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Abstract We consider the solution: [0,e) x Z9 — [0,) to the parabolic Anderson model,
where the potential is given bit,x) — ydy (x) with Y a simple symmetric random walk cf'.
Depending on the parametge [—, «), the potential is interpreted as a randomly moving catalyst
or trap.

In the trap case, i.ey,< 0, we look at the annealed time asymptotics in terms of therfisnent of

u. Given a localized initial condition, we derive the asynimtoate of decay to zero in dimensions 1
and 2 up to equivalence and characterize the limit in dinoerss8 and higher in terms of the Green’s
function of a random walk. For a homogeneous initial conditive give a characterisation of the
limit in dimension 1 and show that the moments remain condearall time in dimensions 2 and
higher.

In the case of a moving catalysf £ 0), we consider the solution from the perspective of the
catalyst, i.e., the expressiaift, Y; + x). Focusing on the cases where moments grow exponentially
fast (that is,y sufficiently large), we describe the moment asymptotichefaxpression above up
to equivalence. Here, it is crucial to prove the existenca pfincipal eigenfunction of the corre-
sponding Hamilton operator. While this is well-establidlier the first moment, we have found an
extension to higher moments.

1 Introduction

The parabolic Anderson model (PAM) is the heat equation enldttice with a random potential,
given by

1)

U(O,X) = UO(X)v Xe Zda
wherek > 0 denotes a diffusion constamg a nonnegative function amll the discrete Laplacian,
defined by
Af(X) = Z [(fy)—f(x)], xezd f:29 =R

yeZ© .

[x-yl=1
Furthermoreé : [0,») x Z9 — R is a space and time dependent random potential.
We deal with the special case that the potential is given by

E(tax):yéﬁ(x)v (t.x) € [07oo)><Zd

with a simple symmetric random walkwith generatopA that starts in the origin and a parameter
y € [—, ) calledcoupling constantin this paper we analyse the large time asymptotics aftr av
aging over the potential which is usually referred t@asealed asymptoticgVe denote expectation
with respect to the potentidl by (-).

One possible interpretation of this system arises from ésteynHere,u(t, x) describes the concen-
tration of reactant particles in a poixfat timet in presence of a randomly moving particle. In the
casey < 0, the particle acts as a decatalyst (or trap) that killstegdaarticles with rate-y at its po-
sition. In the case of positivg we consider a catalyst particle that causes reactants tgphmwvith
ratey. In both casesu(t,x)) is interpreted as the averaged concentration. For furtitergretations
and an overview over the PAM see for instance [GM90], [CM§MIR4] and [GKO5].

Annealed asymptotics in the case of a positive coupling teoy have already been investi-
gated in [GHO6]. In the present work, we derive similar resuwbith regard to the expression
G(t,x) := u(t,Y; +x), which can be interpreted as the particle concentration meighbourhood
of the catalyst. In addition to logarithmic asymptotics émrhs of Lyapunov exponents, we derive
asymptotics up to equivalence for most of the parametercelsaoivhere exponential growth is ob-
served.

The case thay is negative has to the best of our knowledge not been inagstigso far. Its analysis
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relies on techniques quite different from those in the gatatase as a functional analytic approach
proves unfeasible here. We calculate moment limits deperatethe model parameters and, in the
case of moment convergence towards zero, specify the aggves speed up to equivalence.
Whereas the PAM with time independent potential or whites@potential is well understood, some
other time dependent potentials have just been examinedthgcln [GdHO6] and [KS03], for in-
stance, the authors investigate the case of infinitely mangamly moving catalysts. Further ex-
amples of time dependent potentials can be found in [GAHMGAHMO09a], [GdAHM10] and the
recent survey [GAHMO9b].

In Section 2.1 we analyze the PAM with localized initial caiwh ug = &, andy < 0. Let
M(t) = ( 3 utx)), (6.2 €[0,) x ¢,
xeZd

denote the expected total mass of the system atttifrtbe solution is initially localized irz and the
trap starts in the origin. We find

Theorem 1. Ford = 1,2 and every = 79,

. 2 K+p,_ 1
My (t) ~ — t72 t— f d=1,
(i) 2(t) TR oy , 00 or
+p

(i) Myt) ~ 4n—y(|ogt)’l, t—oe for d=2

and

Theorem 2. Ford > 3 and every = Z9,

|4
M =0

whereGg denotes the Green’s function of a random walk with generator

Gl(Z),

Remark 1 Theorems 1 and 2 can be generalized to all initial conditwitts compact support with-
out much effort.

In Section 2.2 we analyze the case of a homogeneous initiaitton up = 1. We find that in di-
mensions 2 and higher the average total mass in each poiairremonstant for all. This seems
surprising since a symmetric random walk is recurrent inetigions 1 and 2, but it follows by a
rescaling argument and the fact that a Brownian motion istp@icurrent only in dimension 1. In
dimension 1 we give a representation of the asymptotic nfegsdepends oa := «k /p but not on
the strength of the potentigl Let

my(t) = (ut, X)), (£X) €[0,00) x Z°,
denote the expected mass at titie the lattice poink. The main results of this section are

Theorem 3. Forall x € Z,

\/1+a 1— serf‘—fa
a§ 1+ — l+a) )+s

)

lim my (t _1——/

t—o0

and

Theorem 4. For d > 2 and all xe Z¢9,

lim my(t) = 1.

t—o0
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Remark 2Even though the formula in Theorem 3 looks quite clumsy we fivad lim_.., mx(t) is
decreasing im. It tends to ¥2 asa tends to zero and it tends to zeroat®nds to infinity.

The third section is dedicated to analysing the leadingroadgmptotics of moments of the PAM
solution from the perspective of the catalyst, i.e., we @ersy > 0 and the expressiom(f;x) :=
u(t,¥%; +x). Forp € N andx = (xq,...,Xp) € ZP4 we denote by

(1) = <i|_£lu<t,m>

the p-th mixed moment at. Moreover, introduce thp-th Hamilton operator oif° (Zpd) by
AP =P+ WP
where the potential ® is defined agVPf)(x) = 3P, &(x)f(x), and.</ acts onl® (ZPY) as
Pf(X) =k > (fx+e)=f(x))+p y (fute....xp+e)—f(x)).
eczpd eczd

le|=1 le|=1

Here, the first term represents the random movement of actiolteof p independent random walks
accounting for particle diffusion, and the second termeariffom the shift by the position of the
catalyst. By application of the well-established Feynrifat-formula and calculating the generator
of the resulting semigroup, we obtain the operator reptasen

P (t) = (eh%”pn) (x), xezP. @)

This gives the connection between large time moment asytioptind spectral analysis of the above
Hamiltonian. Let us denote by, the supremum of thg-spectrum of#’P. Gartner and Heydenreich
[GHO6] have shown that, for ap € N and independently of ¢ Z9,

lim (1/t)log(u(t,x)P) = Ap.
This limit is calledp-th Lyapunov exponentt can be shown by similar methods that just as well
lim (1/t)logrf (1) = Ap,  x€ ZPd,

However, this does not enable us to derive large time asyinptap to equivalence. Assuming
the existence of an eigenfunctiow,) corresponding ta\, with certain properties, we could on a
heuristic level decompose the right hand side of equatipag?2

mP (t) = e (1,vp)2vp(X) + 0(€7°),  xezZPl.
Our next main result contains criteria under which this deied possible.

Theorem 5. Fix k > 0, p > 0 and let one of the following conditions be satisfied:

(i) p=1or p=2, ylarge enough to ensurk, > 0,
(ipeN,y>4d(kp+p).

Then, there exists a strictly positive and summableigenfunction y of P corresponding to
Ap > 0. Assuming y to be normed in? (Zpd), the large time asymptotics of the p-th moment are
given by

MR (1) ~ ' vp(X) Vol t— oo, (3)

where|-||; denotes the norm irt(ZPY).
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Remark 3In the casep = 1, A, is strictly positive if and only if ¥y < Gy (0). In this case, the
existence of a suitable eigenfunction has been known fde guivhile, see e.g. [CM94] or [GAHO06].

Remark 4 For the casep > 2, the condition 1y < pG«1,(0) is sufficient to have positive expo-
nential growth (i.e.A, > 0). The conditiory > 4d (k p+ p) also implies exponential growth of the
p-th moment.

2 Movingtrap

This section is devoted to the cage: 0. Our main proof tool is the Feynman-Kac representation of
the solutioru given by

t
u(t,x) =E} exp{ y/ Sy (Xs) ds}uo(xt), (t,%) € [0,00) x Z9.
0

2.1 Localized initial condition

In this section we prove Theorems 1 and 2. With the help of thewFan-Kac representation and a
time reversal we find that, for &> 0 andz € Z9,

t t
M(t) = EXES exp{ y/éo(XS—YS) ds} =[E? exp{ y/éo(Zs) ds},
0 0

whereEX, EY andEZ denote the expectation of a random walk with genenatiyrpA and(k +p)A,
respectively. The subscripindicates the starting point and the corresponding praipabieasures
will be denoted byP;,. By

P2 =5 (Xyx =2) =P; (X)x =0)

we denote the transition probability of a random walk witimgeatorA.

2.1.1 Dimensions1and 2

We start with the recurrent dimensions.

Proof (Theorem 1)Using the semi-group representation of the resolvent
(A — (k+p)A)~ 1 we find that

0 t
ry P2 = /dte”“]E% exp{ y/éo(Zs) ds}
0 0

1 o
_ X+y</dte “p<K+p)t(z)>r§+P(0).
0

This implies, for allA > 0,

/O?dteMMo(t) = <’\ (1_ V/O?dtemp(wp)t(o))) 71'
0 0
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Now the claim forz= 0 follows by a standard Tauberian theorem. The @gs® follows due to the
recurrence oZ. O

2.1.2 Dimensions 3 and higher

A Tauberian theorem is not applicable in transient dimemslzecause here the expected number of
particles does not converge to zero.

Proof (Theorem 2)Let

t—o0

V(2) = lim My(t) = EZ exp{y/ao (Zo) ds}, ze 78,
4

Notice that the Green’s functioBy, is finite in transient dimensions and admits the following
probabilistic representation.

[

Geip@ =2 [H(Z)ds  zez
0

That impliesv(z) € (0,1) for all z€ Z9. Furthermore, we find thatis the unique solution to follow-
ing boundary problem

(K+p)AV(2) + y&(2)v(z) =0, ze 79,
Iim‘z‘amv(z) =1
Hence, for alz € Z9, y
V(Z) =1+ m(ﬁ(z}

2.2 Homogeneous initial condition

In this section we prove Theorems 3 and 4. For homogeneaiis iodndition the Feynman-Kac
representation yields, for all> 0 andx € 29,

t
m(t) =Y E%E;exp{y / 6o(xs—Ys>ds}6o(Yt>.
0

yezd

2.2.1 Dimension 1

Lett:=inf{t >0: % =Y} =inf{t > 0: Z = 0} be the first hitting time oKX andY. The density
of T with respect tdP%, z+# 0, will be denoted byfZ. To prove Theorem 3, we splity(t) into two
parts
M(t) = Y EXEy1rtdo(%),
yezd

whereX andY have not met up to timg and



t
M(t) = Z EéE;LSI eXp{ V/ 0 (Xs—Ys) ds}éo(Y[)a
0

yezd

where they have already met by timeThe next proposition shows thiai is asymptotically negli-
gible. Notice that this implies that there is no differenet&vieen the hard trajy & —) and the soft
trap (y € (—,0)) case becaus®, does not depend opn

Proposition 1. For all x € Z,
lim my(t) = 0.

t—o0

Proof. Let o :=inf{t > 0: Z # Zy} be the the first jumping time &. Furthermore, fot > 0 let
t
w(t) := E2 exp{ y/éo(Zs) ds}éo ).
0

In a first step we give an upper bound for the rate of decay.dfet us abbreviater := 2(k + p).
Using the strong Markov property @fwe find

W(t) = E§]10—>teyt + E%lggte"“

t—s
EZ, exp{ V/ oo (Zy) du} % (Zts)l
0

S=0

t
= gla-nt +a/dse<“*V)SE%]lrgt
0

t—s—r
E3 exp{ y / o (Zy) du} % (ler)‘|

0

- (1_E(t)+aL_y(L[J* f})*w) (t).

HereE denotes the distribution function of a exponentially distted random variable with param-
etera — y andy denotes the corresponding density. By iteration we find tbaanyk > 1,

a a \" 1 a \ Y (k+1) , ¢Lx(k+1)
=(1-BE)*> (—= Mo — * fr .
w= ( )*n_0<y+a) P f; +<y+a> 1] * fr sk W,

Since there existS; > 0 such thaffZ(t) <C; (14—t)’3/2 for all z#£ 0 andt > 0, we see that asymp-
totically

wi(t) ~ <(1—E)>{< ( i)<ai_y>nw*n* f}*n)) (t)

~ (1—E(t)) = (cl (1+t)*3/2) =C(1+t)¥?,  t—o,
whereC is a positive constant. L&t := X —Y andZ@ := X +Y. Then it follows by Holder’s
inequality that
t

mo(t) = Z EE(;>7E§<2)111§ exp{ - y/éo (Zé”) ds}az (Z[(l)) 5, (Zt(Z))

ZYEZL 0

<3 <]Ez<y1> Toa exp{ _ gy/téo (Zé”) ds}éz (Zt(n) )2/3
0

YASVA
. (E§<2’ (51(252)))) ”



From this and the asymptotic behaviounvofve can deduce the claim .0

Now we show whaffy asymptotically looks like. Recall that= k /p.

Proposition 2. For all x € Z,

limmy(t)=1—= .
t—o0 1
T[O 882(1-‘1-@2)4-5

1/1ds\/(1+a)(1—s)s+laTSZa

Proof. Because of the strong Markov property>findY we find
= %Em (%) — EZEXEYL@O (%)
ye

=1- 5 EXE) Tr<[ES EY, &o(Y—s)]s-r
ez

—1- EZE;QE}R@ Pot—1)(Yo)-
S

It follows by Donsker’s invariance principle that

. (EDRRYYIE) G 2

i 3 01~ [ ()
Herew® andw( denote two independent Brownian motions that start in tiggrowith variance
2k and 2, respectively. Their expectations are denote@:@()(/l) andIE‘éV<2), respectively. Moreover,
T§W> =inf{t > 0: \/\.{(l> —\/\4(2) =y} and p§G> denotes a Gaussian density with varianse 2

Indeed, the application of Donsker’s invariance principlaot trivial because we have to sum over
all x € Z, where it cannot be applied uniformly

Let W) := W@ — W@, W) .= WO + £W?@ and 1y == inf{t > 0: W~ = y}. Notice that
W) andw(*) are independent. Itfollows
' W EW®@ ¢ 2)
/dyE\(’," Eg1 <W><1 (WT( )
N W) W(+)
_/dyEO By T 1Ty<KPy>
) G
— [ayEd o0 W)
o - p(17r§7))+—2—(”;')

y2
© 1 ¥ exp{ - 2kp?s }
[ ay /ds|y'ex'“{ ) P9
0 0

. S\/2mn(K+p)s 2
I \/ ( P) \/ZH[ZP(l—S)‘F(inp)Sz}

T
0

2g2
1 /1ds\/('< +p)p(L-9)s+ 52y |

K p2s?
K+p)?
Now the claim follows by substituting. O

Theorem 3 follows immediately from Propositions 1 and 2.
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2.2.2 Dimensions 2 and higher

In dimensions 2 and higher, we find that asymptotically theeexed mass remains constant because
a Brownian motion is only point recurrent in dimension 1.

Proof (Theorem 4)Let rg(z) =inf{t > 0:Z € B¢(0)} be the first time that the proceZ&shits the
centered balB¢ (0) with radiuse > 0, and let

m(t) = S EXEV1 7 &(%).
(t) VEZde vLie . (Yo)

Similarly as in the casd = 1 we find with the help of Donsker’s invariance principle that
lim 1 —mo(t) = lim [ dxpW (™ < 1
t—o0 €0 *\¢ T2
Rd
However, ford > 2 andx # 0,
i (50 < 3) =0t (0 < 3) -2t (8 <3) -0
e>0

Hence, it follows by monotone convergence thatlimmy(t) = 1 which implies that lim,. my(t) =
1forallxezd. O

3 Moving catalyst

In this section we stick to the homogeneous initial conditig = 1 and examine the case of a
randomly moving catalyst, i.e., we consider O.

3.1 Spectral propertiesof higher-order Anderson Hamiltonians

Throughout this section, we writ®, := supo (7°P) for all p € N. Considering the first Hamilton
operator#’* given by

A= (K+p)A+yd,

the existence of an eigenfunction e 12 (Zd) corresponding to its largest spectral value, provided
that this value is greater than zero, has been widely knowsdme time. The following theorem
extends this to the cage= 2 and constitutes the main statement of this section:

Theorem 6. Assume\, > 0. Then A, is isolated in the point spectrum g#2 with one-dimensional
eigenspace. The corresponding eigenfunction may be clstisetty positive.

For a start, we restrict the operator to the subspace of coermgevise symmetric functions
&%= {f el? (ZZd) If(x,y) = f(y,x) Wxye ZZd},
which is obviously closed it? (ZZd). The reader may easily retrace that the operators defined by
F2f =N, V2 i=V2f, =%, fed?

where we use the notation from Section 1, are endomorphisng’oln particular%z2 is a self-
adjoint operator on the Hilbert spa&?, and it is essential that the upper bound of its spectrum
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coincides withA,, which can be shown elementarily. Each eigenfunctioﬁfﬁ? corresponding to
A2 is an eigenfunction of#? as well. Moreover, we expect that an eigenfunctions6¥ is, or

at least could be chosen as, an elgmertﬁéfln view of that, passing over t6 is just a natural
approach. In the next step, we writé? + W2 rather thans#’2 in order to emphasize the dependence
on the potential parametgy and we establish a further translation of the main task:

Lemma 1. Supposé > 0. Then, the resolvent operatBy := (A — «72) ! exists or&2, and for all
y > 0, we have

0 A€o (?+ W2 —= yleo(RV?,
(ii)
A = supo (/% + W?) — y = supo (R\V?).
Moreover, for ve G2 andy > 0,
(ii)
(FP+Wv=Av = (FNQAVZ)V:%/V.

Proof. A Fourier transform reveals that the spectrumstt is concentrated on the negative half-axis,
thus(A — 72)~1 exists on? (z29) for all A > 0. In particular, it exists o®?2, and then it coincides
with (A — 72)~1 as./2 is an endomorphism o&2. Assertions (i) and (iii) follow by rearranging
the equations considered and applying the resolvent apefdite second relation is shown using the
Rayleigh-Ritz formula. O

As a next step, we introduce an operafpon |2 (Zd) having the same spectrum and the same point
spectrum af}) V2 and that admits the decompositidp = T + T @, Here, TV is compact and
the upper bound otﬁr('f<2)) is strictly smaller than the upper bound@(‘f’,\). Then, we use Weyl's
theorem to obtain that the upper boundxiffy ) belongs to the point spectruag(Ty ). The resolvent

Ry = (A —42%2)71 admits the representation
Rif)xx) = Y rPya—xy2—x)f(yry2), X% €z,
y1,y2€Z8

where the resolvent kerne/(\lz) : 729 — (0,) is defined as

r&z) (X1,X2) ::/0 dte MPy(Z = (x1.%2)), X1,% € Z9.

Here,Z is a random walk ofZ2? with generator72. Then we obtain
RWV2E) () = 5 12 (va—x1.y2 — %) [Bo(yn) + Bo(y2)] F(ya.Y2). (@)

y1,y2€Z8

If we assumef € &2, we get
(RV2) (ae) = 3 [r2(y=xa,—x0) + 12 (—xa.y = x| 1(%.0),
yezd
for x1,% € Z4, and in particular
RV (x0) = 5 [rP(y-x0+r2(-xy)] 110,
yezd

for x € 9. Let us therefore introduce the operaigr= T + T2 acting onl? (29) as

=3 [Po-x0+r(=xy)] fv),
yezd
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for x € Z9. Here,

T = r2(—xyfy), T@f= Y rPy-x0)f(y, xez
yezd yezd

Both operators are apparently self-adjoint. The lemmatbeélentifies the spectra and point spectra
of T andR,V?:

Lemma?2. Forall A >0,
o(T)) =0 (RV?), 0p(Th)=0p(R\V?).
Proof. The crucial and least intuitive part is to show that
u — T, surjective= u — R,V? surjective. (5)

All other implications are rather straightforward and weibthem for the sake of conciseness.
Assumep — T, is surjective and choosge &2. Defined(x) := g(x,0) for x € Z9. There exists
fe12(z%) with (u—T) f = § by assumption. We define

f(x1,%2) == f(x1)d0(Xz) + f(X2)Fo(x1) — do(X1) (%) F(0),  X1,Xp € Z¢

and then, foixy, x, € Z9,

F(x ) fxaxe), x; =00rx; =0;
1,%) = 18 V2
pt (R\V2E (x,%2) +9(x1,%2)),  else.

We realize thaF € G2 and proceed showing thitis the desired function satisfyir(g1 — IQA\72) F=
g. Note thatR, V2F (x1,%2) = Ry V2f (x1, %) for all x1,x; € Z9. In the first place, we have

RiVPF(x,0)= 5 [r32> (y—x1,0) + rf)(—xl,y)} f(y,0)

yezd
=T f(xa) = puf(x) — G(xa)
= UF(x1,0) —g(x1,0),  x €Z9, (6)

and by symmetryR) V2F (0,%2) = uF (0,%2) — g(0,xp) for x, € Z9. Moreover,

UF (X1, %2) — RV 2F (xq,X2)
= Ry\WV2f(x1, %) +9(X1, %) — R\ (X1, %)

= gx.%), XX €Z%x,% #0. (7)
Equations (6) and (7) yield the desired regult— R,V2)F = g. Thus, we have shown (5).0

In the next step, we are able to calculate the supremum opietrsim ofT (2. Its value is given in
terms of the Laplace resolvent kermgldefined by

r(x) ::/0 dte MPo(% =x), xeZ9, ®)
with X a random walk orZ¢ with generatok A.
Lemma 3. We havesupo (T®?)) = | T@||, =r{"?(0).

Proof. It will be sufficient to show that

sup{|ul: pe o(T®)} =rf*(0). 9)
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The proof involves a Fourier transform (which we denote.®Y of the operatoff (2. For f €
L2 ([-m,m)Y), the transformed operator reads

T@Of1)=(2m ¢ 5 I §y (@ y—x,O)/ dke 109 f (k
() = (2m) xezzd yede P (L) (k)

—em Y W / L dke Tk 5 @D (x—y0)
yezd [-m.m) ) yezd

= (7)) ( 5

ze74

ei<"z)r§2)(2,0)> . lel-mn,

Thus,T@ is a multiplication operator and the multiplier

t):= 5 é19rPz0), lel-mmd

ze79

is obviously continuous. Hence, its spectrum is just thewle of the range of that multiplier. As
each of the two components of a random walkZ3fl with generator7? is just a random walk on
79 with generatofk + p)A, we have

. R 2
sup [F(N[=F(0)= Y r2(z0)=ry"(0),
le[-mm)d ze79
and equation (9) follows taking into account that the Faurensform is an isometry. O

Lemma 4. Suppose\, = supo (/#2). Then, the operatof,, = T + T(? has a strictly positive
eigenfunctiorV corresponding to its largest spectral valiigy. This value is isolated in the spectrum.

Proof. At first, we realize thaf () belongs to the trace class as

> (T(”éx,éx) </o.mdte*Azt < oo,

xeZd

and thereford (1 is compact. Then, we explain why sagl () + T(2)) > supo(T(?), which to-
gether with Weyl's theorem (see e.g. [RS72]) yields theterise of an eigenfunction. In the end, it
remains to show that we may choose this eigenfunctionlgtpoisitive.

In order to show that sup(T™ 4 T@) > supo(T?)), we recall that

- ~ o~ 1
supo (Ty,) = supo (R, V?) = y

by Lemmas 1 and 2, and the upper bounar6f (?)) is equal torj\(:p(O) by Lemma 3. Therefore, it

suffices to show that

i, r;‘:P(O). (10)

compare e.g. Carmona and Molchanov [CM94]. MoreovelMaandA; are the exponential growth
rates of the first and second momentdf, X), Holder’s inequality yields

1
A< 57\2,
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thus a fortioridy < A2. ASA — rj*p(O) is strictly decreasing (see e.g. equation (8)),

1 «ip K+p
;/:r)\1 (0) >r1;,7(0)
and we have shown (10) for the case> 0. In casel; = 0, we have

1
;/ Z GK+p(O)a

and we arrive at (10) aGxp(0) > rf“’(O) for all A > 0. Weyl's theorem now states thaty

belongs to the discrete spectrunilgf sinceT Y is compact. Consequently, the valuéyls isolated

in the point spectrum. Finally, we show that a correspondiggnfunctionvmay be chosen strictly
positive. It suffices to show thaift,\2 is positive in the sense that it maps nonnegative, non-zero
functions to positive functions. Choose a nonnegativetfoncf arbitrarily and assumé(y;) > 0

for somey; € Z9. Then, for allx € Z9,

= 2 2

T f00 = [r2a—x0)+ 12 (=xy2)| f(y1) > 0.
Consequently, we may choogstfictly positive, and the proof is completel
Let us now prove the main result of this section:

Proof (Theorem 6)Let A, = supo (%ﬂz) The preceding lemma states that there exists a strictly
positive functionve 12 (z9) with T,V = (1/y)¥. By Lemma 2, there exisig € &2 with R, Vv, =
(1/y)v2, as point spectra of both operators coincide. Naturalys also an eigenfunction t,,V?

onl?(z2%). We easily verify that
R),VPf >0

for all nonnegative, non-zerb € 12 (ZZd), thusv, may be chosen strictly positive. Now Lemma 1
yields thatv, is an eigenfunction af#? and.7#? corresponding td..

In order to show that its corresponding eigenspace is omesional, le(w;);., represent an or-
thonormal basis of this eigenspace. Weare principal eigenfunctions &,V P that maps nonneg-
ative, non-zero functions to positive functions. Hence vaywhoose ally; strictly positive. As two
strictly positive functions ih? (Zpd) cannot be orthogonal, it follows that = 1, i.e., the eigenspace
corresponding td, is one-dimensional. O

We will additionally need that the largest eigenvalyds isolated in the spectrum o2 in order
to describe the asymptotic moment behaviour:

Lemma 5. The value), is isolated ino (.#72).
Proof. We know by Lemma 4 that 1 = supa(f}\z) is an isolated eigenvalue, so there exdts 0
with
-8y td[na(h,) = (v}
Define nowd; small enough to ensure
[Thyee = T, ||, < 5/2 forall e with 0 < & < &;.
Itis quickly verified that this is always possible (e.g. bg thean value theorem). We can show with
a similar argument that suf(T, ) depends continuously oh, making it possible to find, small
enough to satisfy
supo (Th,_¢) —supo (Ty,) < &/2foralle with 0 < £ < &.

If we choose nove < 5 A &, it follows
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vt #supo (T, o) € [yt -8/2v1+5/2],

and by Theorem 8 below, the intgr\,{zytrl - 5/2, y 1+ 5/2] contains exactly one element of the
spectrum ofTy, + (Ty,—¢ — Ty,) = Th,—¢- Thereforey ! p(Ty,—¢) and it follows thatA, — € €
p(£?) in the usual way by Lemmas 1 and 2. Thasjs isolated ino (#2). O

Let us in the following present a sufficient condition for #wstence of an eigenfunction with the
desired properties that holds for genguat N:

Theorem 7. Suppose g Nandy > 4d (kp+ p). Then A, = supo (#°P) is positive, isolated in the
spectrum and belongs to the point spectrum with one-dirneakeigenspace. The corresponding
eigenfunction may be chosen strictly positive.

The proof relies on the following theorem from perturbattbeory of bounded operators. It de-
scribes the behaviour of an isolated eigenvalue under adsaliperturbation that is sufficiently
small in a certain sense. The reader may refer to Birman atwhfk [BS80], Ch. 9.4 for a proof.

Theorem 8. Let T, S denote two self-adjoint operators on a Hilbert space. $8pp € op (T) with
multiplicity r and

(M—e,u+elno(T)={u}
for somegs > 0. Moreover, assume (S) C [01, 0,] for somed; < &, € R with &, — d; < €. Then, the
set

M+, u+&NO(T+S)

contains only isolated eigenvalues of-1S whose sum of multiplicities equals r.

Proof (Theorem 7)We have’P = /P + WP, and the idea is to understand the generatfras a
perturbation of the potentigh/P. With increasingy, the perturbationZP remains relatively small,
which allows an application of Lemma 8. A% P is a multiplication, its spectrum coincides with the
essential range of the multiplier and we easily verify tyyats the largest eigenvalue g¥P and has
one-dimensional eigenspace. Moreover,

o(WP)Nlyp—v.yp+yl={vp},
and we may show by a Fourier transform that

o(o/P)c[-4d(kp+p),0].
Theorem 8 now yields that the set

o (AP)Nlyp—v,yp)

contains exactly one element, which is an eigenvalue withipfigity one. This element must be
Ap =supo (#P) due to the nonpositive definiteness@?. It remains to show that the correspond-
ing eigenfunction may be chosen strictly positive. To thatppse, we consider thap is also an
eigenfunction of & corresponding to its largest eigenvalde.eemploying the Feynman-Kac rep-
resentation of this operator, we see that it maps nonnegatdn-zero functions to strictly positive
functions. This means that all principal eigenfunctioreseither strictly positive or strictly negative.
O

3.2 Application to annealed higher moment asymptotics

A natural approach to more exact asymptotics of mixed mospamd the main idea proving Theo-
rem 5, is to decompose the semigroup representation
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(0 = (¢7"1) ().
Certainly we must consider the initial conditidnas an appropriate limit df-functions when at-
tempting a rigorous proof. Witlﬁ Eulu e R} the family of spectral projectors associated witiP,
the spectral theorem for self-adjoint operators yields
"Ap—E€
TR () = ¥ (Lvp) v+ [ edEy (1) () (11)

for somee > 0 small enough. Her@,, = supo (.7#P) must be a positive eigenvalue with multiplicity
one that is isolated ior (#°P), andv; is a strictly positive antP-normed eigenfunction correspond-
ing to A,. Beyond that, we need thét,vp) < . If these requirements are met, we may asymptoti-
cally neglect the last term in (11). In order to prove TheoEmwe need the following two auxiliary
lemmas that are of pure technical nature and thus given ufithgroof. The first one enables us
to approximate the homogeneous initial condition wiHunctions. LetQP := ZPn [—t,t]pd for
t>0.

Lemma 6. For all x € ZP9,

(éﬁ”anp ) X)~AP(t), o
2
The second auxiliary lemma ensures that the consideredipaireigenfunctions are summable:

Lemma 7. Supposer, = supo () > 0 and there exists a corresponding eigenfunctignev
12(zP9). Then, y € 11 (ZPY).

Let us now give a concise proof of the main statement:
Proof (Theorem 5)it suffices to show that, for ak € ZP9,
e MR (t) — ||Vpl|, Vo (x)

ast approaches infinity. The spectral representationéf ejields

_ #'P
e t)\p+tﬂ7 1

Ap—€
= (H=2p)
o = (o vo)vos [ ¢ d (1),

for somee > 0 asA, is isolated in the spectrum. Fotarge enough, th&?-norm of the integral is
roughly estimated from above by

Ap—¢€ pd
—tA —te 2\ 2 ote
|7 0 1) e g = 20 e
o 2 212
which means we may neglect this term and have
_tA P 12
e tApttA ]thpz — vaulvm t — oo, (12)

Let us finally take into account that

e (1) — [|vp | vp X

< ’e*Aptrﬁf(’ (t) —e ety p (x)‘ + ’e*"ﬂ“”p]lQp (x) — ||va1vp(x)‘ :
2 2

where the first term converges to zero according to Lemmadbttensecond one vanishes because
of equation (12). This completes the proofa
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