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Abstract

In this paper the linear stability properties of the steady states of a no-slip
lubrication equation are studied. The steady states are configurations of droplets
and arise during the late-phase dewetting process under the influence of both
destabilizing van der Waals and stabilizing Born intermolecular forces, which in
turn give rise to the minimum thickness ε of the remaining film connecting the
droplets. The goal of this paper is to give an asymptotic description of the eigen-
values and eigenfunctions of the problem, linearized about the one-droplet solu-
tions, as ε → 0.

For this purpose, corresponding asymptotic eigenvalue problems with piece-
wise constant coefficients are constructed, such that their eigenvalue asymp-
totics can be determined analytically. A comparison with numerically computed
eigenvalues and eigenfunctions shows good agreement with the asymptotic re-
sults and the existence of a spectrum gap to a single exponentially small eigen-
value for sufficiently small ε.

1 Introduction

Thin liquid polymer films of nanometer thickness typically destabilize and dewet from
a substrate due to intermolecular forces between the film and the substrate. The late
phases of the ensuing complex dewetting process are found to be configurations of
droplets. These droplets tend to assume their own slow dynamics via mass exchange
through an even thinner film connecting the droplets, which is a result of competing
long-range van der Waals attraction and short-range Born repulsion forces [1, 2]. Us-
ing the scale separation between the height of the thin film and the lateral extend of the
evolving patterns, the free boundary boundary problem for the Navier-Stokes equa-
tions can be reduced to a single equation for the profile of the film, see for example
the reviews [3, 4]. For the two-dimensional case, i.e. considering the cross-section of
the film, the evolution of the profile is described by the corresponding one-dimensional
thin film equation

∂th = −∂x

(
h3∂x (∂xxh− Πε (h))

)
, (1.1)

considered on a fixed interval [−L, L] with boundary conditions

∂xxxh = 0, and ∂xh = 0 at x = ±L, (1.2)

which incorporate zero flux at the boundary and imply the conservation of mass law

hc ≡
1

2L

∫ +L

−L

h(x, t) dx for all t > 0, (1.3)
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and the potential function

Πε (h) =
ε2

h3
− ε3

h4
. (1.4)

It can be used to study the dewetting dynamics from rupture of the thin film to the
late-phase process of coarsening. Interestingly, this late phase behaviour parallels
those found in various phase separation phenomena modelled by Cahn-Hilliard type
equations, the analysis of which has been developed very intensively during the last
decades. For these equations approximate models, consisting of sets of coupled ordi-
nary differential equations, have been derived in [5, 6, 7] in order to efficiently capture
the late time Ostwald ripening and specifically properties such as coarsening rates.

For dewetting thin films a very effective method to obtain the long-time behaviour
for large arrays of droplets during the late phase dewetting has been developed by
Glasner and Witelski [1, 8], who used the quasi-stationary shape of the droplets to
approximate the thin film model via a formal singular perturbation argument to a set
of ordinary differential equations for the pressure and location of the droplets. Their
method has been extended further to higher dimensions and by including other effects
such as interfacial slippage or gravity [9, 10, 11, 12, 13]. Moreover, in the studies by
Otto et al. [9] and Glasner et al. [10] the analysis of this asymptotic limit on the basis
of the corresponding gradient flow structure was developed. Nevertheless, the full
rigorous justification of this question is still open.

Our analysis intends to explore an alternative approach. In a companion paper [14]
we show that it is possible to extend a center-manifold construction, that has been de-
veloped for the class of semi-linear partial differential equations by Mielke and Zelig
[15], to the type of quaslilinear thin film equation considered here. It turns out, that
one of the main assumptions for an existence proof of the center-manifold concerns
the asymptotics of the spectrum of the corresponding thin film equation as ε → 0, lin-
earized about the steady state solution h0, ε, which describes a droplet on a bounded
interval. This will be the focus of the analysis presented in this paper.

There is already a body of work on steady state solutions and their linear stability for a
family of thin film equations including (1.1) considered with fixed ε > 0. For Neumann
boundary conditions for h and ∂xxh Bertozzi et al. [16] derived in the one-dimensional
case the global structure of the bifurcation diagramm for the steady state solutions
and proved existence of smooth solutions for ε > 0. Linear stability of smooth steady
states with periodic and Neumann boundary conditions under mass conserving per-
turbations was investigated in the work by Laugesen and Pugh [17] . The linear sta-
bility of droplet steady states states for related problems has been considered numer-
ically by Goldstein et al. [18] and briefly discussed [17] . Hence, apart from the overall
goal of a rigorous foundation for the approach leading to the reduced ODE model for
the long-time behaviour, establishing the spectrum asymptotics as ε→ 0 is of interest
of its own.

As has been first suggested in Glasner and Witelski [11], it is useful to rescale the
problem such that the small parameter ε is eliminated from the problem (1.1) with (1.4)
and appears instead in the boundary conditions (1.2). For this purpose we introduce
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scalings

x̄ =
x

ε
, h̄ =

h

ǫ
, t̄ =

t

ε
, (1.5)

so that

Π̄(h̄) = εΠε(h̄ ε) =
1

h̄3
− 1

h̄4
. (1.6)

The analysis in remainder of the paper will refer to the problem in this scaling, so
that for ease of notation we will drop the “−” from now on and consider the rescaled
problem

∂th = −∂x

(
h3∂x (∂xxh− Π(h))

)
, (1.7)

with boundary conditions

∂xxxh = 0, and ∂xh = 0 at x = ±L/ε, (1.8)

which imply conservation of mass

hc ≡
ε

2L

∫ L/ε

−L/ε

h(x, t) dx, ∀t > 0. (1.9)

We first summarize some results from [8, 16] that we will use for our analysis.

Proposition 1.1. For each ε > 0 equation (1.7) with boundary conditions (1.8) has
a family of positive nonconstant steady state solutions h0, ε(x;P ) parameterized by a
constant (“pressure”) P ∈ (0, Pmax(ε)), where

Pmax(ε) =
27

256ε
, (1.10)

which satisfy

∂xxh0, ε(x;P ) = Π (h0, ε(x;P )) − εP, (1.11a)

h0, ε(x;P ) = h0, ε(−x;P ), (1.11b)

∂xh0, ε(0;P ) = 0 and ∂xh0, ε(x;P ) < 0 for x ∈ (0, L/ε). (1.11c)

We note that it is easy to check that a solution to (1.7) with (1.8) is a stationary if
and only if it satisfies (1.11a) with (1.8). The rest of the proof can be done via a
phase plane analysis as described in [16]. It shows that for each ε > 0 and a fixed
P ∈ (0, Pmax(ε)) there exists a family of periodic orbits to the equation (1.11a) nested
into a homoclinic loop. For any orbit there exists a phase shift such that the cor-
responding periodic solution restricted to the interval [−L/ε, L/ε] gives a smooth
steady state solution h0,ε(x;P ) to (1.7)–(1.8) satisfying (1.11b)–(1.11c). Everywhere
below we consider P fixed and therefore omit the dependence on it in the notation for
the stationary solutions writing h0,ε(x).

The linear operator that is obtained by linearizing the right-hand side of (1.7) about
the steady state h0,ε is given by

Lε = − d

dx

[
h3

0,ε

d

dx

(
d2

dx2
· −dΠ

dh
(h0,ε)·

)]
, (1.12)
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where

D (Lε) =

{
η ∈W 4,2(−L/ε, L/ε) : η′′′(±L/ε) = η′(±L/ε) =

∫ L/ε

−L/ε

η dx = 0

}
.

(1.13)
Here, ′ = d/dx. The eigenvalue problem associated with the operator Lε can be
written as

Lεη = −λη, η ∈ D (Lε) . (1.14)

One can check that the set of eigenvalues to (1.14) divided by ε gives the set of eigen-
values for the linearized eigenvalue problem corresponding to the unscaled equation
(1.1) with (1.4) and (1.2). For a fixed ε > 0 the operator Lε is a particular case of
a general class of linear operators associated with the linearized thin film type equa-
tions. For such operators qualitative properties of their spectra have been investigated
by [17]. For our subsequent purposes we summarize them here, applied to Lε. Firstly,
we use a transformation of the eigenvalue problem (1.14) to a symmetric one. We de-
fine the functions

rε(x) = −dΠ
dh

(h0,ε) , (1.15a)

fε(x) =
1

h3
0,ε

. (1.15b)

In Appendix B of [17] it was shown that if a pair [η, λ] is a solution to the original
eigenvalue problem (1.14), then a pair [h, λ] with

h(x) =

∫ x

−L/ε

η(s) ds

satisfies

h(4)(x) + (rε(x)h
′(x))

′
= λfε(x)h(x), (1.16a)

h′′(±L/ε) = h(±L/ε) = 0. (1.16b)

Vice versa any solution [h, λ] to (1.16a)–(1.16b) gives a solution [η, λ] to (1.14) with
η(x) = h′(x).

We define next Hilbert spaces

Wε := H2(−L/ε, L/ε) ∩H1
0 (−L/ε, L/ε) (1.17)

equipped with the standard H2(−L/ε, L/ε) inner product, and L2(−L/ε, L/ε) with
the weighted one

(h, w)ε :=

∫ L/ε

−L/ε

hw fε dx. (1.18)

The next theorem is a reformulation of Theorem 23 of [17] for our case.
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Theorem 1.2. Consider a symmetric eigenvalue problem

h ∈Wε, λ ∈ R :

∫ L/ε

−L/ε

(h′′w′′ − rεh
′w′ − λfεhw) dx = 0, ∀w ∈Wε. (1.19)

For a fixed ε > 0 there exist sequences {λ∗ε, λ0
ε, λ

1
ε, λ

2
ε, ...}, {h∗ε, h0

ε, h
1
ε, h

2
ε, ...} such

that:

(i) for each j ∈ {∗, 0, 1, 2, ...} the pair [hj
ε, λ

j
ε] is a solution to (1.19);

(ii) λ∗ε ≤ λ0
ε ≤ λ1

ε ≤ λ2
ε ≤ ...→ ∞;

(iii) the set of eigenfunctions hj
ε, j ∈ {∗, 0, 1, 2, ...} forms an orthonormal basis

in L2(−L/ε, L/ε) with respect to the weighted inner product (1.18). Moreover
hj

ε are C4 smooth on [−L/ε, L/ε] and the corresponding pair [hj
ε, λ

j
ε] satisfies

(1.16a)–(1.16b).

Application of Theorem 4 of [17] and Proposition 1.1 above to the eigenvalue problem
(1.14) states that for any ε > 0 its largest eigenvalue is equal to −λ∗ε and positive,
where λ∗ε is defined in Theorem 1.2. Therefore, the equation (1.7) with (1.8) is linearly
unstable at h0,ε.

In addition, we note that as in [17] the transformation procedure stated above and the
last theorem make it natural for us to investigate the equivalent symmetric eigenvalue
problem (1.19) instead of the original one (1.14). For the thin film equation in the form
(1.1)–(1.2) it is known that it is not uniformly elliptic as h → 0 and degenerates in
this limit. As a consequence the rescaled system (1.7)–(1.8) and the corresponding
eigenvalue problems (1.14) and (1.19) have a singularity at ε = 0. When ε = 0 the
assertions of the Proposition 1.1 are not valid anymore and one can not define a
linearization of (1.7)–(1.8) at h0,ε, because the latter even does not exist. This implies
that the eigenvalue problems (1.14) and (1.19) are essentially singularly perturbed
ones.

In the following section 2 we will first give a summary of our results. We begin our
analysis in section 3, where we first set up the problem for half-droplets under Dirichlet
and Neumann conditions and derive their approximations. The spectrum asymptotics
for these as ε → 0 .is then derived in section 4. Finally, we compare it to numerical
solutions of the initial eigenvalue problem (1.14) in section 5.

2 Summary of the main results

To fix notation and for the convenience of the reader, we start with the definition of the
asymptotic symbols we use throughout the paper (see also e.g. Kevorkian and Cole
[19]).

Definition 2.1. Let ε0 > 0, the functions f, g : (0, ε0) × R
m → R with m ≥ 0 and a

set D ⊂ R
m be given.
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(i) We write f = O(g) for all x in D if and only if there exist numbers M > 0 and
ε1 ∈ (0, ε0) such that

|f(ε, x)| ≤M |g(ε, x)| for all x ∈ D and ε ∈ (0, ε1). (2.1)

(ii) We write f = o(g) for all x in D if and only if for any given δ > 0 there exists
ε1(δ) ∈ (0, ε0) such that

|f(ε, x)| ≤ δ |g(ε, x)| for all x ∈ D and ε ∈ (0, ε1). (2.2)

(iii) We write f ∼ g for all x in D if and only if f − g = o(g).

Next, let us fix P and L so that

L−A/P > 0 with A =
1√
3
. (2.3)

Assumption (2.3) allows us to distinguish three different asymptotic regions for the
steady state solutions as ε → 0 and will be important for the results that follow. We
call these regions (0, aε/ε), (aε/ε, bε/ε), (bε/ε, L/ε) the droplet core, contact line
and the outer layer region, respectively. This notation formally corresponds to the one
used in [1] and reflects the fact that on the steady state solutions h0,ε(x) defined on
the droplet core and the outer layer is given to leading order as ε → 0 by a parabola
and the constant 1, respectively. The maximum of h0,ε(x) is O(1/ε). It is attained at
x = 0 and gives a so called “peak” of the droplet and is illustrated in Figure 1. As in
[1] we call the value A/P the droplet half-width.

Our result concerning the asymptotics of steady state solutions h0,ε(x) as ε → 0 is
formulated in the following Lemma, whose proof we give in the appendix.

Lemma 2.2. There exist ε̃ > 0 and functions aε, bε : (0, ε̃) → R such that the
following assertions hold:

(i) for all ε ∈ (0, ε̃) one has 0 < aε < bε < L;

(ii) aε, bε → A/P and bε − aε = O(ε1/4) → 0 as ε → 0, where A is defined in (2.3);

(iii) for all x ∈ [0, aε/ε] it holds: ε−3/4 ≤ h0,ε(x) = O(1/ε) and

h0,ε(x) ∼
Pε

2

((
A

P ε

)2

− x2

)
;

(iv) for all x ∈ [bε/ε, L/ε] it holds: 1 ≤ h0,ε(x) = 1 +O(ε1/6).

The main result of the lemma given by assertion (ii) is that the ratio of the length of
contact line region defined by (aε/ε, bε/ε) to the one of whole interval [−L/ε, L/ε]
tends to 0 as ε → 0. For the problem formulation (1.1) with (1.2) this means that the
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length of the contact line region (aε, bε) tends to zero as ε→ 0. From the proof of the
lemma in the appendix it becomes clear that the three intervals (0, aε/ε), (aε/ε, bε/ε),
(bε/ε, L/ε) with above asymptotical properties are not uniquely defined. Hence, in
order to avoid unnecessary technicalities we fix one possible definition for aε and bε.
Once it is fixed then the asymptotic bounds on the steady state solutions h0,ε(x),
stated in assertions (iii) and (iv) of the above lemma are determined uniquely. This
in turn determines the asymptotic bounds for the functions rε(x)and fε(x). In section

Figure 1: Stationary solution h0,ε(x) obtained numerically for ε = 0.1, P = 0.1, L = 20.

3 we decompose the eigenvalue problem (1.19) to two eigenvalue problems on the
half-interval [0, L/ε], which we call Dirichlet and Neumann half-droplet problems, re-
spectively, such that the spectrum of the former problem is given by the joint union of
the spectra for the latter ones. Next, using the derived asymptotics for h0,ε(x) and the
corresponding ones for rε(x) and fε(x) as ε→ 0 we define for each of the half-droplet
eigenvalue problems two approximating problems. Their coefficients are constant and
have the same leading order as rε(x) and fε(x) as ε → 0. The corresponding eigen-
values provide us lower and upper approximations for the eigenvalues of the initial
half-droplet problems.

As our main result (Theorem 4.1) we present a rigorous derivation of the explicit
asymptotics of the spectra of the approximating eigenvalue problems as ε → 0.
Namely, if one defines a discrete countable set

M =
{( π(2j + 1)

2(L−A/P )

)2

, j ∈ N0

}
(2.4)

with constant A given in (2.3) then by Theorem 4.1 the eigenvalues of the approxi-
mating problems divided by ε2 either tend to ∞ or converge to the set M as ε → 0.
Moreover, for all sufficiently small ε there exists a spectrum gap given in (4.2) and the
spectra of the approximating problems divided by ε2 are separated by it from 0.

In (4.29) we state that the obtained leading order eigenvalues of the approximat-
ing problems present the asymptotic approximations for the eigenvalues of (1.19) as
ε → 0. Moreover, direct numerical solutions of the initial eigenvalue problem (1.19) in
section 5 show that the leading orders for its positive eigenvalues coincide with the
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asymptotically obtained approximations (4.29). The only difference appears in the ex-
istence of one negative eigenvalue for the numerical solutions of the initial eigenvalue
problem (1.19), whereas the spectra of the approximating problems by Theorem 4.1
is strictly positive. Based on our numerical results and those of [20] we conjecture
here the existence of a unique negative exponentially small eigenvalue to (1.19) as
ε→ 0.

For each ε > 0 let us denote the minimum of the stationary solution h0,ε by h−ε , which
by (1.11b)–(1.11c) is attained in points x = ±L/ε. From assertion (iii) of Theorem
1.2 it follows that any solution to the eigenvalue problem (1.19) is a strong solution of
(1.16a)–(1.16b). Vice versa any solution to (1.16a)–(1.16b) gives a solution to (1.19).
Using (1.11a) and the definitions (1.15a)–(1.15b) one can easily deduce that for each
ε > 0 the pair [h0,ε(x) − h−ε , 0] satisfies (1.16a), but not (1.16b) because

h′′0,ε(±L/ε) 6= 0.

Indeed, if we suppose that. h′′0,ε(L/ε) = 0, then from h0,ε(L/ε) = h−ε and the fact
that the stationary solution h0,ε(x) satisfies the boundary conditions (1.8), it follows
that at x = L/ε the function h0,ε(x) − h−ε and its first three derivatives should be
zero. Next, by uniqueness of the solution to (1.16a) with λ = 0 and given the initial
condition h(k)(L/ε) = 0 for k = 0, 1, 2, 3, it follows that h0,ε(x) − h−ε ≡ 0. How-
ever, this contradicts the fact that for each ε > 0 the stationary solution h0,ε(x) by
its very definition is not a constant. Consequently, using (1.11b) one concludes that
h′′0,ε(−L/ε) = h′′0,ε(L/ε) 6= 0. Nevertheless, in Lemma A.2 we show that h′′0,ε(±L/ε)
tends to zero exponentially as ε→ 0.

In view of above observations, the question arises if there exists an eigenvalue of
eigenvalue problem (1.19) which exponentially tends to zero as ε → 0. basing on
the discussion above and estimates of Lemma A.2 we conjecture that the smallest
negative eigenvalue to (1.19) is of the form

λ∗ε = O
(
exp

(
− α

ε2/3

))
. (2.5)

Our results also suggest that the approximations of the coefficients rε(x) and fε(x)
should be exponentially fine in ε in order that the approximating eigenvalue problems
posses the corresponding negative eigenvalue.

In summary, our results suggest the following picture for the asymptotics of the spec-
trum of the eigenvalue problem (1.19) as ε → 0. In the spectrum of the eigenvalue
problem (1.19) a set of positive eigenvalues Rε := {λj

D(ε), λj
N(ε) j ∈ N 0} is sepa-

rated from exactly one exponentially small negative eigenvalue λ∗(ε) by a spectrum
gap given in (4.2).

Note, that the right end of it we choose as K1ε2/4 where K1 is the smallest positive
element of the set M from (2.4). Elements of the above set Rε have asymptotics of
O(ε2). Here, we do not state any results on the existence of eigenvalues that are much
larger than O(ε2) , but their possible presence by no-means influences the spectral
gap property described above.
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3 Half-droplet problems and their approximations

We observe, that by (1.11b) for each ε > 0 the steady state solution h0, ε(x) is an even
function. Hence the functions (1.15a)–(1.15b) are also even. Therefore, if [h(x), λ] is
an eigenpair of the eigenvalue problem (1.19), then [h(−x), λ] is also an eigenpair
of it. If h(x) is not an even or odd function, then the multiplicity of λ is at least two.
Indeed, numerical solutions in section 5 give us pairs of very close eigenvalues, which
indicate that there could be eigenvalues of (1.19) with multiplicity two.

To simplify subsequent calculations we introduce a decomposition of (1.19) to two
eigenvalue problems on the half-interval [0, L/ε]. Every eigenfunction h(x) of (1.19)
defines an eigensubspace which is spanned by an even eigenfunction he(x) := (h(x)+
h(−x))/2 and an odd one ho(x) := (h(x) − h(−x))/2 (one of them may be identi-
cally zero). This decomposition one can actually apply to any function in the Hilbert
space Wε defined in (1.17). Therefore, one can decompose Wε into a direct sum of
the closed subspace of even functions W e

ε and the closed subspace of odd functions
W o

ε :
Wε = W e

ε ⊕W o
ε .

Analogously, any eigensubspace for the eigenvalue problem (1.19) can be decom-
posed in two, one of which belongs toW e

ε and another toW o
ε . Using this and again the

property that the functions rε(x), fε(x) are even, one obtains that the set of solutions
to eigenvalue problem (1.19) is the union of the sets of solutions of two symmetric
eigenvalue problems:

h ∈ W o
ε , λ ∈ R :

∫ L/ε

−L/ε

(h′′w′′ − rεh
′w′ − λfεhw) dx = 0 for all w ∈W o

ε ,

and

h ∈W e
ε , λ ∈ R :

∫ L/ε

−L/ε

(h′′w′′ − rεh
′w′ − λfεhw) dx = 0 for all w ∈W e

ε .

Moreover, it is easy to see that the first eigenvalue problem above is equivalent to the
one we call the Dirichlet half-droplet problem:

h ∈ Vε, λ ∈ R :

∫ L/ε

0

(h′′w′′ − rεh
′w′ − λfεhw) dx = 0 for all w ∈ Vε; (3.1)

and the second eigenvalue problem to the one we call the Neumann half-droplet prob-
lem

h ∈ Qε, λ ∈ R :

∫ L/ε

0

(h′′w′′ − rεh
′w′ − λfεhw) dx = 0 for all w ∈ Qε, (3.2)

where the Hilbert spaces Vε and Qε are defined as

Vε = H2(0, L/ε) ∩H1
0 (0, L/ε),

Qε =
{
h ∈ H2(0, L/ε) : h′(0) = h(L/ε) = 0

}
, (3.3)
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and both are equipped with the standard inner product of H2(0, L/ε).

Below we introduce two approximating eigenvalue problems for the Dirichlet half-
droplet problem (3.1) and prove several results about their solutions. Note, that anal-
ogous approximating problems can be defined for the corresponding Neumann half-
droplet problem (3.2) and statements of Propositions 3.2, 3.3, Theorem 4.1 and Lemma
4.2 can be verified for them in the exact same manner.

In the next Lemma 3.1, the proof of which is given in the appendix, we derive the
asymptotics for the functions (1.15a) and (1.15b) as ε → 0, using the asymptotics
for h0,ε(x) stated in Lemma 2.2. In particularly, there we show that fε(x) is positive
and bounded from below away from zero, and that rε(x) is bounded, as functions of
x uniformly in ε > 0. We note here, that an advantage of the rescaled version (1.7)
with (1.8) and the corresponding eigenvalue problems is also that L∞ bounds hold
uniformly in ε, for the coefficients of the symmetric eigenvalue problem (1.19).

Lemma 3.1. For sufficiently small ε > 0 the following holds:

(i) 0 ≤ rε(x) ≤ 2ε3, for x ≤ aε/ε, −1 ≤ rε(x) = −1 +O
(
ε1/6
)
, for x ≥ bε/ε;

ε3 ≤ fε(x) ≤ ε9/4, for x ≤ aε/ε, 1 − O
(
ε1/6
)
≤ fε(x) ≤ 1, for x ≥ bε/ε. (3.4)

(ii) There exists a unique point xm
ε and a number k1 > 0 such that aε/ε < xm

ε < bε/ε
and rε(x

m
ε ) = k1 gives the maximum of rε(x) on [0, L/ε].

(iii) The function fε(x) monotonically increases on [0, L/ε], and the function rε(x)
is monotonically increasing on [0, xm

ε ] and decreases on [xm
ε , L/ε].

Next, we define four functions (see also Figure 2):

r1
ε(x) =





2ε3, 0 ≤ x ≤ aε/ε
k1, aε/ε < x ≤ bε/ε

−1 + ε1/12, bε/ε < x ≤ L/ε
r2
ε(x) =

{
0, 0 ≤ x ≤ aε/ε
−1, aε/ε < x ≤ L/ε

;(3.5a)

f 1
ε (x) =

{
ε9/4, 0 ≤ x ≤ aε/ε
1, aε/ε < x ≤ L/ε

, f 2
ε (x) =

{
ε4, 0 ≤ x ≤ bε/ε

1 − ε1/12, bε/ε < x ≤ L/ε
;(3.5b)

where aε, bε and k1 are defined in Lemmata 2.2, 3.1. Using (3.5a)–(3.5b) one can
define for the Dirichlet half-droplet problem two approximating eigenvalue problems,
replacing the functions (1.15a)-(1.15b) in (3.1) by their approximations ri

ε(x), f
i
ε(x)

with either i = 1 or i = 2. Define now the Hilbert space

Hε = L2(0, L/ε), (3.6)

with an inner product

(h, h̃)Hε :=

∫ L/ε

0

hh̃f 2
ε dx. (3.7)

The next proposition is an analog of Theorem 1.2 for the approximating eigenvalue
problems.
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Figure 2: Function rε(x) and its approximations (left), function fε(x) and its approximations
(right), obtained numerically for L = 20, P = 0.1 and ε = 0.1. Approximations r1

ε(x), f1
ε (x)

are denoted by short dashes and r2
ε(x), f2

ε (x) are denoted by dash-dot lines.
.

Proposition 3.2. Consider the two approximating eigenvalue problems,

h ∈ Vε, λ ∈ R :

∫ L/ε

−L/ε

(h′′w′′ − ri
εh

′w′ − λf i
εhw) dx = 0, ∀w ∈ Vε. (3.8)

with i = 1 or i = 2. For fixed i and ε > 0 there exist sequences {λi,j
ε }, {hi,j

ε }, where
j ∈ N 0 such that:

(i) for each j ∈ N 0 the pair [hi,j
ε , λ

i,j
ε ] is a solution to (3.8);

(ii)
λi,0

ε ≤ λi,1
ε ≤ λi,2

ε ≤ ...→ ∞; (3.9)

(iii) the set {hi,j
ε , j ∈ N 0} forms an orthonormal basis in (3.6) with respect to inner

product (3.7).

The next proposition describes regularity for the solutions of (3.8) and introduces an
important property of them, namely the connection conditions (3.10)–(3.11b).

Proposition 3.3. Let ε > 0 be fixed and [h, λ] be a solution to (3.8) for i = 1, [h̃, λ̃] be
a solution to (3.8) for i = 2. Then the following properties hold:

(i) On each of the three intervals (0, aε/ε), (aε/ε, bε/ε) and (bε/ε, L/ε)

h̃(4)(x)+
(
r2
ε(x)h̃

′(x)
)′

= λ̃f 2
ε (x)h̃(x) and h(4)(x)+

(
r1
ε(x)h

′(x)
)′

= λf 1
ε (x)h(x).

(ii) At the point x = bε/ε the function h̃(x) is smooth, h(x) is twice continuously
differentiable and satisfies

h′′′(bε/ε− 0) + k h′(beps/ε) = h′′′(bε/ε+ 0), (3.10)

where k := k1 + 1 − ε1/12 and k1 is defined in assertion (ii) of Lemma 3.1.
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(iii) At the point x = aε/ε both h and h̃ are twice continuously differentiable and
satisfy:

h̃′′′(aε/ε− 0) + h̃′(aε/ε) = h̃′′′(aε/ε+ 0). (3.11a)

h′′′(aε/ε− 0) − k1 h
′(aε/ε) = h′′′(aε/ε+ 0). (3.11b)

(iv) Both functions h and h̃ satisfy Dirichlet boundary conditions, namely

h′′(0) = h(0) = h′′(L/ε) = h(L/ε) = h̃′′(0) = h̃(0) = h̃′′(L/ε) = h̃(L/ε) = 0.

Proof. We prove assertions (i)–(iv) only for solutions [h̃, λ̃]. In the exact same way the
remaining assertions for [h, λ] can be proved. From (3.8) with i = 2 it follows

∫ aε/ε

0

(h̃′′w′′ − r2
ε h̃

′w′ − λ̃f 2
ε h̃w) dx+

+

∫ L/ε

aε/ε

(h̃′′w′′ − r2
ε h̃

′w′ − λ̃f 2
ε h̃w) dx = 0, ∀w ∈ C∞

c (0, L/ε). (3.12)

Integrating each integral in the last expression separately two times by parts and using
definitions (3.5a)–(3.5b) gives

∫ aε/ε

0

(
h̃(4) +

(
r2
ε h̃

′
)′

− λ̃f 2
ε h̃

)
w dx+

∫ L/ε

aε/ε

(
h̃(4) +

(
r2
ε h̃

′
)′

− λ̃f 2
ε h̃

)
w dx

+
(
h̃′′w′

) ∣∣∣
aε/ε+0

aε/ε−0
−
(
h̃′′′ + r2

ε h̃
′
)
w
∣∣∣
aε/ε+0

aε/ε−0
= 0, ∀w ∈ C∞

c (0, L/ε), (3.13)

From this it follows that
∫ aε/ε

0

(
h̃(4) +

(
r2
ε h̃

′
)′

− λ̃f 2
ε h̃

)
w dx = 0, ∀w ∈ C∞

c (0, aε/ε)

∫ L/ε

aε/ε

(
h̃(4) +

(
r2
ε h̃

′
)′

− λ̃f 2
ε h̃

)
w dx = 0, ∀w ∈ C∞

c (aε/ε, L/ε). (3.14)

Hence assertion (i) for [h̃, λ̃] is true and

(
h̃′′w′

) ∣∣∣
aε/ε+0

aε/ε−0
−
(
h̃′′′ + r2

ε h̃
′
)
w
∣∣∣
aε/ε+0

aε/ε−0
= 0, ∀w ∈ C∞

c (0, L/ε),

Taking in the last expression test functions w(x) such that w′(a/ε) = 0 or w(a/ε) = 0
the connection condition (3.11a) follows. The proof of assertion (iv) is completely
analogous to that for the natural boundary conditions in Theorem 23 of [17].
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Remark By Lemma 3.1 for sufficiently small ε and all x ∈ [0, L/ε] we have

r2
ε(x) ≤ rε(x) ≤ r1

ε(x), f 2
ε (x) ≤ fε(x) ≤ f 1

ε (x).

From this and the fact that the Rayleigh quotient

∫ L/ε

0
(h′′)2 − (h′)2 rε dx∫ L/ε

0
h2fε dx

for the Dirichlet half-droplet problem (3.1) is bounded from below and from above
by the Raleigh quotients of the approximating problems, we conclude that the eigen-
values of the approximating eigenvalue problems (3.8) for i = 1 and i = 2 give
the approximations from below and above for the corresponding eigenvalues of the
Dirichlet eigenvalue problem (3.1), respectively. Below we call eigenvalue problems
(3.8) for i = 1 and i = 2 the approximating problems “from below” and “from above”,
respectively.

4 Spectrum asymptotics for the approximating prob-
lems

In this section we derive the asymptotics for the spectra of the two approximating
problems of the Dirichlet half-droplet problem as ε → 0. The same asymptotics can
be verified in the same manner for the spectra of the approximating problems for the
corresponding Neumann half-droplet problem. Recall also definition (2.4) of the set
M . We can now state and prove one of our key main results.

Theorem 4.1. (i) If {λl}, l = 1, 2, ..., is a sequence of eigenvalues to the eigen-
value problem (3.8) considered for either i = 1 or i = 2 corresponding to a
sequence {εl} → 0 and if there exists a number K∗ > 0 such that

∣∣∣
λl

ε2
l

∣∣∣ ≤ K∗ for all l ∈ N , (4.1)

then

dist

(
λl

ε2
l

,M

)
:= inf

K∈M

∣∣∣∣K − λl

ε2
l

∣∣∣∣→ 0.

(ii) Moreover, for sufficiently small ε > 0 and any eigenvalue λ of the eigenvalue
problem (3.8) considered for either i = 1 or i = 2, one has

λ /∈
(

0,

[
π

4(L− A/P )
ε

]2
)
. (4.2)
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Proof. We show the proof only for the approximating problem “from below”. In exactly
the same way one can show it for the approximating problem “from above”. Let us fix
ε̃ > 0 and a family [hε, λε] of solutions to (3.8) with i = 1 for ε ∈ (0, ε̃). Then by
assertion (i) of Proposition 3.3 and definitions (3.5a)–(3.5b) in the droplet core region
one has

h(4)
ε (x) + 2ε3h′′ε(x) = ε9/4λεhε(x) for x ∈ (0, aε/ε), (4.3)

Let us denote by φi(x, λε) a fundamental system to (4.3) such that

φ
(k)
i (0, λε) = εkδi, k; i, k = 0, 1, 2, 3.

One can easily deduce that

φ1(x, λε) = ε

(
z2
1,− sinh(z1,+x)

z1,+(z2
1,− + z2

1,+)
+

z2
1,+ sin(z1,−x)

z1,−(z2
1,− + z2

1,+)

)
,

φ3(x, λε) = ε3

(
sinh(z1,+x)

z1,+(z2
1,− + z2

1,+)
− sin(z1,−x)

z1,−(z2
1,− + z2

1,+)

)
, (4.4)

where we denote

z1,− :=
1

2

√
4ε3 + 2

√
4ε6 + 4λεε9/4, z1,+ :=

1

2

√
−4ε3 + 2

√
4ε6 + 4λεε9/4.

By assertion (iv) of Proposition 3.3 hε(0) = h′′ε(0) = 0, and therefore

hε(x) = C1
εφ1(x, λε) + C2

εφ3(x, λε) for x ∈ (0, aε/ε), (4.5)

where Cp
ε , p = 1, 2 do not depend on x. By Proposition 3.3 and definitions (3.5a)–

(3.5b) in the contact line region one has

h(4)
ε (x) + k1h

′′
ε(x) = λεhε(x) for x ∈ (aε/ε, bεε).

If one denotes by ψi(x, λε) a fundamental system to the last equation such that

ψ
(k)
i (aε/ε, λε) = δi, k; i, k = 0, 1, 2, 3,

then one has

hε(x) =

3∑

i=0

h(i)
ε (aε/ε+ 0)ψi(x, λε) for x ∈ (aε/ε, bε/ε). (4.6)

It is easy to check that

ψ0(x, λε) =
z2
2,− cosh(z2,+(x− aε/ε))

(z2
2,− + z2

2,+)
+
z2
2,+ cos(z2,−(x− aε/ε))

(z2
2,− + z2

2,+)
,

ψ1(x, λε) =
z2
2,− sinh(z2,+(x− aε/ε))

z2,+(z2
2,− + z2

2,+)
+
z2
2,+ sin(z2,−(x− aε/ε))

z2,−(z2
2,− + z2

2,+)
,

ψ2(x, λε) =
cosh(z2,+(x− aε/ε))

(z2
2,− + z2

2,+)
− cos(z2,−(x− aε/ε))

(z2
2,− + z2

2,+)
,

ψ3(x, λε) =
sinh(z2,+(x− aε/ε))

z2,+(z2
2,− + z2

2,+)
− sin(z2,−(x− aε/ε))

z2,−(z2
2,− + z2

2,+)
, (4.7)
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where we denote

z2,− :=
1

2

√
2k1 + 2

√
k2

1 + 4λε, z2,+ :=
1

2

√
−2k1 + 2

√
k2

1 + 4λε.

Finally, in the outer interval [hε, λε] satisfies

h(4)
ε (x) − (1 − ε1/12)h′′ε(x) = λεhε(x) for x ∈ (bε/ε, L/ε).

Using this and hε(L/ε) = h′′ε(L/ε) = 0 one can write

hε(x) = −C3
ε sin (z3,−(x− L/ε))−C4

ε sinh (z3,+(x− L/ε)) for x ∈ (bε/ε, L/ε), (4.8)

where Cp
ε , p = 3, 4 do not depend on x and

z3,− =
1

2

√
−2(1 − ε1/12) + 2

√
(1 − ε1/12)2 + 4λε,

z3,+ =
1

2

√
2(1 − ε1/12) + 2

√
(1 − ε1/12)2 + 4λε. (4.9)

Let us denote ψ
(k)
i,bε

:= ψ
(k)
i (bε/ε, λε) and φ

(k)
i,aε

:= φ
(k)
i (aε/ε, λε) for i, k = 0, 1, 2, 3.

Then, using representations (4.5), (4.6), (4.8) as well as the connection conditions
(3.10), (3.11b) for hε(x) at the points x = aε/ε and x = bε/ε, one can construct a
system of linear algebraic equations imposed for each ε ∈ (0, ε̃) on Cp

ε , p = 1...4 in
the following form:




γ1,1 γ1,2 sin (z3,−(aε − L)/ε) sinh (z3,+(aε − L)/ε)
γ2,1 γ2,2 z3,− cos (z3,−(aε − L)/ε) z3,+ cosh (z3,+(aε − L)/ε)
γ3,1 γ3,2 −z2

3,− sin (z3,−(aε − L)/ε) z2
3,+ sinh (z3,+(aε − L)/ε)

γ4,1 γ4,2 −z3
3,− cos (z3,−(aε − L)/ε) z3

3,+ cosh (z3,+(aε − L)/ε)







C1
ε

C2
ε

C3
ε

C4
ε


 = 0,

(4.10)

where we denoted

Γε =




γ1,1 γ1,2

γ2,1 γ2,2

γ3,1 γ3,2

γ4,1 γ4,2


 = Ψε · Φε, (4.11a)

Ψε =




ψ
(0)
0,bε

ψ
(0)
1,bε

ψ
(0)
2,bε

ψ
(0)
3,bε

ψ
(1)
0,bε

ψ
(1)
1,bε

ψ
(1)
2,bε

ψ
(1)
3,bε

ψ
(2)
0,bε

ψ
(2)
1,bε

ψ
(2)
2,bε

ψ
(2)
3,bε

ψ
(3)
0,bε

+ kψ
(1)
0,bε

ψ
(3)
1,bε

+ kψ
(1)
1,bε

ψ
(3)
2,bε

+ kψ
(1)
2,bε

ψ
(3)
3,bε

+ kψ
(1)
3,bε


,(4.11b)

Φε =




φ
(0)
1,aε

φ
(0)
3,aε

φ
(1)
1,aε

φ
(1)
3,aε

φ
(2)
1,aε

φ
(2)
3,aε

φ
(3)
1,aε

− k1φ
(1)
1,aε

φ
(3)
3,aε

− k1φ
(1)
3,aε


 , (4.11c)
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and k = k1 + 1 − ε1/12 is defined in (3.10). The homogeneous linear system of equa-
tions (4.10) has a nontrivial solution for each ε ∈ (0, ε̃) if and only if its determinant is
identically zero in ε. Expanding its determinant in the third column this implies

0 ≡ sin (z3,−(aε − L)/ε)Nε − z3,− cos (z3,−(aε − L)/ε)Dε,

where we denoted the two minors as

Nε =

∣∣∣∣∣∣

γ2,1 γ2,2 z3,+ cosh (z3,+(aε − L)/ε)
γ3,1 + z2

3,−γ1,1 γ3,2 + z2
3,−γ1,2

(
z2
3,+ + z2

3,−
)
sinh (z3,+(aε − L)/ε)

γ4,1 + z2
3,−γ2,1 γ4,2 + z2

3,−γ2,2 z3,+

(
z2
3,+ + z2

3,−
)
cosh (z3,+(aε − L)/ε)

∣∣∣∣∣∣
,

Dε =

∣∣∣∣∣∣

γ1,1 γ1,2 sinh (z3,+(aε − L)/ε)
γ3,1 + z2

3,−γ1,1 γ3,2 + z2
3,−γ1,2

(
z2
3,+ + z2

3,−
)
sinh (z3,+(aε − L)/ε)

γ4,1 + z2
3,−γ2,1 γ4,2 + z2

3,−γ2,2 z3,+

(
z2
3,+ + z2

3,−
)
cosh (z3,+(aε − L)/ε)

∣∣∣∣∣∣
.

Therefore, one obtains

cot (z3,−(aε − L)/ε) ≡ Nε

z3,−Dε
(4.12)

Next, we denote Kε := λε/ε
2. Let us first describe the case K∗ ≥ Kε > 0 for all

ε ∈ (0, ε̃), where the constant K∗ does not depend on ε. Using this and the definition
of z3,± one obtains

z3,− ∼
√
Kεε and z3,+ ∼ 1. (4.13)

Using this and the assertion (ii) of Lemma 2.2 one obtains

cot (z3,−(aε − L)/ε) ∼ cot
(√

Kε(aε − L)
)

coth (z3,+(aε − L)/ε) ∼ tanh (z3,+(aε − L)/ε) ∼ 1. (4.14)

Applying last three asymptotic relationships to (4.12) results in

cot
(√

Kε(aε − L)
)
∼

∣∣∣∣∣∣

γ2,1 γ2,2 1
γ3,1 +Kεε

2γ1,1 γ3,2 +Kεε
2γ1,2 1

γ4,1 +Kεε
2γ2,1 γ4,2 +Kεε

2γ2,2 1

∣∣∣∣∣∣

√
Kεε

∣∣∣∣∣∣

γ1,1 γ1,2 1
γ3,1 +Kεε

2γ1,1 γ3,2 +Kεε
2γ1,2 1

γ4,1 +Kεε
2γ2,1 γ4,2 +Kεε

2γ2,2 1

∣∣∣∣∣∣

. (4.15)

Let us now derive the asymptotics for the matrix Γε as ε → 0. Below we apply symbol
‘ ∼ ′ for matrices to denote their element-wise asymptotic equivalence in the sense
of Definition 4.1. Analogously to (4.13) by definitions of z1,±, z2,± one obtains

z1,− ∼ z1,+ ∼ K1/4
ε ε and z2,− ∼

√
k1, z2,+ ∼

√
Kε

k1
ε.
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This and definition of φi, i = 1, 3 imply that for all x ∈ (0, aε/ε)

φ1(x, λε) ∼ εx, φ3(x, λε) ∼ ε3x3/6;

φ′
1(x, λε) ∼ ε, φ′

3(x, λε) ∼ ε3x2/2;

φ′′
1(x, λε) ∼ ε6constx3/6, φ′′

3(x, λε) ∼ ε3x;

φ′′′
1 (x, λε) ∼ ε5Kε, φ′′′

3 (x, λε) ∼ ε3. (4.16)

Therefore, by definition (4.11c) one has

Φε ∼




aε
a3

ε

6

ε εa2
ε

2

ε3const ε2aε

−εk1 −εk1
a2

ε

2




Similarly using definition (4.11b) and assertion (ii) of Lemma 2.2 one obtains

Ψε ∼




1 sinρε√
k1

1−cos ρε

k1

√
Kερε

k
5/2

1

ε

Kερε

k
3/2

1

ε2 cos ρε
sin ρε√

k1

√
Kε(1−cos ρε)

k2
1

ε

Kε(1+cos ρε)
k1

ε2 −
√
k1 sin ρε − cos ρε

√
Kε sinρε

k
3/2

1

ε

Kερε(1+k1)

k
3/2

1

ε2 cos ρε
sin ρε√

k1

√
Kε(1+k1−cos ρε)

k1
ε



,

where we denoted
ρε :=

√
k1(bε − aε)/ε. (4.17)

Using the simple rule

f1(ε) ∼ f2(ε), g1(ε) ∼ g2(ε) ⇒ f1(ε) · g1(ε) ∼ f2(ε) · g2(ε),

definition (4.11a) together with the asymptotics for Φε, Ψε and the fact bε − aε =
O(ε1/4) one obtains

Γε ∼




aε
a3

ε

6

ε cos ρε εa2
ε

2
cos ρε

−ε
√
k1 sin ρε −ε

√
k1

a2
ε

2
sin ρε

ε cos ρε εa2
ε

2
cos ρε


 . (4.18)

Finally, from this and (4.11a), (4.15) one gets:

cot
(√

Kε(aε − L)
)
∼ O(ε)√

Kε(cos ρε +
√
k1 sin ρε)

. (4.19)

The last asymptotic relationship prohibits sequences {εl} → 0 and {Kεl
} such that

Kεl
→ 0 and K∗ > Kεl

> 0 for all l ∈ N , because in such cases cot
√
Kεl

(aεl
−L) ∼

1/
√
Kεl

and this would contradict to (4.19). Therefore, without loss of generality (see
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also Remark 26 below) one obtains that cot
√
Kε(aε − L) → 0 as ε → 0. From this

one concludes that Kε →M , where set M is defined in (2.4).

Next, we consider the case −K∗ ≤ Kε < 0 for all ε ∈ (0, ε̃) and substitute it again
in expression (4.12). As before after derivation of the leading order asymptotics for
(4.12) for this case one obtains that the asymptotic balance (4.19) transforms to

coth
(√

−Kε(aε − L)
)
∼ O(ε)√

−Kε(cos ρε +
√
k1 sin ρε)

. (4.20)

Again firstly we obtain from it that sequences {εl} → 0 and {Kεl
} such that Kεl

→ 0
and −K∗ < Kεl

< 0 for all l ∈ N are not possible. But then the right-hand side of
(4.20) tends to zero as ε → 0 and we arrive to a contradiction because the function
coth

(√
−Kε(aε − L)

)
is bounded away from 0. Therefore, the case −K∗ ≤ Kε < 0

for all ε ∈ (0, ε̃) is not possible. Proceeding similarly one can show that the case
Kε ≡ 0 for all ε ∈ (0, ε̃) is not possible as well.

We conclude that if there exists a constant K∗ > 0 such that |Kε| ≤ K∗ for all
ε ∈ (0, ε̃) then one has Kε > 0 for sufficiently small ε > 0 and Kε → M as ε → 0.
This in fact implies both assertions of the theorem.

Remark One may ask what happens with the relations (4.19)–(4.20) if one takes a
sequence {εl} → 0, such that sin(ρεl

+ ϕ) → 0 as l → ∞, where we let

ϕ = arcsin 1/
√

1 + k1 ∈ (0, π/2).

Clearly, in this case it may happen that cot
√
Kεl

(aεl
−L) does not tend to zero and the

assertions of Theorem 4.1 become unclear. To avoid this situation one should recall
definition (4.17) and the fact that there is a certain freedom in defining the functions aε

and bε with the properties stated in Lemma 2.2. One can in fact redefine the contact
line region (aε/ε, bε/ε) for all ε belonging to a special set O ⊂ R , so that for any
sequence {εl} → 0 one would have

| sin(
√
k1(bεl

− aεl
)/εl + ϕ)| ≥ const > 0 for all l ∈ N . (4.21)

and all the assertions of Lemmata 2.2, 3.1 would hold with the redefined aε, bε as well
without any changes to the results of this chapter. Namely, let aε = a(ε) and bε = b(ε)
satisfy the assertions of Lemma 2.2. The set O can the be defined for example as

O =

{
ε > 0 : ∃n ∈ N ,

√
k1(b(ε) − a(ε))

ε
∈ (−7/6ϕ+ πn,−5/6ϕ+ πn)

}
. (4.22)

Next, redefine the functions aε, bε as

aε =

{
a(ε), ε /∈ O
a(ε) − b(ε) − a(ε)

2
, ε ∈ O , bε =

{
b(ε), ε /∈ O
b(ε) +

b(ε) − a(ε)

2
, ε ∈ O (4.23)
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and fix any sequence {εl} → 0. It can be decomposed into two subsequences
{εlk}, {εlm} → 0 (one of which may be empty or finite), such that εlk ∈ O for all
k ∈ N and εlm /∈ O for all m ∈ N . Then by definitions (4.22) and (4.23) one obtains

| sin(
√
k1(bεlk

− aεlk
)/εlk + ϕ)| = | sin(2

√
k1(b(εlk) − a(εlk))/εlk + ϕ)| ≥ sin(2/3ϕ) > 0,

| sin(
√
k1(bεlm

− aεlm
)/εlm + ϕ)| = | sin(

√
k1(b(εlm) − a(εlm))/εlm + ϕ)| ≥ sin(1/6ϕ) > 0

for all k, m ∈ N . We conclude that the definition (4.23) makes all assertions of Lem-
mata 2.2, 3.1 to be fulfilled again and (4.21) holds for any sequence {εl} → 0. There-
fore, (4.19)–(4.20) imply all assertions of Theorem 4.1.

The next lemma shows that eigenvalues of approximating problems are asymptotically
simple. Besides, it allows for the derivation of leading orders as ε → 0 for eigenfunc-
tions of approximating problems.

Lemma 4.2. Let k, m ∈ N 0 and the corresponding λi, k
ε and λi, m

ε be the k-th and m-
th eigenvalues, respectively, from the ordering (3.9) for the approximating eigenvalue
problem (3.8) with fixed i = 1 or i = 2. If there exists a number K∗ > 0 such that

∣∣∣∣
λi, k

ε

ε2

∣∣∣∣ ≤ K∗ and

∣∣∣∣
λi, m

ε

ε2

∣∣∣∣ ≤ K∗

for all sufficiently small ε > 0, then there exist positive numbers K∗∗ and ε̃ such that
∣∣λi, k

ε − λi, m
ε

∣∣ ≥ K∗∗ε2

for all ε ∈ (0, ε̃).

Proof. Let us prove the lemma using a contradiction argument. We do it again only
for the case (3.8) with i = 1. For the case i = 2 the proof is analogous. Suppose that
the assertion of the lemma is not true. Then by assertion (i) of Theorem 4.1 it follows
that there exists a positive number K ∈ M and sequences {εl} → 0, {λεl

}, {λ̃εl
}

such that

λεl
= λ1, k

εl
, λ̃εl

= λ1, m
εl

for each l ∈ N ,

λεl

ε2
l

→ K,
λ̃εl

ε2
l

→ K as → ∞. (4.24)

Let {hεl
} be the sequence of eigenfunctions hεl

corresponding to λεl
for each l ∈ N .

Following the lines of the proof for Theorem 4.1 one obtains that there exist Cp
εl
, p =

1, 2, 3, 4 such that the representations (4.5), (4.6), (4.8) hold for hεl
on the droplet core,

contact line and outer layer intervals, respectively. Moreover, Cp
εl

are solutions of the
homogeneous linear system (4.10) with the notation defined in the proof of Theorem
4.1. Let

Mεl
=




γ1,2 sin (z3,−(aεl

− L)/εl) sinh (z3,+(aεl
− L)/εl)

γ2,2 z3,− cos (z3,−(aεl
− L)/εl) z3,+ cosh (z3,+(aεl

− L)/εl)
γ3,2 −z2

3,− sin (z3,−(aεl
− L)/εl) z2

3,+ sinh (z3,+(aεl
− L)/εl)



 . (4.25)
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We claim that there exists a subsequence {λεl
} (to avoid cumbersome notation we

denote all subsequences below also by {λεl
}) such that det Mεl

6= 0 for all l ∈ N . Sup-
pose the inverse is true, then one can fix a subsequence {λεl

}, such that det Mεl
≡ 0

for all l ∈ N . Expanding the determinant of Mεl
in the second column and dividing the

resulting expression by sin (z3,−(aεl
− L)/εl) one obtains:

cot(z3,−(aεl
− L)/εl)=

∣∣∣∣
γ2,2 z3,+ cosh (z3,+(aεl

− L)/εl)
γ3,2 + z2

3,−γ1,2

(
z2
3,+ + z2

3,−
)
sinh (z3,+(aεl

− L)/εl)

∣∣∣∣

z3,−

∣∣∣∣
γ1,2 sinh (z3,+(aεl

− L)/εl)
γ3,2 + z2

3,−γ1,2

(
z2
3,+ + z2

3,−
)
sinh (z3,+(aεl

− L)/εl)

∣∣∣∣
.

One can check that relations (4.13), (4.14) and (4.18) hold in the current case with
Kεl

→ K as l → ∞ by (4.24). From these it follows that the right hand side of the
last expression is O(1) and the left hand side tends to zero as l → ∞. This gives a
contradiction, and therefore we can fix a subsequence {λεl

} such that det Mεl
6= 0

for all l ∈ N . For such a subsequence the matrix of the linear system of algebraic
equations (4.10) has rank three. Therefore, using Cramer’s rule and fixing C1

εl
for

each l ∈ N one gets uniquely Cp
εl
, p = 2, 3, 4 as the solution of a linear system:




γ1,2 sin (z3,−(aεl

− L)/εl) sinh (z3,+(aεl
− L)/εl)

γ2,2 z3,− cos (z3,−(aεl
− L)/εl) z3,+ cosh (z3,+(aεl

− L)/εl)
γ3,2 −z2

3,− sin (z3,−(aεl
− L)/εl) z2

3,+ sinh (z3,+(aεl
− L)/εl)








C2

εl

C3
εl

C4
εl



 = −C1
εl




γ1,1

γ2,1

γ3,1



 .

This allows us to obtain the asymptotics for Cp
εl
, p = 2, 3, 4 as l → ∞. For example,

due to Cramer’s rule

C2
εl

C1
εl

= −

∣∣∣∣∣∣

γ1,1 sin (z3,−(aεl
− L)/εl) sinh (z3,+(aεl

− L)/εl)
γ2,1 z3,− cos (z3,−(aεl

− L)/εl) z3,+ cosh (z3,+(aεl
− L)/εl)

γ3,1 −z2
3,− sin (z3,−(aεl

− L)/εl) z2
3,+ sinh (z3,+(aεl

− L)/εl)

∣∣∣∣∣∣
∣∣∣∣∣∣

γ1,2 sin (z3,−(aεl
− L)/εl) sinh (z3,+(aεl

− L)/εl)
γ2,2 z3,− cos (z3,−(aεl

− L)/εl) z3,+ cosh (z3,+(aεl
− L)/εl)

γ3,2 −z2
3,− sin (z3,−(aεl

− L)/εl) z2
3,+ sinh (z3,+(aεl

− L)/εl)

∣∣∣∣∣∣

. (4.26)

Expanding the nominator and the denominator of the last expression and again using
the asymptotics (4.13)–(4.14), (4.18) one obtains C2

εl
/C1

εl
= −2/a2

εl
+ o(1). Analo-

gously, one can obtain that C3
εl
/C1

εl
= −2aεl

/3 + o(1) and C4
εl
/C1

εl
is exponentially

small, namely C4
εl
/C1

εl
∼ o(εl) exp ((aεl

− L)/εl).

Next, let {h̃εl
} be the sequence of eigenfunctions h̃εl

corresponding to λ̃εl
from (4.24)

for each l ∈ N . By assertion (iii) of Proposition 3.2 one has

(hεl
, h̃εl

)Hεl
≡ 0 for all l ∈ N , (4.27)

where we use the inner product (3.7). Denote for each l ∈ N by C̃p
εl

for p = 1, 2, 3, 4

the solutions of the linear system corresponding to the eigenfunction h̃εl
. We can fix

C1
εl
≡ C̃1

εl
for all l ∈ N so that (4.27) still holds. Then by the considerations above and
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(4.24) it follows that Cp
εl
∼ C̃p

εl
for p = 2, 3, 4 as l → ∞. From this, again (4.24) and

the representations (4.5), (4.6), (4.8) for hεl
(x) and h̃εl

(x) yields

(hεl
, h̃εl

)Hεl
→ 1 as l → ∞.

However, the last relation contradicts (4.27). Therefore, we arrive to a contradiction
and the assertion of the lemma is true.

Leading order for eigenvalues and eigenfunctions The results of Theorem 4.1
and Lemma 4.2 allow us the derivation of the leading order eigenvalues and eigen-
functions of the approximating eigenvalue problems (3.8) as ε → 0, which in turn
provide an asymptotic approximation for the eigenvalues of the corresponding Dirich-
let half-droplet problem (3.1). Indeed, Theorem 4.1 allows for eigenvalues λε ∼ Kε2,
where K ∈M .

Suppose such an eigenvalue exists for the eigenvalue problem “from below”. Then for
the corresponding eigenfunction hε the representations (4.5), (4.6), (4.8) should hold.
Moreover, from the proof of Lemma 4.2 it follows that hε can be normalized so that

C1
ε ≡ 1, C2

ε ∼ −2/a2
ε, C3

ε ∼ −2aε/3, C4
ε ∼ o(ε) exp ((aε − L)/ε) (4.28)

From this, the representation (4.5) and asymptotics (4.16), it follows that on the droplet
core interval (0, aε/ε) to leading order hε(x) is a linear combination of polynomials
and does not depend on K. One can explain this fact by looking at equation (4.3) for
hε on the droplet core. The term 2ε3h′′ε(x) − ε9/4λεhε(x) is small enough, so that the
leading orders for the fundamental system on this interval are given by the solutions
of the equation h(4)

ε (x) = 0, i.e. by polynomials. This property of (4.3) in turn comes
about because defining the approximating problems (3.8) we explored the asymptotics
derived in Lemma 3.1 for the coefficients rε(x), fε(x) of the symmetric eigenvalue
problem (1.19).

Taking next the leading order as ε→ 0 in the representation (4.6) one can see that on
the contact line region (aε/ε, bε/ε) to leading order hε(x) is constant and its deriva-
tives actually oscillate with a high frequency proportional to (bε − aε)/ε. Such oscilla-
tions needs some work to resolve numerically the derivatives of the eigenfunctions in
this region (see details in the next section). Finally, on the outer layer (bε/ε, L/ε) due
to (4.8) and asymptotics (4.13), (4.28) holding with Kε → K as ε → 0 one obtains
that

hε(x) ∼ C3
ε sin

(√
K(εx− L)

)

and essentially depends on K. If we consider instead of the approximating problem
“from below” the one “from above” we end up with the same leading orders on the
droplet core and the outer layer for the eigenfunctions hε corresponding to λε ∼ Kε2

with K ∈M .

Motivated by this, let us construct for each j ∈ N 0 approximations to the solutions of
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the Dirichlet half-droplet problem (3.1) as

hj
ε(x) ≈ Cε





εx− ε3

3a2
ε

x3 + pj
ε(x), x ≤ aε/ε

2aε

3
sin
(√

Kj(εx− L)
)
, x ≥ aε/ε

, λj
ε ≈ Kjε2, (4.29)

where we denote

Kj =

(
π(2j + 1)

2(L− bε)

)2

.

We note, that one can show that the leading orders for the eigenvalues of the ap-
proximating problems for the Neumann half-droplet problem (3.2) are also given by
λj

ε ≈ Kjε2. This suggests that initial eigenvalue problem (1.19) posses a countable
set Rε := {λj

D(ε), λj
N (ε) j ∈ N 0} of positive eigenvalues. Elements of Rε have

asymptotics of O(ε2). Our discussion at the end of section 2 suggest that (1.19)
posses additionally a solution with the leading order asymptotics of the following form

h∗ε(x) ≈ Cε(h0,ε(x) − h−ε ) and λ∗ε ≈ 0, (4.30)

where λ∗ε is negative and tends to zero exponentially fast as ε → 0. Finally, for suf-
ficiently small ε > 0 the set Rε is separated from exactly one exponentially small
negative eigenvalue λ∗(ε) by a spectrum gap given in (4.2). In the next section direct
numerical solutions confirm our asymptotically derived results.

5 Numerical solutions and comparisons

Here we describe the numerical solution of the eigenvalue problem (1.14) and com-
pare it with the leading order approximations (4.29), (4.30) for the set of eigenvalues
of the symmetric EVP (1.19).

We proceed in three steps. Firstly, for fixed P, L and sufficiently small ε > 0 we solve
(1.11a) with boundary conditions

h′0, ε(±L/ε, P ) = 0

numerically and calculate the stationary solution h0, ε(x). Using h0, ε(x) we then cal-
culate the coefficient functions for the linear operator Lε. Secondly, we apply a finite
difference discretization on a uniform mesh on the interval [−L/ε, L/ε] to the linear
operator Lε including also the boundary conditions (1.8). The resulting approximation
of our finite-difference scheme is O(1/N2), where N is the mesh size. Finally, the
problem transforms to one of finding the eigenvalues and eigenfunction of the matrix
A ∈ M(N × N) corresponding to the discretized operator Lε. We calculate them us-
ing an Implicitly Restarted Arnoldi Method, which was developed in [21] for the cases
of large sparse matrices and implemented in the Fortran library ARPACK. The set of
eigenpairs of matrix M give us a numerical approximation for the smallest eigenpairs
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j 0 1 2 3 4 5
λappr/ε

2 0.1381 1.2431 3.4532 6.7682 11.1883 16.7134
λnum/ε

2 0.1437 1.2926 3.5843 7.0068 11.5425 17.1675

Table 1: Comparison of the first 6 eigenvalues for the Dirichlet eigenvalue problem
(3.1) with P = 0.1, L = 10, ǫ = 10−6.

of EVP (1.14). In Table 1 we compare the first six eigenvalues calculated numerically
(second row) for the Dirichlet half-droplet problem (3.1) and using the analytical ap-
proximations (4.29) (first row). Similar agreement between the numerical results and
the analytical approximations (4.29), (4.30) are obtained for the eigenvalues of the
Neumann half-droplet problem (3.2).

Our numerical results also show that for fixed ε > 0 and j ∈ N0 the corresponding
λj

D,ε and λj
N,ε are very close. In Figure 3 two numerically obtained eigenfunctions

corresponding to the eigenvalues −λ2
D,ε and −λ2

N,ε of the initial eigenvalue problem
(1.14) are presented. As was stated in the introduction, the eigenfunctions of the
eigenvalue problem (1.14) are the derivatives of the corresponding eigenfunctions
of the symmetric eigenvalue problem (1.19). According to this and that the set of
solutions to the latter problem is the union of solutions to Dirichlet and Neumann half-
droplet eigenvalue problems, Figure 3 shows that the left numerical eigenfunction
is an even function and corresponds to the derivative of the eigenfunction for the
Dirichlet half-droplet problem. The right one is an odd function and corresponds to the
derivative of the eigenfunction for the Neumann half-droplet problem.

Figure 3: Eigenfunctions corresponding to eigenvalues −λ2
D,ε (left) and −λ2

N,ε (right) of EVP
(1.14), P = 0.1, L = 10, ǫ = 10−6.

Figure 3 clearly shows two regions in the interval [−L/ε, L/ε]. In the outer interval
both eigenfunctions are represented by trigonometric functions and in the inner one,
corresponding to the droplet core, by polynomials. This stays in a good correspon-
dence with the approximation for the eigenfunctions in the last paragraph of section 4
and (4.29). Due to the chosen very small ε = 10−6 and the fact that the relative length
of the contact line interval between those regions tends to zero as ε → 0 (see Lemma
2.2) numerically we observe this interval as a point on Figure 3.
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Another observation concerns the smoothness of the numerical eigenfunctions. In
Figure 3 one can see that the first derivative of the eigenfunctions is discontinuous at
this point. This can be explained using the analytical result that we obtained for the
approximating problem “from below”, namely in the contact line region the derivative
of the eigenfunctions for the above problem oscillates fast and proportionally to the
negative power of ε. Therefore, it is a challenging numerical problem to resolve the
derivatives of eigenfunctions in this very small contact line region. Nevertheless, the
numerical eigenfunctions from Figure 3 are continuous and this stays also in corre-
spondence with our analytical result, which predicts that in the contact line region to
the leading order in ε an eigenfunction itself is determined by a constant and does not
possess oscillations.

Finally, Figure 4 shows the numerical eigenfunction of the eigenvalue problem (1.14)
corresponding to the exponentially small eigenvalue −λ∗ε. Comparing Figures 7 and
4 one can see that this function is close to h′0,ε(x). This is in a agreement with the
approximation (4.30) for the corresponding eigenfunction of the the symmetric eigen-
value problem (1.19).

Figure 4: Eigenfunction corresponding to eigenvalue −λ∗
ε of eigenvalue problem (1.14), P =

0.1, L = 20, ǫ = 10−2.

A Asymptotics for the steady state solutions

In this appendix we prove important Lemmata 2.2 and 3.1. Let us consider equation

h′′(x) = Π (h(x)) − εP. (A.1)

By results of Appendix A of [8] (see also Figure 5) there exists a hyperbolic saddle
point ĥ−ε and an elliptic center point ĥc

ε of equation (A.1), which are the two real roots
of the algebraic equation Π (h) − εP = 0 and have the following asymptotic form:

ĥ−ε = 1 + εP +O(ε2), ĥc
ε ∼ (εP )−1/3. (A.2)
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Corresponding to this there exists a homoclinic solution ĥε(x) to (A.1), the minimum
of which is given by ĥ−ε , and its maximum ĥ+

ε (see [8]) has asymptotics form

ĥ+
ε =

1

6εP
+ 1 + O(ε). (A.3)

One can define a first integral for ĥε(x) as

1/2
(
ĥ′ε(x)

)2

+ Uε

(
ĥε(x)

)
= 0,

where

Uε(h) = −U(h) + U
(
ĥ−ε

)
+ εP (h− ĥ−ε ), (A.4a)

Uε

(
ĥ−ε

)
= U ′

ε

(
ĥ−ε

)
= Uε

(
ĥ+

ε

)
= 0. (A.4b)

The function U(h) in (A.4a) (see its plot in Figure 6 is such that dU/dh = Π(h) and

U(h) :=
1

3h3
− 1

2h2
. (A.5)

The next proposition is needed for the proof of Lemma 2.2 below.

Figure 5: Phase plane portrait for the equation (A.1) (left) and plot of function Uε(h) (right).

Proposition A.1. For each sufficiently small ε > 0 and δ ∈ (0, −Uε(ĥ
c
ε)) there exists

a unique number hε(δ) ∈ (ĥ−ε , ĥ
c
ε) such that

δ = −Uε(hε(δ)).

Moreover, there exist positive numbers ε̃, δ̃ such that for all ε ∈ (0, ε̃) and δ ∈ (0, δ̃)
one has

hε(δ) − ĥ−ε < 2
√
δ. (A.6)
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Proof. The existence and uniqueness of hε(δ) follows from the fact that ĥ−ε and ĥc
ε

are double zeros and the local minimum of Uε(h) (see also Figure 5). Moreover, using
(A.4a)–(A.4b) and Peano’s formula one obtains

hε(δ) − ĥ−ε =

√
2δ

Π′(θε(δ))
, (A.7)

where θε(δ) ∈ [ĥ−ε , hε(δ)]. From (1.6) it follows that the function Π′(h) monotonically
decreases for h ∈ [1, 5/3]. By (A.2) one has Π′(ĥ−ε ) → 1 as ε→ 0 and Π′(ĥc

ε) < 0 for
sufficiently small ε > 0. Therefore, one can choose sufficiently small ε̃ > 0 and δ̃ > 0
such that

Π′(hε̃(δ̃)) := 1/2. (A.8)

Next, from (A.4a) and the definition of ĥ−ε it follows that

∂Uε(h)

∂ε
= (Π(ĥ−ε ) − ε P )

∂ĥ−ε
∂ε

+ P (h− ĥ−ε )

= P (h− ĥ−ε ) > 0 for all h > ĥ−ε̃ and ε ∈ (0, ε̃). (A.9)

Let us fix 0 < ε < ε̃ and 0 < δ < δ̃. Define a number h∗ > ĥ−ε̃ , such that Uε̃(h
∗) = −δ.

If we suppose that h∗ ≤ hε(δ) then we arrive at the following contradiction:

−δ = Uε̃(h
∗) ≥ Uε̃(hε(δ)) > Uε(hε(δ)) = −δ,

where we used (A.9) and that the function Uε̃(h) decreases for h ∈ (ĥ−ε̃ , ĥ
c
ε̃). There-

fore, h∗ > hε(δ). On the other hand

Uε̃(h
∗) = −δ > −δ̃ = Uε̃(hε̃(δ̃))

and therefore again by monotonicity of Uε̃(h) one gets h∗ < hε̃(δ̃). Hence, one obtains
hε(δ) < hε̃(δ̃). Finally, using again monotonicity of Π′(h) and the definition (A.8) one
obtains that Π′(hε(δ)) > 1/2, and therefore from (A.7) estimate (A.6) follows.

Next, we define h+
ε and h−ε as the maximum and the minimum of the steady state

solution h0,ε(x) which are attained at x = 0 and x = ±L/ε by (1.11b)–(1.11c). A first
integral for h0,ε(x) is determined by

1/2(h′0,ε(x))
2 + Uε(h0,ε(x)) − Uε(h

−
ε ) = 0, (A.10a)

Uε(h
+
ε ) − Uε(h

−
ε ) = 0 (A.10b)

In the next lemma we state the asymptotics for h+
ε , h

−
ε and h′′0, ε(±L/ε) as ε → 0. We

should point out, that an appearance of the term α/ε2/3 in the estimates (A.11) and
(A.14) is strongly connected with the fact that from the asymptotic form (A.2), (A.3)
we obtain

ĥ+
ε

ĥc
ε

= O(ε−2/3).
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Lemma A.2. There exists a positive constant α such that for all sufficiently small ε > 0
it holds

(i)

h−ε − ĥ−ε ≤ exp
(
− α

ε2/3

)
, (A.11)

(ii)
h−ε = 1 + ε P + o(ε), (A.12)

(iii)

h+
ε ∼ 1

6ε P
. (A.13)

(iv) ∣∣h′′0, ε(±L/ε)
∣∣ ≤ exp

(
− α

ε2/3

)
, (A.14)

Proof. a) Integrating (A.10a) with respect to x on (0, L/ε) and using h0,ε(0) = h+
ε ,

h0,ε(L/ε) = h−ε one obtains

L

ε
=

∫ h+
ε

h−

ε

dh√
2 (Uε(h−ε ) − Uε(h))

. (A.15)

From (A.4a) and (A.10b) one obtains

Uε(h
−
ε ) − Uε(h) = U(h) − U(h−ε ) − ε P (h− h−ε ), (A.16a)

U(h+
ε ) − U(h−ε ) − ε P (h+

ε − h−ε ) = 0. (A.16b)

By (A.4a), (A.5) for a fixed ε > 0 the function Uε(h) monotonically increases on (0, ĥ−ε )
from −∞ to 0, it decreases on (ĥ−ε , ĥ

c
ε) and increases on (ĥc

ε, ĥ
+
ε ) (see Figure 5).

Using this and (A.16a) one arrives at the following representation:

Uε(h
−
ε ) − Uε(h) =

ε P (h− h−ε )(h− h∗ε)(h− h∗∗ε )(h+
ε − h)

h3
, (A.17)

where four real zeros of the function Uε(h
−
ε ) − Uε(h) for each fixed ε > 0 fulfill the

following constraints:

h∗∗ε < 0, 0 < h∗ε < ĥ−ε ,

ĥ−ε < h−ε < ĥc
ε, ĥ

c
ε < h+

ε < ĥ+
ε . (A.18)

b) Let us prove using a contradiction argument, that there exist positive numbers ε1

and α1 such that
h−ε ≤ α1 for all ε ∈ (0, ε1). (A.19)

Assume the inverse, then without loss of generality h−ε → +∞ as ε→ 0. Using (A.15),
(A.17) and (A.18) one estimates

L

ε
≤ 1√

2ε P

∫ h+
ε

h−

ε

√
h+

ε√
(h− h−ε )(h+

ε − h)

√
h

h− ĥ−ε
dh.
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From h−ε → +∞ and (A.2) it follows that there exists ε̃ > 0 such that

√
h

h− ĥ−ε
≤
√

h−ε̃

h−ε̃ − ĥ−ε̃
≤

√
2

for all h ∈ (h−ε̃ , +∞) and ε ∈ (0, ε̃). Using the last two estimates one obtains for all
ε ∈ (0, ε̃)

L

ε
≤ 1√

ε P

∫ h+
ε

h−

ε

√
h+

ε√
(h− h−ε )(h+

ε − h)
dh =

√
h+

ε

ε P
π.

On the other hand by h−ε → +∞ and (A.16b) one has ε P h+
ε = o(1) as ε → 0. Using

this and the last estimate one obtains that

L

ε
≤ o(1)

ε P
π,

which obviously gives a contradiction. Therefore, (A.19) holds with some positive num-
bers ε1, α1.

Next, let us show using a contradiction argument, that there exist positive numbers α2

and ε2 such that
h+

ε ≥ α2

ε
for all ε ∈ (0, ε2). (A.20)

Assume the inverse, then without loss of generality ε P h+
ε → 0 as ε → 0. On the

Figure 6: Plot of function U(h).

other hand (A.18) and (A.2) yield h+
ε → +∞ as ε → 0. Substituting this in (A.16b)

and using (A.19), (A.5) one obtains

U(h−ε ) → 0.

From this, by h−ε > ĥ−sc,ε > 1 and (A.5) it follows that h−ε → +∞, which gives a con-
tradiction to (A.19). Therefore, the estimate (A.20) holds with some positive numbers
ε2, α2.

28



c) We write now the formula (A.15) as

L

ε
= I1 + I2 :=

∫ ĥc
ε

h−

ε

dh√
2 (Uε(h−ε ) − Uε(h))

+

∫ h+
ε

ĥc
ε

dh√
2 (Uε(h−ε ) − Uε(h))

(A.21)

and estimate each of the integrals Ik, k = 1, 2 separately. Using again (A.18) and
(A.19) one estimates

I2 =

∫ h+
ε

ĥc
ε

dh√
2 (Uε(h−ε ) − Uε(h))

≤ 1√
2ε P

∫ h+
ε

ĥc
ε

h√
(h− α1)(h− ĥ−ε )(h+

ε − h)
dh.

By (A.2) and (A.18) both ĥc
ε and h+

ε tend to +∞ and ĥ−ε → 1 as ε → 0. Therefore,
there exists ε∗ > 0 such that

h√
(h− α1)(h− ĥ−ε )

≤ (1 + C) with C :=
LP

2A
− 1/2 (A.22)

holds for all h ∈ (ĥc
ε∗, +∞) and ε ∈ (0, ε∗). Note that the number C in (A.22) by

condition (2.3) is positive. Using now the last two estimates, again (A.18) and (A.3),
one obtains

I2 ≤ 1 + C√
2ε P

∫ h+
ε

ĥc
ε

dh√
h+

ε − h
≤

≤

√
2ĥ+

ε

ε P
(1 + C) =

(
L+ A/P

2

)
1

ε
+ o

(
1

ε

)
. (A.23)

d) Let us now estimate the integral I1 from (A.21). Using again (A.18) one obtains

I1 =

∫ ĥc
ε

h−

ε

dh√
2 (Uε(h−ε ) − Uε(h))

≤

≤ 1√
2ε P

ĥc
ε√

h+
ε − ĥc

ε

∫ ĥc
ε

h−

ε

dh√
(h− h−ε )(h− ĥ−ε )

. (A.24)

This, asymptotics (A.20) and (A.2) yield that there exist positive numbers ε3 and α3

such that for all ε ∈ (0, ε3) the following estimate holds:

I1 ≤ α3

ε1/3

∫ ĥc
ε

h−

ε

dh√
(h− h−ε )(h− ĥ−ε )

≤

≤ α3

ε1/3

(
− log

(
h−ε − ĥ−ε

)
+ 2 log

(
2
(
ĥc

ε − ĥ−ε

)))
. (A.25)

Finally, combining the estimates (A.23), (A.25) together with formula (A.21) and using
(A.2) one obtains

log(h−ε − ĥ−ε ) ≤ −
(
L− A/P

2α3

)
1

ε2/3
+ o

(
1

ε2/3

)
.
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This together with condition (2.3) imply that the estimate (A.11) holds for sufficiently
small ε > 0 with the positive constant

α :=
L−A/P

4α3
.

e) The asymptotic form (A.12) follows from (A.11) and (A.2). In turn (A.13) follows
from (A.12) and (A.16b), (A.5).

f) Let us finally show the estimate (A.14). Using (1.11a) and Peano’s formula one
obtains

h′′0,ε(±L) = Π
(
h−ε
)
− εP = Π′(ĥ−ε )(h−ε − ĥ−ε ) + Π′′(θε)(h

−
ε − ĥ−ε )2,

where θε ∈ [ĥ−ε , h
−
ε ]. The representations (A.2) and (A.12) yield that Π′′(θε) < 0 and

Π′(ĥ−ε ) < 1 for sufficiently small ε > 0. Therefore, applying the estimate (A.11) one
obtains (A.14).

Let us now prove Lemmata 2.2, 3.1

Proof of Lemma 2.2:

Proof. Using the estimates, (A.12)–(A.13) and (1.11c) uniquely define aε for each
sufficiently small ε > 0 as

L > aε > 0 : h0,ε(aε/ε) = ε−3/4 . (A.26)

Then by (1.6) and (A.26) one has

Π(h0,ε(x)) = O(ε9/4) and
d2h0,ε(x)

dx2
= −P ε+O(ε9/4), for x ∈ [0, aε/ε].

Integrating two times and using h′0,ε(0) = 0 by (1.11c) one obtains

h′0,ε(x) ∼ −P εx,

h0,ε(x) ∼ P ε

2

((
C

ε

)2

− x2

)
for all x ∈ [0, aε/ε]. (A.27)

Taking x = 0 in the last expression and using (A.13) one obtains

C =
A

P
.

Taking next x = aε gives

aε ∼
A

P
and h′0,ε(aε/ε) ∼ −A. (A.28)

The estimate ε−3/4 ≤ h0,ε(x) = O(1/ε) for all x ∈ [0, aε/ε] follows from (A.13),
definition (A.26) and monotonicity of h0,ε(x) for x > 0 by (1.11c). Therefore, assertion
(iii) of the lemma is proved.
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Next, for each ε > 0 by definition of ĥc
ε there exists a unique xc

ε ∈ (0, L) such that

h0,ε(x
c
ε/ε) = ĥc

ε and h′′0,ε(x
c
ε/ε) = 0. (A.29)

For each ε > 0 the function h0,ε(x) decreases on [0, L/ε], therefore one can define its
inverse function xε(h) decreasing on [h−ε , h

+
ε ] as

xε (h0,ε(x)) := x and x′ε(h) =
1

h′0,ε(xε(h))
. (A.30)

Figure 7: Plot of h′
0,ε(x) obtained numerically for ε = 0.1, P = 0.1, L = 20 and correspond-

ing to h0,ε(x) from Figure 1.

By this and (A.2), (A.26) and (A.28) one obtains
∣∣∣xc

ε − aε

∣∣∣
ε

≤
∫ 1

0

∣∣∣x′ε
(
t ĥc

ε − (1 − t)ε−3/4
) ∣∣∣ dt

∣∣∣ĥc
ε − ε−3/4

∣∣∣ ≤

max
ĥc

ε≤h≤ε−3/4

∣∣∣x′ε(h)
∣∣∣
∣∣∣ĥc

ε − ε−3/4
∣∣∣ =

∣∣∣ĥc
ε − ε−3/4

∣∣∣
|h′0, ε(aε/ε)|

= O(ε−3/4), (A.31)

where we also use that
∣∣∣h′0,ε(x)

∣∣∣ increases for x ∈ [0, xc
ε/ε] by (1.11a) and (A.29) (see

also Figure 7). Therefore, using (A.28) one obtains

xc
ε ∼ aε ∼

A

P
,

h′0,ε(x
c
ε/ε) ∼ −A,

xc
ε − aε = O(ε1/4). (A.32)

Using this and that
∣∣∣h′0,ε(x)

∣∣∣ decreases for x ∈ [xc
ε/ε, L/ε] (see Figure 7), we define

for each sufficiently small ε > 0 a unique bε as

L > bε > xc
ε : h′0,ε(bε/ε) := −ε1/6. (A.33)
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Using this, the first integral (A.10a), definition (A.4a)–(A.4b), Peano’s formula and
(A.11) yields

−Uε(h0, ε(bε/ε)) =
1

2
ε1/3 − Uε(h

−
ε ) + Uε(ĥ

−
ε ) =

=
1

2

(
ε1/3 + Π′(θε)(h

−
ε − ĥ−ε )2

)
≤ 1

2

(
ε1/3 + exp

(
− α

ε2/3

))
=

= O(ε1/3), (A.34)

where θε ∈ [ĥ−ε , h
−
ε ] and by (A.2), (A.12) Π′(θε) ≤ Π′(ĥ−ε ) ≤ 1. Applying Proposition

A.1 to the last inequality one gets

h0,ε(bε/ε) = 1 +O(ε1/6) . (A.35)

Now, the assertion (iv) of the lemma follows from (A.12) and (1.11c).

Finally, we show bε − aε = O(ε1/4). Using the inverse function xε(h) defined in (A.30)
one writes
∣∣∣xc

ε − bε

∣∣∣
ε

≤
∫ 1

0

∣∣∣x′ε
(
t ĥc

ε − (1 − t)h0,ε(bε/ε)
) ∣∣∣ dt

∣∣∣ĥc
ε − h0,ε(bε/ε)

∣∣∣ ≤

≤ max
h0,ε(bε/ε)≤h≤ĥc

ε

∣∣∣x′ε(h)
∣∣∣
∣∣∣ĥc

ε − O(1)
∣∣∣ =

∣∣∣ĥc
ε −O(1)

∣∣∣
ε1/6

= O(ε−1/2), (A.36)

where we also used definition (A.33) and (A.35), (A.2). From the last estimate one
obtains bε − xc

ε = O(ε1/2). Combining this with (A.32) yields bε − aε = O(ε1/4), which
in turn, noting (A.28), implies assertion (ii) of the lemma. This concludes the proof of
the lemma.

Proof of Lemma 3.1:

Proof. By definition (1.15a)

rε(x) = − 4

(h0,ε(x))5
+

3

(h0,ε(x))4
(A.37)

By assumption (iii) of Lemma 2.2 and (A.37), (1.15b) it follows that

O(ε4) ≤ rε(x) = ε3 + o(ε3), O(ε3) ≤ fε(x) ≤ ε9/4 for all x ∈ [0, aε/ε]

By assumption (iv) of Lemma 2.2 and (A.37), (1.15b) it follows

−1 ≤ rε(x) = −1 +O(ε6), 1 −O(ε6) ≤ fε(x) ≤ 1 for all x ∈ [bε/ε, L/ε].

Therefore, assertion (i) follows. The stationary points of the function rε(x) are given
by equation

r′ε(x) =

(
20

(h0,ε(x))6
− 12

(h0,ε(x))5

)
h′0,ε(x) = 0
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Using (A.12)–(A.13) and that h′0,ε(x) < 0 for all x ∈ (0, L/ε), one obtains that for each
sufficiently small ε > 0 there exists a unique xm

ε at which rε(x) attains its maximum
k1 := (3/5)5 > 0 such that h0,ε(x

m
ε ) = 5/3. Therefore, by (A.26), (A.35) and again

h′0,ε(x) < 0 for all x ∈ (0, L/ε) it follows that aε/ε < xm
ε < bε/ε, and hence the

assertions (ii) and (iii) are proved.

Conclusions and discussion

In this article we considered the asymptotics of the spectrum of the linearized thin-film
equation (1.7) with (1.8) at the steady state solution h0,ε as the singular parameter
ε → 0. It corresponds to the physical sitution of a single droplet that is connected to
the boundaries via a thin layer of thickness ε. We constructed the leading order ap-
proximations (4.29)-(4.30) for the eigenvalues and eigenfunctions of the correspond-
ing linearized eigenvalue problems (1.14) and (1.19) and confirmed them numerically.
In particular, (4.29)-(4.30) show the existence of the spectral gap (4.2), which is a
central property for the application of an extension of the center-manifold reduction
method of [15] to the derivation of the reduced ODE models describing the dynamics
of coarsening droplets as mentioned in the introduction.

The natural question that arises is if these approximations can be justified rigorously,
i.e. if one can show the existence of eigenvalues to (1.14) having the corresponding
leading orders as ε → 0. For this purpose in [20] an approach was developed based
on a variant of the implicit function theorem that has been developed recently for a
special class of singular perturbed problems in [22] and [23]. In particular, in [20] the
existence of eigenvalues and eigenfunctions with the leading order asymptotics (4.29)
for the approximating problems (3.8) was proved.

Part of our future work will be to extend this approach to show the existence of an
exponentially small eigenvalue corresponding to the approximation (4.30) with the
leading order asymptotics suggested in (2.5). The existence of an exponentially small
eigenvalue is an interesting problem on its own because its smallness prescribes the
velocity of the slow motion on the center-manifold, its attraction rate and consequently
the time scale for the coarsening process. Besides this, exponentially small eigenval-
ues, are also believed to be the cause for phenomena such as boundary layer reso-
nance, that has been investigated for convection-diffusion-reaction equations, see for
example [24, 25] and references therein.

Returning to the eigenvalue problem (1.14), we note that apart from the proof of ex-
istence of its solutions with prescribed asymptotics (4.29) and (4.30), one still needs
to show that the set of the corresponding eigenfunctions forms a complete system in
order to rigorously establish the existence of the spectral gap property (4.2). In view
of the fact that the eigenvalue problem (1.14) is a singular perturbed one and the
eigenvalues with asymptotics (4.29)–(4.30) all tend to zero as ε → 0, this problem
seems to be a nontrivial problem on its own and is subject of future research. Also on
the other hand, as it was shown in this paper, the approximating eigenvalue problems
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to (1.14) should posses an exponentially fine approximation in order to catch all the
eigenvalues of the original problem.

Finally, we would like to mention that a natural extension of the approach developed
above would be the investigation of the asymptotics of the spectrum for equations
(1.7) or (1.1) linearized about the steady state solutions that correspond to the physi-
cal situation of arrays of droplets connected by a thin layer of thickness ε.
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