
Weierstraÿ-Institutfür Angewandte Analysis und Stohastikim Forshungsverbund Berlin e.V.Preprint ISSN 0946 � 8633On the lustering property of the randomintersetion graphsXin Yao1, Jinwen Chen2 , Changshui Zhang3 , Yanda Li 3submitted: November 3, 2008
1 Weistrass Institutefor Applied Analysis and StohastisMohrenstrasse 3910117 BerlinGermanyE-Mail: yao�wias-berlin.de

2 Department of MathematisTsinghua UniversityChengfu Road, Haidian100084, BejingChina
3 Department of AutomationTsinghua UniversityChengfu Road, Haidian100084, BejingChina No. 1369Berlin 2008

2000 Mathematis Subjet Classi�ation. 05C80, 05C75, 05C40.Key words and phrases. random intersetion graphs, lutering oe�ient, phase transition.Researh supported by the DFG in the Duth�German Bilateral Researh Group �Mathematisof Random Spatial Models from Physis and Biology�.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Stohastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



AbstratA random intersetion graph GV,W,p is indued from a random bipartitegraph G∗
V,W,p with verties lasses V , W and the edges inident between

v ∈ V and w ∈ W with probability p . Two verties in V are onsideredto be onneted with eah other if both of them onnet with some ommonverties in W . The lustering properties of the random intersetion graphare investigated ompletely in this artile. Suppose that the verties numberbe N = |V | and M = |W | and M = Nα, p = N−β , where α > 0, β > 0 ,we derive the exat expressions of the lustering oe�ient Cv of vertex
v in GV,W,p . The results show that if α < 2β and α 6= β , Cvdereases with the inreasing of the graph size; if α = β or α ≥ 2β , thegraph has the onstant lustering oe�ients, in addition, if α > 2β , thegraph onneChangshui Zhangts almost ompletely. Therefore, we illustratethe phase transition for the lustering property in the random intersetiongraphs and give the ondition that GV,W,p being high lustering graph.There are a lots of ollaboration networks in the real world, suh as sientistsollaboration networks[10, 11℄, ator ollaboration networks[2, 3, 1℄, metabolismnetworks[7, 6, 5℄, et al. In these networks, there are two types of verties sets V ,

W and the verties in V may link to some of the verties in W . The verties
v1, v2 ∈ V are onsidered to be onneted with eah other if both of these twoverties onnet to some ommon verties in W . For desribing suh intersetionstruture mathematially, the random intersetion graph was introdued �rstly in[12, 8℄. Let G∗

V,W,p be the random bipartite graph with two verties lasses Vand W . That probability that v ∈ V and w ∈ W be onneted with eahother in G∗
V,W,p is p and the onnetions between the verties of V and W areindependent with eah other. The random intersetion graph GV,W,p is a randomgraph with verties set V and the onnetions in GV,W,p are indued from G∗

V,W,pin this way: the verties v1, v2 ∈ V are onneted with eah other if and only ifboth of them link to some vertex w ∈ W in G∗
V,W,p . The subgraph property andthe degree distribution of the random intersetion graphs are illustrated in [4℄ and[13℄, respetively. The intersetion struture in the networks is onsidered to be thereason that many real world ollaboration networks have high lustering oe�ients,sine all the verties in V linking to the same w ∈ W will form a omplete sub-graph and have very high loal lustering oe�ients. However, if p = 0 , it is learthat the GV,W,p is an empty graph and the lustering oe�ient is 0, whih meansthat there may exist a threshold pc that GV,W,p is a high lustering graph onlywhen p > pc . 1



The lustering oe�ient of the vertex v ∈ V is de�ned as
Cv =

2cv

kv(kv − 1)
, C =

1

N

∑

v∈V

Cv, (1)where kv is the degree of vertex v , cv , whih is alled lustering degree in [14, 15℄,is the number of edges that atually exist between these kv verties and N isthe number of verties in V . The luster oe�ients of ollaboration networksare studied in [9℄ under the di�erent de�nition from Eq.(1). However, there are fewmathematial results for GV,W,p to haraterize the lustering properties in the formof Eq.(1), whih is a more popular de�nition for lustering oe�ients. We studiedthe lustering property of GV,W,p thoroughly in this artile. The exat expressionof Cv is presented and as the result a phase transition phenomenon is disovered.Let N = |V | , M = |W | be the verties number and
M = Nα, p = cN−β (2)where α ≥ 0, β ≥ 0 and c > 0 are the onstants. Let Wv be the set of vertiesin W whih link with v ∈ V and Vv be the set of verties in V \{v} whihonneted with v in GV,W,p by linking with some ommon verties in W with v .It an be seen that both Wv and Vv are the random set. Sine the onnetionsbetween verties of V and W are independent, the probability that v1, v2 ∈ V areonneted eah other in GV,W,p is p̂ = 1−(1−p)M , whih deides the asymptotialproperty of GV,W,p under the settings in Eq.(2). When N → ∞ , the speeds that

p → 0 and M → ∞ will be very di�erent under various α and β , as a resultthe asymptotial property of p̂ will be di�erent.From above desription, it an be seen that the random intersetion graph GV,W,p isin fat a random graph with verties set V and the onnetive probability betweenany two verties v1, v2 is p̂ . In this ase, will all the results of lassial randomgraph presented by Erdös and Renyi be extended to GV,W,p ? If so, the randomintersetion graphs should be a trivial model. However, that is not true. Whatmakes GV,W,p di�erent is the independene. In the random intersetion graphs, theindependene of the onnetions disappears, beause
P (v2 ∈ Vv3

|v2 ∈ Vv1
, v3 ∈ Vv1

) 6= P (v2 ∈ Vv3
) , (3)that is to say, the onnetion between v2 and v3 depends on whether the vertex

v1 being onneted with both v2 and v3 . Therefore, the results of Erdos-Renyirandom graphs an not be extended to GV,W,p diretly and we should �nd theway out for any properties of the random intersetion graphs. We will present theanalysis of the lustering oe�ients of GV,W,p in the following text.The loal lustering property, whih desribing the orrelation between the lusteringdegree cv (or lustering oe�ient Cv ) of vertex v ∈ V and the degree kv , will beinvestigated at �rst. Sine the onnetions between the verties of V result fromthe links between V and W , the orrelation between cv and Lv = |Wv| should2



be studied at �rst, where the random set Wv is the olletion of all the verties in
W that linked with v , therefore Lv is a random variable. With the random set
Wv as the ondition, the expetation of cv is

E [cv|Wv] =
∑

Vv⊂V \{v}

E [cv|Wv, Vv] P (Vv|Wv)

=

N−1
∑

i=1

∑

|Vv|=i

E [cv|Wv, Vv] P (Vv|Wv) (4)where E [cv|Wv, Vv] is the expetation with the random sets Wv, Vv as the ondi-tions. It an be seen that E [cv|Wv] may be derived if E [cv|Wv, Vv] and P (Vv|Wv)are known.As Vv be the verties onneted with v , and any two of these verties onnetwith eah other with probability p̂ , we an obtain that
E (cv|Wv, Vv) =

(|Vv|
2

)

P (v1 ∈ Vv2
, v1, v2 ∈ Vv|Wv, Vv) (5)sine there are at most (

|Vv|
2

) possible onnetions among the verties in Vv .With the random sets Wv, Vv as the onditions, the probability that any twoverties v1, v1 ∈ Vv being onneted with eah other an be denoted as
P (v1 ∈ Vv2

, v1, v2 ∈ Vv|Wv, Vv)

=
1 − (1 − p2)Lv

(1 − (1 − p)Lv)2 +
(

1 − p2
)Lv

(

1 − (1 − p2)M−Lv
) (6)The �rst term of Eq.(6) is the probability, with the random sets Wv, Vv as theonditions, that there exist w ∈ Wv suh that w ∈ Wv1

and w ∈ Wv2
. Theseond term of Eq.(6) is the probability, with the random sets Wv, Vv as theonditions, that v1, v2 are onneted with no ommon vertex in Wv but onnetedwith some ommon verties in W \ Wv .For the vertex v , if the set of its linked verties in W is Wv , it has the onnetedverties set Vv in GV,W,p with probability

P (Vv|Wv) =
[

1 − (1 − p)Lv
]|Vv|

(1 − p)Lv(N−|Vv|−1) (7)Combining with the Eq.(5)(6)(7), we have
E [cv|Wv]

=
(N − 1)(N − 2)

2

[

1 − (1 − p2)Lv + (1 − p2)Lv

·
(

1 − (1 − p)Lv
)2 ·

(

1 − (1 − p2)M−Lv
)

]

. (8)3



Under the various α and β , the asymptotial property of Eq.(8) will be di�erentas shown below
E [cv|Wv] ∼



























c2Lv

2
N2−2β , β ≤ α < 2β

(

1 − e−Lvp
)3

2
N2, α = 2β

N2

2
, α > 2β

(9)Eq.(9) gives the desription of the mean lustering degree of v under the onditionthat Wv is known. If only Lv = |Wv| is known and it is not lear whih vertiesare in Wv , then P (Wv|Lv) = 1/
(

M

Lv

) sine every set Wv whih has Lv elementsinidents with the same probability and there are (

M

Lv

) suh Wv , therefore,
E [cv|Lv] =

∑

|Wv|=Lv

E [cv|Wv] P (Wv|Lv)

=

(

M

Lv

)

E [cv|Wv]
(

M

Lv

)

= E [cv|Wv] . (10)Eq.(9) and (10) tell the following truth: when β ≤ α < 2β , the vertex lusteringdegree cv inreases with Lv linearly; when α = 2β , cv inreases with Lvexponentially; when α > 2β , cv is almost N2/2 . Considering the onnetiveprobability among the verties of V , p̂ = 1−(1−p2)M , and Eq.(2), we �nd that thegreater α means the greater M and the higher onnetive probability, similarly,the greater β means the smaller p and the smaller onnetive probability. For therandom intersetion graph, higher onnetive probability means the high lusteringdegree. Therefore, if α is great enough relative to β , the lustering property ofthe graph will hange. The loal lustering property of GV,W,p under di�erent α, βdesribed by Eq.(9) are illustrated in Fig. 1.Sine
E(kv|Lv) = (N − 1)

(

1 − (1 − p)L
)

, (11)Combining Eq.(1),(9) and (10), we an derive the onditional expetation of lus-tering oe�ients with the asymptotial analysis under di�erent α, β , we have
E[kv|Lv] ∼











cLvN
1−β , β ≤ α < 2β

N
(

1 − e−
cLv

Nβ

)

, α = 2β

N, α > 2β.

(12)Given the ondition Lv , the onditional distribution of kv is binomial distribution
Bi(N − 1, p̂) . Therefore, from the probability inequalities

P (kv ≥ E[kv|Lv] + t) ≤ exp

(

− t2

2(E[kv|Lv] + t/3)

) (13)
P (kv ≤ E[kv|Lv] − t) ≥ exp

(

− t2

2E[kv|Lv]

) (14)4
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Figure 1: The onditional expetation of the lustering degree of v given Lv . Theimbedded graph are the magni�ation of the ase β ≤ α < 2β . Given the size ofthe networks, N=1000, it an be seen that when α = 1.0, β = 0.7 ( ♦ ), E(cv|Lv)inrease with Lv linearly; when α = 1.0, β = 0.5 ( � ), E(cv|Lv) inrease with
Lv exponentially; when α = 1.0, β = 0.3 ( © ), E(cv|Lv) ∼ N2/2 . The dashlines are the theoretial results.
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Figure 2: The dependene of the lustering oe�ient of v on the number ofthe W links of v . Given the size of the networks, it an be seen that when
α = 1.0, β = 0.7 ( ♦ ), E(Cv|Lv) derease with Lv in hyperboli way; when
α = 1.0, β = 0.5 ( � ), E(Cv|Lv) is near to 1 and almost a onstant; when
α = 1.0, β = 0.3 ( © ), E(Cv|Lv) = 1. . The dash lines are the theoretial results.we have

kv ∼











cLvN
1−β , β ≤ α < 2β

N
(

1 − e−
cLv

Nβ

)

, α = 2β

N, α > 2β.

(15)asymptotially almost surely with N → ∞ , whih means that kv onentrateshighly to its mean value so that the probability that kv apart from E[kv|Lv] goesto zero when N goes to in�nity. So the lustering oe�ient follows diretly fromthe Eq.(1) as
E [Cv|Lv] ∼















1

Lv

, β ≤ α < 2β

1 − e−
cLv

Nβ , α = 2β
1, α > 2β.

(16)and the simulation results are illustrated in Fig. 2.6
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Figure 3: The dependene of the lustering oe�ient of v on the verties numberin GV,W,p . It an be seen from the �gure that when α = β = 1.0 ( � ), E(Cv) isa small onstant; when α = 1.0, β = 0.7 ( • ), E(Cv) dereases with the growthof the network size; when α = 1.0, β = 0.5 ( � ), ECv is a onstant near to 1;when α = 1.0, β = 0.3 ( N ), ECv = 1 .If we onsider the property of Lv under di�erent α, β , we an obtain the followingresults
Lv ∼ cNα−β (17)asymptotially almost surely with N → ∞ and we notie that E(Cv|Lv) ∼ 1−e−c2 ,whih is a onstant. Sine E[Cv] =
∑

l E[Cv|Lv]P (Lv = l) , we have
E [Cv] ≈



















c′ α = β
1

c
N−(α−β), β < α < 2β

1 − e−c2, α = 2β
1, α > 2β.

(18)and the simulation results are illustrated by Fig. 3.Eq.(18) desribes the whole lustering property of the random intersetion graph
GV,W,p . It an be seen that the lustering properties of GV,W,p are very di�erent for7



di�erent parameter α, β . The deisive fats are not the value of the parameters,but the relative relation of the two parameters. In fat, inreasing β will reduethe onnetive probability and so the lustering oe�ient, however, inreasing αwill enhane the onnetive probability and lustering oe�ient so as to ounteratthe e�et from the inrease of β .The graphs or networks with high lustering oe�ients are the researh fous nowand the reasons of the high lustering are interesting problems. Some evolutionarymehanisms have been studied for suh problem. However, the random intersetiongraphs are easier to be high lustering graphs. All the verties in V whih linkto the same w ∈ W will be onneted with eah other. Therefore, GV,W,p isonstituted from a lots of omplete subgraphs. Eq.(18) tells that GV,W,p will havehigh lustering oe�ient when α ≥ 2β . In other words, α = 2β is the ritialpoint for the lustering property in GV,W,p .Moreover, onsidering Eq.(2) and the ritial ondition expressed by α, β , wean obtain easily the ritial probability, pc = c/
√

M , that GV,W,p will be ahigh lustering graph if p ≥ pc . In addition, the loal lustering property, whihdesribed by E[Cv|Lv] , only varies with Lv at ritial point, p = pc . When
p > pc , GV,W,p is almost a omplete graph. This means the onnetivity propertyof GV,W,p varies sharply at the ritial point.As we have given the omplete analysis of the lustering property of GV,W,p , theondition that GV,W,p be a high lustering graph and the harateristis of GV,W,pat ritial point has been revealed. What may be more interesting and importantare the analysis of the lustering properties of sale-free random intersetion graphs,whih will be our future work.Referenes[1℄ R. Albert and A.-L. Barabási. Topology of evolving networks: Loal events anduniversality. Phys. Rev. Lett., 85:5234�5237, 2000.[2℄ L. A. N. Amaral, A. Sala, M. Barthelemy, and H. E. Stanley. Classes ofsmall-world networks. Pro. Nat. Aad. Si. U. S. A., 97:11149, 2000.[3℄ A.-L. Barabási and R. Albert. Emergene of saling in random networks. Si-ene, 286:509�512, 1999.[4℄ J. A. Fill, E. R. Sheinerman, and K. B. Singer-Cohen. Random intersetiongraphs when m = ω(n): An equivalene theorem relating the evolution of the
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