on
entrated on just one parti
ular 
luster size that depends only on ν. This may bevaguely explained by the fa
t that the zero-temperature limit β → ∞ for
es the system to be
omeasymptoti
ally `frozen' in a state in whi
h every 
luster size assumes the globally optimal 
on�gurationsize, whi
h is unique for ν ∈ (ν∗,∞) \ N . Furthermore, note that Corollary 1.5 does not give theexisten
e of `in�nite large ' 
lusters (i.e., 
lusters whose size diverges with N) for any value of β and
ρ, not even for ν < ν∗ and −β−1 log ρ ≈ ν.



91.5. Uniform bounds. Under some natural additional assumptions on the pair potential, the asser-tions of Theorem 1.2 
an be strengthened, see Theorem 1.8 below. Indeed, we will assume that theground states of the fun
tional UN 
onsist of well-separated parti
les, whi
h are 
ontained in a ballwith volume of order N , and we assume some more regularity of the intera
tion fun
tion v. Thenwe show that the Γ-
onvergen
e in Theorem 1.2 in the 
oupled limit in (1.3) 
an be strengthened toestimates that are uniform in some low-temperature, low-density re
tangle (β,∞) × (0, ρ). This leadsto 
orresponding uniform estimates on |1ρf(β, ρ) − µ(ν)| and on minimisers. We now formulate this.Assumption 1.6 (Minimum interparti
le distan
e, Hölder 
ontinuity).(i) There is rmin ≥ rhc su
h that, for all N ∈ N, every minimiser (x1, . . . , xN ) ∈ (Rd)N of theenergy fun
tion UN has interparti
le distan
e lower bounded as |xi − xj| ≥ rmin, i 6= j.(ii) The pair potential v is uniformly Hölder 
ontinuous in [rmin,∞).The existen
e of a uniform lower bound rmin for ground state interparti
le distan
e is, of 
ourse,trivial when the potential has a hard 
ore rhc > 0. A su�
ient 
ondition for the existen
e of rmin > 0for a potential without hard 
ore is, for example, that v(r)/rd → ∞ as r → 0, as 
an be shownalong [T06, Lemma 2.2℄.Assumption 1.7 (Maximum interparti
le distan
e). There is a 
onstant c > 0 su
h that for all
N ∈ N every minimiser (x1, . . . , xN ) ∈ (Rd)N of the energy fun
tion UN has interparti
le distan
eupper bounded by |xi − xj | ≤ cN1/d.This assumption looks de
eptively simple; on physi
al grounds, we would expe
t that it is truefor every reasonable potential. To the best of our knowledge, however, non-trivial rigorous resultsare available in dimension two only, for Radin's soft disk potential [R81℄ and for potentials satisfying
onditions (H1) to (H3) from [YFS09℄. These potentials satisfy Assumption 1.6 as well.Theorem 1.8. Suppose that in addition to Assumption (V) the pair potential also satis�es Assump-tions 1.6 and 1.7. Then there are ρ, β,C > 0 su
h that for every (β, ρ) ∈ [β,∞) × (0, ρ], putting
ν := −β−1 log ρ, the following holds.(1) Estimate on the rate fun
tion:

∣∣∣
1

ρ
f(β, ρ, (ρqk

k )k∈N) − gν

(
(qk)k

)∣∣∣ ≤ C

β
log β, (qk)k∈N ∈ Q. (1.15)(2) Estimate on the free energy:

∣∣∣
1

ρ
f(β, ρ) − µ(ν)

∣∣∣ ≤ 2
C

β
log β. (1.16)(3) Minimizers: For any minimizer ρ

(β,ρ) of f(β, ρ, ·), put q
(β,ρ) := (kρ(β,ρ)

k /ρ)k∈N. Then, if ν < ν∗,
∑

k∈N

q(β,ρ)

k

k
≤ 2

C

ν∗ − ν

1

β
log β. (1.17)If ν > ν∗, then

∑

k∈M(ν)

q(β,ρ)

k ≥ 1 − 2
C

∆(ν)

1

β
log β, (1.18)where

∆(ν) := inf
{Ek − ν

k

∣∣∣ k ∈ N\M(ν)
}
− µ(ν) > 0is the gap above the minimum, and M(ν) ⊂ N is the set of minimisers of ((Ek −ν)/k)k∈N (thus

M(ν) = {k(ν)} for ν /∈ N ).



10 Theorem 1.8 is proved in Se
tion 5.2. One 
an see from the proof that one 
an 
hoose ρ = (2α+2R)−d.It follows in parti
ular that the Γ-
onvergen
e and the two 
onvergen
es from Corollary 1.4 
an bestrengthened to 
onvergen
e for just taking β → ∞, uniformly in ρ ∈ (0, ρ], with an error of order
β−1 log β. This form of the error order term is an artefa
t of the assumption of Hölder 
ontinuity; the
onstant C depends on the Hölder parameter.Note that (1.17) implies that, in the 
ase ν < ν∗, for every K ∈ N, the fra
tion of parti
les in 
lustersof size ≤ K is bounded by

∑

k≤K

kρ(β,ρ)

k

ρ
=

∑

k≤K

q(β,ρ)

k ≤ 2C

ν∗ − ν
K

1

β
log β.This shows that, as β → ∞, for some 
hoi
es of K = Kβ → ∞, the fra
tion of parti
les in 
lusters ofsize ≤ Kβ vanishes, i.e., the average 
luster size be
omes very large. Note that the law of large numbersin (1.14) in Corollary 1.5 may, under Assumptions 1.6 and 1.7, be proved also with K repla
ed by Kβ .1.6. Some remarks 
on
erning related mathemati
al and physi
al problems. Our prob-lem is 
onne
ted with 
ontinuum per
olation problems for intera
ting parti
le systems, see the re-view [GHM01℄. In our setting of �nite systems, the term `per
olation' should be repla
ed with `forma-tion of unbounded 
omponents', i.e., 
lusters whose size diverges as the number of parti
les goes goin�nity. The problem of per
olation or non-per
olation for 
ontinuous parti
le systems in an in�nite-volume Gibbs state (that is, in a grand-
anoni
al setting) is studied in [PY09℄. They prove that, forsu�
iently high 
hemi
al potential and su�
iently low temperature, per
olation does o

ur. How-ever, they do not give any information on the densities at whi
h per
olation o

urs. This hinders thephysi
al interpretation, sin
e one 
annot say whether the per
olation is due to high density or strongattra
tion. In this light, our results are stronger and at the same time weaker: we do show that atransition from bounded to unbounded 
lusters happens at low density, but only in a limiting sensealong low-temperature, low-density 
urves; there is no �xed temperature or density at whi
h we provethe formation of unbounded 
lusters.In addition, our work has an interesting relationship to quantum Coulomb systems. In the simplest
ase, a gas of protons and ele
trons, we may ask whether we observe a fully ionized gas, where protonsand ele
trons stay for themselves, or a gas of neutral mole
ules, with protons and ele
trons paired uptogether. Rigorous mathemati
al results were given by [F85℄, see also [CLY89℄, in the Saha regime, also
alled atomi
 or mole
ular limit : when the temperature goes to 0 at �xed, negative enough 
hemi
alpotential, the Coulomb gas behaves like an ideal gas of di�erent types of mole
ules or parti
les. The
hemi
al 
omposition is determined by the 
hemi
al potential.Our results adapt this quantum Coulomb system pi
ture to a 
lassi
al setting. From this point ofview, the key novelty is that we work in the 
anoni
al rather than the grand-
anoni
al ensemble; thisallows us to extend results to the region where formation of large 
lusters o

urs.The remainder of this paper is organised as follows. In Se
tion 2 we prove the LDP of Theorem 1.1,in Se
tion 3 we 
ompare the rate fun
tion with an expli
it ideal rate fun
tion, and in Se
tion 4 we
ompare temperature-depending quantities with the ground states. Finally, the proofs of Theorems 1.2and 1.8 are given in Se
tion 5. 2. Proof of the LDPIn this se
tion, we prove Theorem 1.1. We �x β ∈ (0,∞) and ρ ∈ (0, ρcp) throughout this se
tion. InSe
tion 2.1 we explain our strategy and formulate the main steps, and in Se
tions 2.2�2.4 we provethese steps. The proof of Theorem 1.1 is �nished in Se
tion 2.5.



112.1. Strategy. The main idea is to derive �rst a large deviations prin
iple for the distribution of
(ρk,Λ)k=1,...,j for �xed j ∈ N, that is, for the proje
tion of ρΛ on the �rst j 
omponents, and applythe Dawson-Gärtner theorem for the transition to the proje
tive limit as j → ∞. From the proofof the prin
iple for the proje
tion, we isolate an important step, see Proposition 2.1: using standardsubadditivity arguments, we prove the existen
e of thermodynami
 limit for 
onstrained free energy,the 
onstraint referring to 
luster size 
on
entrations of size ≤ j. The prin
iple for the proje
tion of
ρΛ appears in Proposition 2.2.Given N,N1, . . . , Nj ∈ N0 de�ne the 
onstrained partition fun
tion with �xed 
luster numbers ofsize ≤ j,

ZΛ(β,N,N1, . . . , Nj) :=
1

N !

∫

ΛN

e−βUN (x)
j∏

k=1

1l{Nk(x) = Nk}dx. (2.19)Note that ZΛ(β,N,N1, . . . , Nj) = 0 if ∑j
k=1 kNk > N .In the following we shall often be interested in the interior or boundary of subsets A ⊂ [0,∞)j+1 forsome j ∈ N. Unless expli
itly stated otherwise, IntA and ∂A refer to the interior and boundary of A
onsidered as a subset of R

j+1. In parti
ular, if 0 ∈ A, then 0 is automati
ally a boundary point.We denote by dom h = {x : h(x) < ∞} = {h(·) < ∞} the e�e
tive domain of an (−∞,∞]-valuedfun
tion h.Proposition 2.1. Fix j ∈ N. Then there is a fun
tion fj(β, ·) : [0,∞)j+1 → R ∪ {∞} su
h that
• fj(β, ·) is 
onvex and lower semi-
ontinuous;
• its e�e
tive domain has non-empty interior ∆j := IntRj+1 dom fj(β, ·) and fj(β, ·) is 
ontinuousin ∆j ;
• its e�e
tive domain is 
ontained in

dom fj(β, ·) ⊂ ∆j ⊂
{
(ρ, ρ1, . . . , ρj) ∈ [0,∞)j+1

∣∣∣ρ ∈ [0, ρcp],

j∑

k=1

kρk ≤ ρ
}

,and, moreover, if |ΛN |, N,N (N)

1 , . . . , N (N)

j → ∞ in su
h a way that
N

|ΛN | → ρ,
N (N)

1

|ΛN | → ρ1, . . . ,
N (N)

j

|ΛN | → ρj, (2.20)then
• If (ρ, ρ1, . . . , ρj) ∈ ∆j,

lim
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) = −βfj(β, ρ, ρ1, . . . , ρj). (2.21)and the limit is �nite.
• If (ρ, ρ1, . . . , ρj) ∈ ∂∆j (boundary of ∆j), then

lim sup
N→∞

1

|ΛN |ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≤ −βfj(β, ρ, ρ1, . . . , ρj) ∈ R ∪ {−∞}. (2.22)
• If (ρ, ρ1, . . . , ρj) ∈ ∆j

c, then (2.21) holds true and the limit is −βfj(β, ρ, ρ1, . . . , ρj) = −∞.This proposition is proved in Se
tion 2.2.The set ∆1 is related to 
lose-pa
king situations. For example, when j = 1 and the density ρ ishigher than 1/|B(0, R)| (where we re
all that R is the parameter in our notion of 
onne
tedness), it isimpossible to have a gas formed only of 1-
lusters and we have f1(β, ρ, ρ) = ∞.



12 Analogously to (1.9), let
Iβ,ρ,j(ρ1, . . . , ρj) := β

(
fj(β, ρ, ρ1, . . . , ρj) − f(β, ρ)

)
.We will prove in Se
tion 2.4 the following.Proposition 2.2 (LDP for proje
tion of ρΛ). Fix j ∈ N. Then, in the thermodynami
 limit N → ∞,

L → ∞, N/Ld → ρ, the distribution of (ρ1,Λ, . . . , ρj,Λ) under the Gibbs measure P
(N)

β,Λ with Λ = [0, L]dsatis�es a large deviations prin
iple with s
ale |Λ| and rate fun
tion Iβ,ρ,j. Moreover, the rate fun
tionis good and 
onvex.Re
all that a rate fun
tion is 
alled good if its level sets are 
ompa
t. In this 
ase, it is in parti
ularlower semi
ontinuous. The large deviations prin
iple means that, for any open set O ⊂ [0,∞)j andany 
losed set C ⊂ [0,∞)j , with Λ = [0, L]d,
lim inf

N,L→∞,N/Ld→ρ

1

|Λ| log P
(N)

β,Λ

(
(ρ1,Λ, . . . , ρj,Λ) ∈ O

)
≥ − inf

O
Iβ,ρ,j, (2.23)

lim sup
N,L→∞,N/Ld→ρ

1

|Λ| log P
(N)

β,Λ

(
(ρ1,Λ, . . . , ρj,Λ) ∈ C

)
≤ − inf

C
Iβ,ρ,j. (2.24)We refer to (2.23) as to the lower bound for open sets and to (2.24) as to the upper bound for 
losedsets.2.2. Proof of Proposition 2.1 � subadditivity arguments. In this se
tion we prove Proposi-tion 2.1. For the remainder of this se
tion, we �x j ∈ N.The 
ru
ial point is the following supermultipli
ativity of partition fun
tions, whi
h translates intosubadditivity of free energies: Let N ′, N ′′ ∈ N. Let Λ′,Λ′′ be two disjoints measurable sets whi
h havemutual distan
e larger than the potential range b, and Λ large enough to 
ontain the union of the two.Then

ZΛ(β,N ′ + N ′′) ≥ ZΛ′∪̇Λ′′(β,N ′ + N ′′) ≥ ZΛ′(β,N ′)ZΛ′′(β,N ′′). (2.25)This standard tri
k leads to a proof of the existen
e of the thermodynami
 limit by subadditivitymethods [R99℄ (where subadditivity is applied to the mi
ro
anoni
al ensemble instead of 
anoni
al,but the method is the same).The starting point of our proof is the observation that a similar inequality holds for 
onstrainedpartition fun
tions ZΛ(β,N,N1, . . . , Nj) provided Λ′ and Λ′′ have mutual distan
e > R, where were
all that R ∈ (b,∞) was pi
ked arbitrarily. Therefore we 
an prove existen
e of the 
onstrained freeenergy by adapting the standard methods. Let us re
all, roughly, the standard strategy of proof:(1) As a �rst step, one proves existen
e of limits of − 1
β|Λ| log ZΛ(β,N,N1, . . . ,Nj) along spe
ialsequen
es of 
ubes - roughly, the sequen
e is de�ned in an iterative way by doubling the 
ube'sside length and adding a `se
urity margin', and multiplying parti
le numbers by 2d. This usessubadditivity and yields a densely de�ned, 
onvex fun
tion η.(2) Then one shows that the fun
tion η is lo
ally bounded in some region of non-empty interior,and therefore 
an be extended to a 
ontinuous fun
tion f in some non-empty open set ∆.(3) At last, one proves the 
onvergen
e of − 1

β|Λ| log ZΛ(β,N,N1, . . . ,Nj) to f along general 
ubes.Our proof follows these steps, with some 
ompli
ations. Notably, an extra argument is requiredin Step (2) (see Lemma 2.6 below). Moreover, we make the 
hoi
e � 
onvenient in view of the largedeviations framework � to assign values to the free energy not only in ∆ and outside ∆ (where f is
∞) but also in ∂∆ by requiring global lower semi-
ontinuity and 
onvexity.



132.2.1. Convergen
e along spe
ial sequen
es. Let R′ > R and L∗
0 > 0 be �xed, and de�ne (L∗

n)n∈N0re
ursively by L∗
n+1 = 2L∗

n + R′. Expli
itly, L∗
n = −R′ + 2n(L∗

0 + R′). Let Λ∗
n = [0, L∗

n]d. Thus Λ∗
n+1
an be 
onsidered as the union of 2d 
opies of Λn with a 
orridor of width R′ between them. Let

Dj :=
{
ρ = (ρ, ρ1, . . . , ρj) ∈ [0,∞)j+1 | ρ > 0, ∃q ∈ N0 : 2qd(L∗

0 + R′)dρ ∈ N
j+1
0

}
.Lemma 2.3 (Introdu
tion of ηj(β, ·)). Let (ρ, ρ1, . . . , ρj) ∈ Dj and put for n ∈ N

N (n) := 2nd(L∗
0 + R′)dρ, N (n)

k := 2nd(L∗
0 + R′)dρk (k = 1, . . . , j). (2.26)The following limit exists in R ∪ {∞} and is equal to an in�mum:

ηj(β, ρ, ρ1, . . . , ρj) := − lim
n→∞

1

β|Λ∗
n|

log ZΛ∗
n
(β,N (n),N (n)

1 , . . . ,N (n)

j )

= inf
n∈N

(
− 1

β|Λ∗
n|

log ZΛ∗
n
(β,N (n),N (n)

1 , . . . ,N (n)

j )
)
.

(2.27)This limit is �nite as soon as ZΛ∗
n
(β,N (n),N (n)

1 , . . . ,N (n)

j ) > 0 for some n ∈ N. In parti
ular,
{ηj(β, ·) < ∞} ⊂

{
(ρ, ρ1, . . . , ρj) ∈ Dj :

j∑

k=1

kρk ≤ ρ ≤ ρcp

}
. (2.28)Proof. We 
an pla
e 2d shifted 
opies of Λ∗

n in Λ∗
n+1 in su
h a way that the 
opies have distan
e ≥ R′to ea
h other. Hen
e we have

ZΛ∗

n+1

(
β,N (n+1), N (n+1)

1 , . . . ,N (n+1)

j

)
≥

(
ZΛ∗

n

(
β,N (n),N (n)

1 , . . . ,N (n)

j

))2d

.Abbreviating
un = − 1

|Λ∗
n|

log ZΛ∗
n

(
β,N (n),N (n)

1 , . . . ,N (n)

j

) and 1 + εn :=
2d|Λ∗

n|
|Λ∗

n+1|
,this is just the inequality un+1 ≤ (1 + εn)un. Our goal is to show that limn→∞ un exists and is equalto u := infn∈N un. Remark that

1 + εn =
2d|Λ∗

n|
|Λ∗

n+1|
=

(
2n+1(L∗

0 + R′) − 2R′

2n+1(L∗
0 + R′) − R′

)d

= 1 + O(2−n),whi
h yields ∑∞
n=1 |εn| < ∞. The 
ase u = −∞ is ex
luded by exploiting the stability of the energy:for some C ∈ (0,∞), we have

ZΛ∗
n

(
β,N (n), N (n)

1 , . . . , N (n)

j

)
≤ ZΛ∗

n
(β,N (n)) ≤ 1

N (n)!
e−βE

N(n) |Λ∗
n|N

(n) ≤ eCN(n)
,and hen
e u ≥ −Cρ.If u = ∞, then un = ∞ for all n and in parti
ular un → ∞ = u. Consider now the 
ase u ∈ R. For

δ > 0, let q ∈ N su
h that uq ≤ ℓ + δ and 1 − δ ≤ ∏n
k=q(1 + εk) ≤ 1 + δ for all n ≥ q. Then for n ≥ q,

u ≤ un ≤ uq

n−1∏

k=q

(1 + εk) ≤ (u + δ) (1 + δ).Letting �rst n → ∞ and then δ → 0 we 
on
lude that un → u. The additional assertion is 
lear from theproof and from the fa
t that, for ρ > ρcp, we have ∞ = f(β, ρ) = − 1
β limn→∞

1
|Λ∗

n|
log ZΛ∗

n
(β,N (n)). �



142.2.2. Properties of the limit fun
tion ηj(β, ·). The next lemma essentially states that ηj(β, ·) is a
onvex fun
tion. The pre
ise formulation needs some 
are sin
e the domain Dj of this fun
tion is not
losed under taking arbitrary 
onvex 
ombinations.Lemma 2.4. Let ρ,ρ′ ∈ Dj . Let t ∈ (0, 1) be a dyadi
 fra
tion, i.e., of the form t = p/2q for some
p, q ∈ N0. Then tρ + (1 − t)ρ′ ∈ Dj and

ηj(β, tρ + (1 − t)ρ′) ≤ tηj(β,ρ) + (1 − t)ηj(β,ρ′). (2.29)Proof. Consider the 
ubes Λ∗
n de�ned as above. Λ∗

n+1 is the union of two sets of 2d−1 
opies of Λ∗
n plussome margin spa
e. We �rst 
onsider t = 1

2 . We 
an lower bound
ZΛ∗

n+1

(
β, 2(n+1)d(L∗

0 + R′)d(ρ + ρ
′)/2

)

≥
(
ZΛ∗

n

(
β, 2nd(L∗

0 + R′)dρ
))2d−1(

ZΛ∗
n

(
β, 2nd(L∗

0 + R′)dρ′
))2d−1

.We divide by |Λ∗
n+1| and pass to the limit, this gives Eq. (2.29) for the 
ase t = 1

2 . The general 
ase isobtained by iterating the inequality. �The following is a te
hni
al preparation for the proof of the lo
al boundedness of ηj(β, ·) in Lemma 2.6and will also be used later. We de�ne a 
luster partition fun
tion with volume 
onstraint: for a, β > 0,
k ∈ N, let

Zcl,a
k (β) :=

1

k!ad

∫

([0,a]d)k

e−βU(x1,x2,...,xk)1
{
{x1, x2, . . . , xk} 
onne
ted}

dx1 · · · dxk. (2.30)Lemma 2.5. Let δ ∈ (0, [R − rhc]/3). There is a C(δ) ∈ R su
h that for all k ∈ N and ak >

δ + k1/d(rhc + 2δ),
ad

k Zcl,ak

k (β) ≥ |B(0, δ/2)|k exp(−βC(δ)k). (2.31)Proof. The 
ube [0, ak]d is large enough so that, for some h ∈ (rhc + 2δ,R − δ) and some θ ∈ R
d, the
ubi
 latti
e [0, ak]d ∩

(
θ + (hZ)d) 
ontains at least k points all having distan
e ≥ δ/2 to the boundaryof the box. By pla
ing parti
les in the latti
e, we obtain an (R − δ)-
onne
ted referen
e 
on�guration

(x1, . . . , xk) ∈ ([0, ak]d)k with the following properties:
• All points have distan
e ≥ δ/2 to the boundary of [0, ak]d.
• Distin
t points xi, xj have distan
e > rhc + δ to ea
h other.We 
an lower bound Zcl,ak

k (β) by integrating only over those 
on�gurations with exa
tly one parti
leper ball B(xi, δ/2). Su
h a 
on�guration is always R-
onne
ted. Moreover the energy of su
h a
on�guration 
an be upper bounded by C(δ)k with
C(δ) :=

∑

ℓ∈Zd\{0}

sup
s∈(rhc+δ,R)

∣∣v
(
s|ℓ|

)∣∣ < ∞,and Eq. (2.31) follows. �Lemma 2.6 ({ηj(β, ·) < ∞} has non-empty interior). For ρ ∈ (0,∞), let
Aj(ρ) :=

{
(ρ, ρ1, . . . , ρj) ∈ (0,∞) × [0,∞)j

∣∣∣ ρ ≤ ρ,

j∑

k=1

kρk ≤ ρ
}

.Let δ ∈ (0, (R − rhc)/3) and C(δ) be as in Lemma 2.5. Fix ρ(δ) := (rhc + R + 2δ)−d. Then for all
ρ ∈ Aj(ρ(δ)) ∩ Dj, we have ηj(β,ρ) ≤ C(δ) − β−1 log |B(0, δ/2)| < ∞. In parti
ular,

Aj(ρ(δ)) ∩ Dj ⊂ {ηj(β, ·) < ∞}.



15Proof. We �rst give an appropriate lower bound for the 
onstrained partition fun
tion for the twoextreme 
ases when (1) all 
lusters have the same size k ∈ {1, . . . , j}, and (2) all 
lusters are largerthan j. Afterwards, we use the 
onvexity of ηj(β, ·) (see Lemma 2.4) to handle all other 
ases.Thus �x ρ = (ρ, ρ1, . . . , ρj) ∈ Dj ∩ Aj(ρ(δ)). In the �rst 
ase, let k ∈ {1, . . . , j} and ρ = ρ
(k) with

ρ
(k)

k = ρk = ρ/k and ρ
(k)

i = ρi = 0 for i 6= k. It follows that the N (n), N (n)

i 's de�ned as in Eq. (2.26)satisfy N (n) = kN (n)

k and N (n)

i = 0 for i 6= k. Furthermore, let ak > δ + k1/d(rhc + 2δ) su
h that
ρ(ak + R)d < k. We are going to use the boxes Λ∗

n de�ned above. In Λ∗
n, we pla
e 
ubes of side-length

ak with mutual distan
e ≥ R. As n → ∞, the number of su
h boxes behaves like
ℓn :=

⌊ |Λ∗
n|

(ak + R)d

⌋
∼ N (n)/ρ

(ak + R)d
>

N (n)

k
.Thus we 
an lower bound the partition fun
tion by requiring that ea
h k-
luster lies entirely in one ofthe above boxes, and there is at most one 
luster in ea
h su
h box. This gives

ZΛ∗
n
(β,N (n), N (n)

1 , . . . , N (n)

j ) ≥
(

ℓn

N (n)/k

)(
ad

k Zcl,ak

k (β)
)N(n)/k

≥ |B(0, δ/2)|N(n)
exp(−βN (n)C(δ)),(2.32)where in the last step we used Lemma 2.5 and estimated the 
ounting term against one. Thus we �nd

lim
n→∞

1

|Λ∗
n|

log ZΛ∗
n
(β,N (n), N (n)

1 , . . . ,N (n)

j ) ≥ ρ
(
−βC(δ) + log |B(0, δ/2)|

)
.Thus,

ηj(β,ρ(k)) ≤ ρ
(
C(δ) − β−1 log |B(0, δ/2)|

)
.In the next step, we assume that ρ = ρ

(0) with ρ
(0)

k = ρk = 0 for all k = 1, . . . , j. Again, we de�ne
N (n) and the N (n)

i by (2.26). We now lower bound the 
onstrained partition fun
tion by putting allparti
les into one 
luster.
ZΛ∗

n
(β,N (n), N (n)

1 , . . . , N (n)

j ) ≥ |Λ∗
n|Zcl,L∗

n

N(n) (β) for N (n) ≥ j + 1.Observe that an := L∗
n satis�es the 
onditions from Lemma 2.5, thus we also have

ηj(β,ρ(0)) ≤ ρ
(
C(δ) − β−1 log |B(0, δ/2)|

)
.In the general 
ase, let qk := kρk/ρ for k ∈ {1, . . . , j} and q0 := 1 − ∑j

k=1 qk. Then q0, q1, . . . , qj ≥
0 are dyadi
 fra
tions and satisfy ∑j

k=0 qk = 1. Furthermore, ρ =
∑j

k=0 qkρ
(k). It follows fromLemma 2.4 that

ηj(β,ρ) ≤
j∑

k=0

qkηj(β,ρ(k)) ≤ ρ
(
C(δ) − β−1 log |B(0, δ/2)|

)
.

�2.2.3. Extension of ηj(β, ·) to R
j+1. We now extend ηj(β, ·) : Dj → R ∪ {∞} to a 
onvex, lower semi-
ontinuous fun
tion fj(β, ·) : R

j+1 → R ∪ {∞}. We follow the proof of [R99, Prop. 3.3.4, p. 45℄. Let
Γj be the 
losure of {ηj(β, ·) < ∞}, and let ∆j be the interior of Γj. Note that Γj ⊂ [0,∞)j+1, as
ηj(β, ·) = ∞ on R

j+1 \ [0,∞)j+1.Lemma 2.7. (1) The interior ∆j of Γj is non-empty.(2) The restri
tion of ηj(β, ·) to Dj ∩ ∆j has a unique 
ontinuous extension f̃j(β, ·) : ∆j → R.



16 (3) De�ne fj(β, ·) : R
j+1 → R ∪ {∞} by

fj(β,ρ) =





f̃j(β,ρ) if ρ ∈ ∆j ,

+∞ if ρ ∈ ∆
c
j ,

lim inf ρ′
→ρ

ρ′
∈∆j

fj(β,ρ′) if ρ ∈ ∂∆j .
(2.33)Then fj(β, ·) is 
onvex and lower semi-
ontinuous, and

fj(β,ρ) = lim
t↓0

fj

(
β,ρ + t(ρ′ − ρ)

)
, ρ ∈ ∂∆j,ρ

′ ∈ ∆j. (2.34)(4)
{fj(β, ·) < ∞} ⊂ ∆j ⊂

{
(ρ, ρ1, . . . , ρj) ∈ [0,∞)j+1

∣∣∣ ρ ∈ [0, ρcp],

j∑

k=1

kρk ≤ ρ
}

. (2.35)Proof. (1) This follows from Lemma 2.6.(2) For the existen
e and uniqueness of a 
ontinuous extension in ∆j, follow [R99, p. 45℄. The keypoint is that in ∆j, ηj(β, ·) is a lo
ally uniformly bounded, densely de�ned, 
onvex fun
tion in thesense of Lemma 2.4.(3) Let us extend f̃j(β, ·) to R
j+1 with f̃j(β,ρ) = ∞ for ρ ∈ R

j+1\∆j . Then f̃j(β, ·) is 
onvex, butmay fail to be lower semi-
ontinuous. Furthermore, f̃j(β, ·) and fj(β, ·) 
an di�er only on ∂∆j. Thelower semi-
ontinuous hull of f̃j(β, ·) is
cl f̃j(β,ρ) := lim inf

ρ′→ρ
f̃j(β,ρ′), ρ ∈ R

j+1,see [HL01, Def. 1.2.4, p. 79℄. This is a 
onvex, lower semi-
ontinuous fun
tion whi
h 
oin
ides with
f̃j(β,ρ) in ∆j [HL01, Prop. 1.2.6, p. 80℄. It follows that cl f̃j(β,ρ) 
oin
ides with fj(β, ·) in ∆j . Itis elementary to see that in the de�nition of cl f̃j(β, ·), the limit inferior 
an be restri
ted to those
ρ
′ → ρ that are in ∆j. In other words, cl f̃j(β, ·) and fj(β, ·) 
oin
ide throughout R

j+1. This showsthat fj(β, ·) is 
onvex and lower semi
ontinuous. Eq. (2.34) follows from [HL01, Prop. 1.2.5℄.(4) The �rst in
lusion follows from the de�nition of fj(β, ·), and the se
ond from (2.28). �2.2.4. Limit behavior along general sequen
es.Lemma 2.8. Fix (ρ, ρ1, . . . , ρj) ∈ (0,∞)j+1. Let (N (N)

1 )N∈N, . . . , (N (N)

j )N∈N be N0-valued sequen
esand (ΛN )N∈N a sequen
e of 
ubes su
h that as N → ∞, (2.20) holds. Then, if (ρ, ρ1, . . . , ρj) is in ∆j,
lim

N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) = −βfj(β, ρ, ρ1, . . . , ρj) ∈ R. (2.36)Proof. We pro
eed as in [R99, pp. 47℄. We �rst prove the lower bound in (2.36). We will approximate
(ρ, ρ1, . . . , ρj) with (ρ∗, ρ∗1, . . . , ρ

∗
j ) ∈ Dj satisfying ρ∗ > ρ and ρ∗1 ≤ ρ1, . . . , ρ

∗
j ≤ ρj. The idea is topi
k the size parameter n = n(N) → ∞ of the spe
ial sequen
e of 
ubes Λ∗
n(N) introdu
ed at thebeginning of Se
tion 2.2.1 in su
h a way that the 
ubes are small 
ompared to ΛN . Hen
e, we 
anpla
e a lot of them inside ΛN at mutual distan
e ≥ R. Afterwards, we distribute the parti
les and
lusters inside a 
ertain number of spe
ial 
ubes a

ording to the distribution (ρ∗, ρ∗1, . . . , ρ

∗
j ) and pla
ethe few remaining parti
les somewhere else in ΛN .Let (n(N))N∈N be an integer-valued sequen
e su
h that

n(N) → ∞ and |Λ∗
n(N)|2/|ΛN | → 0.



17We de�ne N (n(N))
∗ and N (n(N))

∗,k by (2.26) with n repla
ed by n(N) and ρ, ρ1, . . . , ρj repla
ed by
ρ∗, ρ∗1, . . . , ρ

∗
j . Let mN ∈ N0 and r(N) ∈ {0, . . . ,N (n(N))

∗ − 1} be su
h that
N = mNN (n(N))

∗ + r(N).This is possible be
ause ρ > ρ∗ and therefore N > N (n(N))
∗ for all su�
iently large N . For k ∈ {1, . . . , j},de�ne r(N)

k by
N (N)

k = mNN (n(N))

∗,k + r(n(N))

k .We 
laim that, for su�
iently large N , the r(N)

k are non-negative integers. Indeed, this follows from
N (N)

k ∼ ρk|ΛN | and mNN (n(N))

∗,k ∼ ρ|ΛN |
ρ∗|Λ∗

n(N)|
ρ∗k|Λ∗

n(N)| =
ρ

ρ∗
ρ∗k|ΛN |in 
ombination with ρk ≥ ρ∗k > ρ

ρ∗ ρ∗k. Moreover, we 
an pla
e mN + r(N) 
opies of Λ∗
n(N) with mutualdistan
e ≥ R inside ΛN . This is so be
ause

mN |Λ∗
n(N)| ∼

ρ

ρ∗
|ΛN | and r(N)|Λ∗

n(N)| = O(N (n(N))
∗ |Λ∗

n(N)|) = O(ρ∗|Λn(N)|2) = o(|ΛN |).We lower bound the 
onstrained partition fun
tion with parameters N,N (N)

1 , . . . ,N (N)

j by distributing�rst parti
les and 
lusters in the mN boxes following the distribution N (n(N))

∗,k . This leaves r(N) parti
les.Of those we distribute �rst k r(N)

k as 
lusters of size k, one per spe
ial 
ube, and then we distributethe remaining s(N) parti
les into 
lusters of size j + 1 ex
ept maybe for one of size between j + 2 and
2j + 1. Pretend for simpli
ity that they all have size j + 1. Then we get

log ZΛN
(β,N,N (N)

1 , . . . , N (N)

j ) ≥ mN log ZΛ∗

n(N)
(β,N (n(N))

∗ ,N (n(N))

∗,1 . . . ,N (n(N))

∗,j )

+

j+1∑

k=1

r(N)

k log Z
cl,L∗

n(N)

k (β),where L∗
n(N) denotes the side length of Λ∗

n(N). Using that ∑j+1
k=1 r(N)

k ≤ r(N) ≤ N (n(N))
∗ = o(|ΛN |), weget

lim inf
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≥ −β
ρ

ρ∗
fj(β, ρ∗, ρ∗1, . . . , ρ

∗
j ).Now let (ρ∗, ρ∗1, . . . , ρ

∗
j) → (ρ, ρ1, . . . , ρj) and use the 
ontinuity of fj(β, ·) in ∆j, to obtain

lim inf
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≥ −βfj(β, ρ, ρ1, . . . , ρj).Now we prove the upper bound in (2.36). First of all, let us observe that the lower bound holdsnot only for sequen
es of 
ubes, but more generally for sequen
es of domains Λ′′
N that 
onverge toin�nity in the Fisher sense, as 
an be shown along the lines of our proof and [R99℄. We shall need thestatement not for general Fisher domains but only for Λ′′

N de�ned below, whi
h is an L-shaped domainthat is a di�eren
e of two 
ubes.Now �x C ∈ (0, 1
2). For N ∈ N, let n(N) ∈ N be so large thatΛ∗

n(N) 
ontains ΛN and satis�es
0 < C ≤ |ΛN |

|Λ∗
n(N)

| ≤
1

2
, n ∈ N.Let Λ′′

N be the set of points in Λ∗
n(N) having distan
e > R′ to ΛN . Then (|ΛN | + |Λ′′

N |)/|Λ∗
n(N)| → 1.Let ρ

∗ = (ρ∗, ρ∗1, . . . , ρ
∗
j ) ∈ ∆j ∩Dj su
h that ρ∗k > 0. De�ne N (n(N))

∗ and N (n(N))

∗,k as in Eq. (2.26) with
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n repla
ed by n(N) and ρ, ρ1, . . . , ρj repla
ed by ρ∗, ρ∗1, . . . , ρ

∗
j . Then

ZΛ∗

n(N)
(β,N (n(N))

∗ , N (n(N))

∗,1 , . . . , N (n(N))

∗,j )

≥ ZΛN
(β,N,N (N)

1 , . . . , N (N)

j ) × ZΛ′′

N
(β,N (n(N))

∗ − N,N (n(N))

∗,1 − N (N)

1 , . . . ,N (n(N))

∗,j − N (N)

j ).(2.37)Assume for simpli
ity that |ΛN |/|Λ∗
n(N)| → α ∈ (0, 1/2] (otherwise go to suitable subsequen
es). Then

N (n(N))
∗ − N

|Λ′′
N | ∼

ρ∗|Λ∗
n(N)| − ρ|ΛN |
|Λ′′

N | → ρ∗ − ρα

1 − α
=: ρ′′.De�ne ρ′′1, . . . , ρ

′′
j in an analogous way and put ρ

′′ = (ρ′′, ρ′′1 , . . . , ρ
′′
j ). Thus ρ

∗ = αρ + (1 − α)ρ′′ and
|ρ′′ − ρ| = (1 − α)−1|ρ − ρ

∗| ≤ 2|ρ − ρ
∗|,with | · | the Eu
lidean norm. Let ε > 0 su
h that Bε(ρ) ⊂ ∆j. Now additionally assume that

ρ
∗ ∈ Bε/2(ρ). Thus ρ

′′ ∈ ∆j. In Eq. (2.37), we take logarithms, divide by |Λ∗
n(N)| and pass to thelimit N → ∞, whi
h gives

−βfj(β,ρ∗) ≥ α lim sup
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) − (1 − α)βfj

(
β,ρ′′

)
.To 
on
lude we let ρ

∗ → ρ (hen
e ρ
′′ → ρ) and use α > 0 and the 
ontinuity of fj(β, ·) at ρ. �Lemma 2.9. Assume the situation of Lemma 2.8. If ρ = (ρ, ρ1, . . . , ρj) is in ∆

c
j or in ∂∆j, then

lim sup
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≤ −βfj(β,ρ).(Re
all that fj(β,ρ) = ∞ in the �rst 
ase.)Proof. We pro
eed as in [R99, Prop. 3.3.8, p. 48℄. One 
an show that there is an α ∈ (0, 1/2] su
h thatfor ρ
∗ ∈ Dj satisfying ρ∗k > 0 whenever ρk > 0, and ρ

′′ ∈ ∆j satisfying
ρ

∗ = αρ + (1 − α)ρ′′, (2.38)it holds that
−βηj(β,ρ∗) ≥ α lim sup

N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) − (1 − α)βfj(β,ρ′′). (2.39)The proof of this is similar to the proof of the upper bound in Lemma 2.8.a) Consider the 
ase ρ ∈ ∆
c
j . For ρ

′′ ∈ ∆j, we de�ne ρ
∗ by (2.38). By 
hoosing ρ

′′ 
lose enough to
∂∆j , we 
an ensure that ρ

∗ ∈ Dj ∩ ∆
c
j . Thus we 
on
lude from (2.39) that

lim sup
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) = −∞.b) If ρ ∈ ∂∆j, let ρ
′(ε) ∈ ∆j ∩ Bε(ρ) be su
h that fj(β,ρ′(ε)) → fj(β,ρ) as ε ↓ 0. By [HL01,Lemma 2.1.6, p. 35℄, the half-open line segment (ρ,ρ′(ε)] is 
ontained in ∆j . Sin
e Dj is dense andbe
ause of the 
ontinuity of fj(β, ·) at ρ

′(ε), we 
an �nd ρ
′′(ε) ∈ ∆j ∩ Bε(ρ) su
h that

• ρ
∗(ε), de�ned by (2.38) with ρ

′′ repla
ed by ρ
′′(ε), is in ∆j ∩Dj ∩ Bε(ρ).

• |fj(β,ρ′(ε)) − fj(β,ρ′′(ε))| ≤ ε, so that fj(β,ρ′′(ε)) → fj(β,ρ) as ε → 0.It follows from Eq. (2.39) that
α lim sup

N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≤ lim sup
ε→0

(
−βfj(β,ρ∗(ε)) + (1 − α)βfj(β,ρ′′(ε))

)

≤ −αβfj(β,ρ).

�



19Proof of Prop. 2.1. This is now straightforward from the previous lemmas. �2.3. The ρ-se
tions of ∆j. We already saw that the set {fj(β, ·) < ∞} has non-empty interior ∆j .In view of the large deviations prin
iple we are interested in properties of the map (ρ1, . . . , ρj) 7→
fj(β, ρ, ρ1, . . . , ρj) at �xed β and ρ. This means that we look at the restri
tion of fj(β, ·) to thehyperplane of 
onstant density ρ.Now, this restri
ted map inherits the 
onvexity and lower semi-
ontinuity from fj(β, ·). The questionwhether the set where it is �nite has non-empty interior is, however more subtle. Closely related is thequestion whether ∆j has non-empty interse
tion with the hyperplane of 
onstant density ρ.To this aim 
onsider the ρ-se
tion of ∆j,

Cj(ρ) :=
{
(ρ1, . . . , ρj) ∈ (0,∞)j

∣∣ (ρ, ρ1, . . . , ρj) ∈ ∆j

}
. (2.40)Put di�erently, {ρ} × Cj(ρ) is the interse
tion of ∆j with the hyperplane of 
onstant density ρ. Thehyperplane always 
uts through the interior of ∆j, i.e., 
annot be tangent to ∆j :Lemma 2.10. For any ρ ∈ (0, ρcp), the set Cj(ρ) is non-empty, 
onvex and open. Moreover,

Cj(ρ) = {(ρ1, . . . , ρj) ∈ [0,∞)j | (ρ, ρ1, . . . , ρj) ∈ ∆j}. (2.41)This last equation says that it does not matter whether we take �rst the ρ-se
tion and then 
losethe set, or if we 
lose �rst and then take the se
tion.The essential ingredients of the proof of Lemma 2.10 are the 
onvexity of fj(β, ·), Lemma 2.6 andthe following.Lemma 2.11. Let ρ ∈ (0, ρcp). Then there is at least one point (ρ1, . . . , ρj) ∈ [0,∞)j su
h that
fj(β, ρ, ρ1, . . . , ρj) < ∞.Proof. Let N/|ΛN | → ρ. Let (N (N)

1 , . . . , N (N)

j ) be su
h that
ZΛN

(β,N,N (N)

1 , . . . , N (N)

j ) = max
(N1,...,Nj)∈N

j
0

ZΛN
(β,N,N1, . . . ,Nj).A

ording to the Hardy-Ramanujan formula, the number of partitions of N is not larger than

exp(O(
√

N)). Thus we �nd
ZΛN

(β,N) ≤ exp(O(
√

N))ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ).Passing to a suitable subsequen
e, we may assume that N (N)

k /|ΛN | → ρk, k = 1, . . . , j, for some
(ρ1, . . . , ρj) ∈ [0,∞)j . The previous inequality then yields

−∞ < −βf(β, ρ) ≤ −βfj(β, ρ, ρ1, . . . , ρj).

�Proof of Lemma 2.10. Let ρ ∈ (0, ρcp). Let ρ′ ∈ (ρ, ρcp) and (ρ′1, . . . , ρ
′
j) ∈ [0,∞)j su
h that fj(β,ρ′) <

∞, where ρ
′ = (ρ′, ρ′1, . . . , ρ

′
j). Hen
e, ρ

′ ∈ ∆j . Let ρ(δ) and A(ρ(δ)) be as in Lemma 2.6. Let
C ⊂ [0,∞)j+1 be the 
one with apex ρ

′ and base A(ρ(δ)), i.e., the set of 
onvex 
ombinations of pointsin A(ρ(δ)) and ρ
′. By 
onvexity, C ⊂ ∆j. Looking at the ρ-se
tions of C we �nd that Cj(ρ) is notempty.Convexity and openness of Cj(ρ) are inherited from ∆j.Now we prove (2.41). Let Hρ = {ρ} × R

j ⊂ R
j+1 be the hyperplane of density ρ. By [HL01,Prop. 2.1.10, p. 37℄,

∆j ∩ Hρ = ∆j ∩ Hρ.The left-hand side is identi�ed as {ρ}×Cj(ρ) while the right-hand side is {ρ}×A with A the set fromthe right-hand side in Eq. (2.41). �



202.4. Proof of Proposition 2.2 � LDP for the proje
tion of ρΛ. In this se
tion, we prove the largedeviations prin
iple for (ρ1,Λ, . . . , ρj,Λ) under the Gibbs measure, as formulated in Proposition 2.2.This is equivalent to showing the two bounds in (2.23) and (2.24) and the 
laimed properties of
Iβ,ρ,j. Observe that the distribution of (ρ1,Λ, . . . , ρj,Λ) under the Gibbs measure is 
on
entrated on the
ompa
t set Mρ. Hen
e, the family of these distributions is in parti
ular exponentially tight. Hen
e, itis enough to prove the upper bound in (2.24) for 
ompa
t sets. From this, in parti
ular the 
ompa
tnessof the level sets of Iβ,ρ,j follows, but we will also give an independent proof.For the remainder of this se
tion, we �x ρ ∈ (0, ρcp).2.4.1. Properties of Iβ,ρ,j. Re
all the fun
tion Iβ,ρ,j : [0,∞)j → R ∪ {∞} from (2.1) and the ρ-se
tion
Cj(ρ) of ∆j from (2.40). Re
all from Lemma 2.10 that Cj(ρ) is non-empty, open and 
onvex.Lemma 2.12. (1) Iβ,ρ,j is 
onvex, and its level sets are 
ompa
t.(2) Iβ,ρ,j is �nite in Cj(ρ) and in�nite in the 
omplement of the 
losure of Cj(ρ).(3) For every open set O ⊂ [0,∞)j ,

inf
O

Iβ,ρ,j =

{
infO∩Cj(ρ) Iβ,ρ,j if O ∩ Cj(ρ) 6= ∅,

∞ if O ∩ Cj(ρ) = ∅.
(2.42)Remark 2.13. Eq. (2.42) will be needed in the proof of the lower bound for the large deviationsprin
iple. The 
onvexity enters in a 
ru
ial way in Eq. (2.42). Lower semi-
ontinuity alone would notsu�
e! � (3) proves that the open set Cj(ρ) is a Iβ,ρ,j-
ontinuity set, see [DZ98, p. 5℄.Proof. (1) Convexity and lower semi-
ontinuity are immediate 
onsequen
es of the properties for

fj(β, ·), sin
e the restri
tion of a 
onvex, lower semi-
ontinuous fun
tion to a hyperplane is also 
onvexand lower semi-
ontinuous. Thus the level sets of Iβ,ρ,j are 
losed. By Eq. (2.35),
{Iβ,ρ,j < ∞} ⊂

{
(ρ1, . . . , ρj) ∈ [0,∞)j

∣∣∣
j∑

k=1

kρk ≤ ρ
}
.It follows that the level sets are also bounded, hen
e 
ompa
t.(2) If (ρ1, . . . , ρj) is in Cj(ρ), then (ρ, ρ1, . . . , ρj) ∈ ∆j by de�nition of Cj(ρ), and therefore

fj(β, ρ, ρ1, . . . , ρj) < ∞. Hen
e, Iβ,ρ,j(ρ1, . . . , ρj) < ∞.If (ρ1, . . . , ρj) is in the 
omplement of the 
losure of Cj(ρ), then by Eq. (2.41), (ρ, ρ1, . . . , ρj) is inthe 
omplement of the 
losure of ∆j, from whi
h Iβ,ρ,j(ρ1, . . . , ρj) = ∞ follows.(3) If O and Cj(ρ) are disjoint, Iβ,ρ,j = +∞ on O by (2). If the sets are not disjoint, we know that
inf
O

Iβ,ρ,j = inf
O∩Cj(ρ)

Iβ,ρ,j ≤ inf
O∩Cj(ρ)

Iβ,ρ,j, (2.43)and it remains to prove the opposite inequality. Thus let ρ = (ρ1, . . . , ρj) ∈ O∩∂Cj(ρ). Let ρ
′ ∈ Cj(ρ).By Eq. (2.34),

Iβ,ρ,j(ρ) = lim
t↓0

Iβ,ρ,j(ρ + t(ρ′ − ρ)).Be
ause O is open and by [HL01, Lemma 2.1.6, p. 35℄, for su�
iently small t, ρ+t(ρ′−ρ) ∈ O∩Cj(ρ).Thus for some suitable t0 > 0,
Iβ,ρ,j(ρ) = lim

t↓0
Iβ,ρ,j(ρ + t(ρ′ − ρ)) ≥ inf

t∈(0,t0)
Iβ,ρ,j(ρ + t(ρ′ − ρ)) ≥ inf

O∩Cj(ρ)
Iβ,ρ,j.

�



212.4.2. The two bounds in (2.23) and (2.24). For A ⊂ [0,∞)j , let
PN (j,A) :=

{
(N1, . . . , Nj) ∈ N

j
0

∣∣∣
(
N1/|ΛN |, . . . ,NN/|ΛN |

)
∈ A,

j∑

k=1

kNk ≤ N
}

.We note that the probability of �nding (ρ1,ΛN
, . . . , ρj,ΛN

) in the set A is a sum of 
onstrained partitionfun
tions:
P

(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ A

)
=

1

ZΛN
(β,N)

∑

(N1,...,NN )∈PN (j,A)

ZΛN
(β,N,N1, . . . ,Nj).Upper bound in (2.24) for 
ompa
t sets. Let K ⊂ [0,∞)j be a 
ompa
t set. Let (N (N)

1 , . . . ,N (N)

j ) ∈
PN (j,K) maximize the 
onstrained partition fun
tion over PN (j,K), i.e.,

ZΛN
(β,N,N (N)

1 , . . . , N (N)

j ) = max
(N1,...,Nj)∈PN (j,K)

ZΛN
(β,N,N1, . . . ,Nj).Then

P
(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ K

)
≤ |PN (j,K)|

ZΛN
(β,N)

ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ).Now, the 
ardinality of PN (j,K) is smaller than the number of partitions of N , and therefore notlarger than exp(O(
√

N)), whi
h is eo(N). The sequen
e (N (N)

1 /|ΛN |, . . . ,N (N)

j /|ΛN |)N∈N takes valuesin the 
ompa
t set K and therefore, going to a subsequen
e, we 
an assume that it 
onverges to some
(ρ1, . . . , ρj) ∈ K. Applying Proposition 2.1 we �nd

lim sup
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ) ≤ −βfj(β, ρ, ρ1, . . . , ρj) ≤ −β inf
K

fj(β, ρ, ·).This yields the upper bound in (2.24) for K = C.Lower bound in (2.23) for open sets. Let O ⊂ [0,∞)j be an open set. Let (ρ1, . . . , ρj) ∈ O. We 
an
hoose (N (N)

1 , . . . , N (N)

j ) ∈ PN (j,O) so that N (N)

k /|ΛN | → ρk, k = 1, . . . , j, and have
P

(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ O

)
≥ 1

ZΛN
(β,N)

ZΛN
(β,N,N (N)

1 , . . . ,N (N)

j ).If (ρ, ρ1, . . . , ρj) is in ∆j or in the 
omplement of the 
losure of ∆j, we 
on
lude from Prop. 2.1 that
lim inf
N→∞

1

|ΛN | log P
(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ O

)
≥ −Iβ,ρ,j(ρ1, . . . , ρj).Thus, taking on the right-hand side the supremum over all su
h (ρ1, . . . , ρj), we obtain

lim inf
N→∞

1

|ΛN | log P
(N)

β,ΛN

(
(ρ1,ΛN

, . . . , ρj,ΛN
) ∈ O

)
≥ − inf

O∩Cj(ρ)
Iβ,ρ,j = − inf

O
Iβ,ρ,j.The last equality uses Lemma 2.12 for the 
ase O ∩ Cj(ρ) 6= ∅, and (2.23) is proved in this 
ase. If

O and Cj(ρ) are disjoint, then infO Iβ,ρ,j = ∞, and (2.23) is trivially true. This ends the proof ofProposition 2.2.2.5. The �nish � proof of the LDP for (ρΛN
)N∈N. The proof of Theorem 1.1 follows essentiallyfrom Proposition 2.2 and the Dawson-Gärtner theorem, the LDP for proje
tive limits, see [DZ98,Theorem 4.6.1℄. More pre
isely, let

Iβ,ρ

(
(ρk)k∈N

)
= β

(
f
(
β, ρ, (ρk)k∈N

)
− f(β, ρ)

)with
f
(
β, ρ, (ρk)k∈N

)
:= sup

j∈N

fj(β, ρ, ρ1, . . . , ρj).



22Consider �rst Iβ,ρ as a fun
tion from [0,∞)N to R∪{∞} and endow [0,∞)N with the produ
t topology,By the Dawson-Gärtner theorem, Iβ,ρ is a good rate fun
tion and (ρΛN
)N∈N satis�es a large deviationsprin
iple with rate fun
tion Iβ,ρ.Now for all N , P

(N)

β,ΛN
(ρΛN

∈ Mρ+ε) = 1. Moreover, Mρ+ε is 
losed as a subset of ([0,∞)N in theprodu
t topology. Thus by [DZ98, Lemma 4.1.5℄ we 
on
lude that (ρΛN
)N∈N satis�es a large deviationsprin
iple also as an Mρ+ε-valued random variable in this topology.Next, one easily sees that on Mρ+ε the produ
t topology and the ℓ1 topology 
oin
ide. It followsthat (ρΛN

) satis�es the LDP also in this topology with the good rate fun
tion Iβ,ρ.
Iβ,ρ is 
onvex be
ause it is the supremum of a family of 
onvex fun
tions.Finally, if Iβ,ρ((ρk)k∈N) is �nite, then, for all j ∈ N, we have fj(β, ρ, ρ1, . . . , ρj) < ∞ and hen
e byProposition 2.1, ∑j

k=1 kρk ≤ ρ. Letting j → ∞ we obtain ∑∞
k=1 kρk ≤ ρ. This proves that {Iβ,ρ < ∞}is 
ontained in Mρ. 3. Approximation with an ideal mixture of 
lustersIn this se
tion, we 
ompare the rate fun
tion f(β, ρ, ·) de�ned in (1.9) with an ideal rate fun
tion.This rate fun
tion des
ribes a uniform mixture of 
lusters that do not intera
t with ea
h other. Thisfun
tion has a parti
ularly simple shape, sin
e the 
ombinatorial 
omplexity does not take 
are of theex
luded-volume e�e
t, i.e., di�erent 
lusters do not repel ea
h other.One of the 
ru
ial points is a lower estimate for the 
ombinatorial 
omplexity of putting a givennumber of 
lusters into a large box in a well separated way. For this, we need to 
ontrol the free energyof 
lusters that �t into some box of a 
ertain volume. It is relatively easy to a
hieve this if the radius ofthat box is of order of the 
ardinality of the 
luster, i.e., under the sole 
ondition Assumption (V). Thiswill turn out in Se
tion 5.1 to be su�
ient for the regime in (1.3), i.e., for the proof of Theorem 1.2.However, in order to handle also the mu
h more �exible bounds in Theorem 1.8, we will have to useboxes with volume of order of the 
luster 
ardinality and to make use of Assumption 1.7.We 
onsider the 
luster partition fun
tion, whi
h is de�ned, for β > 0 and k ∈ N, by

Zcl
k (β) =

1

k!

∫

(Rd)k−1

e−βUk(0,x2,...,xk)1
{
{0, x2, . . . , xk} 
onne
ted}

dx2 · · · dxk.Re
all the 
luster partition fun
tion Zcl,a
k (β) with restri
tion to [0, a]d and additional fa
tor a−d intro-du
ed in (2.30) above. The reader easily 
he
ks that

lim
a→∞

Zcl,a
k (β) = Zcl

k (β), k ∈ N, β ∈ (0,∞).We also de�ne asso
iated 
luster free energies per parti
le:
f cl

k (β) := − 1

βk
log Zcl

k (β), f cl,a
k (β) := − 1

βk
log Zcl,a

k (β). (3.44)Let
f cl
∞(β) := lim inf

k→∞
f cl

k (β) and f cl
∞(β, ρ) := lim sup

k→∞
f cl,Lk

k (β), (3.45)where Lk is su
h that the volume of [0, Lk]
d is equal to k/ρ. We will see in Se
tion 4, see Lemma 4.3and (4.54), that these quantities are �nite. One 
an a
tually show that they exist as limits, but wewill not need that.Now we 
an state our bounds. The �rst one expresses the (simple) bound that 
omes from droppingthe ex
luded-volume e�e
t. Re
all the de�nition (1.11) of the ideal free energy f ideal.



23Lemma 3.1 (Lower bound). For all β, ρ > 0 and ρ ∈ Mρ,
f
(
β, ρ,ρ

)
≥ f ideal

(
β, ρ,ρ

)
. (3.46)Proof. Re
all the de�nition (2.19) of the 
onstrained partition fun
tions ZΛ(β,N,N1, . . . ,NN ). Weshow �rst that

ZΛ(β,N,N1, . . . ,NN ) ≤
N∏

k=1

(|Λ|Zcl
k (β))Nk

Nk!
, (3.47)for all N,N1, . . . , NN ∈ N0 with ∑N

k=1 kNk = N . Fix su
h a ve
tor (N,N1, . . . ,NN ). Let x =

(x1, . . . , xN ) ∈ ΛN with N1 
lusters of size 1, N2 
lusters of size 2, et
. Consider the graph withverti
es {1, . . . , N} and edges those {i, j}, i 6= j, where |xi − xj| ≤ R. The graph splits into 
onne
ted
omponents; this indu
es a partition I(x) of the index set {1, . . . ,N}. The set partition has N1 sets ofsize 1, N2 sets of size 2, et
. Let J = J ((Nk)k) be the 
olle
tion of su
h set partitions of {1, . . . ,N}.Note that the integral of e−βUN over {x : I(x) = I} does not depend on I ∈ J . The 
ardinality of Jis
|J | =

N !
∏N

k=1

(
Nk! k!Nk

) .Therefore, for any I (0) ∈ J , we may write
ZΛ(β,N,N1, . . . , NN ) =

1

N !

∑

I∈J

∫

ΛN

e−βUN (x)1l
{
I(x) = I

}
dx

=
1

∏N
k=1

(
Nk! k!Nk

)
∫

ΛN

e−βUN (x)1l
{
I(x) = I (0)

}
dx.The indi
ator fun
tion in the last integral 
an be upper bounded by dropping the requirement that
lusters have mutual distan
e ≥ R. This leads to a produ
t of indi
ator fun
tions, one for ea
h 
luster,en
oding that the 
luster is 
onne
ted and stays inside Λ. Noting that

1

k!

∫

ΛN

e−βU(x1,...,xk)1l
{
{x1, . . . , xk} 
onne
ted}

dx1 · · · dxk ≤ |Λ|Zcl
k (β)(integrate �rst over x2, . . . , xk at �xed x1, and then over x1), we dedu
e Eq. (3.47).Next, we note that n! ≥ (n/e)n for all n ∈ N. Therefore, (3.47) gives that

ZΛ(β,N,N1, . . . , NN ) ≤ exp
(
−β|Λ|f ideal

(
β, N

|Λ| ,
(

Nk

|Λ|

)
k∈N

))
, (3.48)where we have set Nk = 0 for k ≥ N + 1, and f ideal is de�ned in (1.11).Now we turn to a lower bound for the rate fun
tion. Let O ⊂ Mρ be an open set. For N ∈ N, let

ρ
(N) be a 
luster size distribution in Mρ of the form ρ(N)

k = Nk/|ΛN | with integer Nk, and minimising
f ideal(β,N/|Λ|,ρ) among distributions of this type. Summing Eq. (3.48) over partitions related to O,we obtain

− inf
O

Iβ,ρ ≤ lim inf
N→∞

1

|ΛN | log P
(N)

β,ΛN
(ρΛN

∈ O) ≤ −β lim inf
N→∞

f ideal
(
β, N

|ΛN | ,ρ
(N)

)
+ βf(β, ρ).We have used that the number of integer partitions of N , by the Hardy-Ramanujan formula, is of order

exp(O(
√

N)) and therefore does not 
ontribute at the exponential s
ale 
onsidered here. Sin
e Mρ is
ompa
t, we may assume, up to 
hoosing subsequen
es, that ρ(N)

k → ρk for all k, i.e., ρ
(N) 
onvergesto some ρ ∈ Mρ. Sin
e the fun
tional (ρ,ρ) 7→ f ideal(β, ρ,ρ) is lower semi-
ontinuous, it follows that,along the 
hosen subsequen
e,

f ideal(β, ρ,ρ) = lim inf
N→∞

f ideal
(
β, N

|ΛN | ,ρ
(N)

)
≥ inf

O
f ideal(β, ρ, ·).



24We dedu
e
inf
O

f(β, ρ, ·) ≥ inf
O

f ideal(β, ρ, ·),for every open set O ⊂ Mρ. To 
on
lude, for ρ ∈ Mρ, noting that Mρ is metrizable, we 
an 
hoose openenvironments O ց {ρ} and 
omplete the proof by exploiting the lower semi-
ontinuity of f ideal(β, ρ, ·).
�Our se
ond bound 
ontrols the error when dropping the ex
luded-volume e�e
t. This was mu
heasier in [CKMS10℄ and was hidden in the proof of Proposition 2.2 there.Proposition 3.2 (Upper bound). For ea
h k ∈ N, let ak > 0 be su
h that (ak + R)d < k/ρ. Then, forany ρ = (ρk)k∈N,

f
(
β, ρ,ρ

)
≤

∑

k∈N

kρkf
cl,ak

k (β) +
(
ρ −

∑

k∈N

kρk

)
f cl
∞(β, ρ) +

1

β

∑

k∈N

ρk log ρ

+
1

β

∑

k∈N

ρk

(
− log(1 − ρ

k (ak + R)d) + log(1 + R
ak

)d
)
.

(3.49)Proof. We �rst remark that it is enough to show (3.49) for ρ repla
ed by ρ
ke

(k) for any k ∈ N (where
e

(k) = (δk,j)j∈N) and for ρ repla
ed by 0, the sequen
e 
onsisting of zeros. Indeed, re
all from Theo-rem 1.1 that f(β, ρ, ·) is 
onvex, note that an arbitrary ρ 
an be written as the 
onvex 
ombination
(ρk)k∈N =

∑

k∈N

kρk

ρ
ρ
ke

(k) +
(
1 −

∑

k∈N

kρk

ρ

)
0,and note that the right-hand side of (3.49) is a�ne in ρ. Hen
e, we only have to show that

f
(
β, ρ, ρ

ke
(k)

)
≤ ρf cl,ak

k (β)+
1

β

ρ

k
log ρ+

1

β

ρ

k

(
− log

(
1− ρ

k (ak+R)d
)
+log

(
(1+ R

ak
)d

))
, k ∈ N, (3.50)and that

f
(
β, ρ,0

)
≤ ρf cl

∞(β, ρ). (3.51)We now prove (3.51). Let O ⊂ Mρ be an open set 
ontaining 0, and O its 
losure. By the LDP,
lim sup
N→∞

1

|ΛN | log P
(N)

β,ΛN
(ρΛN

∈ O) ≤ − inf
O

Iβ,ρ.For N ∈ N, 
onsider the 
luster size distribution obtained by putting all parti
les into one large 
luster:
ρ(N)

1 = · · · = ρ(N)

N−1 = 0, ρ(N)

N = 1/|ΛN |. Note that ρ
(N) = (ρ(N)

k )k∈N lies in Mρ for any N ∈ N. We have
ρ

(N) → 0 as N → ∞ and thus ρ
(N) ∈ O ⊂ O for su�
iently large N . As a 
onsequen
e, we 
an lowerbound

P
(N)

β,ΛN
(ρΛN

∈ O) ≥ P
(N)

β,ΛN
(ρΛN

= ρ
(N)) =

|ΛN |Zcl,LN

N (β)

ZΛN
(β,N)

.Re
alling that |ΛN | = N/ρ, it follows that
− inf

O
Iβ,ρ ≥ lim sup

N→∞

1

|ΛN | log
|ΛN |Zcl,LN

N (β)

ZΛN
(β,N)

≥ −βρf cl
∞(β, ρ) + βf(β, ρ).Sin
e Iβ,ρ(·) = βf(β, ρ, ·) − βf(β, ρ), this implies infO f(β, ρ, ·) ≤ ρf cl

∞(β, ρ). This holds for all opensets O 
ontaining 0. Letting O ց {0} and using the lower semi-
ontinuity of f(β, ρ, ·), we dedu
e(3.51).Now let us turn to (3.50). We pro
eed in a way analogous to Lemma 2.6. Fix k ∈ N. Let N be amultiple of k. Consider the 
luster size distribution obtained by putting all parti
les into 
lusters ofsize k, i.e., put N (N)

j = (N/k)δj,k for j ∈ N. We divide the box ΛN into ℓN boxes of side length ak with



25mutual distan
e at least R. Hen
e, ℓN ∼ N
ρ (ak + R)−d. The assumption (ak + R)d < k/ρ guaranteesthat ℓN > N/k for su�
iently large N . Therefore, we 
an lower bound

ZΛN
(β,N,N (N)

1 , . . . ,N (N)

N ) ≥
(

ℓN

N/k

)(
ad

kZ
cl,ak

k (β)
)N/k

.Therefore, using that |ΛN | = N/ρ and Stirling's formula,
lim inf
N→∞

1

|ΛN | log ZΛN
(β,N,N (N)

1 , . . . ,N (N)

N )

≥ ρ

k
log Zcl,ak

k (β) − ρ

k
log ρ +

ρ

k
log

( ad
k

(ak + R)d
− ρad

k

k

)
.

(3.52)Multiplying the right-hand side with −β−1, the right-hand side of (3.50) arises. In the same way asin the proof of (3.51), one derives, with the help of Lemma 2.8, that f(β, ρ, ρ
ke

(k)) is not larger than
−β−1 times the left-hand side of (3.52). This ends the proof of (3.50). �4. Bounds for the 
luster free energyIn this se
tion we give some more bounds that will later be used in the proofs of Theorems 1.2 and1.8. We further estimate some entropy terms, and we give bounds that 
ontrol the repla
ement oftemperature-depending terms by the 
orresponding ground-state terms. Throughout this se
tion weassume that the pair potential v satis�es Assumption (V).We will later repla
e the term ∑

k ρk(log ρk − 1) in f ideal(β, ρ, (ρk)k) by ∑
k ρk log ρk. To this aimthe following will be useful.Lemma 4.1 (Entropy bound). For any probability distribution (pk)k∈N on N,

0 ≤ −
∑

k∈N

pk log pk ≤ 1 + log
∑

k∈N

kpk.Proof. We may assume that the expe
tation ∑
k∈N

kpk is �nite. It is elementary to see that themaximizer of the entropy among the set of probability distributions with a given �nite expe
tationis a geometri
 distribution. For pk = (1 − u)uk−1, k ∈ N, for some u ∈ (0, 1), the expe
tation is∑
k∈N

kpk = 1/(1 − u) and the entropy is
−

∑

k∈N

pk log pk = − log(1 − u) − (1 − u)
∑

k∈N

uk−1(k − 1) log u

= − log(1 − u) − u log u

1 − u
= log

∑

k∈N

kpk +
u log u

u − 1
.We 
on
lude by observing that x log x ≥ x − 1 for all x > 0 and re
alling that u < 1. �Lemma 4.2. For any ρ ∈ (0,∞) and any ρ = (ρk)k∈N ∈ Mρ,

∑

k∈N

ρk log
ρk

ρ
≥ −2ρ.Proof. Put m :=

∑
k∈N

ρk and pk := ρk/m. Then
∑

k∈N

ρk log
ρk

ρ
=

∑

k∈N

mpk log
mpk

ρ
= m log

m

ρ
+ m

∑

k∈N

pk log pk

≥ m log
m

ρ
− m − m log

∑

k∈N

kpk ≥ 2m log
m

ρ
− m,where we applied Lemma 4.1 and that ∑

k∈N
kpk ≤ ρ/m. Now use the inequality x log x ≥ x − 1 anddrop the term m. �



26 In our bounds in Lemma 3.1 and Proposition 3.2, we will later repla
e the 
luster free energies withground state energies; in this se
tion we give bounds that will allow us to 
ontrol the repla
ementerror. We also prove that f cl
∞(β) and f cl

∞(β, ρ) are �nite.Lemma 4.3 (Lower bound for f cl
k (β) and f cl

∞(β)). There is a 
onstant C > 0 su
h that for all
β ∈ (0,∞),

f cl
k (β) ≥ Ek

k
− C

β
, k ∈ N, β ∈ (0,∞).In parti
ular, f cl

∞(β) ≥ e∞ − C
β for any β ∈ (0,∞).Proof. We follow [CKMS10, Se
. 2.4℄. First, note that

Zcl
k (β) ≤ e−βEk

1

k!

∣∣∣
{
(x2, ..., xk) ∈ (Rd)k−1 : {0, x2, ..., xk} R-
onne
ted}∣∣∣with | · | the Lebesgue volume. Now, with ea
h x

′ = (x2, . . . , xk) su
h that x := (0,x′) is R-
onne
ted,we 
an asso
iate a tree T (x′) with vertex set {1, . . . , k} and edge set E(T (x′)) ⊂ {{i, j} : i 6= j}, andsu
h that
{i, j} ∈ E(T (x′)) =⇒ |xi − xj | ≤ R.Note that for a given x

′, there are in general several trees satisfying this 
ondition; we pi
k arbitrarilyone of them and 
all it T (x′). Now we have
∣∣∣
{
x

′ ∈ (Rd)k−1 | (0,x′) R-
onne
ted}∣∣∣

=
∑

T tree∣∣∣{x
′ ∈ (Rd)k−1 | (0,x′) R-
onne
ted, T (x′) = T

}∣∣∣

≤
∑

T tree∣∣∣{x
′ ∈ (Rd)k−1 | (0,x′) R-
onne
ted, {i, j} ∈ E(T ) ⇒ |xj − xi| ≤ R

}∣∣∣.For ea
h given tree T , the Lebesgue volume of the set in the last line above is upper bounded by
|B(0, R)|k−1. By Cayley's theorem, see [AZ98, pp. 141�146℄, the number of labeled trees with k verti
esis kk−2. Thus

Zcl
k (β) ≤ e−βEk

kk−2

k!
|B(0, R)|k−1.and the proof is easily 
on
luded. �Now we show that the volume 
onstraint in the 
luster partition fun
tion is immaterial for large βif the radius of the 
on�ning box is of order of the parti
le number with a su�
iently large prefa
tor.Lemma 4.4 (Low-temperature behavior of f cl,a

k (β)). For any k ∈ N and any 
hoi
e of ak(β) in
[kR,∞),

lim
β→∞

f
cl,ak(β)
k (β) =

Ek

k
.Proof. The lower bound, `≥', is trivial sin
e Zcl,a

k (β) ≤ Zcl
k (β) for any a. For ak(β) ≥ kR, the box

[0, ak(β)]d is 
ertainly large enough to 
ontain a minimiser of x 7→ Uk(x). Therefore, lower boundingthe integral by an integral in a neighborhood of the minimiser, we �nd
lim inf
β→∞

1

β
log Z

cl,ak(β)
k ≥ −Ek

k
,whi
h is the upper bound `≤'. �Under additional assumptions, most importantly Assumption 1.7, it will be enough to pi
k ak oforder k1/d instead of k, with some error of order 1

β log β:



27Lemma 4.5 (Uniform low-temperature bounds for f cl,a
k (β)). Suppose that the pair potential also sat-is�es Assumptions 1.6 and 1.7. There is an α > 0 and a β > 0 su
h that for all β ∈ [β,∞), and everysequen
e of ak's satisfying ak > αk1/d,

f cl,ak

k (β) ≤ Ek

k
+

C

β
log β, k ∈ N. (4.53)In parti
ular, for any ρ ∈ (0, 1/αd) and β ∈ [β,∞),

f cl
∞(β, ρ) ≤ e∞ +

C

β
log β. (4.54)Proof. The strategy of the proof is as follows. A

ording to Assumption 1.7, we may pi
k a minimiserfor Uk that �ts into some ball whose volume is of order of the parti
le number. Then we restri
t theintegral in the de�nition of the 
luster partition fun
tion to some neighbourhood of this minimiserand 
ontrol the error with the help of the Hölder 
ontinuity from Assumption 1.6. Let us turn to thedetails.Let c > 0 be as in Assumption 1.7, δ > 0 as in Lemma 2.5. Then α := 2(c + δ) satis�es αk1/d ≥

δ + ck1/d for all k ∈ N. Fix t ∈ (1, R/b). Let nmax ∈ N be the maximal number of parti
les that 
anbe pla
ed in B(0, R), keeping mutual distan
e ≥ rmin, with rmin as in Assumption 1.6.For k ∈ N, let ak > αk1/d and let x
(0) = (x(0)

1 , . . . , x(0)

k ) be a minimiser of the energy Uk that �tsinto the 
ube with side length ak − δ. Thus x
(0) is b-
onne
ted, and |xi − xj| ≥ rmin for every i 6= j.The s
aled state tx(0) is tb-
onne
ted and has minimum interparti
le distan
e ≥ trmin. By the Hölder
ontinuity of the potential v,

|U(tx(0)) − U(x(0))| ≤ 1

2

k∑

i=1

∑

j 6=i

∣∣∣v(t|x(0)

i − x(0)

j |) − v(|x(0)

i − x(0)

j |)
∣∣∣

≤ k nmax sup
{
|v(r′) − v(r)| : r ≥ rmin, r′ ≥ rmin, |r − r′| ≤ (t − 1)b

}

≤ Cknmax(t − 1)sbswith C and s su
h that |v(r′) − v(r)| ≤ C|r′ − r|s for any r, r′ ≥ rmin. Let ε ∈ (0, 1) su
h that
ε ≤ δ/2, rmin ≤ trmin − 2ε, and tb + 2ε ≤ R.We will obtain a lower bound for Zcl,ak

k (β) by 
onsidering 
on�gurations (x1, . . . , xk) with exa
tly oneparti
le per ε-ball around tx(0)

j for j = 2, . . . , k. To this end, put
M′ :=

⋃

σ∈S′

k−1

(
B(tx(0)

σ(2), ε) × · · · × B(tx(0)

σ(k), ε)
)
,where S

′
k−1 denotes the set of permutations of 2, . . . , k, and let M be the set of 
on�gurations inthe 
ube of side length ak − δ obtained by rigid shifts from 
on�gurations in {x(0)

1 } ×M′. For smallenough ε, the balls B(tx(0)

σ(2), ε), . . . , B(tx(0)

σ(k), ε) do not overlap, and M′ has therefore Lebesgue volume
(k − 1)! |B(0, ε)|k−1. Moreover,

|M| ≥ |M′| (ak − δ − ck1/d)d ≥ ad
k

2
|M′|.Now x ∈ M is R-
onne
ted and has minimum interparti
le distan
e ≥ rmin. Thus

|U(x) − U(tx(0))| ≤ Cknmaxε
s, x ∈ M.Restri
ting the integral in the de�nition (2.30) of Zcl,ak

k (β) to M, we obtain
ad

kZ
cl,ak

k (β) ≥ ad
k

2k
|B(0, ε)|k−1 exp

(
−β(Ek + Cknmaxε

s)
)
.



28This implies, for |B(0, ε)| ≤ 1,
f cl,ak

k (β) ≤ Ek

k
+

Cnmaxε
s

β
− 1

β
log |B(0, ε)| + log 2

β
.Now we pi
k ε = 1/β for de�niteness and obtain that (4.53) is satis�ed for su�
iently large β. �5. Proof of Γ-
onvergen
e and uniform boundsIn this se
tion, we prove Theorems 1.2 and 1.8. Re
all that Theorem 1.2 is proved under the soleAssumption (V) and that we additionally suppose that Assumptions 1.6 and 1.7 hold for Theorem 1.8.5.1. Proof of Theorem 1.2. Fix ν ∈ (0,∞) and let (0,∞) ∋ s 7→ (β(s), ρ(s)) be a 
urve in (0,∞)2su
h that, as s → ∞,

β(s) → ∞, ρ(s) → 0, − 1

β(s)
log ρ(s) → ν.We need to show that, for any q = (qk)k∈N ∈ Q,Lower bound : For all 
urves q

(s) → q,
lim inf
s→∞

1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≥ gν(q). (5.55)Upper bound / re
overy sequen
e: there is a 
urve q

(s) → q su
h that
lim sup

s→∞

1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≤ gν(q). (5.56)Proof of the lower bound. We write q

(s) = (q(s)

k )k ∈ Q. De�ne ρ
(s) = (ρ(s)

k )k∈N by q(s)

k = kρ(s)

k /ρ. Let
C > 0 and β > 0 su
h that kf cl

k (β) ≥ Ek−Ckβ−1 for any k ∈ N∪{∞} and β ∈ [β,∞), see Lemma 4.3.Then Lemma 3.1 gives
1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≥

∑

k∈N

ρ(s)

k

ρ(s)
Ek +

(
1 −

∑

k∈N

k
ρ(s)

k

ρ(s)

)
e∞ +

1

β(s)

∑

k∈N

ρ(s)

k

ρ(s)

(
log ρ(s)

k − 1
)
− C

β(s)

=
∑

k∈N

ρ(s)

k

ρ(s)

(
Ek − 1

β(s)
log ρ(s)

)
+

(
1 −

∑

k∈N

k
ρ(s)

k

ρ(s)

)
e∞

+
1

β(s)

∑

k∈N

ρ(s)

k

ρ(s)

(
log

ρ(s)

k

ρ(s)
− 1

)
− C

β(s)
.The term in the se
ond line 
onverges to gν(q) be
ause of the 
ontinuity of the map q 7→ ∑

k∈N
qk(Ek−

ν)/k + (1 − ∑
k∈N

qk)e∞; here enters the property Ek/k → e∞. The terms in the last line are, byLemma 4.2, of order 1/β(s) and therefore 
onverge to 0. �Proof of upper bound / existen
e of a re
overy sequen
e. We 
hoose ρ-dependent box sizes ak(ρ) su
hthat (ak(ρ) + R)d < k/(2ρ), ak > R, and ak > δ + k1/d(rhc + δ), with δ as in Lemma 2.5. Su
h a
hoi
e is possible for small enough ρ, and 
ompatible with the additional requirement that ak(ρ) → ∞as ρ → 0, for every k ∈ N. Lemma 2.5 tells us that
f

cl,ak(ρ(s))
k ≤ C(δ) − 1

β(s)
log |B(0, δ/2)| + log(k/ρ(s))

dβ(s)k
.whi
h 
an be upper bounded by some 
onstant C, uniformly in k ∈ N and su�
iently large s.



29Now we apply Prop. 3.2. This gives, for su�
iently large s and any sequen
e ρ = (ρk)k,
1

ρ(s)
f(β(s), ρ(s),ρ) ≤

∑

k∈N

k
ρk

ρ(s)
f

cl,ak(ρ(s))
k (β(s)) +

(
1 −

∑

k∈N

k
ρk

ρ(s)

)
f cl
∞(β(s), ρ(s))

+
1

β(s)

∑

k∈N

ρk

ρ(s)
log ρ(s) +

1

β(s)

∑

k∈N

ρk(d + 1) log 2. (5.57)Consider �rst the 
ase ∑∞
k=1 qk = 1. Let q

(s) := q. We have, for any K ∈ N,
1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≤

K∑

k=1

qk

(
f

cl,ak(ρ(s))
k (β(s)) − log ρ(s)

β(s)k

)
+ C

∞∑

k=K+1

qk +
log 2d+1

β(s)
.Sin
e ak(ρ(s)) → ∞ as s → ∞ for any k ∈ {1, . . . ,K}, using Lemma 4.4, we get

lim sup
s→∞

1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≤

K∑

k=1

qk
Ek − ν

k
+ C

∞∑

k=K+1

qk.Letting K → ∞ we �nd that lim sups→∞ ρ(s)−1f(β(s), ρ(s),ρ(s)) ≤ gν(q).Next, 
onsider the 
ase qk = 0 for all k ∈ N. For n ∈ N, let sn > 0 large enough so that for s ≥ sn,
|f cl,an(ρ(s))

n − En/n| ≤ 1/n. The sequen
e (sn)n∈N 
an be 
hosen in
reasing and diverging. We set
k(s) := n for s ∈ [sn, sn+1) and n ∈ N. It follows that k(s) → ∞ as s → ∞, and

∣∣∣f cl,ak(s)(ρ(s))

k(s) (β(s)) −
Ek(s)

k(s)

∣∣∣ ≤ 1

k(s)
, s ∈ [s1,∞),from whi
h we dedu
e f

cl,ak(s)(ρ(s))

k(s) (β(s)) → e∞ as s → ∞. Set qk(s) := δk,k(s). Then we �nd
lim sup

s→∞

1

ρ(s)
f(β(s), ρ(s),ρ(s)) ≤ e∞ = gν(q).To 
on
lude, we observe that every q ∈ Q 
an be written as a 
onvex 
ombination of a ve
tor q

′with ∑
k∈N

q′k = 1 and the zero ve
tor, and a re
overy sequen
e is 
onstru
ted by taking the 
onvex
ombination of q
′ and the re
overy sequen
e for the zero ve
tor. �5.2. Proof of Theorem 1.8. Proof of (1): We prove (1.15) in terms of ρk's instead of qk's. Then itreads

∣∣∣f(β, ρ, (ρk)k∈N) −
[∑

k∈N

ρk

(
Ek +

log ρ

β

)
+

(
ρ −

∑

k∈N

kρk

)
e∞

]∣∣∣ ≤ C

β
ρ log β, (ρk)k∈N ∈ Mρ. (5.58)Lemmas 3.1, 4.2, and 4.3 yield that there is C ∈ (0,∞) su
h that, for all β, ρ ∈ (0,∞) and ρ =

(ρk)k∈N ∈ Mρ,
f(β, ρ,ρ) ≥ f ideal(β, ρ,ρ)

≥
∑

k∈N

kρk

(Ek

k
− C

β

)
+

(
ρ −

∑

k∈N

kρk

)(
e∞ − C

β

)
+

1

β

∑

k∈N

ρk log
ρk

ρ
+

log ρ − 1

β

∑

k∈N

ρk

≥
∑

k∈N

ρk

(
Ek +

log ρ

β

)
+

(
ρ −

∑

k∈N

kρk

)
e∞ − (C + 3)

ρ

β
. (5.59)This is `≥' in (5.58). For proving `≤', we pi
k, for ρ ∈ (0,∞) and k ∈ N, box diameters ak(ρ) su
hthat ak(ρ) > αk1/d, with α as in Lemma 4.5, and (ak(ρ) + R)d < k/2ρ, for all k ∈ N. This is possibleprovided ρ < k/2(αk1/d + R)d for any k ∈ N, and this is, by monotoni
ity in k, guaranteed for ρ < ρ,where we put ρ = 1

2(α+R)d . We may also assume, without loss of generality, that α > R, whi
h implies



30that ak(ρ) > R for all k ∈ N. We obtain, for (β, ρ) ∈ [β,∞) × (0, ρ), and C > 0 as in Lemma 4.5, forany ρ ∈ Mρ, with the help of Proposition 3.2,
f(β, ρ,ρ) ≤

∑

k∈N

kρk

(Ek

k
− C

β
log β

)
+

(
ρ −

∑

k∈N

kρk

)(
e∞ − C

β
log β

)
+

log ρ

β

∑

k∈N

ρk

+
1

β

∑

k∈N

ρk

(
− log(1 − 1

2) + log
k

2ρak(ρ)d

)

≤
∑

k∈N

ρk

(
Ek +

log ρ

β

)
+

(
ρ −

∑

k∈N

kρk

)
e∞ +

Cρ

β
log β + (d + 1)

ρ

β
log 2,

(5.60)
whi
h is the 
orresponding upper bound in (5.58).Proof of (2): Let ρ = (ρk)k be a minimiser of f(β, ρ, ·) and q := (kρk/ρ)k∈N. Write ν = −β−1 log ρ.Then

1

ρ
f(β, ρ) =

1

ρ
f(β, ρ,ρ) ≥ gν(q) − C

β
log β ≥ µ(ν) − C

β
log β.Similarly, let q be a minimiser of gν(·) and ρ := (ρqk/k)k∈N. Then

µ(ν) = gν(q) ≥ 1

ρ
f(β, ρ,ρ) − C

β
log β ≥ 1

ρ
f(β, ρ) − C

β
log β.Proof of (3): Let ρ = (ρk)k be a minimiser of f(β, ρ, ·) and q := (kρk/ρ)k∈N. Write ν = −β−1 log ρ.Then (1) and (2) yield

gν(q) − µ(ν) ≤ 1

ρ
f(β, ρ,ρ) +

C

β
log β −

(1

ρ
f(β, ρ) − C

β
log β

)
≤ 2

C

β
log β.Hen
e,

2
C

β
log β ≥ gν(q) − µ(ν) =

∑

k∈N

(Ek − ν

k
− µ(ν)

)
qk +

(
e∞ − µ(ν)

)(
1 −

∑

k∈N

qk

)
. (5.61)For ν < ν∗, we use that µ(ν) = e∞ and estimate

Ek − ν

k
− µ(ν) =

Ek − ke∞ − ν

k
≥ ν∗ − ν

k
.Substituting this in (5.61), this yields the �rst 
laim, (1.17).For ν > ν∗, we restri
t the �rst sum on the right of (5.61) to k ∈ N \M(ν), where we lower estimatethe bra
kets against ∆(ν), and we estimate e∞ − µ(ν) ≥ ∆(ν). This gives

2
C

β
log β ≥

∑

k∈N\M(ν)

∆(ν)qk + ∆(ν)
(
1 −

∑

k∈N

qk

)
= ∆(ν)

∑

k∈M(ν)

qk.This yields the se
ond 
laim, (1.18).6. Appendix: Proof of Lemma 1.3Here we prove Lemma 1.3. With the ex
eption of the positivity of ν∗, this has been proved in [CKMS10,Theorem 1.5℄; that proof works under the slightly di�erent assumption on v that we have here. Toobtain the positivity of ν∗, this proof needs a slight modi�
ation, whi
h we brie�y indi
ate now. Fix
M,N ∈ N. Let x

(N) = (x1, . . . , xN ) ∈ (Rd)N be a minimiser of UN and y
(M) = (y1, . . . , yM ) aminimiser of UM . Re
all that b is the potential range and let δ > 0 be su
h that v < 0 on (b − δ, b).Let ε ∈ (0, δ/2). Let a ∈ R

d be su
h that the shift ỹ
(M) := (ỹ1, . . . , ỹM) := (y1 +a, . . . , yM +a) satis�es

• all points from ỹ
(M) and x

(N) have distan
e |xi − ỹj| ≥ b − δ + ε (and hen
e v(|xi − ỹj|) ≤ 0),
• there is at least one pair of parti
les (xi, ỹj) with distan
e |xi − ỹj| ≤ b − ε.



31Let x
(N+M) := (x(N), ỹ(M)) ∈ (Rd)N+M . Let c := − supr∈[b−δ+ε,b−ε] v(r) > 0. Then we have

EN+M ≤ U(x(N+M)) ≤ U(x(N)) + U(ỹ(M)) − c = EN + EM − c.In parti
ular, the sequen
es (EN )N∈N and (EN − c)N∈N are subadditive, when
e
e∞ = lim

N→∞

EN

N
= lim

N→∞

EN − c

N
= inf

N∈N

EN − c

N
.Be
ause of the stability of the pair potential, we have e∞ > −∞. The inequality e∞ ≤ (EN − c)/Nfor any N leads to EN − Ne∞ ≥ c for any N , and this is the positivity of ν∗.A
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