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Abstract

The processes of reversible storage of hydrogen in a metal by loading and
unloading and of charging and discharging of lithium-ion batteries have many
things in common. Both processes are accompanied by a phase transition and
loading and unloading run along different paths, so that hysteretic behaviour
is observed.

For hydrogen storage we consider a fine powder of magnesium (Mg) parti-
cles and lithium storage is studied for iron phosphate (FePO,) particles form-
ing the cathode of a lithium-ion battery. The mathematical models that are
established in [3] and [4], describe phase transitions and hysteresis exclusively
in a single particle and on that basis they can predict the observed hysteretic
plots with almost horizontal plateaus. Interestingly the models predict that
the coexistence of a 2-phase system in an individual particle disappears, if
its size is below a critical value. However, measurements reveal that this is
qualitatively not reflected by the mentioned hysteretic plots of loading and
unloading. In other words: The behaviour of a storage system consisting of
many particles is qualitatively independent of the fact whether the individual
particles itself develop a 2-phase system or if they remain in a single phase
state.

This apparent paradoxical observation will be resolved in this article. It
will be shown that if each of the individual particles homogeneously distributes
the supplied matter, nevertheless the many particle ensemble exhibits phase
transition and hysteresis, because one of the two phases is realised in some
part of the particles while the remaining part is in the other phase.

1 Introduction and basic functionality of hydrogen
storage and rechargeable lithium-ion batteries

Hydrogen is the ideal synthetic fuel to convert chemical energy into motive power,
and currently rechargeable lithium-ion batteries are the most promising storage
systems for electrical energy. The storage of hydrogen on interstitial lattice sites
of certain metallic crystals and the principle of storage of lithium in the cathode of
lithium-ion batteries have many things in common.

Both storage processes are accompanied by a phase transition and they exhibit hys-
teretic behaviour during loading and unloading, which is described in two character-
istic diagrams: Hydrogen storage in metals is represented by the relation between
the hydrogen vapor pressure of the device and the total amount of stored hydrogen,



and its counterpart in a lithium-ion battery is the relation between the voltage of
the battery cell and its total charge. The voltage U is related to the difference of
chemical potentials y that will defined in a the later section:

U=-E+ (1)

where e denotes the charge of an electron and Uj is the basic cell voltage.
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Figure 1: Left: Hydrogen vapor pressure versus hydrogen content per lattice site of
Mg ([8]). Right: Voltage versus charge per mass of a FePOy cathode ([3])

In order to store hydrogen in a metal, e.g. magnesium (Mg), a hydrogen gas under
some pressure is brought into contact with the metal offering interstitial lattice
sites that can be occupied by hydrogen atoms. Similarly the cathode of lithium-
ion batteries consists of a host system, e.g. the crystal iron phosphate (FePQOy),
whose interstitial lattice sites likewise may serve to store lithium atoms. In the fully
charged state of the battery, there is no lithium in the host system and it contains
the maximal possible number of lithium atoms when the battery is fully discharged.
Typical arrangements for simplified modelling are displayed in Figure 2. The device
for hydrogen storage runs under fixed total volume and it contains a Mg particle
and a certain amount of hydrogen gas. The process is as follows. For a temperature
which depend on the storage substance, the Hy gas molecules dissociates at the
particle surface into atomic hydrogen, i.e. Hy; — 2H = 0, which hereafter enters
the metal and occupies interstitial lattice sites. Depending on the total amount of
hydrogen in the metal, a 2-phase system may develop. For small hydrogen content
we have a solid solution, a-phase, and the relation between the gas pressure and
the hydrogen content is approximately given by Sievert law, see [6, 15]. If the gas
pressure exceeds a certain value, the formation of the hydride phase, 3-phase, sets
in. Further increase of the hydrogen content is now accompanied by coexistence
of the two phases. In the coexistence region, the gas pressure remains constant
at the van’t Hoff pressure if the Mg particle can freely expand its volume. The
volume changes because the hydrogen atom needs more space as is available by the
interstitial lattice sites. If the extension of the particle is hindered, for example by
the other particles, the slope of the coexistence pressure also will slightly change,
which is displayed in Figure 1je;.



Figure 2: Left: A pressure vessel containing a Mg particle in contact to a hydrogen
gas. Right: A FePOy, particle against an metallic Li anode within an electrolyte.

Next we refer to Figure 2, to explain the corresponding phenomena in lithium-
ion batteries. The simplified device indicates the processes in a lithium battery
during discharging and charging. During discharging electrons leave the anode,
which consists here of metallic lithium, to travel through an outer circuit. The
remaining positive lithium ions leave the anode and move through an electrolyte
towards the cathode, which is the central object of the current modelling. It consists
of a carbon coated single crystal FePO, with the shape of a small sphere of about
50 nm diameter. The FePO, lattice offers interstitial lattice sites that serve to store
lithium atoms. When the battery is fully charged, all interstitial lattice sites are
empty. During discharging the arriving lithium ions combine at the carbon coated
surface of the FePO, ball with the inflowing electrons and hereafter they occupy the
interstitial lattice sites. After complete discharging a maximal number of sites of
the interstitial lattice is occupied by a lithium atom. During charging of the battery
the reverse process takes place.

For small lithium content of the storage particle, the lithium atoms form a single
phase that we likewise call o -phase. However, if the lithium content exceeds a
certain value, the formation of a second phase, 3-phase, sets in. Further increase
of the hydrogen content is now accompanied by coexistence of the two phases. In
the coexistence region, the gas pressure remains constant at the van’t Hoff pressure
if the Mg particle can freely expand its volume. The volume changes because the
hydrogen atom needs more space as is available by the interstitial lattice sites. If
the extension of the particle is hindered, for example by the other particles, the
coexistence pressure will also slightly change. This is displayed in Figure 1je;.

Both host systems are not crystals of macroscopic size, rather they consist of fine
powders of small FePO, respectively Mg particles. The decrease of particle size leads
to an increase of the effective store capacity, namely the number of stored particles
per available lattice sites. During the storage process there is a tremendous change
of the particle volume, because the hydrogen atoms as well as the lithium atoms



need more space as is available by the lattice sites. For example the crystals may
change their volume up to 30% in the hydrogen case and up to 6% during lithium
storage. In particular for the hydrogen case, large particle would disintegrate into
smaller ones.

The mathematical models, that were proposed in [3]| and [4], describe phase tran-
sitions and hysteresis exclusively in a single particle and on that basis they can
describe the observed hysteretic plots with almost horizontal plateaus. In partic-
ular the horizontal plateaus rely intimately on the occurrence of a 2-phase system
with regions of high and small concentrations of the stored matter. Surprisingly
there is the following phenomenon. When the size of an individual particle becomes
too small the phase transition vanishes and the particle remains in a single phase
state. This fact is observed in experiments, see [19], and additionally it results from
the model equations. However, measurements reveal that this is not reflected by the
mentioned hysteretic plots of loading and unloading. In other words: The behaviour
of a storage system consisting of many particles is qualitatively independent of the
fact whether the individual particles itself develop a 2-phase system or if they remain
single phase.

In their paper on rate independent hysteresis from 2001, Truskinovski and Puglisi
studied a closely related subject with the objective to explain hysteretic phenomena
in shape memory alloys on a microscopic basis, [16]. The microscopic model consists
of a one-dimensional chain of N oscillators with a non-monotone stress-strain char-
acteristic that intimately corresponds to the non-monotone chemical potential-mole
fraction characteristic, which play the essential role in this study. Differences of the
two studies are the prescribed side conditions during the cycling of the hysteresis
loop and the mathematical treatment.

The same subject is currently under investigation by Mielke and Truskinovski, [12].
In order to reduce the necessary assumptions that are needed in a quasi-static treat-
ment of the problem, the authors rely the new reasoning of the behaviour of the
chain model on an evolution law, and in addition to the non-monotone stress-strain
characteristic they provide the oscillators with viscous elements and stochastic be-
haviour.

The analysis of a many particle system, where each particle is equipped with unstable
states between two stable states, has been started already in 1982 by Dreyer, Miiller
and Strehlow, [5], where the equilibria of two connected spherical rubber balloons
were seriously studied. That problem was generalized to N > 2 connected balloons
by Kitsche, |9] in his diploma thesis, and the results, which form a complete analogy
to the current problem and to Truskinovski and Puglisi, were published in [10] in
1987, see also chapter 5 for some more details of the analogy.

The paper is organized as follows: In chapter 2 we introduce the basic properties of
the storage particles for hydrogen and lithium storage in juxtaposition. Chapter 3
introduces differences and similarities of both the storage problem from a thermody-
namic viewpoint. Chapter 4 is addressed to the detailed exploitation of a simplified
version of the slightly different models for hydrogen and lithium storage, so that



they both can be treated by the same non-monotone chemical potential function.
Here we numerically illustrate the various phenomena and carry out mathematical
analysis. Finally we have added a small Chapter 5, where we explain the intimate
analogy between the many particle storage problems and the problem of the inflation
of many connected rubber balloons via the supply of air.

2 Crystal structure and basic state variables of the
host systems

In this chapter we describe the different crystal structures of the FePO, and the
Mg particles, respectively. However, for the purposes of the current study we have
slightly simplified the description, and we refer to the given citations for the complete
and more precise details.

2.1 Crystal structure of FePO, for lithium storage

The configuration of an FePO, particle is illustrated in Figure 3. The FePO, units
are indicated by yellow (Fe), pink (P), red (O) and the green balls are the intersti-
tial lattice sites that can be occupied by the lithium atoms. The undeformed and

Figure 3: FePOy4 structure. Yellow: Fe, pink: P, red: O, green: interstitial sites.
From [11]

deformed configuration of the host system is described in detail by T. Maxisch and
G. Ceder in [11]. The undeformed crystal, which is the state where the sublattice
formed by the interstitial lattice sites is completely empty, has orthorhombic olivine
symmetry. To each unit of FePOy4 there corresponds one single site in the sublattice.
In contrast to the behaviour of the Mg crystal, see below, the olivine structure does
not change during the occupation of the sublattice sites by lithium atoms. If these
are supplied or removed through the external boundary, there is a deformation of
the olivine structure, because the lithium atoms need more space as it is available
by the sublattice sites. Thus the crystal volume change if the number of Li atoms is



changed. Moreover the stiffness coefficients change. However, the crystal symmetry
remains the same.

At room temperature there may exist a region of total Li concentration where the
distribution of Li atoms on the sublattice sites is realised by two coexisting phases
that differ by high and small Li concentrations. Theoretical studies on the evolution
of Li atoms in the host system by Han et.al [7], Srinivasan and Newman [17] and
the current study rely on this phenomenon, which is experimentally investigated
by Yamada et.al. [20]. The crucial phenomenon that is addressed in this study
is pointed out by Wagemaker et.al., [19]: The 2-phase region disappears if the
particle size is below a critical value. In this case we have a pure solid solution
which, however, is desirable because the power density of the battery should then
be improved.

2.2 Basic state variables for lithium storage

The number Ny of FePO, units, which form the matrix lattice, is fixed. Thus
we assume that there is no diffusion in the matrix lattice but it is deformed, and
for simplicity we only take the change of its volume Vp into account and ignore
deviatoric stresses, see 3] concerning the complete mechanical description.

On the sublattice of a particle we have Np; Li atoms and Ny vacancies. The latter
indicate the empty lattice sites, which do not have mass or momentum but they
are carrier of energy and entropy. Because there is a single sublattice site to each
FePO, unit, we have the side condition

NM - NLi + NV- (2)

Thus for given temperature 7', the basic variables of the lithium storage problem are
Ve, Ny and Npj;. For the local description we introduce densities instead of numbers
and to this end we introduce the mole densities ny, nr; and ny which have units
mole/ m?3. Note that ny changes because the volume Vp may change, whereas Ny
is constant.

2.3 Crystal structure of Mg for hydrogen storage

The host system Mg for hydrogen storage exhibits more complexity as we have met
in the lithium case. The natural Mg crystal at room temperature and atmospheric
pressure has hexagonal-close-packed structure (hcp). Under pressure at about 50
GPa there is a martensitic phase transition to body-centered-cubic symmetry (bcc).
By special quenching techniques into the temperature-pressure region of the storage
process the bee symmetry may survive and hereafter the storage system consists as
a powder of small beec Mg particles with diameters in the ym range. The interstitial
lattice of a single Mg particle that is formed by the octahedral sites may be used
now to store the hydrogen atoms. For each Mg atom there are 3 octahedral sites.



The storage process is as follows: At the surfaces of a single particle with volume
Vp the molecules Hy of the hydrogen gas dissociates into atomic hydrogen, which
then may enter the Mg particles and occupy the described interstitial sites. The
necessary temperature for dissociation is about 300 °C. Note that the dissociation
temperature can be reduced by catalysts, but we do not consider this fact here.

For small hydrogen content we have a solid solution in the particles and that state
is called the a-phase. Similar to lithium storage, the formation of the a-phase is
accompanied by a change of the particle volume because an occupied site needs more
space than an empty site. However, the bcc structure remains. There is a critical
gas pressure, where the maximal solubility of hydrogen in the particles is reached. A
so-called (B-phase nucleates. The bcc structure transforms into tetragonal symmetry
with rutile structure because MgHs is formed as it is indicated in Figure 4. There

Figure 4: Rutile structure of MgH,. Black: Mg, red: H. From [6]

is a region of total hydrogen content where a- and (-phase coexist and here the
gas pressure remains almost constant, see Figure 1. The slight increase of the
pressure is due to the fact that the Mg particles cannot freely expand their volume
because they are slightly fixed by the other particles of the storage powder.

In the rutile structure of the 3-phase we can identify further interstitial sites. After
the whole crystal is in the 3-phase, those sites also can be occupied by the hydrogen
atoms for increasing gas pressure, as it is observed in Figure 1)q.

2.4 Basic state variables for hydrogen storage

The number Ny of Mg atoms, which form the matrix lattice, is fixed. Thus we
assume that there is no diffusion in the matrix lattice but it is deformed, and for
simplicity we only take the change of its volume into account and ignore devia-
toric stresses, so that similarly to the lithium case, the stress tensor reduces to the
pressure.

On the bece sublattice of the a-phase we have Njj H atoms and N vacancies. There
are 7, = 3 sites to each Mg atom, thus here we have the side condition

MaNnp = Nig + Ny (3)



Again for given temperature 7', the basic variables of the a-phase are Vp, Ny and
Nf. For the local description we introduce densities instead of numbers, namely the
mole densities nyr, nyp, nf; and ng. Note that ny changes because the volume may
change, whereas Ny is constant.

On the rutile sublattice of the (-phase we have Ng H atoms and Ng vacancies.
There are 73 = 2 sites to each Mg atom on the rutile sublattice, thus here we have
the side condition

naNy = Nii, + N . (4)
The further sublattice of the $-phase has (3 = 3 sites to each Mg atom of the rutile
structure implying the side condition

(sNyy = Ng. + Ny (5)

Here the basic variables of the -phase are Vp, Nﬁ, Ngn and Ngc. The corresponding

s B B B B B
mole densities are njy, Ny, M My, and Ny, -

3 Generic description of the different host systems

In this chapter we unify the description of the two different host systems. We begin
with a short introduction into those basic facts of thermodynamics that are needed
in the following.

3.1 A modicum of thermodynamics for a single storage par-
ticle

Global inequality. For lithium storage we consider a single FePO, particle without
the surrounding and a single Mg particle which is immersed in a hydrogen gas for
hydrogen storage, see Figure 2. For constant temperature and fixed pressure or fixed

volume the 1" and 2" law of thermodynamics states the temporal inequality
dA
ESO with A= U+ pyV. (6)

The quantity A is the available free energy of the system ) at hand. Here A is the
(Helmholtz) free energy plus outer pressure pg times the total volume of the system.
In the lithium case V' = Vp, and for hydrogen storage we have V' = Vp + V5, where
Vp,Vi denote the particle and the gas volume, respectively.

In equilibrium the equality sign holds, whereas the available free energy must exclu-
sively decrease in non-equilibrium. Thus the possible equilibria are determined by
the minima of A.

There is a reason that we consider the electrolyte with volume Vg as an external
medium, whereas the hydrogen gas is assumed to belong to the system 2. The hy-
drogen gas exchanges hydrogen atoms with the storage particle and thus belongs to

8



the system. On the other hand, the electrolyte merely serves as an elastic medium
that may produce a pressure on the FePO, particle. The lithium flux through its
surface is not related to the electrolyte, rather it is given as an external flux whose
rate is assumed to be small with respect to the temporal evolution of the inter-
nal phenomena, so that the available free energy of the FePO, particle approaches
equilibrium at fixed total lithium content.

The role of the coexistence region of phases and of interfacial free energy.
The free energy W of the system under consideration consists of the sum of bulk
free energies of the phases and of interfacial free energy that takes care for the
interface between two adjacent phases. In [3] that contribution was related to the
curvature of the a-f3 interfaces and it was shown that the surface tension may induce
the hysteretic phenomenon. However, for the case of lithium storage the 2-phase
coexistence region disappears for sufficiently small particles and this is illustrated in
Figure 5, which shows that the sharp interface disappears for decreasing outer radius
of the storage particle. This phenomenon is also described by Wagemaker et.al. in

1— ‘ ‘ 1—
0.8f ] 0.8f
0.67 ] 0.67 ]
> >
0.4f ] 0.4f ]
0.2 1 0.2
%% 05 1 %% 05 1
normalized radius normalized radius

Figure 5: Interface region for outer radius ro=20nm (left) and ro=3nm (right).
Calculation of the model from [3]

[19] and addionally the authors mention the observation of a similar behaviour in
the case of hydrogen storage.

The main objective of the current study is the description of that case where a
2-phase region is energetically unfavorable for small particles. For this reason we
assume that there are no interfaces. The individual storage particle is either in the
a-phase or in the g-phase.

Free energy density, chemical potentials, pressure, Gibbs equation and
Gibbs-Duhem equation. In the lithium case the free energy density pv is defined
so that

Qp
Here pp is the mass density and ¢p denotes the specific free energy in the particle.
We have pp = mymny + mpinn = ny(my + myiy), where my and mp; are the

9



molecular masses of FePO, and Li, respectively, and y = ny;/ny gives the mole
fraction of Li. These definitions hold for the a- as well as for the -phase.

In the hydrogen case there in addition to the particle the hydrogen gas, and here ¥
is given by

V= [ peveda [ puinds 3)
Qp QHQ

pH, = Mmu,ny, i the mass density of the gas. In the particle we have in the a-
phase p& = nf;(my + muny®), where y* = n&/(nng;) denotes the hydrogen mole

fraction of the a-phase. The corresponding expression in the J-phase reads pg =

nl (my + my * (s + C3)y°), where y® = n /((ns + Cs)ni;). The total hydrogen

mole fraction y° of the (-phase can be related to the mole fractions of the two

sublattices by y® = 775/(775+<g)y5+<g/(775+<g)y?, with the sublattice mole fractions
B B B B B

yﬁ = ny, /(nsny) and y, = an/(CB”M)

Next we formulate the constitutive functions for the various specific free energies.

For the lithium case the constitutive functions for the two phases have the same

general form, namely

wo"ﬂ = wa,ﬂ(T’ nri, TLV) = Q;Oc,ﬂ(T’ Y, 7’LM) (9)
The representation via the function zﬁ simply results from a transformation of the
variables.

Similarly we write for the a-phase of the hydrogen case

¢a = iﬂa(T, ny, nV) = wa(Ta Y, nM)a (10)

whereas for the S-phase with 2 sublattices we have more variables and the corre-
sponding functions read

Qﬂﬁ = Qﬂﬁ(T, ny,, ana nv,, an) = &ﬁ(T’ Yns Y¢s TLM) (11)

Finally we give the constitutive function for the hydrogen gas, which is a single
substance, so that we simply may write

Ytz = (T, ny,) (12)

The generic form of the functions (7', ny, ns, ..., n,, ) satisfies the Gibbs equation and
the Gibbs-Duhem equations, see |2] and [13]. These read

dpyp = —psdT + Z ledng, and p= —py + Z HaNa, (13)

a=1 a=1

where the newly introduced quantities are the chemical potentials p, and the pres-
sure p. We conclude from (12); and by an easy calculation

0 - O )
Ha = oy and p=—py +nMﬂ = —pnM—w.
ong onm Ony

(14)

10



The representations (14) give the central quantities of the current study.

Necessary conditions for equilibria. The available free energy A depends on the
participating volumes and on the various sets of mole densities that are described
above. In order to obtain the necessary conditions for the possible equilibria the first
derivatives of the available free energy with respect to the corresponding variables
must be set equal to zero. The resulting conditions can be assigned to 3 kinds of
equilibria, namely mechanical equilibria, chemical equilibria and phase equilibria.
Recall that we consider in this study exclusively the case that a single particle is
either in - or in B-phase, so that conditions for interfacial phase equilibrium do not
occur here.

In the case of lithium storage we have thus only mechanical equilibrium, which reads

pp’ =pr and pg = p, (15)
where pg is the pressure on the particle surface that is induced by the electrolyte.

Note, if we were to consider a 2-phase system in a single particle, then interfacial
phase equilibrium were characterized by uf;, = uﬁ and pu§ = ,uf,.

For hydrogen storage the conditions for mechanical equilibrium are

pp” =pu, and pu, = po. (16)
In this case we also have phase equilibrium, namely between the particle and the
hydrogen gas. This gives rise to the conditions

o 1

1
P = i = ppm, and g gk = S, (17)

Because the G-phase consists of 2 sublattices, there is also a condition for chemical
equilibrium, which describes the transition of hydrogen atoms and vacancies between
the sublattices. That condition reads

MR, I, = Ha T Y (18)

The explicit evaluation of the necessary conditions for equilibrium require constitu-
tive equations for the specific free energies. Afterwards we shall give those equations
for a simplified version of the model.

Assumption on the approach of the storage systems to the various equi-
libria. The approach of the storage systems to mechanical equilibrium is the fastest
process, and for this reason we assume that the system is at any time in mechanical
equilibrium. This assumption allows to eliminate the mole densities of the matrix
lattice from the list of variables. The same assumption is made here concerning
chemical equilibrium of the (-phase in the case of hydrogen storage, implying that
by means of (18) with (18) and assumed invertibility we also may eliminate y?ﬁ, S0
that we now may use the total mole fraction y° as the only hydrogen mole fraction
of the B-phase. For both storage problems and for all phases we thus end up with
specific free energies that depend exclusively of the lithium, respectively the total
hydrogen mole fraction.

11



3.2 The available free energies of many particle systems

Now we consider the many particle problem as it is indicated in Figure 6. We have
N particles, indexed by [ € 1,2,..., N, in the considered system, and we assume
that each of the particles are either in a- or in S-phase and their state variables are
homogeneous.

Figure 6: Left: A pressure vessel containing a powder of many Mg particles in
contact to a hydrogen gas. Right: A cathode coated with many FePO, particles
against an metallic Li anode within an electrolyte.

Lithium storage. Here the available free energy is given by

N N
A= [ @+ peyds = SV ) (19)
1=1 7% =1

where V' is the volume of particle [.

The behaviour of A is restricted to various side conditions that we formulate next.
(i) The number N}, of matrix molecules (FePQ,) is constant and the same for each
storage particle N}y = N}, I = 1,--- N. (ii) The empty particles have the same
volume V' and thus the same mole density 7iy. (iii) The total number of Li atoms,
N1, in the many particle system is constant. Thus we have

Ni = nl V! = nyV, Ni; = np;VY, (20)
N N

Ny =) Niy=NnyV, Nui=)_ Ni. (21)
=1 =

The macroscopic filling degree of all particles ¢ = Np;/Ny denoting the overall
loading state of the system is therefore constant and can then be written as

Zl lNIlA o
q= = NZyz. (22)

M

12



Hydrogen storage.The system for hydrogen storage includes the N Mg particles
and additionally the gas, so that its available free energy reads

N
. Z / pitde | e+ g0V = SV Vapmtn, + Vs (23
=1

Qn,

where V' = Vp + V4 is the total volume of the system.

Also in this case we consider various side conditions. (i) The number N}; of Mg
atoms is constant and the same for each storage particle N}, = NY I =1,--- N.
(ii) The empty particles have the same volume V5 and thus the same mole density
nu. (iii) The total volume, V of the system is constant. (iv) The total number of
H atoms, Ny, in the system is constant. Thus we have

Nli/[ = n{v[Vl = ﬁMVP, Nll-l = anVla (24)
N N
=1 =1
Ny (Ng—32 ¢ > Nu 1

TLH2 N ( VG 5 G N ; n{\/[ ) ( )

where the macroscopic filling degree of the total system ¢ = Np;/Ny is defined as
the sum of the filling degree of all particles plus a part that takes care for the amount
of hydrogen in the gas:

= Zl 1Nl Zyl+ (27)

3.3 Simplified version of explicit constitutive equations

Note that so far we did not quote any explicit constitutive equation for the various
substances that are involved in the two storage problems. Relying on Section 3.1 it is
obvious that the knowledge of the various specific free energies allows to calculate the
constitutive laws for the pressures and the chemical potentials which are the crucial
quantities that determine the evolution of the storage systems. The usual procedure,
however, is different. It relies on the observation, that a free energy density can be
additively decomposed into an chemical part, that exclusively depends on the mole
fraction y, and a mechanical part that depends on the mole fractions and on the
mole densities ny. We write pip = pyhem 4 pypmect - and refer the reader to the
careful discussion of these definitions in [2]. The reason for the decomposition of
the free energy is due to the fact that we knowledge of 1/"*™ and ™" results from
different sources. While ¢"*™ is given directly either by measurements or by models
within the setting of statistical mechanics, follows ™" via 14, by integration from
a constitutive law for the pressure.

13



Constitutive functions for the pressures. The storage particles are assumed
to be elastic with misfit strain, which is due to the volume expansion during the
loading by lithium respectively hydrogen atoms. The misfit strain is given by h(y) =
1/(140y) with 6 = (Vinax— V&)/ VR, and the generic constitutive law for the pressure
pp of a particle is assumed to be given by

pr=pr+ K@) (o = h(y)). (28)
v
We have § ~ 0.06 and ¢ ~ 0.3 for lithium storage, respectively hydrogen storage. pr
is the reference pressure and Vi denotes the reference volume, which is assumed by
an empty storage particle, and K (y) is the concentration dependent bulk modulus.
However, that dependence will be ignored here.

The pressure of the electrolyte is similar formed. We write

e
PE :pR—FKE(V - 1), (29)
E
where K is the bulk modulus of the electrolyte and Vj is its actual volume which
is related to the reference volume V4 according to Vi = V(1 — dq). Recall that the
filling degree is related to the mole fractions by 22.

Finally we give the pressure for the hydrogen gas that is assumed to be an ideal gas,
so that we have
Pu, = 7’LH2RT, (30)

with the universal gas constant R = 8.31 J/(mole K).

Mechanical parts of free energies. By integration of 145 we obtain the mechan-
ical part of the free energy density of the particles. It reads

m M M M
PP = (pr — Kh(y)) (—— — 1) 4+ K log 12 (31)
nih(y) mi o mih(y)
The corresponding free energy density for the electrolyte is not needed, because it
does not belong to the considered system, and the mechanical part of the free energy
density of the hydrogen gas results as

P et = RTlog 2. (32)

Pr
Chemical parts of free energies. In the case of lithium storage the chemical
part of the free energy can be given by simple function for both phases, because the
crystal structure is the same for low as well as high lithium content of a particle.
We use here the same non-convex constitutive law as in [3] that takes entropic parts
and the heat of solution into account. It reads

p™ = ny Lf(y) (33)

a(T)y + as(T)(1 —y) + 41— y) + " (ylogy + (1~ y)log (1~ y)), (34)

=
£
I
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where L > 0 is the constant heat of solution. a;(7") and as(T") are not important in
this study because we consider here isothermal processes.

The case of hydrogen storage is more subtle, because as described above the crystal
structure changes if the phases change, so that we different function are needed for
different phases. These functions turn out to be both parabola, because the solid
solution as well as the formation of hydride are exothermic and thus have negative
heat of solutions, see the forthcoming article [4|. Here we simply interpolate between
the both functions and take as the result the same structure as (33).

The chemical part of the free energy density of the hydrogen gas has only entropic
contributions and because the gas is ideal and consists of a single substance, it is of

the simple form
chem

oYy = nuas(T). (35)
As before we do not specify here the temperature dependent function a3(7") and

refer again to [4].

Chemical potentials. In order to calculate the chemical potentials we construct
from the above at first the function (7, nyin, nv), ¥u,(T, nu,), and use then (14,)
to obtain for lithium, respectively hydrogen

%NLLH = fly) + (1 =y f'(y)+

n n nvh n 1
b (log(—7) — (1= ——=)(1—y) ) +b (1 —(1—y) ) =, (36)
h h h
and for the vacancies
1 , nw hl ’fLMh h/ 1
— by = — by | log(——) + —(1 — — by |1+ —y | —.
v =fy) =y fy) +b <0g(th) =T )y> + b ( +oy )5 (87
The newly introduced constants by = K/n% L and by = pr/nk L control the strength
of mechanical in comparison to chemical contributions.

Finally chemical potential of the hydrogen gas results as

jin, = az + RT log 22 (38)
Pr

3.4 Exploitation of mechanical equilibrium

As it was explained in Section 3.1 the assumption that mechanical equilibrium is
established at any time allows to determine the mole density nyr of the matrix by the
mole fraction y, so that we end up with free energy densities and chemical potentials
that depend exclusively on y.

Lithium storage. For each single phase FePO, particle with index [ € 1,2,.., N
we have according to (15) and (28)

p(y',nk) = pp  implying K(= — h(y")) = Kndq, (39)

nl
M
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which gives the function nl; = n4;(v', q).

Hydrogen storage. For each single phase Mg particle with index [ € 1,2,.., N
that is immersed in the gas we have according to (31) and (29)

l

. . n
p(y',nly) = pu, implying pg + K(% — h(y")) = nu, RT. (40)

The density of the g as molecules depend via (26) on the mole fraction, on the filling
grade and(!) on all mole densities ny;, ni,...,nd. However, an estimate shows
that this dependence is quite small and thus can be ignored. The result is again a
function of the type ni; = ni;(y").

4 The many particle system in detail

4.1 Determination of equilibria

Lithium storage. Under the assumptions (20) and (39) the available free energy
(19) reduces to

N-1

N
_ N, 1 P .
AV =50 (m pl¢l+ﬁlE> with yif = Ng— Y . (41)

=1

Next, we define the difference of the chemical potential ;1 = pp; — py this is related
to the free energy of each particle by

~ 1 Oppip
b= — :
ny 0y

(42)

Note that the chemical potential depends on the mole density ny and the mole
fraction y. However, the mole density depends by the equation (39) only on the
mole fraction y an we define i(y) = u(y, nv).

The free available energy has a minimum at any equilibrium point. The necessary
conditions for equilibria are

0= 51 =3 )~ () (43)

This means that the voltage of each particle is the same. The sufficient condition
for equilibria can be read of the Hessian

A Nat (90
oyloys N

_ 5,

oji )
O + — . 44
y=y! " Oy ly=yN ( )

and will be evaluated in the next section.
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Hydrogen storage. Under the assumptions (24) and (40) the available free energy
(23) reduce to

N
N, 1 _
Ay, YY) = WM > %!+ Vit puy s + Vo (45)
1=1 "M
with N (Ng— Zé\f o o v
= | L __&=t=1T d =V - — : 4
iy = T and Vi, =V N lzl ) (46)

Similar to the lithium case, we define the difference of the chemical potential p =
pa — v this is related to the free energy of each particle by

_ 1 Oppip

— 4
h= Ty (47)

Note that the chemical potential depends on the mole density ny; and the mole
fraction y. However, the mole density depends by the equation (40) only on the
mole fraction y an we define [i(y) = u(y, nyp)-

The necessary conditions for equilibria are

0= 55 =2 () = (o)) (48)
and the Hessian is
9*A Ny (0fi 1 Opgr, On,
3o = 3 (Gyb® 20 517 o
where X
aaf;: _ _N]\‘fzg (1 + V“IZZ}’;IA %%f) . (50)

General structure. A generic formulation for available free energy in both cases
is

1

A(w) = (3 Flu) + Bag. ) (51)
(=1

Where 2 € A and A = R™ the space of possible system states. For the lithium
model N, = N — 1 and Fy(q,z) = F(yn) (confer (22)), whereas by (24) N, = N
and F5 is a convex function. The Hessian in this notation reads

F"(y1)
D?A(z) = H(z) = —( +DiFy(g, 7). (52)
F'(yn-1)
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Figure 7: Qualitative description of particle potential

The crucial point in the following discussion, is that F’ € C! is a nonmonotone
function. It is strictly decreasing in an interval (y.,y*) and strictly increasing else.

Note, that the Hessian is guaranteed to be positive definite if F”(y,) > 0 for all /.
Another property which will be needed later is the fact, that the matrix D2 Fy(q, x)
all entries in each row are the same. For the lithium model Fy(q,z) = F(Ngq —

N*
D1 Ye)

Numerical exploitation. To evaluate the necessary conditions, we solve a system
of nonlinear equations. Figure 8 shows possible solutions in the lithium case. The
figure indicates that for an increasing number of particles the number of possible
solutions increases for one filling degree q.

One observation is that if 91/0y is positive for all particles, then the Hessian of the
system is always positive definite. For increasing numbers of particles, we observe
that there is almost no equilibria for one particle in a state where 0fi/Jy is negative.

This gives rise to the model assumption that no particle should ever be in the
intermediate region. We can now formulate the following lemma.

Lemma 1 ( There are almost no equilibria states possible with one particle in the
intermediate region). The lemma consists of two statements. For fized q let the
necessary equilibria condition be fulfilled, then we can say

(i) if two or more particles are in the intermediate region, then the second deriva-
tive s Negative definite.

(ii) if only the k-th particle is in the intermediate region, then its state yy must be,
depending on N, arbitrary close to the boundary of the intermediate region.

Note, if H(x) is negative definite for the system-state x, then x is not an energy
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Figure 8: Solutions of the necessary conditions of 2,3,5 and 6-particle system, black
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Proof. We denote by e, the k-th unitvector, which has an entry 1 at the k-th position
and zero entries otherwise.

The lithium storage model

(i) Let particles k£ and ¢ be in the intermediate region.
S Py, F() < 0
(a) k,0 < N = x:= ¢, — ey, 2T [H(z)]x <0
(b) £ < N k=N =z := ¢, 2T [H(z)]x <0

(ii) Particle k is in the intermediate region.
= F"(yx) <0
(a) k< N=ua:=¢ — N%Zijifiﬂei,
b) k=N=a2:=3>""e,
Then in both cases there holds

N T H@)e = Pl + e S P (53)

It turns out that

N
ﬁ Zi:l,z’;ﬁk F"(y:)

Fl/
[F"(yn)| < N_1

(54)

must be true, if (53) should be positive. Since F” is bounded this is equivalent
to F”(yx) being arbitrarily close to zero. By assumption F” is continuous
and only zero at the boundary of the intermediate region, which proves the
assertion.

The hydrogen storage Model The prove is exactly the same and the only extra
ingredience is the special structure of D?F}, in the hydrogen case. O

4.2 Stable path

Recall that the available free energy A(z,t) depends not only on the system state
x € A but also on time. In our case the time dependence enters with the given
continuous evolution of ¢(t). Therefore the energy landscape changes in time. We
consider the system to be quasi static. Therefore the dynamic behaviour of the
many particle system is, that it follows stable paths were possible. Examples of
stable paths are plotted in figure (9), and we therefor define the notion of stable
paths rigorously as follows.

Definition 1 (stable path). A stable path is a continuous function x : I — A, which
maps a time interval I into the space A of possible states. Furtheron there must hold
forallt el
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(i) the state x(t) is local minimum of A(-,t).

(ii) there exists an € > 0 so that for all (x.,t.) € A x I with x. # x(t.) and
|z, ti) — (2(t),8)|| < e, x4 is not local minimum of A(-,t).

A stable path is therefor an isolated continuous line of equilibria in A

)| ///////

o

-0.05 -0.05

0 0.5 1 05 0.

q q

1

Figure 9: Stable paths of 2 and 6-particle system

This definition is rather abstract. We will now deduce further statements for the
behaviour of the N-particle system by exploiting the assumption, that no particle
will ever be in the intermediate region, and thus restricting A.

First note, that for some fixed ¢ < y.., as well as for ¢ > y**, there exists only one
stable state and this case is therefore not interesting. From now on we will discuss
the behaviour of the system in time intervals I where ¢(t) € (yui, y**), for all ¢t € 1.

Each stable path which we consider for our systems, has to belong to a fixed fraction
A = k/N, where k is the number of particles in the [-phase. This is a simple
conclusion from the continuity condition for stable paths.

Lemma 2 (uniqueness and existence for stable paths with seperated phases). For
A € [0, 1] fized and any time interval I so that for allt € I there holds q(t) € I(\) =

(g-(A),¢-(N)), with
¢-(A) = A" + (1 = A)ys 0+ (A) =A™ + (1= Ays (55)

there is an uniquely (under permutations of the particles) defined stable path of the
system. Furthermore the system state x(t) = x(q(t)) = (y1(q),y2(q),---) depends

only on q. There exist functions yy (q), vy (q), ua(q), which are defined on I(\), and
there holds

q-(A) = 2" + (1 = A)yus (A = "+ (1 =Ny (56)
Jule) ifi<NA=k

yi(q) = yi () else (57)

(58)

21



The following identities are true:

g=Myy(q)+ (1= Ny; (9 Vg € I, (59)

m(a) = F'(yx (@) = F'(yx (9)) Vi (60)

Yy (@=(N)) = Yss Ur(@-(N) =y° (61)
Yy (¢+(N) = s yx gy (V) =y~ (62)

Proof. Tt sufficises to show the existence and uniqueness of functions y; (¢), yx (q), 1x(q)
which fulfil (59)-(62), and to show that they are continuous.

(i) Discussion of special cases: A € {0;1}. Here one immediately sees that

A=0: I = (Y, Ys) Yo (@) = ¢ to(q) = F'(q) (63)
A=1: L= y™) i (@) =g la) = F'(q) - (64)

(ii) For A € (0,1) we first construct the function p,. Therefore we define the function

-1

—1
o] = (1] 0e) Il = (oo 01)
[ps,p*] *— Ag1 + (1 - A)QO- (66)

90
agx

For ¢ € I(\) there must hold for sz, as defined

ga(ua(a)) = ¢ (67)
Recall the condition of the model: 0 <y, 5 < ¢ and therefor
1

9o = 1 = gy >c1>0 (68)

0
=g\ >0 L=y + (1= Ny, Ay™ + (1= Nga)  (69)
= x|, = (g,\|[u*,u*])_1 exists uniquely and is continuous, and (70)
0 < phlr, <co- (71)

Now we define y;,yy as the continuous functions

ux (@) = g (1a(@)) = go(a(a)) i =y ' (ua(q)) = g1(palq)) (72)

which are defined on I,. Note that (59)-(62) is true by construction.

Since this is (under permutations) the only stable path for the system, for fixed A,
there are no local minima near by. The positive definiteness of the second derivative
is trivially given by the condition that all particles are in stable states. O

Note that hereby the three system describing values p, g, A are dependent of each
other. If two of them are given, the third value is uniquely determined. That means
that by knowing two of those system values one knows the whole system state (with
respect to permutations).
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We want to show, that the distance of two potential curves ) (q), ats(q) vanishes if
0 — 0. This assertion requires a definition of the distance. Note that by construction
of py a horizontal line between uy and gy, s at an arbitrary height u(q1) = pass(q2)
has the length 0.

This might already prove the assertion, but we consider another notation of distance.

Definition 2 (vertical distance between two potential curves). We define the vertical
distance of two potential curves py and pyis (6 > 0) at a certain point ¢ € 1)U Iy is
as

px(q) — pags(q) g GNINA n Dhis
W= if NN =0

d(pixs Brts, q) = . R - , o (73)
! px(q) — ps if g € \Ixys and Ix N Iyy5 # 0
W= pags(q) if g € Diys\In and Iy N Iyis # 0
as well as the total vertical distance of two potential curves as
d(pex, prrs) = maxd(pin, fiats, q) - (74)
LISTBN
Note that for I, N I ,s5 # 0 there holds
max  d(px, fiats, @) > max  d(px, fiays, q) - (75)

qelNIris qeX\Ixys

4.3 Dynamic behaviour

So far we have been able to describe the behaviour of the system as long as it stays on
the above described stable paths. Crucial was the assumption, that the macroscopic
quantity ¢(t) has to stay for the considered times in an open set I.

The question we are addressing in this subsection, is what happens if the macroscopic
state ¢(t) runs over the boundary of I,. For simplicity we only discuss the case were
q(t) is increasing in time and runs over the top boundary ¢*(\) = ¢(t.) at a certain
time t,. By assuming a continuous (in time) system state x(t), one can uniquely
determine the state z(t,). The positive definiteness of the second derivate and
therefore the equilibria demand is not guaranteed at this limit state. However for
q(t) > ¢ (X\) there is no equilibria point of the energy which suffices the condition
of the particle fraction A in a-phase and -phase. Thus we call this state a critical
point.

We describe the system state evolution for ¢(¢) moving increasingly over ¢*(\) by
a model assumption. We say that the system state changes discontinuously. One
particle which was in the a-phase changes to the §-phase and therefore the system
describing fraction A(t) changes: A(t. +¢) = A(t.) + 1/N for € small enough.

In the plot of the stable paths this means, that the systems potential is described
by @ and the potential drops to the potential curve gL as q increases over the

23



critical point. Note that for IV large enough there holds for all A = k/N € [0, 1] that
gt(\) e LN I, 1 and so the above described behaviour is possible.

To describe the resulting dynamic behaviour of the constructed model we give
evolutionary laws for the state parameter A(¢) in dependence of smooth functions
q(t),q(t),t € I = [ty,t1] and a state A(tp) at a starting time .

(i) Prerequisite of allowed starting state: 0 < A(0) = K/N < 1 is a fraction and

4(0) € Ly).
(i) For q(t) € Iy or q(t) = 0, the fraction A(¢) stays unchanged /constant.

(iii) A < 1,¢(ts) = g*(N\) and ¢(t,) > 0, then A increases by 1/N at time ¢, That
means that there exists an ¢ > 0 so that for all ¢ > ¢,, |t — t.| < € there holds
A(t) = A(t,) + 1/N.

(iv) A > 0,q(t.) = ¢ (\) and ¢(t,) < 0, then X decreases by 1/N at time ¢, That
means that there exists an ¢ > 0 so that for all ¢ > t,, |t — t.| < € there holds
A(t) = A(t,) — 1/N.

This way there is at all times a fraction A\ defined and the system state x(¢) can be
determined by ¢(t) and A(¢). Looking at the macroscopic observable quantities g
and 1)(q), one observes an hysteretic behaviour as seen in figure (10).

Figure 10: Hysterese of 5 and 10-particle system

Lemma 3 (vertical distance vanishes). For an arbitrary € > 0 there exists a 0, > 0,
so that for all 0 < § < d, and X € [0,1] there holds

d(pr, tars) < € (76)

Proof. First assume, that d, is small enough, so that for all 0 < 6 < d, we can
guarantee I, N I, 5 # 0. Tt suffices to bound the distance for ¢ € I, N Iy,s is
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bounded.

0 < d(pr, piats, @) = pa(q) — pars(q) (77)
q+6
(@)~ ssla £ ) [ sho)ds (79)
=0 b}?gonstr. e
< ¢pd due to (71) . (79)
O

The maximal vertical distance between two neighbouring potential curves vanishes
as IV increases.

4.4 Asymptotic behaviour and hysterese

The evolutionary description of our model in the last section looks similar to an
ordinary differential equation. One could interpret the jumping of the internal state
variable A\ as a derivative being a delta distribution.

In this case one can formally deduce an asymptotic evolution law for particle number
N — oo. We call this the macroscopic model.

(i) Prerequisite of allowed starting state: A(0) € [0,1] and ¢(0) € Iy

(ii)
0 q(t) € Ly or g(t) =0
A= q(t) a=q"(V).q(t) >0and A < 1 (80)

q(t) ¢g=¢q¢ (N),q(t) <O0and A >0

We will now show that the observable behaviour of the potential for the N-particle
system, denoted uy(t), converges uniformly to the behaviour of the macroscopic
model p(t). This can be observed in figure (11).

Lemma 4 (convergence of potentials as for large particle numbers). Let ¢(t) €
C?([to, t1]) be a given evolution of the macroscopic system state, and let Ay € QN|0, 1]
be an allowed starting value for the internal state of the macroscopic model. Then
for a series of numbers Ny, £ = 1,2,... and Ny > Nyyq so that the rational value
Ao = K¢/N; can be represented as a fraction with denominator N, there holds the
following.

For \(t) being the evolution for the internal system state of the Ny-particle system
and A(t) the evolution of the macroscopic model respectively, we have uniformly
convergence of the potentials, i.e. for all § > 0 there exists a N, > 0 s.t.

max |1y, (q(t)) — pae (a(t))] < 6 VN > N,. (81)

[to,t1]
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Figure 11: Hysterese 1000-particle system

Proof. First one should notice, since the macroscopic model as well as the N,-particle
model start from the same state (o), A(fo) the difference |A(t) — Ao(¢)] < 1/N,
and therefor the assertion is proved by the former lemma for the vanishing vertical
distance. O

Path-Dependence. In a lithium battery it is observable that the voltage for the
same charge state depend on the battery history [18|. This path- dependence can
be explained with our model. We want to reproduce the following experiment which
is described in short:

e process starts with an empty battery (¢ = 1)

e battery will be half charged (¢ = 0.5)

e then fully charge of the battery (¢ = 0)

e after this discharge to half charge state (¢ = 0.5)

e at last again fully charged (¢ = 0)

In the experiment the battery undergoes a loading process ¢(t) : [to,t1] — [0, 1].
The same loading process is done twice, but different behaviour is observed. The
only difference is, that the same state ¢(to) = .5 where the loading starts is reached
through different paths. Either by loading from an ’empty’ state of the battery or
by unloading from a ’full’ state.

The simulation 12 shows an evolution of the potential for the described experiment.
One observes that the voltage from the second loading process is lower than in the
first case. This is due to different internal states A(f) even though the system has
the same loading state ¢(t).

Mechanical dependence. In the argumentation before, the pressure pg (cf. (29))
was constant. On the otherhand taking the change of volume of the particles into
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Figure 12: Path-dependence,1000 particle

account, one can model an arising stress in the electrolyte as ¢ increases. This means
pE is a function of ¢ and enters into the pressure term of the chemical potential (16).
With this model we can reproduce a slope of the plateau in the system’s potential
curves. The simulation 13 shows such an influence in an exaggerated way for the
lithium model. This should be incorporated in the model of hydrogen storage as
well, where slopes of plateaus have been observed in experiments, and are steeper
than in the Lithium case. The explanation could be the big volumechange during
loading of possible up to 30 % of the magnesia.

0.1
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0 /
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" ood /
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0 0.5 1
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Figure 13: Mechanical interaction of the particles, 250 particle

5 An illustrative analogy: Inflation of connected
rubber balloons

We consider N connected spherical rubber balloons indexed by [ € 1,2,..., N as it is
indicated in Figure 14. Via the pressure vessel the balloons can be simultaneously
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inflated with air.

The pressure difference p' — py of each balloon with respect to the outer pressure py,
is related to its radius

(B @) (@)

where R is the radius of the undeformed balloon and « and ( are related to the
initial thickness of the balloon and to the elastic constants of rubber, more details
are found in [5] and [14].

The function (82) is a non-monotone function, which induces qualitatively the same
behaviour as the chemical potentials of the study from above.

Figure 14: Four different states of connected rubber balloons during loading with
air via the pressure vessel.

In case that a single balloon is inflated by supply of air under fixed pressure, the
decreasing part of the pressure-radius relation is an unstable branch. However, it
can be shown, that if a balloon with a fixed filling grows due to a decrease of the
outer pressure, that branch is stable.

Now we consider the process that is illustrated by Figure 14. There is a constant
supply of air into the pressure vessel and that air freely distributes among the
balloons. The following happens: As long as the filling of balloons are small, they
all have the same size until they reach with increasing filling the end of the first
increasing pressure-radius branch. Careful observation now reveals that only one
balloon will pass quickly through the decreasing branch to an apparent larger radius,
whereas the other balloons slightly decrease at first their radius before all balloons
increase their radius due to the constant supply of air. In this time regime we thus
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have one large balloon and N — 1 small ones. This regimes ends when the small
balloons again reach the end of the first increasing pressure-radius branch, and here
the same event as before happens. One balloon passes to a larger radius, whereas
now N — 2 balloons fall back, and we have now a state with 2 large balloons and
N —2 small ones. This process is repeated until all balloon have the same large size.
Last state of the sequence from figure 14.

The interpretation and in particular the analogy to the behaviour of many parti-
cles in the two storage problems from above is obvious. There is a regime of two
coexisting phases, formed by small respectively large balloons. Each balloon is a
homogeneous and single phase object, however, some balloons are in one phase and
the others are in the other phase. See [9], [10] and [14] for more details.
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