Weierstraß-Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint
ISSN 0946-8633

On the clustering property of the random intersection graphs

Xin Yao ${ }^{1}$, Jinwen Chen ${ }^{2}$, Changshui Zhang ${ }^{3}$, Yanda Li ${ }^{3}$
submitted: November 3, 2008

No. 1369
Berlin 2008

2000 Mathematics Subject Classification. 05C80, 05C75, 05C40.
Key words and phrases. random intersection graphs, clutering coefficient, phase transition.
Research supported by the DFG in the Dutch-German Bilateral Research Group "Mathematics of Random Spatial Models from Physics and Biology".

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) Mohrenstraße 39
10117 Berlin
Germany

Fax: $\quad+49302044975$
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

A random intersection graph $\mathcal{G}_{V, W, p}$ is induced from a random bipartite graph $\mathcal{G}_{V, W, p}^{*}$ with vertices classes V, W and the edges incident between $v \in V$ and $w \in W$ with probability p. Two vertices in V are considered to be connected with each other if both of them connect with some common vertices in W. The clustering properties of the random intersection graph are investigated completely in this article. Suppose that the vertices number be $N=|V|$ and $M=|W|$ and $M=N^{\alpha}, p=N^{-\beta}$, where $\alpha>0, \beta>0$, we derive the exact expressions of the clustering coefficient C_{v} of vertex v in $\mathcal{G}_{V, W, p}$. The results show that if $\alpha<2 \beta$ and $\alpha \neq \beta, C_{v}$ decreases with the increasing of the graph size; if $\alpha=\beta$ or $\alpha \geq 2 \beta$, the graph has the constant clustering coefficients, in addition, if $\alpha>2 \beta$, the graph connecChangshui Zhangts almost completely. Therefore, we illustrate the phase transition for the clustering property in the random intersection graphs and give the condition that $\mathcal{G}_{V, W, p}$ being high clustering graph.

There are a lots of collaboration networks in the real world, such as scientists collaboration networks[10, 11], actor collaboration networks[2, 3, 1], metabolism networks $[7,6,5]$, et al. In these networks, there are two types of vertices sets V, W and the vertices in V may link to some of the vertices in W. The vertices $v_{1}, v_{2} \in V$ are considered to be connected with each other if both of these two vertices connect to some common vertices in W. For describing such intersection structure mathematically, the random intersection graph was introduced firstly in $[12,8]$. Let $\mathcal{G}_{V, W, p}^{*}$ be the random bipartite graph with two vertices classes V and W. That probability that $v \in V$ and $w \in W$ be connected with each other in $\mathcal{G}_{V, W, p}^{*}$ is p and the connections between the vertices of V and W are independent with each other. The random intersection graph $\mathcal{G}_{V, W, p}$ is a random graph with vertices set V and the connections in $\mathcal{G}_{V, W, p}$ are induced from $\mathcal{G}_{V, W, p}^{*}$ in this way: the vertices $v_{1}, v_{2} \in V$ are connected with each other if and only if both of them link to some vertex $w \in W$ in $\mathcal{G}_{V, W, p}^{*}$. The subgraph property and the degree distribution of the random intersection graphs are illustrated in [4] and [13], respectively. The intersection structure in the networks is considered to be the reason that many real world collaboration networks have high clustering coefficients, since all the vertices in V linking to the same $w \in W$ will form a complete subgraph and have very high local clustering coefficients. However, if $p=0$, it is clear that the $\mathcal{G}_{V, W, p}$ is an empty graph and the clustering coefficient is 0 , which means that there may exist a threshold p_{c} that $\mathcal{G}_{V, W, p}$ is a high clustering graph only when $p>p_{c}$.

The clustering coefficient of the vertex $v \in V$ is defined as

$$
\begin{equation*}
C_{v}=\frac{2 c_{v}}{k_{v}\left(k_{v}-1\right)}, C=\frac{1}{N} \sum_{v \in V} C_{v} \tag{1}
\end{equation*}
$$

where k_{v} is the degree of vertex v, c_{v}, which is called clustering degree in $[14,15]$, is the number of edges that actually exist between these k_{v} vertices and N is the number of vertices in V. The cluster coefficients of collaboration networks are studied in [9] under the different definition from Eq.(1). However, there are few mathematical results for $\mathcal{G}_{V, W, p}$ to characterize the clustering properties in the form of Eq.(1), which is a more popular definition for clustering coefficients. We studied the clustering property of $\mathcal{G}_{V, W, p}$ thoroughly in this article. The exact expression of C_{v} is presented and as the result a phase transition phenomenon is discovered.
Let $N=|V|, \quad M=|W|$ be the vertices number and

$$
\begin{equation*}
M=N^{\alpha}, \quad p=c N^{-\beta} \tag{2}
\end{equation*}
$$

where $\alpha \geq 0, \beta \geq 0$ and $c>0$ are the constants. Let W_{v} be the set of vertices in W which link with $v \in V$ and V_{v} be the set of vertices in $V \backslash\{v\}$ which connected with v in $\mathcal{G}_{V, W, p}$ by linking with some common vertices in W with v. It can be seen that both W_{v} and V_{v} are the random set. Since the connections between vertices of V and W are independent, the probability that $v_{1}, v_{2} \in V$ are connected each other in $\mathcal{G}_{V, W, p}$ is $\hat{p}=1-(1-p)^{M}$, which decides the asymptotical property of $\mathcal{G}_{V, W, p}$ under the settings in Eq.(2). When $N \rightarrow \infty$, the speeds that $p \rightarrow 0$ and $M \rightarrow \infty$ will be very different under various α and β, as a result the asymptotical property of \hat{p} will be different.

From above description, it can be seen that the random intersection graph $\mathcal{G}_{V, W, p}$ is in fact a random graph with vertices set V and the connective probability between any two vertices v_{1}, v_{2} is \hat{p}. In this case, will all the results of classical random graph presented by Erdös and Renyi be extended to $\mathcal{G}_{V, W, p}$? If so, the random intersection graphs should be a trivial model. However, that is not true. What makes $\mathcal{G}_{V, W, p}$ different is the independence. In the random intersection graphs, the independence of the connections disappears, because

$$
\begin{equation*}
P\left(v_{2} \in V_{v_{3}} \mid v_{2} \in V_{v_{1}}, v_{3} \in V_{v_{1}}\right) \neq P\left(v_{2} \in V_{v_{3}}\right), \tag{3}
\end{equation*}
$$

that is to say, the connection between v_{2} and v_{3} depends on whether the vertex v_{1} being connected with both v_{2} and v_{3}. Therefore, the results of Erdos-Renyi random graphs can not be extended to $\mathcal{G}_{V, W, p}$ directly and we should find the way out for any properties of the random intersection graphs. We will present the analysis of the clustering coefficients of $\mathcal{G}_{V, W, p}$ in the following text.

The local clustering property, which describing the correlation between the clustering degree c_{v} (or clustering coefficient C_{v}) of vertex $v \in V$ and the degree k_{v}, will be investigated at first. Since the connections between the vertices of V result from the links between V and W, the correlation between c_{v} and $L_{v}=\left|W_{v}\right|$ should
be studied at first, where the random set W_{v} is the collection of all the vertices in W that linked with v, therefore L_{v} is a random variable. With the random set W_{v} as the condition, the expectation of c_{v} is

$$
\begin{align*}
E\left[c_{v} \mid W_{v}\right] & =\sum_{V_{v} \subset V \backslash\{v\}} E\left[c_{v} \mid W_{v}, V_{v}\right] P\left(V_{v} \mid W_{v}\right) \\
& =\sum_{i=1}^{N-1} \sum_{\left|V_{v}\right|=i} E\left[c_{v} \mid W_{v}, V_{v}\right] P\left(V_{v} \mid W_{v}\right) \tag{4}
\end{align*}
$$

where $E\left[c_{v} \mid W_{v}, V_{v}\right]$ is the expectation with the random sets W_{v}, V_{v} as the conditions. It can be seen that $E\left[c_{v} \mid W_{v}\right]$ may be derived if $E\left[c_{v} \mid W_{v}, V_{v}\right]$ and $P\left(V_{v} \mid W_{v}\right)$ are known.
As V_{v} be the vertices connected with v, and any two of these vertices connect with each other with probability \hat{p}, we can obtain that

$$
\begin{equation*}
E\left(c_{v} \mid W_{v}, V_{v}\right)=\binom{\left|V_{v}\right|}{2} P\left(v_{1} \in V_{v_{2}}, v_{1}, v_{2} \in V_{v} \mid W_{v}, V_{v}\right) \tag{5}
\end{equation*}
$$

since there are at most $\binom{\left|V_{v}\right|}{2}$ possible connections among the vertices in V_{v}.
With the random sets W_{v}, V_{v} as the conditions, the probability that any two vertices $v_{1}, v_{1} \in V_{v}$ being connected with each other can be denoted as

$$
\begin{align*}
& P\left(v_{1} \in V_{v_{2}}, v_{1}, v_{2} \in V_{v} \mid W_{v}, V_{v}\right) \\
= & \frac{1-\left(1-p^{2}\right)^{L_{v}}}{\left(1-(1-p)^{L_{v}}\right)^{2}}+\left(1-p^{2}\right)^{L_{v}}\left(1-\left(1-p^{2}\right)^{M-L_{v}}\right) \tag{6}
\end{align*}
$$

The first term of Eq.(6) is the probability, with the random sets W_{v}, V_{v} as the conditions, that there exist $w \in W_{v}$ such that $w \in W_{v_{1}}$ and $w \in W_{v_{2}}$. The second term of Eq.(6) is the probability, with the random sets W_{v}, V_{v} as the conditions, that v_{1}, v_{2} are connected with no common vertex in W_{v} but connected with some common vertices in $W \backslash W_{v}$.
For the vertex v, if the set of its linked vertices in W is W_{v}, it has the connected vertices set V_{v} in $\mathcal{G}_{V, W, p}$ with probability

$$
\begin{equation*}
P\left(V_{v} \mid W_{v}\right)=\left[1-(1-p)^{L_{v}}\right]^{\left|V_{v}\right|}(1-p)^{L_{v}\left(N-\left|V_{v}\right|-1\right)} \tag{7}
\end{equation*}
$$

Combining with the Eq.(5)(6)(7), we have

$$
\begin{align*}
& E\left[c_{v} \mid W_{v}\right] \\
= & \frac{(N-1)(N-2)}{2}\left[1-\left(1-p^{2}\right)^{L_{v}}+\left(1-p^{2}\right)^{L_{v}}\right. \\
& \left.\cdot\left(1-(1-p)^{L_{v}}\right)^{2} \cdot\left(1-\left(1-p^{2}\right)^{M-L_{v}}\right)\right] . \tag{8}
\end{align*}
$$

Under the various α and β, the asymptotical property of Eq.(8) will be different as shown below

$$
E\left[c_{v} \mid W_{v}\right] \sim \begin{cases}\frac{c^{2} L_{v}}{2} N^{2-2 \beta}, & \beta \leq \alpha<2 \beta \tag{9}\\ \frac{\left(1-e^{-L_{v} p}\right)^{3}}{2} N^{2}, & \alpha=2 \beta \\ \frac{N^{2}}{2}, & \alpha>2 \beta\end{cases}
$$

Eq.(9) gives the description of the mean clustering degree of v under the condition that W_{v} is known. If only $L_{v}=\left|W_{v}\right|$ is known and it is not clear which vertices are in W_{v}, then $P\left(W_{v} \mid L_{v}\right)=1 /\binom{M}{L_{v}}$ since every set W_{v} which has L_{v} elements incidents with the same probability and there are $\binom{M}{L_{v}}$ such W_{v}, therefore,

$$
\begin{align*}
E\left[c_{v} \mid L_{v}\right] & =\sum_{\left|W_{v}\right|=L_{v}} E\left[c_{v} \mid W_{v}\right] P\left(W_{v} \mid L_{v}\right) \\
& =\binom{M}{L_{v}} \frac{E\left[c_{v} \mid W_{v}\right]}{\binom{M}{L_{v}}} \\
& =E\left[c_{v} \mid W_{v}\right] . \tag{10}
\end{align*}
$$

Eq.(9) and (10) tell the following truth: when $\beta \leq \alpha<2 \beta$, the vertex clustering degree c_{v} increases with L_{v} linearly; when $\alpha=2 \beta, c_{v}$ increases with L_{v} exponentially; when $\alpha>2 \beta, c_{v}$ is almost $N^{2} / 2$. Considering the connective probability among the vertices of $V, \hat{p}=1-\left(1-p^{2}\right)^{M}$, and Eq.(2), we find that the greater α means the greater M and the higher connective probability, similarly, the greater β means the smaller p and the smaller connective probability. For the random intersection graph, higher connective probability means the high clustering degree. Therefore, if α is great enough relative to β, the clustering property of the graph will change. The local clustering property of $\mathcal{G}_{V, W, p}$ under different α, β described by Eq.(9) are illustrated in Fig. 1.

Since

$$
\begin{equation*}
E\left(k_{v} \mid L_{v}\right)=(N-1)\left(1-(1-p)^{L}\right), \tag{11}
\end{equation*}
$$

Combining Eq.(1),(9) and (10), we can derive the conditional expectation of clustering coefficients with the asymptotical analysis under different α, β, we have

$$
E\left[k_{v} \mid L_{v}\right] \sim \begin{cases}c L_{v} N^{1-\beta}, & \beta \leq \alpha<2 \beta \tag{12}\\ N\left(1-e^{-\frac{c L_{v}}{N^{\beta}}}\right), & \alpha=2 \beta \\ N, & \alpha>2 \beta\end{cases}
$$

Given the condition L_{v}, the conditional distribution of k_{v} is binomial distribution $\operatorname{Bi}(N-1, \hat{p})$. Therefore, from the probability inequalities

$$
\begin{align*}
& P\left(k_{v} \geq E\left[k_{v} \mid L_{v}\right]+t\right) \leq \exp \left(-\frac{t^{2}}{2\left(E\left[k_{v} \mid L_{v}\right]+t / 3\right)}\right) \\
& P\left(k_{v} \leq E\left[k_{v} \mid L_{v}\right]-t\right) \geq \exp \left(-\frac{t^{2}}{2 E\left[k_{v} \mid L_{v}\right]}\right) \tag{13}
\end{align*}
$$

Figure 1: The conditional expectation of the clustering degree of v given L_{v}. The imbedded graph are the magnification of the case $\beta \leq \alpha<2 \beta$. Given the size of the networks, $\mathrm{N}=1000$, it can be seen that when $\alpha=1.0, \beta=0.7(\diamond), E\left(c_{v} \mid L_{v}\right)$ increase with L_{v} linearly; when $\alpha=1.0, \beta=0.5(\square), E\left(c_{v} \mid L_{v}\right)$ increase with L_{v} exponentially; when $\alpha=1.0, \beta=0.3(\bigcirc), E\left(c_{v} \mid L_{v}\right) \sim N^{2} / 2$. The dash lines are the theoretical results.

Figure 2: The dependence of the clustering coefficient of v on the number of the W links of v. Given the size of the networks, it can be seen that when $\alpha=1.0, \beta=0.7(\diamond), E\left(C_{v} \mid L_{v}\right)$ decrease with L_{v} in hyperbolic way; when $\alpha=1.0, \beta=0.5 \quad(\square), E\left(C_{v} \mid L_{v}\right)$ is near to 1 and almost a constant; when $\alpha=1.0, \beta=0.3(\bigcirc), E\left(C_{v} \mid L_{v}\right)=1$. The dash lines are the theoretical results.
we have

$$
k_{v} \sim \begin{cases}c L_{v} N^{1-\beta}, & \beta \leq \alpha<2 \beta \tag{15}\\ N\left(1-e^{-\frac{c L_{v}}{N^{\beta}}}\right), & \alpha=2 \beta \\ N, & \alpha>2 \beta .\end{cases}
$$

asymptotically almost surely with $N \rightarrow \infty$, which means that k_{v} concentrates highly to its mean value so that the probability that k_{v} apart from $E\left[k_{v} \mid L_{v}\right]$ goes to zero when N goes to infinity. So the clustering coefficient follows directly from the Eq.(1) as

$$
E\left[C_{v} \mid L_{v}\right] \sim \begin{cases}\frac{1}{L_{v}}, & \beta \leq \alpha<2 \beta \tag{16}\\ 1-e^{-\frac{c L_{v}}{N^{\beta}}}, & \alpha=2 \beta \\ 1, & \alpha>2 \beta\end{cases}
$$

and the simulation results are illustrated in Fig. 2.

Figure 3: The dependence of the clustering coefficient of v on the vertices number in $\mathcal{G}_{V, W, p}$. It can be seen from the figure that when $\alpha=\beta=1.0(), E\left(C_{v}\right)$ is a small constant; when $\alpha=1.0, \beta=0.7(\bullet), E\left(C_{v}\right)$ decreases with the growth of the network size; when $\alpha=1.0, \beta=0.5$ ($\boldsymbol{\square}), E C_{v}$ is a constant near to 1 ; when $\alpha=1.0, \beta=0.3(\mathbf{\Delta}), E C_{v}=1$.

If we consider the property of L_{v} under different α, β, we can obtain the following results

$$
\begin{equation*}
L_{v} \sim c N^{\alpha-\beta} \tag{17}
\end{equation*}
$$

asymptotically almost surely with $N \rightarrow \infty$ and we notice that $E\left(C_{v} \mid L_{v}\right) \sim 1-e^{-c^{2}}$, which is a constant. Since $E\left[C_{v}\right]=\sum_{l} E\left[C_{v} \mid L_{v}\right] P\left(L_{v}=l\right)$, we have

$$
E\left[C_{v}\right] \approx \begin{cases}c^{\prime} & \alpha=\beta \tag{18}\\ \frac{1}{c} N^{-(\alpha-\beta)}, & \beta<\alpha<2 \beta \\ 1-e^{-c^{2}}, & \alpha=2 \beta \\ 1, & \alpha>2 \beta\end{cases}
$$

and the simulation results are illustrated by Fig. 3.
Eq.(18) describes the whole clustering property of the random intersection graph $\mathcal{G}_{V, W, p}$. It can be seen that the clustering properties of $\mathcal{G}_{V, W, p}$ are very different for
different parameter α, β. The decisive facts are not the value of the parameters, but the relative relation of the two parameters. In fact, increasing β will reduce the connective probability and so the clustering coefficient, however, increasing α will enhance the connective probability and clustering coefficient so as to counteract the effect from the increase of β.
The graphs or networks with high clustering coefficients are the research focus now and the reasons of the high clustering are interesting problems. Some evolutionary mechanisms have been studied for such problem. However, the random intersection graphs are easier to be high clustering graphs. All the vertices in V which link to the same $w \in W$ will be connected with each other. Therefore, $\mathcal{G}_{V, W, p}$ is constituted from a lots of complete subgraphs. Eq.(18) tells that $\mathcal{G}_{V, W, p}$ will have high clustering coefficient when $\alpha \geq 2 \beta$. In other words, $\alpha=2 \beta$ is the critical point for the clustering property in $\mathcal{G}_{V, W, p}$.

Moreover, considering Eq.(2) and the critical condition expressed by α, β, we can obtain easily the critical probability, $p_{c}=c / \sqrt{M}$, that $\mathcal{G}_{V, W, p}$ will be a high clustering graph if $p \geq p_{c}$. In addition, the local clustering property, which described by $E\left[C_{v} \mid L_{v}\right]$, only varies with L_{v} at critical point, $p=p_{c}$. When $p>p_{c}, \mathcal{G}_{V, W, p}$ is almost a complete graph. This means the connectivity property of $\mathcal{G}_{V, W, p}$ varies sharply at the critical point.

As we have given the complete analysis of the clustering property of $\mathcal{G}_{V, W, p}$, the condition that $\mathcal{G}_{V, W, p}$ be a high clustering graph and the characteristics of $\mathcal{G}_{V, W, p}$ at critical point has been revealed. What may be more interesting and important are the analysis of the clustering properties of scale-free random intersection graphs, which will be our future work.

References

[1] R. Albert and A.-L. Barabási. Topology of evolving networks: Local events and universality. Phys. Rev. Lett., 85:5234-5237, 2000.
[2] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley. Classes of small-world networks. Proc. Nat. Acad. Sci. U. S. A., 97:11149, 2000.
[3] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509-512, 1999.
[4] J. A. Fill, E. R. Scheinerman, and K. B. Singer-Cohen. Random intersection graphs when $m=\omega(n)$: An equivalence theorem relating the evolution of the $g(n, m, p)$ and $g(n, p)$ models. Random Structures and Algorithm, 16:156-176, 2000.
[5] P. M. Gleiss, P. F. Stadler, A. Wagner, and D. A. Fell. Relevant cycles in chemical reaction networks. Advances in Complex Systems, 4:207-226, 2001.
[6] H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. Lethality and centrality in protein networks. Nature, 411:41, 2001.
[7] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A-L. Barabasi. The largescale organization of metabolic networks. Nature, 407:651, 2000.
[8] M. Karoński, E. R. Scheinerman, and K. Singer-Cohen. On random intersection graphs: the subgraph problem. Combin. Probab. Comput., 08:131-159, 1999.
[9] M. E. J. Neuman, S. H. Strogatz, and D. J. Watt. Random graph with arbitrary degree distributions and their applications. Phys. Rev. E, 64:026118, 2001.
[10] M. E. J. Newman. Scientific collaboration networks. i. network construction and fundamental results. Phys. Rev. E, 64:016131, 2001.
[11] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys. Rev. E, 64:016132, 2001.
[12] K. Singer-Cohen. Random intersection graphs. PhD thesis, The Johns Hopkins University, Baltimore, Maryland, 1995.
[13] D. Stark. The vertex degree distribution of random intersetion graphs. Random Structures and Algorithm, 24:249-258, 2004.
[14] X. Yao, C. S. Zhang, J. W. Chen, and Y. D. Li. On the formation of degree and cluster-degree correlations in scale-free networks. Physica A, 353:661-673, Aug. 2005.
[15] X. Yao, C. S. Zhang, J. W. Chen, and Y. D. Li. On the scale-free intersection graphs. In Lecture Notes in Computer Science (ICCSA2005), pages 1217-1224, Singapore, May 2005.

