View metadata, citation and similar papers at core.ac.uk

P
brought to you by i CORE

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

Welerstral3-Institut
fir Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 — 8633

Conical diffraction by multilayer gratings:
A recursive integral equations approach

Gunther Schmidt

submitted: April 5, 2011

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany

E-Mail: gunther.schmidt@wias-berlin.de

No. 1601
Berlin 2011

2010Mathematics Subject Classificatio@8A45, 78M15, 45E05, 35J05.

Key words and phrasedDiffraction, periodic structure, multilayer grating, gimar integral formulation, recursive algorithm.


https://core.ac.uk/display/289299712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Edited by

Weierstra-Institut fir Angewandte Analysis und StockdSVIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstralie 39

10117 Berlin

Germany

Fax: +49 30 2044975

E-Mail: preprint @i as- berlin.de

World Wide Web: http://ww. wi as- berlin. de/



Abstract

In this paper we consider an integral equation algorithmttdys the scattering of plane waves by multi-
layer diffraction gratings under oblique incidence. Thattaring problem is described by a system of Helmholtz
equations with piecewise constant coefficient&fncoupled by special transmission conditions at the integac
between different layers. Boundary integral methods leaal $ystem of singular integral equations, containing
at least two equations for each interface. To deal with aitrarl number of material layers we present the ex-
tension of a recursive procedure developed by Maystre fonabincidence, which transforms the problem to a
sequence of equations withx 2 operator matrices on each interface. Necessary and soffameditions for the
applicability of the algorithm are derived.

1 Introduction

In this paper we study an integral equation method for thelkition of multilayer diffraction gratings. The optical
devices under consideration consist of different matéaigtrs separated by non-intersecting and possibly non-
smooth interfaces, which are in Cartesian coordinate®@ierin z-direction and translation invariant in the
direction. We consider the so-callednicalor off-plane diffractioni.e., the grating is illuminated by a plane wave
whose direction is in general not orthogonal to thaxis.

If a grating is modeled as an infinite periodic structurenttiee electromagnetic formulation of conical diffraction
can be reduced to a system of two Helmholtz equatioriR%mwith piecewise constant coefficients, which are
periodic inz. Their quasiperiodic solutions have to satisfy radiationditions and are coupled by transmission
conditions at the interfaces between different gratingemials. A variational formulation of this problem has been
studied in [2] based on strong ellipticity estimates, whacé valid under some restrictions on the permittivities

0 < arge < m, of the non-magnetic grating materials, which are specifi€gkection 2.

Using layer potentials with the quasiperiodic fundamestduition of the Helmholtz equation the diffraction prob-
lem for multilayer gratings can be transformed to a systernmtafgral equations over the interfaces. In [10] we
proposed a combined direct and indirect integral equatppraach resulting in two integral equations on each
interface which contain besides the boundary integrale@tingle and double layer potentials also the tangential
derivative of single layer potentials, which are interpteais singular Cauchy integrals. Besides the equivalence
of the integral with the electromagnetic formulation th@sg ellipticity of the integral equation system under the
above condition was established.

But fortunately, the integral formulation can be analyzader more general conditions on the coefficients. Recent
progress in the design of optical metamaterials motivatesltmit magnetic materials with complex permeability
u, argp € [0,7), and to consider also the case thair 1 are negative, which was studied in [11] for gratings
with only one interface. It was shown that the system of disgimtegral equations generate a Fredholm operator
with index0 in the corresponding energy space8 K arge, arg 4 < 7, and the solution of the integral equations
provides a solution of the conical diffraction. This holdiscein the case, when the permittivityor permeabilityy

of the grating substrate take values outside a closed aitefthe negative half axis, degenerating to a point if the
profile is smooth. Moreover, the solution is unique if the gimary partdm ¢ or Im p of the substrate parameters
are positive.

The interest to integral formulations originates form thxéstence of efficient numerical methods fio-plane
grating theory, where the direction of the incident wavath@gonal to the-axis. Integral methods were one of the
first for the investigation of diffraction gratings (cf. [99nd have been used for gratings of extremely different.kind
But off-plane diffraction has not been tackled for a longdjrwhich was one of the real deficiencies of the method.
Only recently, in [4], a numerical method for one-profile tjtgs has been proposed, which solves the integral
equations using a hybrid piecewise-trigonometric polyr@oollocation method very efficiently, including certain
scenarios with unfavorably large ratio period over wavegthrand non-smooth profile.

For multilayer gratings withV interfaces the resulting system consist2of singular integral equations, which
makes its numerical solution a very expensive computaltias. For in-plane diffraction this problem was solved



by D. Maystre, who developed recursive algorithms whichttie each step a discrete problem for one interface
between different materials. The algorithmin [8] is basedh® use of scattering matrices and applies to multilayer
gratings with interfaces which can be separated by hor#gianesy = const. Its generalization to conical
diffraction with applications to multilayer gratings wighhotonics inclusions was described in [12].

In the present paper we treat the case of general multilagtings following the algorithm proposed in Maystre
[7]. Combining direct and indirect boundary integral apgmioes the conical diffraction is transformed to a se-
guence of equations withx 2 operator matrices on each interface, which are closelye@ka the operator matrix

of one-profile gratings. So the analysis of the recursiverigm, involving the inversion of operator matrices, is
performed similar to [11]. Moreover, the discretizationthwls from [4] can be used for the numerical realization
of the algorithm. Although the inversion of discretizatiovatrices is required, the actual demand for computer
memory is comparatively small, which makes the conicaladfion problem tractable with standard PC even for
a large number of layers.

The outline of the paper is as follows. In Section 2 we rebadifferential formulation of the conical diffraction for
multilayer gratings. Section 3 is devoted to boundary irdegperators of periodic diffraction and the description
of the recursive algorithm, which requires for each integféhe solution of an operator equation witl2 & 2
matrix of singular integral operators. The applicabilifytie algorithm is analyzed in Section 4. It is shown that
the operator equations are solvable if and only if the cpording matrix operator is invertible and then the
algorithm provides the unique solution of the diffractiaoiplem. Additionally we derive necessary and sufficient
conditions for the invertiblity of the singular integral@ator matrices.

2 Conical diffraction

We consider a multilayer periodic structure/éf+ 1 homogeneous material layers x R, . .., Gy x R of electric
permittivity ¢; and magnetic permeabiliy;, which are complex-valued non-zero constants. In thevigilg we
suppose tha < arge;,argpu; < m, such thatrge; + argpu; < 27 allowing nearly all physically interesting
materials. The case of negative refraction index matertagesponding te;, 1; < 0, requires some modified
integral method and will be discussed elsewhere.

The geometry of the grating is characterized by functiomsd 1, which in Cartesian coordinatés, y, z) are
piecewise constant functions not depending:oa(z,y) = ¢;, p(z,y) = pj, (z,y) € G;, which ared-periodic
inz,ie.e(x+d,y) =ce(z,y) andu(z + d,y) = p(z,y).

The layers are separated byperiodic and non self-intersecting interfaces with thessrsection&, ..., Xy
(Fig. 1). We assume that the distance between differenesliy is always positive. We refer to the semi-infinite
layersG, andGy as the top and bottom layer, respectively. Note that we alf@wy-projections of the interfaces
Y, to be overlapping.

Figure 1: Cross section of a multilayer grating

The grating is illuminated by an electromagnetic plane waitle wavelength\ and given polarization fror¥ xR,
which is filled with a lossless material, i.eq, ©o > 0. We consider the general case of conical diffraction, i.e.,



we allow that the wave vectd = («, — 3, ) of the incident electric field
E' = p eHe®=Byt72)
is not in the(x, y)-plane. The polarization vectgr satisfiesp - k = 0 andk can be expressed in terms of the

incidence angles (the angle betweek and its projection on thér, y)-plane) and (the angle of that projection
with the y-axis):

2
k= w(sopo)l/Q(sint?cos ¢, —cosbfcosd,sing), w= Tﬂ- )
We look for solutions: “*(E, H) of the time-harmonic Maxwell equations
VxE=iwpH and V xH = —iweE, (2.1)
with locally finite energy, i.e.
E,H, VXE, VxHe (L} (R*)’. (2.2)

Using the ansatz
E(z,y,2) = B(z,y)e"*, H(z,y,2) = Z B(x,y) ",

with vector functionsF, B : R? — C? and the scalingZ = /eo/ w0, the solution of (2.1) can be reduced to a
problem inR2. For the following we introduce the piecewise constant fiomctaking the values

K/(CC,y):fij: Ej:uj_EO/'LOSin2¢7 (Iay)Eij j:()v"'aNa (23)

where we choose the square rQ6t = /re?/? for z = re’, 0 < ¢ < 2m. Assuming that everywhere # 0
it can be shown (cf. [2, 11]), that the finite energy condit{@rR) is satisfied only if the—components off and
B are H'-regular. MoreoverF.,, B, determine the other components of the electric and magfieltis and are
solutions of the Helmholtz equations

(A+ W’k E, = (A +w?k*) B, =0 (2.4)

in each of the domain&; in whiche(z, y) andu(x, y) are constant. Furthermore, the continuity of the tangkntia
components o andH at the interface&l; between the domains; andG,; lead to transmission conditions
for £, andB,

0, {5 BHQEZ}

6tBZ} 7 {u OnB.,
b

:—gosin(b{ = atgz] ) (2.5)

K Y

3 } = o Sin¢[
i K 3

which couple the Helmholtz equations (2.4). Héxgeis the derivative in direction of the normal= (n,, n,) to
¥, pointing inG,11, d¢ the derivative in direction of the tangential vecto= (—n,, n;), and[-] denotes the

jump of the boundary values if crossing the interfaie

The z-components of the incoming field: (z,y) = p. ! (=AY Bl (x,y) = q. e"(®*=FY) area-quasiperiodic
functions of periodi, i.e., they satisfy the relation

u(z +d,y) = e u(z,y). (2.6)

Therefore E,, B, have to bex-quasiperiodic, too. Moreover, the scattered field has tudpaded below and above
the inhomogeneous grating structure. This leads to thatiadicondition, known as outgoing wave condition,

(EZ7 Bz)(xa y) - (pza QZ) ef(a2=hy) = Z (Er(zO)an(zO)) ei((!nm_‘_ﬁs))y)’ Yy — +00,
o (2.7)
(B.,B)(wy) = Y (BY), BM)eilens =00,y —oo,
with the so called Rayleigh coeﬁicien&o), B,(IO), E,(lN), B,(lN) e C,and
2 , . ;
oy =+ %7 BY = w2kd =42 —aZ with0 < argfY) <7, nel. (2.8)



Note thatﬁ,(f)) andﬁ,(lN) are real only a for finite number of integetshence the diffracted far field is composed of
a finite number of outgoing plane waves. The correspondingeRgh coefficients indicate the efficiency and the
phase shift of the reflected propagating modes

(EQ,BY) e ilomz+8y+72) , Y — 00,

and of the transmitted modes

(BN, BIN) elene=Bv4) -y o oo,

which exists ifw?x3, — 2 — a2 > 0. All other modes are exponentially decaying. Since the waators of the
propagating reflected or transmitted modes lie on the seifd@ cone whose axis is parallel to theaxis, one
speaks of conical diffraction.

To derive a integral formulation we rewrite the conical difftion problem (2.4), (2.5), (2.7) using the notation

ETER: v+ in Go,
Ez(w,y)—{ uj ) BZ(xay)_{ vj in Gj,j=1,...,Gn,

with u’ = p, e/ (@2~ yi = ¢, ¢'(e==0Y) We seekr-quasiperiodic functionéu;, v; }1, such that

inG,; Auj 4+ w?k2u; = Av; +w?kv; =0, 2.9
j J 3 Ui J 3

subject to the transmission conditions

£10qu1  €00n(uo +u')  eosing (k] — K3)

uy =g +u’, 2 2 = 22 Ogvr
onXg 1 o 1o (2.10)
— v + 0t P10nv1 poOn(vo +0')  po sin ¢ (k§ — K3) P
V1 = Vo v, :‘$2 - KJ2 - = :‘$2I€2 tU1 ,
1 0 1Ko
and,forj=1,...,N —1,
oo — s Ej+10nujr1 € 0nu; €0 sin ¢ (k3,, — #3) O
G+ = U5 2 2 1252 tUj+1 5
ony; g+l J S ) (2.11)
' Vit — 1 j+10nVj41 B 145 0nv; _ Mo Sln¢("$j+1 - ’ij) Ot
j+1 = Vs 2 2 122 tUj+1
Jj+1 J J I+
which satisfy the outgoing wave condition
- )
(w0, vo)(z,y) = Y (B, BY)etlonetinTy) fory > max ¢,
x,t)eED
= ’ (2.12)
(un,vn)(z,y) = Z (Ele),Br(lN))ei(o‘"m_ﬁiN)y) fory < min ¢.
e o (z,t)€EN

It was proved in [2] that for non-magnetic materigls & 1) satisfyingd < arg m? < 7 the problem (2.9 - 2.12)
has aH* regular solution{u;, v; }. The solution is unique

— if Imx7 > 0 for somej

— for all but a countable set of frequencigs wy — oo, if mf are positive constants.

3 Integral equation method

The integral formulation is derived from potential repm@sgions ofu;, v; in G;. In the following we suppose that
the interfaces; are given by piecewis€? parametrizations

oj(t) = (X;(1),Y;(1), X;(t+1)=X;(t)+d, Y;(t+1)=Y;(t), teR, 3.1)



i.e., the functionsY;, Y; are piecewis€? with

o5 ()] = [ (X}()2 + (¥} (1)* > 0.

Moreover, the interfaces do not intersect, ue(t1) = oy (t2) only if j = k andt; — to = dn. Additionally
we suppose that, if a curde; has corners, then the angles between adjacent tangents @irtiers are strictly
betweer) and2r.

3.1 Potentials and boundary integrals

The single and double layer potentials on one pefipd= {o,(t) : ¢t € [to,to + 1]} of the interfacex; corre-
sponding taox,,, are denoted by

SFj,m(p(P) = 2/\Ijm,o¢(P - Q) (P(Q) dUQ, DFj,m(p(P) = 2/@(Q)an(Q)\Ijm,a(P - Q) dUQ . (32)
Ly Ly

HereV¥,, . is thea-quasiperiodic fundamental solution

U, o(P) = i S P (wnm\/(X —dn)? + Y2) edna  p— (X,Y). (3.3)

neZ

of the Helmholtz operator (A + w?x2,) with the Hankel function of the first kind{él), dog is the integration
with respect to the arc length afdg ) denotes the normal derivative with respect the nonmal Q) € ;.

The series (3.3) converges uniformly over compact se&iy | J {(dn,0)} if the condition
nez

2 2
WPK2 # a2 = (a + %) forall n ez (3.4)
is satisfied. Moreover, witB\™ = Vw?kZ, — a2, Im B™ > 0, Poisson’s summation formula leads to the
representation

eion X+iBIM Y]

Uin,a(P) = ngnoo 2d Z — (3.5)

n=—N n

Therefore, in the following we assume that condition (3.dlds for allx;, 7 = 0,..., N. Note that¥, , and
U v, satisfy the radiation conditions (2.12).

In the following we use properties of the potentials andrthestrictions to a surfaces,. Define the function
spaces

Hy(Ty) = {e% o1 poo; € H3(0,1)}, (3.6)
whereH;(0,1), s € R, denotes the Sobolev spaceleperiodic functions.

Under (3.4), the potentiais = Sr, ., ¢ € Ha /*(T;), andu = Dr, .1, & € Ha'*(T), are outsidez; locally
H' anda-quasiperiodic solutions of the Helmholtz equation

(A +w?k2)u=0, (3.7)
which satisfy the radiation condition
u@y) = 3 up et TNy oo (3.8)

The interfacex; divides the plane into an upper and lower part denoted?lljiyand G . If the a-quasiperiodic
functionu belongs locally toHl(GjE) with Awu € L?OC(GjE), satisfies the Helmholtz equation (3.7) almost every-
where and the radiation condition (3.8), then

u inG7,

Sr. mOnu — Dr, u) = : 3.9
(Sr;,mOntt — Dr, mu) {0 nGT. (3.9)

+

DN | =



In particular, for ann-quasiperiodic solutiom of (2.9)
u, Pe€ Gj,

1
(St,.j0ntt = Dr; ju) = 5 (8,500 = D,y gu) = { _ (3.10)

1
2 0, P¢GaGj.

To treat the tangential derivatives in the transmissiorddans (2.10), (2.11) also operators of the form

St (O0) (P) = 2 / U, o(P — Q) 0p(Q) dog = —2 / Q) 0 Uma(P — Qdog,  (3.11)

r; Ly

with ¢ € Hi“(rj) will occur. If P ¢ X, then the right hand side of (3.11) follows from integratimnparts and
the quasi-periodicity o¥,,, , andy, and we may introduce the potential

Tr;me(P) = 2/@(@) Oe(@)Ym.a(P —Q)dog = =S, m(dep)(P), P¢X. (3.12)

Lj

For P € I'; we define the boundary integral operators

ViMe(P) =2 / U, 0P — Q) p(Q)dog, K o(P) =2 / 2(Q) (@) Vm.a(P — Q) dog,

b te (3.13)
LIV (P) =2 / Q) On(p) Uma(P — Q) dog , Ho(P) =2 / Q) B U (P — Q) dorg

Ty Ty

If j = k, then the last integral is interpreted as the singular nateg

2 [ 9(Q) 0@ ¥malP - Qoo =21m [ ¢(@) 30 ¥malP - Qo

Ly Tj\T; (P,5)

wherel'; (P, §) denotes the subarc of with the mid pointP and the arc lengthé. In view of (3.11) the singular
integral is connected with the single layer potential byrélation

H™Mo(P) = VI (80)(P) . (3.14)

27

The operators/(m) K(m) H( andL; m) have properties, which are quite similar to those of thestitied
integral operators over cIosed curves correspondrng todbey value problems for the Helmholtz equation, in
particular

Vs TN Dy) — H(Ty), HYY KD HL(Dy) — HA(Ty), LY 2 H (D) — H(T))

are bounded fos € (0, € [0,1). Inthe cases =t = 1/2 the operatoréfjgm andHJ(.;”) are Fredholm with
)

1),t
ind V. = ind H7 = 0.

Itis a quite rare case that the single layer potential opef@im) is notinvertible. This is equivalent to the existence
of nontrivial solutions in one of the domar@ of the homogeneous Dirichlet problem

Au+w?kiu=0, uly, =0, u(z,y)=ec*ulz+dy) (3.15)

with the radiation condition (3.8). For boundaries of ratpecial form such solutions were constructed in [6].
On the other hand, the nonexistence of nontrivial solutisdgown if Im 2, > 0 or if the y-component, of
the normal to the profile curvE; satisfiesn, (Q) < 0 forall @ € X;, for example ify; is given by ad-periodic
functiony = f;(x), cf. [9, Section 2.4], [3].

If j # k, then the operators (3.13) have bounded continuous kaunetibns and map therefore compactly into
H:(T;), s < 1.If the profile curveX; is smooth, then

VM H3 TN T) — HA(Dy), KO, LY Hy(Dy) — HPA(D;) Y - H(T) — HA(T)

37 13 7



are bounded and fgr# & the operators (3.13) are compact mappings fifdI';) all s € R.

Let us note the jump relations

(St,m@) “(PY = VI(P),  (Tr,me) (P) = HMo(P),

4 (m) " (m) (3.16)

(Dr,m¥)™ (P) = (K;;” FDY(P),  (9aSr;,mp)” (P) = (Lj;” = 1)p(P),
where the upper sigr- resp.— denotes the limits of the potentials for points@jt tending in non-tangential
direction toP € ¥;.

3.2 Integral equation algorithms

The jump relations and other layer representations can bé tesderive various integral formulations of the

transmission problem (2.9 - 2.12) by direct or indirect baany integral methods or combinations of them. In [10]
we considered the case of two profiles and derivddxa4 system of singular integral equations, which can be
extended to the general case/dfprofiles using the ansatz

1 1 .
uo = 3 (Sro,00nto — Dry o), Vo = B (81,000 — Dryov0) ,  InGo,
ur = Sry,100 + Sry 101 v1 = Sry,1%0 + Sty 11, inGy,
1 1 (3.17)
Uy = §(SF2,2811U2 — Dr, 2uz) — §(Sr1,2anuz — Dr, puz),
1 1 in Go s
vy = §(SF2,23nvz — Dr, 202) — 5(5F1,23n112 — Dr, 2v2) ,
and so on
with unknown densitie®;, ¢; € Ha 1/2(Fj),j =0,...,N—1.Inthe bottom laye&Z y we use the representation
Sty 1, NPN—-1 Sry_ 1, NUN-1, N odd

uUunN = 1

) UN = 1
3 (Dry_,Nun — Sry_y NOnun)

Q(IDFNfl,N'UN —Sprl,NanvN), N even

In view of (3.9) and (3.10) the Helmholtz equations (2.9) #meloutgoing wave condition (2.12) are satisfied. As
shown in [10] for the special cagé = 2, the transmission conditions (2.10) and (2.11) lead2&/ax 2N system

of integral equations on the profilé€s. The diagonal x 2 blocks of the system, which correspond to singular
integral equations for the densities, 1»; on the profilel';, have been analyzed in [11]. Analytical properties of
the2 N x 2N system follow immediately from these results, some of theliy& mentioned in the following. Also
from the numerical point of view the approach (3.17) is nantdrest, since the discretization and solution of this
system in order to simulate grating structures with dozééfferent material layers is beyond the possibilities of
modern workstations.

Instead, we present a recursive algorithm for solving (292), which in each step treats a problem for one of
the interfaces and therefore allows to solve conical diffca problems for gratings with an arbitrary number of
layers on standard PCs. The algorithm extends a method-fdaire diffraction, i.e.;y = 0, which was proposed
by Maystre in [7] and described in detail in [5].

The starting point is to seek the solutiofs;, vj} "~ 0f (2.9 - 2.12) in the form

1 1 .
Ug = 5 (SFO 08 ug — DFU OUO) Vo = 5 (SFO Oan’UO — DFU 0’00) n G() N (318)
1
uj = 5(81“1 jOnu; — DFJ 2J ) +SFJ 1,5Pi—1>
; inG,, j=1,....N—1 (3.19)
v; = 5(81“J JanU7 'Dr‘j,jvj) + Sijl,jl/Jj—l ,
Uy = Sry_ ,NPN-1, UN =Sy | NUN_1, inGy, (3.20)



with certain densities;,v; € Hq 1/2(1“ ), 7 = 0,...,N — 1. Again, the Helmholtz equations (2.9) and the
outgoing wave condition (2.12) are satisfied. Note that #presentations (3.19 - 3.20) are unique provided that

the single layer potential operatdrfé_lj_1 are invertible forj = 1, ..., N, which will be assumed throughout.

The algorithm determines recursive relations

<%) Q- 1<Zj_1> j=1,...,N -1, (3.21)

such that the functiongu;, v;}7_, fulfill the remaining transmission conditions (2.10) and1@®@. The initial
densitieq o, 10) and the2 x 2 operator matrice$Q,_1 } are obtained by the following scheme:

Introduce the coefficients

£j11kK2 K2 K2 2
aj = 2y BT cjza—o(1— 3 )singb, (1— )singb, (3.22)
EiR5+1 MR 11 €j Kiv1 iz K7
and determin&®,_; by a backward recurrence for= N — 1,..., 1 as a solution of the operator equation
(( R R Vi b ‘Sm Bj | Qj-1=2 Vi V8> : (3-23)
diH;; I+ Kj; 0 i Vi 0 gi—1
The initial values are
vV 0 AN 0
An-1 = < N—-1N-1 (N) , By_1= N-IN-1 (N) ) (3.24)
0 VNlefl 0 LN IN—1 -1
and the subsequent terms in (3.23) are derived by
()
aae (P 2 )
0 Vit
(4) @ ()
1 K. c:HY .. M)
) << .7(7})3 J(j,)] 1j ) A - <CLJV,7—1J O(j) ) Bj> Qi 1, (3.25)
diH;~y; KTy 0 bVt
(7) . B I K(J)
B, 1 — ( Vit 0 ) ( +KP 0 )Aj_l _2( é ? ) (3.26)
0 ‘/jfljfl O I+ Kjfljfl

Having found A, andB, the initial value(yy, 1) of (3.21) is a solution of the linear equation
(0) _ (0) (0) u
I+ K, H,
o JA = Do ) B ( ) 2( ) (3.27)
doHyy I+ Ky 0 boVyp Yo v

3.3 Derivation of the recursive algorithm

The scheme is based on the ansatz

Uj+1|rj) A (%‘) <anuj+1|rj> B (%‘) .

=A; , =B, j=0,...,N—1, (3.28)
(Uj+1|rj "\¥ Onvjtlr, N\

with certain2 x 2 linear operator matriced; andB;. Note first that the initial values (3.24) follow from (3.20)

and the jump relation (3.16) f@,Sr, —1,~-
Using (3.28) the transmission conditions (2.11)grfor j = 1,..., N — 1 can be written in the form

)40 () (¥ 2)() (i %)4()
= A, 7 = B, + A; . 3.29
(Uj|rj T\ Onvjlr, 0 b T\, d; O 0 T\ (3:29)
The representation (3.19) and the jump relation (3.16)@fibuble layer potentidPr, ; imply that

(Vi Oy = (K37 = Dug) + Vi 051, wile, = 5 (Vi 0wy = (K5 = Dog) + VT 1

ujlp, = i

N~
N~



Hence (3.29) leads, in matrix notation, to the equation

; @ 6 ()
ajVj(j]) 0 B <<P]> I+KJ; CJ‘/J'J'J a_t -Aj <<Pj> _ 2<V —1¥i- 1> (330)
0 bV ¥ ~d;vP0, 1+ KD ¥ Vi i

which is equivalent to (2.11). Using the singular inte@{ég) = —ng?')at (see (3.14)) we obtain the relation

() () : :
I+ K3 —ciHjj A oV 0 B, (%) 5 viD, o <<Pj1>
GHD 1+ K9 )T 0 bV W 0o v ) \wia)’

which is satisfied by
©j Pj—-1
(%‘) 7\

provided thaQ;_ 1 is a solution of the operator equation (3.23), which mapspiame(H 1/2 -_1))2 boundedly
into (H_1/2(F )) The solvability of (3.23) will be discussed in the next gett

The formulas (3.25) and (3.26) fot;_; andB,_, are derived from relations on the upper boundayy; of G;.
The representation (3.19) and (3.29) give

(Uj|Fj1) _1((vin, o (3nuj|rj> (KD 0 (%‘h) N (Vﬂj_lj 1P5— 1)
vjlr, s 2 0 V'(i)u Onvjlr, 0 Kg@u vjlr, Vj(i)lj_le—l
(J) (49) ( _
(8 ) )4
2 0 bV —d; v 0 K V;
+ VJ‘(i)lj—l 0 (‘F’J 1)
0 ‘/J( 1j—1 1/’] 1

which by (3.28), (3.21) and using\”); . = —V,) .8 leads to (3.25).

Now (3.26) follows from (3.10) and (3.19), since
. 1 .
Vj(i)lgél(/)j*l = _5(‘/3'@1%13 -+ K(7)1] 1)%)
LG ()
17 1Yj—1=— 5(Vj—1j—1anvj (I+ K7, i)

imply that onI';_;

(&1“]‘) _ (‘/j(z)lj—l) (I+K7(7)1J 1) _ 0 Ai (S"j—l) . 2(%’—1) _
Inv; 0 V2 )+ K ) )T i Yi-1

Equation (3.27) follow the relations
Vi out — (I + Kl = =20, VY 00" — (I + K)ot = —20°

on the upper profild’y, which hold because’, v* satisfy the Helmholtz equatiof + w?x3)u = 0 and the
radiation condition (3.8) iti, = R? \ Go. Hence the transmission conditions (2.10) are fuffilled iff

I+ K —cHY (ul) (aV® o (a u1> B 2(u>
dOH(O) I—i—KéO) U1 0 bo% On1 vt )’
i.e., if pg, 1o satisfy (3.27).

Remark 3.1. If the material in the bottom layey is a perfect conductor, then thecomponents off and B
have to satisfy the boundary condition

FE, :uN:O, 8nBZ :8n’UNZO onI'y_q. (331)



In this case it is easy to see that the relatigB@25)and (3.26)for j = N — 1 with the coefficientay_; = 1,
by_1 =cn—_1 =dn_1 = 0, and the initial values

0 0 I 0
ANl—(O I>and BN1_<O 0)

lead to AN _o and By o satisfying

(UN1|FN2> — Ay 2(901\72) (3nUN1|FN2) — By 2(90N2)
UN—1|"n_s \WUn-2/) " \OnUN-1|ry_ T \Wn_2)

Hence, the densitiefsp;,v;}, j =0, ..., N — 2, are derived by the same sche(Be1 - 3.27).

4 Analysis of the algorithm

We call the algorithm (3.21 — 3.2@pplicable if for j = N — 1,...,1 in descending order there exist solutions
Qj_1: (H;l/Q(Fj,l))2 — (HOTI/Z(FJ-))2 of the operator equations (3.23), which we write as
Cij_l = 2Vj_1 s (4.1)

with the2 x 2 operator matrices

() () ; :
C; = <1+ij —et )Aj - <“J’Va‘(f) " ) B, Vi= <Va'(f)1 0 ) . (42)
4;HY 1+ K 0 bV 0 VY

Then the formulas (3.25), (3.26), (4.2) lead to the boundappings
Biv: (HIVAT;0))" = (HY2(T,00))", Ajoa,Cioa s (HZY2(T00))" — (HY2(D;0)°,

and in the successive step one has to solve the equatiorfd# Q@) _- or, if j = 1, the equation (3.27), which can

be written as
Yo\ u’
C ( %) - 2<> . (4.3)

If there exists a solutiorpg, 1y € H;l/z(l“o), then the scheme (3.21) leads by construction t aregular
solution of the conical diffraction (2.4, 2.5, 2.7) for theiltilayer grating

u' 1 aoSryo0 0 > ( Dryo —coTr o> ) (@0) -
; 5 ” By — 0 o)A in Gy,
<Ul) "3 <( 0 boSry0 )" doTry,0  Dro,o ?) \wo 0

1 (( ajSFjaj 0 )B' _ < Dr, ; _lez}jvj) A-) (‘pﬂ')
(Ez> )2 0 b8r,;)7 \diTr,; Dr,, AN

Sry_.j 0 Pji—1 . .
+ g >< ) inG;, j=1,...,N—-1,
( 0 SFj 1,7 %‘—1 ! J

Sry . N+1 0 > <<PN) .
, inG
< 0 Sryn+1) \Un N

with the layer potentials defined in (3.2) and (3.12).

(4.4)

Hence, if the operator\s(.(ﬁl) are invertible, then the recursive algorithm is applicabéand only if the equations
(4.1) and (4.3) are solvable. In this section we derive dimms for the solvability of these equations, which follow
from Fredholm properties of the operator matriCesRecall that a linear operatel : X — Y is Fredholm, if its
rangeR(A4) C Y is closed, and its nullspad®& A) and the factor spacg/ R(A) are finite dimensional. The index
of A is defined asnd A = dim N(4) — dim(Y/R(A)). We denote byp,(X,Y) the set of bounded Fredholm
operators of indeR mapping the spac¥ into Y, and set(X) = (X, Y).
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The Fredholm properties @f; will be studied similar to th@ x 2 system of singular integral equations for one-
profile gratings in [10, 11], using associated boundarygrgkeoperators of the Laplacian over a closed curve. We
introduce the system of non-intersecting closed curves

;= {e7¥" (cos X;(t),sin X;(t)) : t €[0,1]},

which is the image of the grating interfacgs, } under the conformal mapping?, = € C. Obviouslyfj has the
same smoothness &g and the angles iﬁ?;“ at corner points oE; and interior angles at the corresponding corner

points offj coincide. We introduce the double and layer potentials @Lifplacian ovefj

SielP) = [ WP -Qe@doa. Dio(P) = [ 0Qbu¥(P - Q)dog. (4.5)
r; T
with the fundamental solutio® (P) = —log|P|/2m and similar to (3.13) the corresponding integral operators
ij, Kjk, ij, andek = —vkat, which map functions oﬁk to functions orF

For completeness we give some well known properties of thpseators. Ifj # k, then the mappings are compact

from Hs(fk) into Hl(fj), since their kernels are bounded and continuous; Ferk one has in the energy spaces
HE2(T; )thatf/n H-'2(T;) — H1/2( s andKN,H : H'/2(T';) — H'/2(T") are bounded. With respect
to the Ly-duality L ;; is the adjoint ofK ;;, wheread/; is symmetric. FurthermorN(IJrK”) N(H;;) = Po,
where P, denotes the set of constant functions, and the oper&tgrsd;; are Fredholm with index, V;; e

®o(HY/2(T;), HY2(T;)), H;; € ®o(H/2(T;)). In the following the relations between the integral opxerrsat

VijLjj = K;;Vij, HjKj;=—KjHy, Kj;—Hj =1, (4.6)
will be used, the second and third identity can be found if.[11
Using the double layer potential operat(ﬁ‘% overfj the main result can be formulated as follows:

Theorem 4.1. Let the grating parameters;, ii; with arge;, argp; € [0, 7], arge; + arg u; < 2w, be such that

the operatoré/j(f“) are invertible and that

(€501 + )T+ (g541 =€) Ky, (a1 + )T + (a1 — pg) K jj € Do (H'A(T)) (4.7)

forall j =0,...,N — 1. The algorithm(3.21 — 3.27)s applicable if and only ilN(C;) = {0}, j > 1. Then the
equation(3.27)is solvable and any solutiofyo, vy) provides via(3.21) (4.4)a solution of the conical diffraction
problem(2.4, 2.5, 2.7)

Since for a closed Lipschitz cuni; the operaton + K;; € & (H/*(T;)) if X ¢ (—1,1), see [11, Lemma
5.1], conditions (4.7) are satisfied if the ratios

S Mg (00,00 forall j. (4.8)
Ej+1 Hj+1

Noting that for a closed, sufficiently smooth cugand all\ # 0 we have\l + K; € @ (Hl/Q(fj)) and that
the single layer potentials are invertible on function pgesfi Theorem 4.1 admits to formulate

Corollary 4.1. Suppose that the profile curvEs are given byd-periodic C2-functions and let;;; # —¢; and
wiv1 # —pi. IfN(C;) = {0}, = N —1,...,1, then the algorithm(3.21 — 3.27)provides a solution of the
conical diffraction problen(z 4,25, 2. 7)

Remark 4.1. For a piecewiseC?-curve one can expect the existencepof 1 depending on the angles 51;
such that forA ¢ (—p, p) the operator\l + K; is Fredholm with index. For example, in the spadg(T’;) the
parameterp is equal tomax |[r — «|/7, where the maximum is taken over all interior anglesof IN“J-, see[1].
However, the precise bounds for the Sobolev sgabé (I';) are unknown.

The proof of Theorem 4.1 consists of two parts. First we showrioposition 4.1 that (4.7) is necessary and
sufficientin order that the operatatsare Fredholm with indef, provided of course tha}; exist forj < N — 2.
Then Proposition 4.2 states that the equations (4.1) avalsielonly ifR(C;) = ((HOI/Q(FJ-)))2 and that the right
hand side of (4.3Ju’, v*) belongs to the range @} also if N(Cy) # {0}. Finally, in Subsection 4.3 we consider
the case tha(C;) # {0} and discuss conditions ensuring that the nullspad€s) are trivial.
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4.1 Fredholm properties ofC;

Proposition 4.1. Letj = N — 1,...,0 and assume the existence®f : (Hol/Q(Fj))2 — (H;/Q(Fjﬂ))Q for
j < N — 1. The operator matrixX’; € <I>0((H;1/2(Fj))2, (Hé/Q(Fj))Q) if and only if (4.7)holds.

To connect diffraction boundary integrals oder with boundary integrals of the Laplacian O\J~éj we use the
mappings
Pip(P) = e% p(¥;(P)) with 9;:T;3P=(X;,Y;) »e (cosX;,sinX;)€l;, (4.9)
which generate isomorphisns : Hs(fj) — HZ(I';), and the multiplication operators
Mjp(P) =e¥ip(P), P=(X;Y;)ely, (4.10)
which are invertible in; (I';). The asymptotics of the fundamental solutidp, , implies that

VUM 9tV 00) M HYTN(T) — HE(T),
KUY — i K (03)7Y HYY =93 Hy(07) 7 HL(T,) — HL(T), (4.11)
L — ML (05) 7 M, H D) — Hy'(T),

are compact mappings for< s < 1 and0 < t < 1 if I'; has corners, and for adl ¢t for smoothl"; (cf. [10]).
Hence, we derive from (3.25), (3.26) together with (4.6)

Lemma 4.1. Suppose tha®, : (Ha/*(T;))* — (H&'*(T;41))” exists. The differences

A,_(ﬂ;f 0) Vi 0 (w;)-le 0 )
7 0 0V 0 (05)~'M; )

g (Y% 0 Ly—-1 0 (95) "1 M; 0
J 0 95 0 Ljj—1I 0 (05)"'M; )°

map(Hojl/g(Fj))2 compactly into(Hcly/Q(Fj))2 and into(H;l/Q(Fj))Q, respectively.

Define the matrix

¢ AFa)l+(1- a;)K;; —cj Hy; Vij 0
/ d; Hj; (14 b,)I + (1 —bj)Kj; 0 ’

and apply once more (4.6):

Lemma 4.2. The difference

G- (5 0 )a (Ut ) ) - )’

is compact provided tha®; : (Hcl/Q(Fj))2 — (Hcl/Q(FjH))2 exists forj < N — 1.
Now the proof of Proposition 4.1 follows from

Lemma 4.3. Under (4.7)the operator matrixC; € @, ((H~'/2(T;))%, (H'/*(T;))?).

Proof. SinceV;; € ®,(H~/2(T;), H'/2(T';)) it remains to show that (4.7) implies

= (+a)I+(1—a)kK; e, _
e ( dj Hj; (140,)I + (1 — b)) K;; ) € Do ((H'*(I;))?).

Inthe case; = d; = 0 this s obvious for both possibilities = 0 or k2, , = 2, sinceal +bK; € ®o(HY?(T;))
is equivalent tai] — bK;; € ®o(H/*(T;)).
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Otherwise we show thafNj + T is invertible for some compact operatﬁ’riff (4.7) holds. We perturb the off-
diagonal elements with a rarikoperator such that{; = H;; + e is invertible and consider the operator matrix

Fi+T= <(1+aj)l+(~1_aj)[~(jj —c; Hy )

d; Hy (14 /)T + (1 — b)) K5
Using the abbreviation
Ap=(+a)l (1 —a)K;;, Bi=(1+b)I+(1-b)K;,

and the relation

(R )= (0 waron )

we transform

~ = —AL(d;H\) "By —c;H; Ay 0 I
Fi+T= +\% J p ~ .
J + < 0 del I (de1)71B+

ThusF; € ®o((H'/*(T;))?) iff Ay(d;H\) "By +c;Hy € ®(H/?(T;)). Since by (4.6)
Ay (H) ™ = (H) T A+ (1= ay)(Hr) e Ky + Kjje)(Hi) ™"

thisis true if and only if (d; 1)~ (A_ By +¢;d; HE) € ®o(H"/?(T;)). UsingH;; = Hy —eandH?, = K%, — I
from (4.6) we conclude, thak; € @, ((H'/2(T';))?) if and only if

A_By + cjd;HE = (14 a;) (1 + bj) — ¢jd)T + 2(a; — bj)Kj; — (1 — aj)(1 = bj) — ¢;dj ) KZ,

is Fredholm with index). The definition of the coefficients (3.22) and the relatign= &;4; — 0 with 6% =
oo sin? ¢ give after some algebra

2
~ R ~ ~
A_By +¢;d;HY; = —L5— (5501 + &)1 + (g541 — ) K5) (g1 + p) T — (i1 — 15) Kj5),
EjHiRs11
which shows that (4.7) is equivalent g € @, ((H'/*(T;))?). O

Remark 4.2. It is shown in[10] that the2 N x 2N integral equation system, arising from the ang@®4.7) has
diagonal2 x 2 blocks of the form

< T+ED —¢;HY ) ( vuth g ) < o V9 0 ) ( AR S )
j Jj G+1) ) 1) (G+1)
d;Hy) I+ Kj) 0 Vj 0 bV 0 Lyt -1

or its transposed with respect to the dual{@;12) This matrix is by Lemmad.1 a compact perturbation of;,
hence the N x 2N integral equation system generates a Fredholm operatdr initlex0 iff the conditiong4.7)
are satisfied. Then the integral equation system is soh&l®a if the nullspace is non-trivial, which can be proved
as in[11] by characterizing the kernel of the transposed operatonddgthe transmission problefR.9 - 2.12)is
solvable and admits also resonant solutions.

4.2 Range ofC;

Lemma 4.4. If Vj(‘_j)lj_1 is invertible, therR(V;_, ) is dense i HY/*(T';))?.

Proof. The bilinear form

[o,¥]p, = /wdo (4.12)

Ly
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extends to a duality between the spaégyT';) and H_(T';), see (3.6). Because &f,, _,(P) = V., o(—P)
for all P € R?, we obtain

[Vj(jjll%lp]rj =2 / @(Q)dUQ/‘I’j,—a(Q — P)y(P)dop = [9073rj,j¢h]71 ;
Fj71 F]‘
wheregpj _; denotes the single layer diffraction potentiallopwith the fundamental solutiow ; _,. If R(Vj(ﬁl)
is not dense if/&/*(T (T';), then there exist$ € H_ 1/2(Fj) such that
Ve8] = 9. Se,5¢] =0 forall p e HyY/(T;0).

Hence for allP € I';_; the functiongpj,jw(P) = 0, i.e., the quasiperiodic Dirichlet problem

Au+w?kiu=0, uls,, =0, u(z,y) = e "y (x4 d,y) (4.13)
has a nontrivial solution in;’+ . Therefore the single layer potent@l 1,i%|r;_, with the fundamental solution
V; _,onT;_y, whichis the transpose dvf(”lj 1 with respect to (4.12), is not invertible. O
Proposition 4.2. Under the assumptions of Theoreini the equationg4.1) are solvable ifiN(C;) = {0}, j =
N —1,..., 1. Inthis casgu®, v")T € R(Cp).

Proof. The operator equations (4.1) are solvable onlR(€;) > R(V;-1). SinceC; is Fredholm with index,
Lemma 4.4 implieR(C;) = (Hi/Q(Fj)) and therefor&(C;) = {0}.

To establish the second assertion we take a solutienof the transmission problem (2.9 - 2.12), yvhich exists

due to Remark 4.2. We set = u|g,, v; = v|g,,j = 1,..., N — 1 and define, since the operatd/t;é_’)lj_1 are

invertible, thef, */* densities
Pji—1 (( ]—1_]—1) ( + 7 15— 1) l'luJ|Fj—1) )

Vi1 =

| = N

((V](i)lj—l) (I + K(J)U 1) — 8n’Uj|pj71) s

forj=1,...,N—1and

N — N —
ON-1 = (ngf)uvq) Yun, hno1 = (Vzgf)uv—l) oy
Since the operatoc; are invertible forj > 1, it is easy to see that the densities ; satisfy all relations obtained
in Subsection 3.3. In particulapy, vy satisfy the equation (3.27). O

4.3 Uniqueness

Let us consider the case thEt{Cy) # {0}. If & > 0, then the algorithm fails by Theorem 4.1. Otherwise the
homogeneous equation (4.3) has a non-zero solution, gildado resonant solutions of conical diffraction. After

a more detailed description of this situation, the techaiiguapplied in Proposition 4.3 to find conditions under
which all operator matriceS; have a trivial nullspace.

Lemma4.5.If N(C;) = {0},j =N —1,...,k+1,andN(Cs) # {0}, then there exist nontrivial solutions of the
transmission problem in the reduced grating structure \lith profilesX, . . ., Xy _1 and the upper semi-infinite
layer GZ, i.e. quasiperiodic solutions of the corresponding Helithequationg2.9)in GZ and G, satisfying
the transmission condition®.11)for j = k,..., N — 1, and the outgoing wave condition

o0

_ fd ot Li(ana+8y) fory > t,
(u,0)(x,y) n;mwn,vn)e V7 e 4.14)
= S (d- - i(anz—BNy) fory < t |
e = 2 (e VS e

Moreover, the coefficientst, o in (4.14)vanish ifﬁ,(f) > 0or B,SN) > 0, correspondingly.
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Proof. Letpy, ¢, € N(Cx) and set

Yi-t i—k+1,... N—1.
(%) QJl(%‘—l)’ / Y

We introduce the function paj, v) given by (4.4) inG;, i =k +1,..., N, and inG;{ by

-5 B (B 7)) ()
v 2 0 breSryk diTr, k. Dry.k Ly

Itis evident, that these functions are a non-trivial solntf the homogeneous problem for the reduced geometry.

To prove that the Rayleigh coefficients, o> vanish for arbitrary non-trivial solution@:, v) we proceed as in
[2, 11]. Choose a periodic céll 7, which has inz-direction the widthi, is bounded by the straight lingg = +H }
and containg’;, j = k, ..., N — 1. Multiplying the Helmholtz equations (2.9) with

5 U and MQE
EoR MoK

respectively, and applying Green’s formula in the subdos@iz N G; andQ g N G;, the quasi-periodicity ofi
andv and the transmission conditions (2.11) lead to the equstion

er1 9 9
[£(51vul - ) me / Jown= 2t [ownr o [ aun, @15)

Qy T'(H) I'(—H)
1
/ﬂ (—2|V'U|2 _ w2 |'U| Z Sln¢/ atu'U = / 6‘,1 V0 + —— / (9,1111) (416)
Mo \K Moff;C NOHN
Qn I'(—H)

where[1/x?] = 1/k35 —1/k3,, onT;, andl'(H) denotes the upper resp. lower straight boundafy f Using
the identity

/Vg Vif= —/(?tgf with V- = (9, =9,
) 89

which holds for closed Lipschitz domaifisand f, g € HZ}(Q), the integrals ovel'; are transformed to domain
integrals such that

e /1 9 9
/5(F|Vu| —w |u| Zsmqﬁ/ vT

Qp

:/( 52|vu|2——Smfvv.vw_“’—w + 252 [ owu-2 [ o,
ok K €0 K37 KA

I(H) I(—H)

/ — |Vv|2 w? |v| Z sm¢/ (“)wv
o

2
/ L |vol? + %Vu-VLE—% Sln¢/a SH;¢’ / DpuT.
0

KN
2 I'(H) T'(—H)

Note that (4.14) leads to

_ . ~ _ (k) _ . Ak A (k)
/ 8nuu:z§ B F |2 e 2H Im B / 8zvu:zg an ;e 2 Im B

I(H) nez r(H) nez
/ On ““’ZZWWI a7 e 72Hlmﬁ(m / 3vu—zZo¢nv Ty e~ 2HIm g
T(—H) ne€z I nez,
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Hence (4.15) and (4.16) take the form

2
sin w?e € . _ *)
/( 2|V ul? — ¢Vv Vi — — |u| )— 2 E ( kﬁn Uf — a,sin g o ) 2H Tm 3,
€0k €0

€0

O k nez
7 ENﬁ(N) _ . e\ AT ,QHImg(N)
+ — Z ( U, — ansm(bvn)un e n (4.17)
KN nez €o
. 2 _
1% |V'U|2 4 wvu . vlﬁ_ w :LL 2 — Z :u’k/B + ansin¢ﬂ+ ’[};i_ eizHlmﬁflk)
Hok? K2 Ho 2 k ez "
Qu
i pn B o \FT  2HIm )
+ = Z ( 0, + ansm(bun)vn e n (4.18)
KN ne Ho

We rewrite the left hand side of the quadratic form (4.178%far the vector(u, v)”

2 2
/ (BU-U— Y - |v|2)
€0 Ho

Qu

by using thet x 4 matrix B and the vectot/

g/eo 0 0 —sin¢ Ozt

1 0 /o sing 0 I
B=:3 0 sing  ¢/eg 0 » U= oyu
—sin¢ 0 0 /1o Oyv

Letting H — oo, we see that

— wi + + -

lim (BU-U——u2 ) M*(")(n) M(E) (

H=0 €0 e o %: oy 1Ay (; by b
Qpn By >0 By >0

).

S3

whereM* are the matrices

Mt = L ( Ekﬁflk)/ao —QpSin @ ) M- — L < ENﬂr(LN)/EO QpSin @ )

"o ansin g Mkﬁv(tk)/ﬂo "Ry —apsin ¢ IU’NB’I(IN)//'LO
and the sums are finite, becausdwaf3® > 0 andim 8" > 0 for almost alln. If 8% > 0 or %) > 0, then

the corresponding matrik/* satisfies obviouslym (M) > 0, hence we get

2 2
lim Im (BU-U— Y -2 |v|2) >0
H—o0 €0 Mo

Qp

On the other hand, it will be shown in Lemma 4.6 that the assiompm ¢, Im ¢ > 0 implies

2 2
Im/ (BU T2 -2 |v|2) <0, (4.19)

€0 Mo

Qn
and therefore
A+ /\+ P R
+ n n n n _
> wagr(Gr)- (50)+ 30 o (Gr)- (52 ) =0

B >0 B >0 O

Lemma 4.6. If Ime,Im p > 0, then(4.19)holds.
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Proof. To show that
Im/BU-U:—Re/iBU-Ugo, (4.20)
QH QH

we write as in [2, 11]

o Nt 0 1 ([ ig/eo *sing 1 I I
1 _ + _ 0 _
iU BU—( 0 N) with N (3Fbln¢ iu/uo)’u_\/i<i1 I)’

where[ is the2 x 2 identity matrix and/ is therefore unitary. Introducing the differential operat 6+ =
(0 —1i0,)/v/2 and 0~ = (9, — i0,)/\/2, one can transform

/iBU.U:/(N+a+(g).@+zv—a—(g).@).

QH QH

If Ime; = Im p1; = 0, thenRe N*|¢, = 0. Hence (4.20) is proved if

—Im £ 5 44 Im sm;b
Re N:t|GJ = EO.K/j K/J 2 0
.. sing 1
Film — —Im 5
K Hok;
forIme; + Im p; > 0. The last relation is equivalent to the inequalities
£j € 1. M L2 Ly?
—Im—5 >0 and Im—5 Im—5 — eoppsin ¢(Im—2) >0. (4.21)
i Rj o R i

Denotingg. = arge;, ¢, = arg ji;, ¢, = arg n?, the assumptions
¢ey 0 € 10,7 and ¢, € (0,27),

together Withm? =€jllj — Eolto sin? ¢ lead to0 < ¢ — e, P — ¢, < m, and therefore

s

—Im—J2 = ‘%’sin(@g—@) >0
K3 K3

Finally, (4.20) follows from the observation that becauke o

in2 "
Im £oko s21n e =1Im Ejgj ,
Kj Kj
the second inequality in (4.21) is equivalent to
sin(¢e — ¢x) sin(@, — ¢x) + sin(oe + ¢, — @) sing, =sin¢. sing, > 0. 0O

Finally, sufficient conditions for the invertibility of all; can be deduced from
Proposition 4.3. Assume the conditions of Theordni andN(Cy_1) = ... = N(Cr4+1) = {0}. If for some
j=k+1,...,N theimaginary part of; or u; is positive,Im(e; + p;) > 0, thenN(Cy) = {0}.

Proof. Suppose thalN(Cx) # {0} and consider as in the proof of Lemma 4.5 the solution of thedgeneous
transmission problerfu, v) in the reduced grating structure with the profiles . .., ¥y _; and the top laye€,
for which we have shown

2
Im/ BU U——| 12— “’“W):o.
Ho
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Using the notation in the proof of Lemma 4.6 we have therefore
Ime o Imp, o\ Tar (U e (U _(u\\
/(?'“' e '“'>—Re/(N o () o () + o () 0o (})) =
H H

If Tme;, Tm p; > 0, thenu = v = 0in G;. If otherwise, for exampléme; = 0, thenv = 0 andIm x5 # 0,
implying that

Re / <N+a+(g)-a+(g)+zva(g).a(g))_% / Vul2 =0,
QuNG; QuNGy

which yieldsu = 0in G because of\u + w?s3u = 0.

Hence,u, v solve in the neighboring layers Helmholtz equations withishing boundary values and normal
derivatives at the common interfaces (due to the transomssdndition (2.11)). By Holmgren’s theorem the ho-

mogeneous transmission problem has therefore only thaltselutionu = v = 0 and the invertibility oﬂ/k(,f“)
implies thatpy, = ¢, = 0. O
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