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Abstract We consider the solutionu: [0,∞)×Z
d → [0,∞) to the parabolic Anderson model,

where the potential is given by(t,x) 7→ γδYt (x) with Y a simple symmetric random walk onZd.
Depending on the parameterγ ∈ [−∞,∞), the potential is interpreted as a randomly moving catalyst
or trap.
In the trap case, i.e.,γ < 0, we look at the annealed time asymptotics in terms of the first moment of
u. Given a localized initial condition, we derive the asymptotic rate of decay to zero in dimensions 1
and 2 up to equivalence and characterize the limit in dimensions 3 and higher in terms of the Green’s
function of a random walk. For a homogeneous initial condition we give a characterisation of the
limit in dimension 1 and show that the moments remain constant for all time in dimensions 2 and
higher.
In the case of a moving catalyst (γ > 0), we consider the solutionu from the perspective of the
catalyst, i.e., the expressionu(t,Yt + x). Focusing on the cases where moments grow exponentially
fast (that is,γ sufficiently large), we describe the moment asymptotics of the expression above up
to equivalence. Here, it is crucial to prove the existence ofa principal eigenfunction of the corre-
sponding Hamilton operator. While this is well-established for the first moment, we have found an
extension to higher moments.

1 Introduction

The parabolic Anderson model (PAM) is the heat equation on the lattice with a random potential,
given by

{
∂
∂ t u(t,x) = κ∆u(t,x)+ ξ (t,x)u(t,x), (t,x) ∈ (0,∞)×Z

d,

u(0,x) = u0(x), x∈ Z
d,

(1)

whereκ > 0 denotes a diffusion constant,u0 a nonnegative function and∆ the discrete Laplacian,
defined by

∆ f (x) := ∑
y∈Z

d :
|x−y|=1

[ f (y)− f (x)] , x∈ Z
d, f : Z

d → R.

Furthermore,ξ : [0,∞)×Z
d −→ R is a space and time dependent random potential.

We deal with the special case that the potential is given by

ξ (t,x) = γδYt (x), (t,x) ∈ [0,∞)×Z
d

with a simple symmetric random walkY with generatorρ∆ that starts in the origin and a parameter
γ ∈ [−∞,∞) calledcoupling constant. In this paper we analyse the large time asymptotics after aver-
aging over the potential which is usually referred to asannealed asymptotics. We denote expectation
with respect to the potentialξ by 〈·〉.
One possible interpretation of this system arises from chemistry. Here,u(t,x) describes the concen-
tration of reactant particles in a pointx at timet in presence of a randomly moving particle. In the
caseγ < 0, the particle acts as a decatalyst (or trap) that kills reactant particles with rate−γ at its po-
sition. In the case of positiveγ, we consider a catalyst particle that causes reactants to multiply with
rateγ. In both cases〈u(t,x)〉 is interpreted as the averaged concentration. For further interpretations
and an overview over the PAM see for instance [GM90], [CM94],[M94] and [GK05].
Annealed asymptotics in the case of a positive coupling constant γ have already been investi-
gated in [GH06]. In the present work, we derive similar results with regard to the expression
ũ(t,x) := u(t,Yt +x), which can be interpreted as the particle concentration in aneighbourhood
of the catalyst. In addition to logarithmic asymptotics in terms of Lyapunov exponents, we derive
asymptotics up to equivalence for most of the parameter choices where exponential growth is ob-
served.
The case thatγ is negative has to the best of our knowledge not been investigated so far. Its analysis
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relies on techniques quite different from those in the catalyst case as a functional analytic approach
proves unfeasible here. We calculate moment limits dependent on the model parameters and, in the
case of moment convergence towards zero, specify the convergence speed up to equivalence.
Whereas the PAM with time independent potential or white-noise potential is well understood, some
other time dependent potentials have just been examined recently. In [GdH06] and [KS03], for in-
stance, the authors investigate the case of infinitely many randomly moving catalysts. Further ex-
amples of time dependent potentials can be found in [GdHM07], [GdHM09a], [GdHM10] and the
recent survey [GdHM09b].

In Section 2.1 we analyze the PAM with localized initial condition u0 = δz andγ < 0. Let

Mz(t) :=
〈

∑
x∈Zd

u(t,x)
〉
, (t,z) ∈ [0,∞)×Z

d,

denote the expected total mass of the system at timet if the solution is initially localized inzand the
trap starts in the origin. We find

Theorem 1. For d = 1,2 and every z∈ Z
d,

(i) Mz(t) ∼
2√
π

√
κ + ρ
−γ

t−
1
2 , t → ∞ for d = 1;

(ii) Mz(t) ∼ 4π
κ + ρ
−γ

(logt)−1 , t → ∞ for d = 2,

and

Theorem 2. For d ≥ 3 and every z∈ Z
d,

lim
t→∞

Mz(t) = 1+
γ

κ + ρ − γG1(0)
G1(z),

whereGκ denotes the Green’s function of a random walk with generatorκ∆ .

Remark 1.Theorems 1 and 2 can be generalized to all initial conditionswith compact support with-
out much effort.

In Section 2.2 we analyze the case of a homogeneous initial condition u0 ≡ 1. We find that in di-
mensions 2 and higher the average total mass in each point remains constant for allt. This seems
surprising since a symmetric random walk is recurrent in dimensions 1 and 2, but it follows by a
rescaling argument and the fact that a Brownian motion is point recurrent only in dimension 1. In
dimension 1 we give a representation of the asymptotic mass that depends ona := κ/ρ but not on
the strength of the potentialγ. Let

mx(t) := 〈u(t,x)〉 , (t,x) ∈ [0,∞)×Z
d,

denote the expected mass at timet in the lattice pointx. The main results of this section are

Theorem 3. For all x ∈ Z,

lim
t→∞

mx (t) = 1− 1
π

1∫

0

ds

√
(1+a)(1−s)s+ as2

1+a

as2
(

1+ 1
(1+a)2

)
+s

,

and

Theorem 4. For d ≥ 2 and all x∈ Z
d,

lim
t→∞

mx(t) = 1.
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Remark 2.Even though the formula in Theorem 3 looks quite clumsy we findthat limt→∞ mx(t) is
decreasing ina. It tends to 1/2 asa tends to zero and it tends to zero asa tends to infinity.

The third section is dedicated to analysing the leading order asymptotics of moments of the PAM
solution from the perspective of the catalyst, i.e., we consider γ > 0 and the expression ˜u(t,x) :=
u(t,Yt +x). For p∈ N andx = (x1, . . . ,xp) ∈ Z

pd we denote by

m̃p
x (t) :=

〈 p

∏
i=1

ũ(t,xi)

〉

the p-th mixed moment atx. Moreover, introduce thep-th Hamilton operator onl∞ (
Z

pd
)

by

H
p := A

p + γVp

where the potentialV p is defined as(V p f )(x) = ∑p
i=1 δ0(xi) f (x), andA acts onl∞ (

Z
pd
)

as

A
p f (x) = κ ∑

e∈Zpd

|e|=1

( f (x+e)− f (x))+ ρ ∑
e∈Zd

|e|=1

( f (x1 +e, . . . ,xp +e)− f (x)) .

Here, the first term represents the random movement of a collection of p independent random walks
accounting for particle diffusion, and the second term arises from the shift by the position of the
catalyst. By application of the well-established Feynman-Kac formula and calculating the generator
of the resulting semigroup, we obtain the operator representation

m̃p
x (t) =

(
etH p

1

)
(x), x∈ Z

pd. (2)

This gives the connection between large time moment asymptotics and spectral analysis of the above
Hamiltonian. Let us denote byλp the supremum of thel2-spectrum ofH p. Gärtner and Heydenreich
[GH06] have shown that, for allp∈ N and independently ofx∈ Z

d,

lim
t→∞

(1/t) log〈u(t,x)p〉 = λp.

This limit is calledp-th Lyapunov exponent. It can be shown by similar methods that just as well

lim
t→∞

(1/t) logm̃p
x (t) = λp, x∈ Z

pd.

However, this does not enable us to derive large time asymptotics up to equivalence. Assuming
the existence of an eigenfunction(vp) corresponding toλp with certain properties, we could on a
heuristic level decompose the right hand side of equation (2) as

m̃p
x (t) = etλp(1,vp)l2vp(x)+o(etλp), x∈ Z

pd.

Our next main result contains criteria under which this is indeed possible.

Theorem 5. Fix κ > 0, ρ > 0 and let one of the following conditions be satisfied:

(i) p = 1 or p = 2, γ large enough to ensureλp > 0,
(ii)p ∈ N, γ > 4d (κ p+ ρ).

Then, there exists a strictly positive and summable l2-eigenfunction vp of H p corresponding to
λp > 0. Assuming vp to be normed in l2

(
Z

pd
)
, the large time asymptotics of the p-th moment are

given by

m̃p
x (t) ∼ eλpt vp(x)

∥∥vp
∥∥

1 , t → ∞, (3)

where‖·‖1 denotes the norm in l1
(
Z

pd
)
.
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Remark 3.In the casep = 1, λp is strictly positive if and only if 1/γ < Gκ+ρ(0). In this case, the
existence of a suitable eigenfunction has been known for quite a while, see e.g. [CM94] or [GdH06].

Remark 4.For the casesp ≥ 2, the condition 1/γ < pGκ+ρ(0) is sufficient to have positive expo-
nential growth (i.e.,λp > 0). The conditionγ > 4d (κ p+ ρ) also implies exponential growth of the
p-th moment.

2 Moving trap

This section is devoted to the caseγ < 0. Our main proof tool is the Feynman-Kac representation of
the solutionu given by

u(t,x) = E
X
y exp

{
γ

t∫

0

δYt−s (Xs) ds

}
u0(Xt), (t,x) ∈ [0,∞)×Z

d.

2.1 Localized initial condition

In this section we prove Theorems 1 and 2. With the help of the Feynman-Kac representation and a
time reversal we find that, for allt ≥ 0 andz∈ Z

d,

Mz(t) = E
X
z E

Y
0 exp

{
γ

t∫

0

δ0 (Xs−Ys) ds

}
= E

Z
z exp

{
γ

t∫

0

δ0 (Zs) ds

}
,

whereE
X
z , E

Y
z andE

Z
z denote the expectation of a random walk with generatorκ∆ , ρ∆ and(κ +ρ)∆ ,

respectively. The subscriptz indicates the starting point and the corresponding probability measures
will be denoted byP·

z. By

pt(z) = P
X
0

(
Xt/κ = z

)
= P

X
z

(
Xt/κ = 0

)

we denote the transition probability of a random walk with generator∆ .

2.1.1 Dimensions 1 and 2

We start with the recurrent dimensions.

Proof (Theorem 1).Using the semi-group representation of the resolvent
(λ − (κ + ρ)∆)−1 we find that

rκ+ρ
λ (z) :=

∞∫

0

dte−λ t
E

Z
z exp

{
γ

t∫

0

δ0 (Zs) ds

}

=
1
λ

+ γ

( ∞∫

0

dte−λ t p(κ+ρ)t(z)

)
rκ+ρ

λ (0).

This implies, for allλ > 0,

∞∫

0

dte−λ tM0(t) =

(
λ
(

1− γ
∞∫

0

dte−λ t p(κ+ρ)t(0)
))−1

.
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Now the claim forz= 0 follows by a standard Tauberian theorem. The casez 6= 0 follows due to the
recurrence ofZ. ⊓⊔

2.1.2 Dimensions 3 and higher

A Tauberian theorem is not applicable in transient dimensions because here the expected number of
particles does not converge to zero.

Proof (Theorem 2).Let

v(z) := lim
t→∞

Mz(t) = E
Z
z exp

{
γ

∞∫

0

δ0 (Zs) ds

}
, z∈ Z

d.

Notice that the Green’s functionGκ+ρ is finite in transient dimensions and admits the following
probabilistic representation.

Gκ+ρ(z) = E
Z
z

∞∫

0

δ0 (Zs) ds, z∈ Z
d.

That impliesv(z) ∈ (0,1) for all z∈ Z
d. Furthermore, we find thatv is the unique solution to follow-

ing boundary problem
{

(κ + ρ)∆v(z)+ γδ0(z)v(z) = 0, z∈ Z
d,

lim|z|→∞ v(z) = 1.

Hence, for allz∈ Z
d,

v(z) = 1+
γ

κ + ρ − γG1(0)
G1(z).

⊓⊔

2.2 Homogeneous initial condition

In this section we prove Theorems 3 and 4. For homogeneous initial condition the Feynman-Kac
representation yields, for allt ≥ 0 andx∈ Z

d,

mx(t) = ∑
y∈Zd

E
X
x E

Y
y exp

{
γ

t∫

0

δ0 (Xs−Ys) ds

}
δ0 (Yt) .

2.2.1 Dimension 1

Let τ := inf {t ≥ 0: Xt = Yt} = inf {t ≥ 0: Zt = 0} be the first hitting time ofX andY. The density
of τ with respect toPZ

z , z 6= 0, will be denoted byf z
τ . To prove Theorem 3, we splitmx(t) into two

parts
m̃x(t) := ∑

y∈Zd

E
X
x E

Y
y1τ>tδ0(Yt),

whereX andY have not met up to timet, and
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m̂x(t) := ∑
y∈Zd

E
X
x E

Y
y1τ≤t exp

{
γ

t∫

0

δ0 (Xs−Ys) ds

}
δ0 (Yt) ,

where they have already met by timet. The next proposition shows thatm̂x is asymptotically negli-
gible. Notice that this implies that there is no difference between the hard trap (γ =−∞) and the soft
trap (γ ∈ (−∞,0)) case becausẽmx does not depend onγ.

Proposition 1. For all x ∈ Z,
lim
t→∞

m̂x(t) = 0.

Proof. Let σ := inf {t ≥ 0: Zt 6= Z0} be the the first jumping time ofZ. Furthermore, fort ≥ 0 let

w(t) := E
Z
0 exp

{
γ

t∫

0

δ0 (Zs) ds

}
δ0 (Zt) .

In a first step we give an upper bound for the rate of decay ofw. Let us abbreviateα := 2(κ + ρ).
Using the strong Markov property ofZ we find

w(t) = E
Z
01σ>teγt +E

Z
01σ≤teγσ

[
E

Z
Zσ exp

{
γ

t−s∫

0

δ0 (Zu) du

}
δ0 (Zt−s)

]

s=σ

= e(α−γ)t + α
t∫

0

dse(α−γ)s
E

Z
11τ≤t

[
E

Z
0 exp

{
γ

t−s−r∫

0

δ0 (Zu) du

}
δ0 (Zt−s−r)

]

r=τ

=

(
1−E(t)+

α
α − γ

(
ψ ∗ f 1

τ
)
∗w

)
(t) .

HereE denotes the distribution function of a exponentially distributed random variable with param-
eterα − γ andψ denotes the corresponding density. By iteration we find that, for anyk≥ 1,

w = (1−E)∗
k

∑
n=0

(
α

γ + α

)n

ψ∗n∗ f 1∗n
τ +

(
α

γ + α

)(k+1)

ψ∗(k+1) ∗ f 1∗(k+1)
τ ∗w.

Since there existsC1 > 0 such thatf z
τ (t) ≤C1 (1+ t)−3/2 for all z 6= 0 andt > 0, we see that asymp-

totically

w(t) ∼
(

(1−E)∗
( ∞

∑
n=0

(
α

α − γ

)n

ψ∗n∗ f 1∗n
τ

))
(t)

∼ (1−E(t))∗
(
C1 (1+ t)−3/2

)
= C(1+ t)−3/2 , t → ∞,

whereC is a positive constant. LetZ(1) := X −Y andZ(2) := X +Y. Then it follows by Hölder’s
inequality that

m̂0(t) = ∑
z,y∈Z

E
Z(1)

−y ,EZ(2)

y 1τ≤t exp

{
− γ

t∫

0

δ0

(
Z(1)

s

)
ds

}
δz

(
Z(1)

t

)
δz

(
Z(2)

t

)

≤ ∑
z,y∈Z

(
E

Z(1)

−y 1τ≤t exp

{
− 3

2
γ

t∫

0

δ0

(
Z(1)

s

)
ds

}
δz

(
Z(1)

t

))2/3

·
(

E
Z(2)

y

(
δz
(
Z(2)

t

)))1/3

.
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From this and the asymptotic behaviour ofw we can deduce the claim .⊓⊔

Now we show what̃mx asymptotically looks like. Recall thata = κ/ρ .

Proposition 2. For all x ∈ Z,

lim
t→∞

m̃x(t) = 1− 1
π

1∫

0

ds

√
(1+a)(1−s)s+ as2

1+a

as2
(

1+ 1
(1+a)2

)
+s

.

Proof. Because of the strong Markov property ofX andY we find

m̃x(t) = ∑
y∈Z

E
X
x E

Y
y δ0(Yt)− ∑

y∈Z

E
X
x E

Y
y1τ≤tδ0(Yt)

= 1− ∑
y∈Z

E
X
x E

Y
y1τ≤t [E

X
Yτ E

Y
Yτ δ0(Yt−s)]s=τ

= 1− ∑
y∈Z

E
X
x E

Y
y1τ≤t pρ(t−τ)(Yτ ).

It follows by Donsker’s invariance principle that

lim
t→∞ ∑

y∈Z

E
X
x E

Y
y1τ≤t pρ(t−τ)(Yτ) =

∞∫

−∞

dyE
W(1)

0 E
W(2)

0 1
τ(W)
y ≤1

p(G)

ρ(1−τ(W)
y )

(
W(2)

τ(W)
y

)
.

HereW(1) andW(2) denote two independent Brownian motions that start in the origin with variance

2κ and 2ρ , respectively. Their expectations are denoted byE
W(1)

0 andE
W(2)

0 , respectively. Moreover,

τ(W)
y := inf{t > 0: W(1)

t −W(2)
t = y} andp(G)

s denotes a Gaussian density with variance 2s.
Indeed, the application of Donsker’s invariance principleis not trivial because we have to sum over
all x∈ Z, where it cannot be applied uniformly.

Let W(−) := W(1) −W(2), W(+) := W(1) + κ
ρ W(2) andτ(−)

y := inf{t ≥ 0: W(−)
t = y}. Notice that

W(−) andW(+) are independent. It follows

∞∫

−∞

dyE
W(1)

0 E
W(2)

0 1
τ(W)
y ≤1

p(G)

ρ(1−τ(W)
y )

(
W(2)

τ(W)
y

)

=

∞∫

−∞

dyE
W(−)

0 E
W(+)

y 1
τ(−)
y ≤1

p(G)

ρ(1−τ(−)
y )

(
− ρ

κ + ρ
W(+)

τ(−)
y

)

=

∞∫

−∞

dyE
W(−)

0 1
τ(−)
y ≤1

p(G)

ρ(1−τ(−)
y )+

κρ2τ(−)
y

(κ+ρ)2

(y)

=

∞∫

−∞

dy

1∫

0

ds
|y|exp

{
− y2

2(κ+ρ)s

}

s
√

2π(κ + ρ)s

exp

{
− y2

2ρ(1−s)+ 2κρ2s
(κ+ρ)2

}

√
2π
[
2ρ(1−s)+ 2κρ2s

(κ+ρ)2

]

=
1
π

1∫

0

ds

√
(κ + ρ)ρ(1−s)s+ κρ2s2

(κ+ρ)

κ2s2 + ρs+ κρ2s2

(κ+ρ)2

.

Now the claim follows by substitutinga. ⊓⊔

Theorem 3 follows immediately from Propositions 1 and 2.
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2.2.2 Dimensions 2 and higher

In dimensions 2 and higher, we find that asymptotically the expected mass remains constant because
a Brownian motion is only point recurrent in dimension 1.

Proof (Theorem 4).Let τ(Z)
ε := inf {t ≥ 0: Zt ∈ Bε(0)} be the first time that the processZ hits the

centered ballBε(0) with radiusε > 0, and let

mx(t) := ∑
y∈Zd

E
X
x E

Y
y1τ(Z)

ε
√

t
>t

δ0(Yt).

Similarly as in the cased = 1 we find with the help of Donsker’s invariance principle that

lim
t→∞

1−m0(t) = lim
ε→0

∫

Rd

dxP
W
x

(
τ(W)

ε ≤ 1
2

)
.

However, ford ≥ 2 andx 6= 0,

lim
ε→0

P
W
x

(
τ(W)

ε ≤ 1
2

)
= P

W
x

(
⋂

ε>0

τ(W)
ε ≤ 1

2

)
= P

W
x

(
τ(W)

0 ≤ 1
2

)
= 0.

Hence, it follows by monotone convergence that limt→∞ m0(t) = 1 which implies that limt→∞ mx(t) =
1 for all x∈ Z

d. ⊓⊔

3 Moving catalyst

In this section we stick to the homogeneous initial condition u0 ≡ 1 and examine the case of a
randomly moving catalyst, i.e., we considerγ > 0.

3.1 Spectral properties of higher-order Anderson Hamiltonians

Throughout this section, we writeλp := supσ (H p) for all p ∈ N. Considering the first Hamilton
operatorH 1 given by

H
1 := (κ + ρ)∆ + γδ0,

the existence of an eigenfunctionv1 ∈ l2
(
Z

d
)

corresponding to its largest spectral value, provided
that this value is greater than zero, has been widely known for some time. The following theorem
extends this to the casep = 2 and constitutes the main statement of this section:

Theorem 6. Assumeλ2 > 0. Then,λ2 is isolated in the point spectrum ofH 2 with one-dimensional
eigenspace. The corresponding eigenfunction may be chosenstrictly positive.

For a start, we restrict the operator to the subspace of component-wise symmetric functions

S
2 :=

{
f ∈ l2

(
Z

2d
)
| f (x,y) = f (y,x) ∀x,y∈ Z

2d
}

,

which is obviously closed inl2
(
Z

2d
)
. The reader may easily retrace that the operators defined by

˜A
2 f := A2 f , Ṽ2 f := V2 f , H̃

2 f := H
2 f , f ∈ S

2,

where we use the notation from Section 1, are endomorphisms on S
2. In particularH̃ 2 is a self-

adjoint operator on the Hilbert spaceS2, and it is essential that the upper bound of its spectrum
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coincides withλ2, which can be shown elementarily. Each eigenfunction ofH̃ 2 corresponding to
λ2 is an eigenfunction ofH 2 as well. Moreover, we expect that an eigenfunction ofH 2 is, or
at least could be chosen as, an element ofS

2. In view of that, passing over toS2 is just a natural
approach. In the next step, we writẽA 2+γṼ2 rather thanH̃ 2 in order to emphasize the dependence
on the potential parameterγ, and we establish a further translation of the main task:

Lemma 1. Supposeλ > 0. Then, the resolvent operatorR̃λ := (λ − ˜A 2)−1 exists onS2, and for all
γ > 0, we have

(i)
λ ∈ σ

( ˜A
2 + γṼ2) ⇐⇒ γ−1 ∈ σ

(
R̃λṼ2) ,

(ii)
λ = supσ

( ˜A
2 + γṼ2) =⇒ γ−1 = supσ

(
R̃λṼ2) .

Moreover, for v∈ S
2 andγ > 0,

(iii)
( ˜A

2 + γṼ2)v = λv ⇐⇒
(
R̃λṼ2)v =

1
γ

v.

Proof. A Fourier transform reveals that the spectrum ofA 2 is concentrated on the negative half-axis,
thus(λ −A 2)−1 exists onl2

(
Z

2d
)

for all λ > 0. In particular, it exists onS2, and then it coincides
with (λ − ˜A 2)−1 as ˜A 2 is an endomorphism onS2. Assertions (i) and (iii) follow by rearranging
the equations considered and applying the resolvent operator. The second relation is shown using the
Rayleigh-Ritz formula. ⊓⊔

As a next step, we introduce an operatorT̃λ on l2
(
Z

d
)

having the same spectrum and the same point
spectrum as̃RλṼ2 and that admits the decompositionT̃λ = T̃(1) + T̃(2). Here,T̃(1) is compact and
the upper bound ofσ(T̃(2)) is strictly smaller than the upper bound ofσ(T̃λ ). Then, we use Weyl’s
theorem to obtain that the upper bound ofσ(T̃λ ) belongs to the point spectrumσp(T̃λ ). The resolvent

Rλ :=
(
λ −A 2

)−1
admits the representation

(Rλ f ) (x1,x2) = ∑
y1,y2∈Zd

r(2)
λ (y1−x1,y2−x2) f (y1,y2), x1,x2 ∈ Z

d,

where the resolvent kernelr(2)
λ : Z

2d → (0,∞) is defined as

r(2)
λ (x1,x2) :=

∫ ∞

0
dte−λ t

P0 (Zt = (x1,x2)) , x1,x2 ∈ Z
d.

Here,Z is a random walk onZ2d with generatorA 2. Then we obtain

(
RλV2 f

)
(x1,x2) = ∑

y1,y2∈Zd

r(2)
λ (y1−x1,y2−x2) [δ0(y1)+ δ0(y2)] f (y1,y2). (4)

If we assumef ∈ S
2, we get

(
R̃λṼ2 f

)
(x1,x2) = ∑

y∈Zd

[
r(2)

λ (y−x1,−x2)+ r(2)
λ (−x1,y−x2)

]
f (y,0),

for x1,x2 ∈ Z
d, and in particular

(
R̃λṼ2 f

)
(x,0) = ∑

y∈Zd

[
r(2)

λ (y−x,0)+ r(2)
λ (−x,y)

]
f (y,0),

for x∈ Z
d. Let us therefore introduce the operatorT̃λ = T̃(1) + T̃(2) acting onl2

(
Z

d
)

as

T̃λ f̃ (x) := ∑
y∈Zd

[
r(2)

λ (y−x,0)+ r(2)
λ (−x,y)

]
f̃ (y),
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for x∈ Z
d. Here,

T̃(1) f̃ (x) = ∑
y∈Zd

r(2)
λ (−x,y) f̃ (y), T̃(2) f̃ (x) = ∑

y∈Zd

r(2)
λ (y−x,0) f̃ (y), x∈ Z

d.

Both operators are apparently self-adjoint. The lemma below identifies the spectra and point spectra
of T̃λ andR̃λṼ2:

Lemma 2. For all λ > 0,

σ
(
T̃λ
)

= σ
(
R̃λṼ2) , σp

(
T̃λ
)

= σp
(
R̃λṼ2) .

Proof. The crucial and least intuitive part is to show that

µ − T̃λ surjective⇒ µ − R̃λṼ2 surjective. (5)

All other implications are rather straightforward and we omit them for the sake of conciseness.
Assumeµ − T̃λ is surjective and chooseg ∈ S

2. Define g̃(x) := g(x,0) for x ∈ Z
d. There exists

f̃ ∈ l2
(
Z

d
)

with
(
µ − T̃λ

)
f̃ = g̃ by assumption. We define

f (x1,x2) := f (x1)δ0(x2)+ f (x2)δ0(x1)− δ0(x1)δ0(x2) f (0), x1,x2 ∈ Z
d

and then, forx1,x2 ∈ Z
d,

F(x1,x2) :=

{
f (x1,x2), x1 = 0 orx2 = 0;

µ−1
(
R̃λṼ2 f (x1,x2)+g(x1,x2)

)
, else.

We realize thatF ∈S
2 and proceed showing thatF is the desired function satisfying

(
µ − R̃λṼ2

)
F =

g. Note thatR̃λṼ2F(x1,x2) = R̃λṼ2 f (x1,x2) for all x1,x2 ∈ Z
d. In the first place, we have

R̃λṼ2F(x1,0) = ∑
y∈Zd

[
r(2)

λ (y−x1,0)+ r(2)
λ (−x1,y)

]
f (y,0)

= T̃λ f̃ (x1) = µ f̃ (x1)− g̃(x1)

= µF(x1,0)−g(x1,0), x1 ∈ Z
d, (6)

and by symmetrỹRλṼ2F(0,x2) = µF(0,x2)−g(0,x2) for x2 ∈ Z
d. Moreover,

µF(x1,x2)− R̃λṼ2F(x1,x2)

= R̃λṼ2 f (x1,x2)+g(x1,x2)− R̃λṼ2 f (x1,x2)

= g(x1,x2), x1,x2 ∈ Z
d,x1,x2 6= 0. (7)

Equations (6) and (7) yield the desired result(µ − R̃λṼ2)F = g. Thus, we have shown (5).⊓⊔

In the next step, we are able to calculate the supremum of the spectrum ofT̃(2). Its value is given in
terms of the Laplace resolvent kernelrκ

λ defined by

rκ
λ (x) :=

∫ ∞

0
dte−λ t

P0 (Xt = x) , x∈ Z
d, (8)

with X a random walk onZd with generatorκ∆ .

Lemma 3. We havesupσ(T̃(2)) = ‖T̃(2)‖2 = rκ+ρ
λ (0).

Proof. It will be sufficient to show that

sup
{
|µ | : µ ∈ σ(T̃(2))

}
= rκ+ρ

λ (0). (9)
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The proof involves a Fourier transform (which we denote byF ) of the operatorT̃(2). For f̂ ∈
L2
(
[−π ,π)d

)
, the transformed operator reads

T̂(2) f̂ (l) = (2π)−d ∑
x∈Zd

ei(l,x) ∑
y∈Zd

r(2)
λ (y−x,0)

∫

([−π ,π)d)
dke−i(k,y) f̂ (k)

= (2π)−d ∑
y∈Zd

ei(l,y)
∫

([−π ,π)d)
dke−i(k,y) f̂ (k) ∑

y∈Zd

ei(l,x−y)r(2)
λ (x−y,0)

=
(
FF

−1 f̂
)
(l)

(

∑
z∈Zd

ei(l,z)r(2)
λ (z,0)

)
, l ∈ [−π ,π)d.

Thus,T̂(2) is a multiplication operator and the multiplier

r̂(l) := ∑
z∈Zd

ei(l,z)r(2)
λ (z,0), l ∈ [−π ,π)d

is obviously continuous. Hence, its spectrum is just the closure of the range of that multiplier. As
each of the two components of a random walk onZ

2d with generatorA 2 is just a random walk on
Z

d with generator(κ + ρ)∆ , we have

sup
l∈[−π ,π)d

|r̂(l)| = r̂(0) = ∑
z∈Zd

r(2)
λ (z,0) = rκ+ρ

λ (0),

and equation (9) follows taking into account that the Fourier transform is an isometry.⊓⊔

Lemma 4. Supposeλ2 = supσ
(
H 2

)
. Then, the operator̃Tλ2

= T̃(1) + T̃(2) has a strictly positive
eigenfunctioñv corresponding to its largest spectral value1/γ. This value is isolated in the spectrum.

Proof. At first, we realize that̃T(1) belongs to the trace class as

∑
x∈Zd

(
T̃(1)δx,δx

)
<

∫ ∞

0
dte−λ2t < ∞,

and thereforẽT(1) is compact. Then, we explain why supσ(T̃(1) + T̃(2)) > supσ(T̃(2)), which to-
gether with Weyl’s theorem (see e.g. [RS72]) yields the existence of an eigenfunction. In the end, it
remains to show that we may choose this eigenfunction strictly positive.

In order to show that supσ(T̃(1) + T̃(2)) > supσ(T̃(2)), we recall that

supσ
(
T̃λ2

)
= supσ

(
R̃λ2

Ṽ2)=
1
γ

by Lemmas 1 and 2, and the upper bound ofσ(T̃(2)) is equal torκ+ρ
λ2

(0) by Lemma 3. Therefore, it
suffices to show that

1
γ

> rκ+ρ
λ2

(0). (10)

Let λ1 := supσ
(
H 1

)
. In caseλ1 > 0, it is well-known that

1
γ

= rκ+ρ
λ1

(0),

compare e.g. Carmona and Molchanov [CM94]. Moreover, asλ1 andλ2 are the exponential growth
rates of the first and second moment of ˜u(t,x), Hölder’s inequality yields

λ1 ≤
1
2

λ2,
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thus a fortioriλ1 < λ2. As λ 7→ rκ+ρ
λ (0) is strictly decreasing (see e.g. equation (8)),

1
γ

= rκ+ρ
λ1

(0) > rκ+ρ
λ2

(0)

and we have shown (10) for the caseλ1 > 0. In caseλ1 = 0, we have

1
γ
≥ Gκ+ρ(0),

and we arrive at (10) asGκ+ρ(0) > rκ+ρ
λ (0) for all λ > 0. Weyl’s theorem now states that 1/γ

belongs to the discrete spectrum ofT̃λ2
sinceT̃(1) is compact. Consequently, the value 1/γ is isolated

in the point spectrum. Finally, we show that a correspondingeigenfunction ˜v may be chosen strictly
positive. It suffices to show that̃Tλ2

is positive in the sense that it maps nonnegative, non-zero
functions to positive functions. Choose a nonnegative function f arbitrarily and assumef (y1) > 0
for somey1 ∈ Z

d. Then, for allx∈ Z
d,

T̃λ2
f (x) ≥

[
r(2)

λ2
(y1−x,0)+ r(2)

λ2
(−x,y1)

]
f (y1) > 0.

Consequently, we may choose ˜v strictly positive, and the proof is complete.⊓⊔

Let us now prove the main result of this section:

Proof (Theorem 6).Let λ2 = supσ
(
H 2

)
. The preceding lemma states that there exists a strictly

positive function ˜v∈ l2
(
Z

d
)

with Tλ2
ṽ= (1/γ)ṽ. By Lemma 2, there existsv2 ∈S

2 with R̃λ2
Ṽ2v2 =

(1/γ)v2, as point spectra of both operators coincide. Naturally,v2 is also an eigenfunction ofRλ2
V p

on l2
(
Z

2d
)
. We easily verify that

Rλ2
V p f > 0

for all nonnegative, non-zerof ∈ l2
(
Z

2d
)
, thusv2 may be chosen strictly positive. Now Lemma 1

yields thatv2 is an eigenfunction ofH̃ 2 andH 2 corresponding toλ2.

In order to show that its corresponding eigenspace is one-dimensional, let(wi)i∈I represent an or-
thonormal basis of this eigenspace. Thewi are principal eigenfunctions ofRλ2

V p that maps nonneg-
ative, non-zero functions to positive functions. Hence we may choose allwi strictly positive. As two
strictly positive functions inl2

(
Z

pd
)

cannot be orthogonal, it follows that|I |= 1, i.e., the eigenspace
corresponding toλ2 is one-dimensional. ⊓⊔

We will additionally need that the largest eigenvalueλ2 is isolated in the spectrum ofH̃ 2 in order
to describe the asymptotic moment behaviour:

Lemma 5. The valueλ2 is isolated inσ(H̃ 2).

Proof. We know by Lemma 4 thatγ−1 = supσ(T̃λ2
) is an isolated eigenvalue, so there existsδ̃ > 0

with
[
γ−1− δ̃ ,γ−1 + δ̃

]
∩σ

(
T̃λ2

)
=
{

γ−1} .

Define nowδ1 small enough to ensure

∥∥T̃λ2−ε − T̃λ2

∥∥
2 < δ̃/2 for all ε with 0 < ε ≤ δ1.

It is quickly verified that this is always possible (e.g. by the mean value theorem). We can show with
a similar argument that supσ(T̃λ ) depends continuously onλ , making it possible to findδ2 small
enough to satisfy

supσ
(
T̃λ2−ε

)
−supσ

(
T̃λ2

)
≤ δ̃/2 for all ε with 0 < ε ≤ δ2.

If we choose nowε < δ1∧δ2, it follows
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γ−1 6= supσ
(
T̃λ2−ε

)
∈
[
γ−1− δ̃/2,γ−1+ δ̃/2

]
,

and by Theorem 8 below, the interval[γ−1− δ̃/2,γ−1 + δ̃/2] contains exactly one element of the
spectrum ofT̃λ2

+ (T̃λ2−ε − T̃λ2
) = T̃λ2−ε . Therefore,γ−1 ∈ ρ(T̃λ2−ε) and it follows thatλ2 − ε ∈

ρ(H̃ 2) in the usual way by Lemmas 1 and 2. Thus,λ2 is isolated inσ(H̃ 2). ⊓⊔

Let us in the following present a sufficient condition for theexistence of an eigenfunction with the
desired properties that holds for generalp∈ N:

Theorem 7. Suppose p∈ N andγ > 4d (κ p+ ρ). Then,λp = supσ (H p) is positive, isolated in the
spectrum and belongs to the point spectrum with one-dimensional eigenspace. The corresponding
eigenfunction may be chosen strictly positive.

The proof relies on the following theorem from perturbationtheory of bounded operators. It de-
scribes the behaviour of an isolated eigenvalue under a bounded perturbation that is sufficiently
small in a certain sense. The reader may refer to Birman and Solomjak [BS80], Ch. 9.4 for a proof.

Theorem 8. Let T,S denote two self-adjoint operators on a Hilbert space. Supposeµ ∈ σp (T) with
multiplicity r and

[µ − ε,µ + ε]∩σ (T) = {µ}
for someε > 0. Moreover, assumeσ (S)⊂ [δ1,δ2] for someδ1 < δ2 ∈ R with δ2−δ1 < ε. Then, the
set

[µ + δ1,µ + δ2]∩σ (T +S)

contains only isolated eigenvalues of T+S whose sum of multiplicities equals r.

Proof (Theorem 7).We haveH p = A p+ γV p, and the idea is to understand the generatorA p as a
perturbation of the potentialγV p. With increasingγ, the perturbationA p remains relatively small,
which allows an application of Lemma 8. AsγV p is a multiplication, its spectrum coincides with the
essential range of the multiplier and we easily verify thatγ p is the largest eigenvalue ofγV p and has
one-dimensional eigenspace. Moreover,

σ (γV p)∩ [γ p− γ,γ p+ γ] = {γ p} ,

and we may show by a Fourier transform that

σ (A p) ⊂ [−4d (κ p+ ρ),0] .

Theorem 8 now yields that the set

σ (H p)∩ [γ p− γ,γ p]

contains exactly one element, which is an eigenvalue with multiplicity one. This element must be
λp = supσ (H p) due to the nonpositive definiteness ofA p. It remains to show that the correspond-
ing eigenfunction may be chosen strictly positive. To that purpose, we consider thatvp is also an
eigenfunction of eH

p
corresponding to its largest eigenvalue eλp. Employing the Feynman-Kac rep-

resentation of this operator, we see that it maps nonnegative, non-zero functions to strictly positive
functions. This means that all principal eigenfunctions are either strictly positive or strictly negative.
⊓⊔

3.2 Application to annealed higher moment asymptotics

A natural approach to more exact asymptotics of mixed moments, and the main idea proving Theo-
rem 5, is to decompose the semigroup representation
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m̃p
x (t) =

(
etH p

1

)
(x).

Certainly we must consider the initial condition1 as an appropriate limit ofl2-functions when at-
tempting a rigorous proof. With

{
Eµ |µ ∈ R

}
the family of spectral projectors associated withH p,

the spectral theorem for self-adjoint operators yields

m̃p
x (t) = eλpt (1,vp)vp(x)+

∫ λp−ε

−∞
eµtdEµ (1)(x) (11)

for someε > 0 small enough. Here,λp = supσ (H p) must be a positive eigenvalue with multiplicity
one that is isolated inσ (H p), andvp is a strictly positive andl2-normed eigenfunction correspond-
ing to λp. Beyond that, we need that(1,vp) < ∞. If these requirements are met, we may asymptoti-
cally neglect the last term in (11). In order to prove Theorem5, we need the following two auxiliary
lemmas that are of pure technical nature and thus given without a proof. The first one enables us
to approximate the homogeneous initial condition withl2-functions. LetQp

t := Z
pd∩ [−t,t]pd for

t > 0.

Lemma 6. For all x ∈ Z
pd,

(
etH p

1Qp
t2

)
(x) ∼ m̃p

x (t) , t → ∞.

The second auxiliary lemma ensures that the considered principal eigenfunctions are summable:

Lemma 7. Supposeλp = supσ (H p) > 0 and there exists a corresponding eigenfunction vp ∈
l2
(
Z

pd
)
. Then, vp ∈ l1

(
Z

pd
)
.

Let us now give a concise proof of the main statement:

Proof (Theorem 5).It suffices to show that, for allx∈ Z
pd,

e−λptm̃p
x (t) −→

∥∥vp
∥∥

1 vp(x)

ast approaches infinity. The spectral representation of etH p
yields

e−tλp+tH p
1Qp

t2
=
(
1Qp

t2
,vp

)
vp +

∫ λp−ε

−∞
et(µ−λp) dEµ

(
1Qp

t2

)
,

for someε > 0 asλp is isolated in the spectrum. Fort large enough, thel2-norm of the integral is
roughly estimated from above by

∥∥∥∥
∫ λp−ε

−∞
etµ−tλp dEµ

(
1Qp

t2

)∥∥∥∥
2
≤ e−tε

∥∥∥1Qp
t2

∥∥∥
2
≤
(
2t2) pd

2 e−tε ,

which means we may neglect this term and have

e−tλp+tH p
1Qp

t2

l2−→
∥∥vp
∥∥

1vp, t → ∞. (12)

Let us finally take into account that

∣∣∣e−λptm̃p
x (t)−

∥∥vp
∥∥

1vp(x)
∣∣∣

≤
∣∣∣e−λptm̃p

x (t)−e−tλp+tH p
1Qp

t2
(x)
∣∣∣+
∣∣∣e−tλp+tH p

1Qp
t2
(x)−

∥∥vp
∥∥

1vp(x)
∣∣∣ ,

where the first term converges to zero according to Lemma 6, and the second one vanishes because
of equation (12). This completes the proof.⊓⊔
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