
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

Stochastic simulation of flows and particle transport

in porous tubes

K. Sabelfeld 1, 3, O. Kurbanmuradov 2, and A. Levykin 3

1 Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstrase 39. D – 10117 Berlin, Germany;
E-Mail: sabelfel@wias-berlin.de

2 Phys. Tech. Institute, Turkmenian University, Ashgabad
E-Mail: Kurbanmuradov@yandex.ru

3 Institute of Computational Mathematics
and Mathematical Geophysics, Russian Acad. Sci.
Lavrentieva str.,6, 630090 Novosibirsk, Russia

No. 1324

Berlin 2008

1991 Mathematics Subject Classification. 65C05, 65C20, 76S05 .

Key words and phrases. Darcy equation, random hydraulic conductivity, Lagrangian trajectory,
Randomized spectral models, lognormal random fields .

This work is supported partly by the RFBR Grant N 06-01-00498. O. Kurbanmuradov and A.
Levykin acknowledge the host institute WIAS and the support of DAAD, under a 3 months Grant of
2007.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

A Monte Carlo method is developed for stochastic simulation of flows and par-
ticle transport in tubes filled with a porous medium. The hydraulic conductivity is
assumed to be a random field of a given statistical structure, the flow is modelled
in a tube with prescribed boundary conditions. Numerical experiments are carried
out by solving the random Darcy equation for each sample of the hydraulic con-
ductivity by a SOR iteration method, and tracking Lagrangian trajectories in the
simulated flow. We present and analyze different Eulerian and Lagrangian statisti-
cal characteristics of the flow such as transverse and longitudinal velocity correlation
functions, diffusion coefficients, the mean and variance of Lagrangian trajectories,
and discuss a “stagnation” effect which was found in our simulations.

1 Introduction

It is well known that the main difficulty in evaluation of pollutant transport in porous medium
(e.g., in aquifers, filters, bio-materials, etc.) is the extreme heterogeneity of the media. This
is a classical situation where there is a lack of knowledge about the local details of the spatial
structure, but without this structure details, it is no chance to describe the large scale behavior.
A natural approach is based on a stochastic description, where the heterogeneity are modeled
as random fields with given statistical properties. In hydrology the stochastic approach is often
used for the flow analysis in saturated zone (e.g., see [6], [26]). Stochastic approach allows to
analyze also variations of other local properties, e.g., the chemical absorption coefficient [7,3],
or the degradation constant [12].

In the flow simulation through a porous medium, one uses in the hydrology an Ansatz experi-
mentally well supported that the hydraulic conductivity (in an alternative notations, the specific
discharge) can be considered as a random field with a lognormal distribution. To analyze the
Darcy equation with the random hydraulic conductivity in the case when its intensity of fluctua-
tions is small, one applies the small perturbation method [21], [24]. We are aware of two versions
of this method. The first version deals only with the variances, thus estimating only some de-
terministic scales of the process. The second version takes into account the spectral structure
of the random solution, and thus it is able to construct samples of the random solutions and to
evaluate practically arbitrary statistical characteristics of the solution. But since this approach
works under the assumption of small fluctuation intensities, only a Gaussian approximation to
the solution field is possible.

The case of large fluctuations is much more difficult, and can be treated by solving numeri-
cally the Darcy equation, say, by a finite difference or finite element methods, often called also
stochastic finite element methods, e.g., see [9].

We develop in the present paper a direct stochastic simulation method for particle transport
in a porous circular tube D ⊂ IR3 of a finite length L and radius R. We assume that the axis
of the tube coincides with the coordinate axis Ox. The hydraulic conductivity K(x), x ∈ D is
considered as a lognormal random field with a given correlation function.
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Under the time independent flow condition and saturated porous media the so-called Darcy’s
velocity, or specific discharge, q is determined by the Darcy law:

q(x) = θ(x)u(x) = −K(x)∇(φ(x)) (1)

where u is the pore velocity, θ, the porosity, φ, the hydraulic potential φ = z + p/(gρ), ρ, the
fluid density, and K is the hydraulic conductivity.The functions θ and K are the key parameters
of the flow. Experimental measurements show high heterogeneous behavior of K in space with
the following remarkable property: when considering K as a random field, its distribution is
well approximated by the log-normal law (e.g., see [2], [8]). Therefore, in models, the hydraulic
log conductivity Y = lnK is commonly considered as a statistically homogeneous random field .
Let Y ′ = Y −〈Y 〉, and let BY (r) = 〈Y ′(x+r)Y ′(x)〉 be the correlation function of the hydraulic
log conductivity. Here and throughout the paper the angle brackets stand for the expectation
over the relevant distribution of the random field Y .

The porosity θ is also often considered in some models as a random field. However its variability
is generally much smaller than that of K and it is usually assumed to be constant.

Let us denote by c(x, t) the concentration of a passive scalar transported by the flow u(x) in
the tube. This process is governed by the convection-diffusion equation

∂c(x, t)

∂t
+ u(x) · ∇c = −βc(x, t) +Dl∆c+ f(x, t), (2)

where β is an absorption coefficient, Dl is a local (pore-scale) diffusion coefficient, f(x, t) is the
distribution density function of the particle sources. In the case when R, the radius of the tube
is considerably less than its length L, then after a certain transitional time, the dynamics of
the mean concentration C = 〈c〉 can be described by the one-dimensional convection-diffusion
equation

∂C(x, t)

∂t
+ U

∂C(x, t)

∂x
= −βC(x, t) +Dm

∂2C(x, t)

∂x2
+Q(x, t), (3)

where x is the longitudinal coordinate, Q is an integral source defined as an integral of the
density f over the cross-section of the tube, U is the mean longitudinal Lagrangian velocity, Dm

is the longitudinal diffusion coefficient.

The main difficulty in the presented method is that the coefficients U and Dm in the up-scaled
equation of convection-diffusion depend on the statistical structure of the random velocity u(x),
the coefficient of local diffusion Dl, and on the radius of the tube R. Even in the case when
the log conductivity Y (x) = lnK(x) is a homogeneous Gaussian random field, the statistical
structure of the velocity field is defined by the mean < Y >, variance σ2

Y , the correlation length
scale lY , and the mean longitudinal velocity along the tube’s axis, U0. It means that even if Y (x)
is an isotropic random field, the quantities U and Dm are functions of a series of parameters,
namely, < Y >, σY , lY , U0, Dl, R:

U, Dm = F(< Y >, σY , lY , U0,Dl, R). (4)

In this paper we will use this type of dependence to establish properties of the form (4) for the
Gaussian correlation function (see below (11)). In practice, the exponential correlations (12) are
also often used.

2 Problem setting

Let us consider a flow in a circular porous tube

D = {x ∈ IR3 : x = x1 ∈ [0, L], ρ2 = x2
2 + x2

3 ≤ R2} ,
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where L and R are the length and the radius, respectively.

We will assume that the porosity is constant, so the flow is divergenceless

∇ · u(x) = ∇ · (K(x)∇φ(x)) = 0. (5)

Concerning the boundary conditions, we assume impermeable boundary conditions on the wall
of the tube, i.e.,

∂φ

∂nx

= 0, x ∈ Γ = {x ∈ IR3 : x = x1 ∈ [0, L], ρ2 = x2
2 + x2

3 = R2}, (6)

where nx is the outer unit normal vector to Γ at the point x ∈ Γ. On the tube’s inlet and outlet,
the boundary conditions are taken as follows:

φ(0, x2, x3) = 0, φ(L, x2, x3) = −JL, x2
2 + x2

3 ≤ R2, (7)

where J > 0 is a dimensionless constant which we fix as J = 1.

The particle concentration c(x, t) is to be found from (2) with the following boundary conditions:
on the wall we prescribe no concentration flux:

q(x, t) · nx = 0, x ∈ Γ, (8)

and on the tube’s ends we prescribe

q1(0, x2, x3, t) = q0(x2, x3), c(L, x2, x3, t) = 0, x2
2 + x2

3 ≤ R2, (9)

where the column-vector q(x, t) = (q1(x, t), q2(x, t), q3(x, t))
T is the flux defined by

q(x, t) = u(x)c(x, t) −Dl∇c(x, t) = −K(x)

θ
∇φ(x) −Dl∇c(x) ,

q0(x2, x3) is the source distribution. We take f(x) = 0 in the right-hand side of (2), and the
same for the initial concentration:

C(x, 0) = 0, x ∈ D. (10)

Thus the concentration field C(x, t) is defined from (5)-(10). Note that the hydraulic conductiv-
ity K(x) is assumed to be a random field, so the concentration c(x, t) is also a random field. Its
simplest statistical characteristics is the mean C(x, t) = 〈c(x, t)〉 which is of high practical inter-
est. Important in applications are also the fluctuation intensity defined as the ratio of r.m.s. of
the concentration to the mean concentration, and the probability that the concentration exceeds
a given critical level. These statistical characteristics depend on the statistical characteristics
of the porous medium, i.e., the log conductivity 〈Y 〉, its variance σ2

Y = 〈Y ′2〉 and correlation
function BY (·), as well as on the length and radius of the tube, the pressure flux J , and the
coefficients of absorption and diffusion β and Dl.

Note that the analysis of the dependence even of the simplest statistical characteristics, the mean
concentration, on the set of all parameters we listed above is very difficult, so it is reasonable to
make some additional assumptions.

Here we will assume that the log conductivity lnK(x) has an axial symmetry, hence, it depends
only on two coordinates, x = x1 and ρ =

√

x2
2 + x2

3. We assume additionally that lnK(x) =
Y (x) = 〈lnK〉 + Y ′(x, ρ), where Y ′(x, ρ) is a homogeneous Gaussian random field with zero
mean which depends on (x, ρ) ∈ IR2.
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Two typical variants of correlation function BY(x, ρ) = 〈Y ′(x+x′, ρ+ρ′)Y ′(x′, ρ′)〉 are: Gaussian

correlation function

BY(x, ρ) = σ2
Y exp

{

− x2

l2x
− ρ2

l2ρ

}

(11)

and Exponential correlation function

BY(x, ρ) = σ2
Y exp

{

−
(x2

l2x
+
ρ2

l2ρ

)1/2
}

. (12)

Thus, even for constant q0, in our model the mean concentration C(x, ρ, t) is a function of three
variables, with 11 input parameters θ, 〈Y 〉, σY , lx, lρ, L, R, J , β, Dl, q0. Without loss of
generality we put θ = 1 and q0 = 1.

3 Finite-difference approximation

In cylindrical coordinates (ρ, ψ, x), the equation (5) takes the form

1

ρ

∂

∂ρ
(ρK

∂φ

∂ρ
) +

1

ρ2

∂

∂ψ
(K

∂φ

∂ψ
) +

∂

∂x
(K

∂φ

∂x
) = 0. (13)

It is assumed that the functions K and φ do not depend on the angle ψ, so the potential φ(x, ρ)
is to be found from the equation

1

ρ

∂

∂ρ
(ρK

∂φ

∂ρ
) +

∂

∂x
(K

∂φ

∂x
) = 0 (14)

with the following boundary conditions

∂φ

∂ρ
= 0, ρ = R, (15)

lim
ρ→0

∂φ

∂ρ
= 0 , (16)

and
φ(0, ρ) = 0, φ(L, ρ) = −L, 0 ≤ ρ ≤ R. (17)

A finite-difference approximation of (14) for the inner nodes of the mesh

ρi = ρi−1 + h1, i = 1, . . . ,N1, ρ0 = 0, h1 = R/N1

xi = xi−1 + h2, i = 1, . . . ,N2, x0 = 0, h2 = L/N2

was chosen as follows:

1

ρih1
(ρi+ 1

2

Ki+ 1

2
,j

φi+1,j − φi,j

h1
− ρi− 1

2

Ki− 1

2
,j

φi,j − φi−1,j

h1
)

+
1

h2
(Ki,j+ 1

2

φi,j+1 − φi,j

h2
−Ki,j− 1

2

φi,j − φi,j−1

h2
) = 0 . (18)

The boundary conditions (15)-(16) were approximated by

−
(2L− h1)KN1− 1

2
,j

Lh2
1

(φN1,j − φN1−1,j)

+(KN1,j+ 1

2

φN1,j+1 − φN1,j

h2
2 −KN1,j− 1

2

φN1,j − φN1,j−1

h2
2 ) = 0, (19)
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2K 1

2
,j(φ1,j − φ0,j)

h1
2 +

1

h2
(K0,j+ 1

2

φ0,j+1 − φ0,j

h2
−K0,j− 1

2

φ0,j − φ0,j−1

h2
) = 0, (20)

and at the ends of the tube the Dirichlet condition (17) was approximated by φi,0 = 0, φi,N2
=

−L, i = 0, 1, . . . , N1.

The presented finite-difference relations (18)-(20) approximate the original problem (14)-(17)
with the second order (e.g., see [23]). In matrix notation, the system (18)-(20) can be written
as follows:

Aφ̄ = (Diag(A) − L− U)φ̄ = f (21)

where Diag(A) is the diagonal matrix with the diagonal entries {aii}, L and U are the left and
right triangular matrices: L = {−aij}j>i, U = {−aij}j<i. The entries aij are defined by the
linear relations (18)-(20) and the ordering of the nodes. We have used the following ordering:
the entries aij, i = 0, 2 . . . , N1, j = 1, 2 . . . ,N2 − 1 are defined so that the fixed i corresponds to
a fixed value of ρ, while the increase of j means we move along x (from right to left) when i is
fixed. The lower bound of domain corresponds to i = 0, the upper bound has the index i = N1,
while the right end corresponds to j = 0, and the left end of the tube is indexed by N2. The
solution column-vector φ̄ has the form

φ̄ = (φ0,1, . . . , φ0,N2−1, φ11, . . . , φ1,N2−1, . . . , φN1,1, . . . , φN1,N2−1)
T .

The right hand side of our system (21) f is a vector of the same structure whose entries all
equal zero excluding the last entries corresponding to the boundary conditions, i.e., f0,N2−1,
f1,N2−1, . . . and fN1,N2−1 are the non-zero entries which can be easily obtained from the
boundary conditions (18) and (20) .

To solve the system (21), we apply the successive over relaxation (SOR) method with an adaptive
choice of the parameter ωn:

φ̄n = ωn[Diag(A)]−1(f + Lφ̄n + Uφ̄n−1) + (1 − ωn)φ̄n−1 .

Note that the matrix A is symmetric and positive definite which guaranties the convergence of
the SOR method under some additional restrictions on the parameter ωn (e.g., see [33]). The
iterations were made until the error satisfies ε =‖ φ̄− φ̄n ‖≤ 10−6. The mesh size h was chosen
dependent on the fluctuation intensity as follows: h = cl/5, cl/10, cl/20 for σ = 0.5, 1.0, 2.0,
respectively. Here cl is the correlation length which in our case was fixed as cl = 1.

4 Statistical characteristics of the flow

It is convenient to choose dimensionless variables

x̃ =
x

λ
, ũ =

θu

KGJ
, φ̃ =

φ

Jλ
,

where KG = e〈Y 〉, λ is a characteristic length scale. Since the velocity does not depend on the
polar angle in our cylindrical coordinate system (recall that the axis of the tube is coincident
with the x1-coordinate) we get

u(x) =
KGJ

θ
ũ(x/λ, ρ/λ). (22)

Here ũ(x̃) is a dimensionless function which solves the problem (5)-(7) where the variable x

should be changed with x̃, then put J = 1, change L and R with the dimensionless variables
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L̃ = L/λ and R̃ = R/λ; in addition, the log conductivity field Y should be taken so that
〈Y 〉 = 0 with the correlation function (11) or (12) where the dimensional scales lx and lρ should
be changed with dimensionless scales l̃x = lx/λ and l̃ρ = lρ/λ, respectively.

Thus the dimensionless velocity ũ(x̃) depends not only on the main variable x̃ but also on 5
dimensionless parameters σY , l̃x, l̃ρ, L̃, R̃.

Remark 1. If we take for λ one of the parameters L, R, lx or lρ, we can reduce the number of
parameters to 4. We take further λ = lx. In what follows we use dimensionless variables, so it
is not necessary to use the sign ·̃.

4.1 Eulerian statistical characteristics of the velocity field

So let us consider a velocity field u(x) = (ux(x), uy(x), uz(x))T in the cylindrical coordinate sys-
tem (x, ρ, φ) where the tube’s axis coincides with the direction Ox1: x = x1, ρ = (x2

2 + x2
3)

1/2.

We denote by uρ the transverse (radial) velocity component uρ(x) = eY (x) · ∂φ(x)
∂ρ . Under the

assumptions made, the longitudinal and transverse velocities ux and uρ in this cylindrical co-
ordinate system (x, ρ, φ) depend only on the variables (x, ρ) and satisfy the incompressibility
condition:

∂

∂x
(ρux(x, ρ)) +

∂

∂ρ
(ρuρ(x, ρ)) = 0. (23)

4.1.1 One-point statistical characteristics of the velocity field

If L is much larger than 1, then in the inner region (i.e., x belongs to a core region, sufficiently
far from the ends of the tube) the statistical characteristics of u depend on the anisotropy
parameter κ = lρ/lx, radius R and on the variance of log conductivity σY . We have now to
estimate quantitatively this inner region.

We assume that the log conductivity Y is a Gaussian random field with the Gaussian correlation
function (11), and κ = 1 (this means, Y is isotropic).

We take L = 100, R = 20, and σY = 1.

In Figure 1 we show the mean longitudinal velocity 〈ux〉 (left panel) and its mean square devia-
tion σu (right panel), as functions of ρ, for different values of σY . The value of the longitudinal
coordinate was here fixed so that x/lx = 5 where lx is the correlation length.

Figure 2 presents the same curves for different values of x/lx. From this figure it is clearly
seen that the functions tend to a steady state after x > 2, that is, these curves are becoming
practically independent of the longitudinal coordinate.

An important property of the flow is that the longitudinal velocity integrated over the cross-
section of the tube, Ux = 2π

∫ R
0 ux(x, ρ) ρdρ, should be constant. This follows from the con-

tinuity equation (23), and the boundary condition on the side surface of the tube. The value
of this constant depends on the parameters R, L, σY . It may also vary from one sample to
another. However due to the errors of the finite-difference method the numerically constructed
samples of the function Ux(x) can be slightly biased away from the constant value. In Figure 3
(left panel) we show for illustration two samples of this function (thin and thick curves), for two
values of the grid size h of the finite-difference approximation to (5). Here and in what follows,
we denote by n0 the number of harmonics in the spectral representation we used for modeling
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Figure 1: The mean longitudinal velocity component (left panel), and its mean square deviation

σu (right panel) versus the transverse coordinate ρ, for three values of the variance σY . The

tube’s length was L = 20, the radius R = 2.
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of x, for two different values of the integration step h = 0.1 (dashed) and h = 0.05 (solid). Right

panel: the standard deviation of the transversal velocity uρ versus the transverse coordinate ρ,

for three values of the variance σY ; The radius and the length of the tube are the same as in

Figures 1 and 2.

the log conductivity Y . The calculations confirm the theoretical considerations that the error
(the deviation of Ux from the constant value) decreases with the decrease of h. The relative
error is approximately 5% for h = 0.05. Throughout the paper we use this grid with h = 0.05
in all our calculations except for some cases we will additionally mention.

As to the mean transverse velocity uρ, we get from the continuity equation (23)

∂

∂x
(ρ〈ux(x, ρ)〉) +

∂

∂ρ
(ρ〈uρ(x, ρ)〉) = 0. (24)

Far from both ends of the tube the mean 〈ux(x, ρ)〉 does not depend on x, hence from (24) it
follows that ρ〈uρ(x, ρ)〉 = Const. From this, using the impermeability conditions uρ(x,R) = 0
we conclude that the constant in the right-hand side of the last equality vanishes, i.e., 〈uρ(x, ρ)〉 =
0 for all ρ ∈ [0, R]. Our calculations confirm this conclusion.

The mean square deviation of the transversal velocity uρ is an important characteristic. We plot
it in Figure 3 (right panel) as a function of ρ; the value of x was the same as in Figure 1.

4.1.2 Correlation functions

Let u′x = ux − 〈ux〉, u′ρ = uρ − 〈uρ〉. We deal with the following main correlation functions

Bxx(x, x
′; ρ) = 〈u′x(x+ x′, ρ)u′x(x′, ρ)〉, Bρρ(x, x

′; ρ) = 〈u′ρ(x+ x′, ρ)u′ρ(x
′, ρ)〉,

which are correlations along the longitudinal coordinate, and

Bxρ(x, x
′; ρ) = 〈u′x(x+ x′, ρ)u′ρ(x

′, ρ)〉

is the cross-correlation of the velocities ux and uρ.

8



0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

h=0.05, σ
Y
=0.5, L=20, R=2, n

0
=100, N

s
=4000, n

it
=8015 

x

solid−     ρ=h
dashed− ρ=0.5l

x
das−dot− ρ=l

x
dotted−   ρ=2l

x

B
uu

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
h=0.05, σ

Y
=0.5, L=20, R=2, n

0
=100, N

s
=4000, n

it
=8015 

solid−     ρ=h
dashed− ρ=0.5l

x
das−dot− ρ=l

x
dotted−   ρ=2l

x

x

B
rr

Figure 4: The normalized correlation function of the longitudinal (left panel) and transversal

(right panel) velocities versus the longitudinal coordinate, for 4 different fixed values of ρ; σY =

0.5.

We can expect that inside the tube, when we are far enough from both tube’s ends, these
correlations will be almost independent of x′, hence, they can be considered as functions of two
variables (x, ρ). This implies that in this inner region, the velocity (ux(x, ρ), uρ(x, ρ)) is almost
stationary with respect to the longitudinal coordinate x. As our calculations show, this inner
region can be defined as a domain where x and x′ are not closer to the both tube’s ends than
about two correlation lengths. Thus in this inner region we have an approximate homogeneity in
the longitudinal direction, and the functions Bxx(x, x

′; ρ), Bρρ(x, x
′; ρ) depend on the distance

X = x′ − x only.

In Figures 4-6 we present the normalized correlations Buu(X; ρ) = Bxx(x, x+X; ρ)/Bxx(x, x, ρ),
Brr(X; ρ) = Bρρ(x, x + X; ρ)/Bρρ(x, x; ρ), at x = 5, for four different values of ρ and three
different values of σ. The number of samples here and in almost all calculations throughout the
paper (if otherwise not mentioned) was taken as Ns = 4000.

It is interesting to note that the normalized correlation of the longitudinal velocity, Buu(X; ρ)
tends to a non-zero asymptotic in a core region, i.e., far both from the side surface, and the
axis. This can be seen for instance in Figures 4-6, see the dash-dot curve which corresponds to
ρ = 1. This can be explained by a symmetric influence of the side surface of the tube.

Note that as the tube’s length is increased, the asymptotical values for Buu(X; ρ) are decreased.
This can be clearly seen in Figure 7 (left panel) where we present the results for the tube’s
length L = 50. But there is almost no change in the asymptotical values of Brr(X; ρ), see the
curves in the right panel of Figure 7.

As we mentioned above, the velocity Ux (defined as an average over the tube’s cross-section),
which is of course random, should be independent of the longitudinal coordinate. In what follows
we call Ux for brevity as cross-averaged velocity. This random velocity has a clear physical
meaning, it just characterizes the random longitudinal velocity of a total mass of a cloud of
particles initially uniformly distributed over the tube’s cross-section. The concentration of the
particles is then governed by a 1D convection-diffusion equation (3) where the convective term
U =< Ux >.
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Figure 5: The same as in Figure 4, but for σY = 1.
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Figure 6: The same as in Figure 4, but for σY = 2.
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Figure 7: The same as in Figure 5, but for L = 50.
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Figure 9: The histograms of the cross-averaged longitudinal velocity, for two values of σY :

σY = 1 (left panel), and σY = 2 (right panel). The tube’s length is L = 100.

In Figure 8 we present U , the ensemble mean of the cross-averaged velocity Ux (left panel) and
its standard deviation σU = (〈U2

x〉−〈Ux〉2)1/2 (right panel) versus the tube’s radius, for the fixed
length L = 50. Different curves correspond to different values of σY . These results show that the
dependence of U and σU on the tube’s radius is larger for larger values of σY . This dependence
can be useful when solving inverse problems of determining the porous medium characteristics
(in our case, the parameters of the hydraulic conductivity) through measurement of the flow.

In Figures 9-10 we show the histograms of the pdf pU (U) = 〈δ(U − Ux)〉, for different values of
σY and L. Here we had Ns = 400 samples for the case L = 100, and Ns = 4000 for L = 20. To
see the deviation from the Gaussian distribution, we show for comparison the Gaussian pdf with
the same mean and variance. From these results (see Figure 9) it is seen that the pdf becomes
closer to a Gaussian pdf as the tube’s length increases. For smaller radii (see Figure 10) the pdf
is quite asymmetric.

4.2 Lagrangian statistical characteristics of the velocity field

The Lagrangian statistical characteristics are the most important functions in the analysis of
the particle transport. In particular, often used is the mean Lagrangian velocity of a particle,
and the diffusivity.

Let us define these statistical characteristics. We denote by x0 the starting coordinate of a
fluid particle whose Lagrangian trajectory is X(t;x0) = (X(t;x0), Y (t;x0), Z(t;x0)), t ≥ 0, and
V(t;x0) = u(X(t;x0)) is the Lagrangian velocity. By definition, X(t;x0) is a solution of the
following problem

dX

dt
= u(X), t > 0; X(0) = x0. (25)

The behavior of the trajectory near the boundary of the tube should be arranged in accordance
with the boundary conditions imposed for the flow. Since we have chosen the impenetrable con-
ditions on the side surface of the tube, the Lagrangian trajectory never reaches the boundary.
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Figure 10: The same as in Figure 9, but for L = 20.

The particle stops when it reaches the left end (x = 0), or the right end (x = L) of the tube. In

the cylindrical coordinate system, X(t;x0), R(t;x0) = (Y (t;x0) + Z(t;x0))
1/2), using the nota-

tion for the velocities as , Vx(t;x0) = ux(X(t;x0),R(t;x0)), Vr(t;x0) = uρ(X(t;x0),R(t;x0)) we
write the motion equation of a particle starting at (x0, ρ0) as follows

dX

dt
= ux(X(t),R(t)),

dR
dt

= uρ(X(t),R(t)), t > 0 ,

X(0) = x0, R(0) = ρ0 . (26)

The Lagrangian processes (X(t;x0), R(t;x0)) and (Vx(t;x0), Vρ(t;x0)) depend on the starting
point x0, i.e., on (x0, ρ0), so to show this, we use the notation (X(t;x0, ρ0), R(t;x0, ρ0; )) and
(Vx(t;x0, ρ0), Vr(t;x0, ρ0; )) for these Lagrangian trajectories.

Now we define the main Lagrangian statistical characteristics we deal with in this paper.
Let (x0, ρ0) be the starting point of a Lagrangian trajectory. The mean of the longitudinal
coordinate is X̄(t;x0, ρ0) = 〈X(t;x0, ρ0)〉, and DX(t;x0, ρ0) = 〈(X ′(t;x0, ρ0))

2〉 is its vari-
ance. Analogously, we define the mean transverse coordinate 〈R(t)〉 and its variance σ2

R(t) =
〈R2(t)〉 − 〈R(t)〉2.
The Lagrangian correlation functions of the longitudinal and transverse velocities are denoted by
〈V ′

x(t;x0, ρ0)V
′
x(0;x0, ρ0)〉, and 〈V ′

r (t;x0, ρ0)V
′
r (0;x0, ρ0)〉, respectively. The mean longitudinal

velocity is 〈Vx(t;x0, ρ0)〉, and the variances of the longitudinal and transversal velocities are
〈(V ′

x(t;x0, ρ0))
2〉 and 〈(V ′

r (t;x0, ρ0))
2〉, respectively.

The diffusion coefficients are defined by

Kx(t;x0, ρ0) = 〈X ′
x(t;x0, ρ0)V

′
x(t;x0, ρ0)〉 ,

Kr(t;x0, ρ0) = 〈R′
x(t;x0, ρ0)V

′
r (t;x0, ρ0)〉 .

Here X ′ = X − 〈X〉, V ′ = V − 〈V 〉.
In Figure 11 we present the mean of the transverse coordinate of a Lagrangian trajectory 〈R(t)〉
and its rms σR, versus time, for two different values of σY and three starting positions: σY = 1-
solid line, σY = 2-dashed line; (x0, ρ0) = (2, 0.1)-thin curve (first particle), (x0, ρ0) = (2, 0.9)-the
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Figure 11: The mean of the transverse coordinate of a Lagrangian trajectory as a function of

time, for three different starting transverse positions, for two values of σY (left panel), and its

standard deviation (right panel). The thin curves corresponds to the starting value ρ0 = 0.1,

the medium thick curves correspond to ρ0 = 0.9, and the bold thick curves for ρ0 = 1.9.

medium thick curve (second particle), and (x0, ρ0) = (2, 1.9)-the bold thick curve (third particle).
In what follows, if otherwise not indicated, we fix R = 2, L = 50, and the sample size Ns = 1000.
Note that the rms of the Eulerian velocity in the layer where the second particle was started is
larger than that of the layers where the first and third particles were started (see Figure 3), it is
to expected that the same relations hold for the rms’ σR of the Lagrangian velocities. This was
confirmed in simulations, see Figure 11 (right panel). Note however that the variation in time
of the mean transverse coordinate 〈R(t)〉 is considerably less for the second particle than for
the first and third particles. This is related to the fact that the Eulerian velocity in the layers
around ρ = R/2 = 1 is more homogeneous than that at the layers close to the boundary of the
tube, i.e., at ρ = 0 and ρ = R = 2).

In Figure 12 we plot the Lagrangian statistical characteristics 〈X(t, x0, ρ)〉 and 〈X ′2(t, x0, ρ)〉
versus time, for the same values of σY and starting points chosen in the calculations presented
in Figure 11. One might expect, in analogy with the case of the transverse coordinate, that
these Lagrangian characteristics will be larger for the first particle (which has started in a layer
near the axis of the tube where both the mean and rms of the Eulerian velocity are larger than
that of the layers closer to the boundary where the second and third particles were started, see
Figure 1) than that for the second and third particles. However it is not true. In Figure 12 we
see that starting from a certain time (t ≃ 3), the values < X(t, x0, ρ) > and 〈X ′2(t, x0, ρ)〉 for
the first particle become smaller than that of the second and third particles.

It looks like a contradictory. Indeed, both the mean longitudinal Eulerian velocity 〈ux〉 and
the r.m.s σu in the layers close to the axis where the first particle is mainly walking (ρ0 = 0.1)
are larger than those for the layers where the second and third particles are moving. But
nevertheless, the mean longitudinal Lagrangian velocity of the first particle becomes rapidly
smaller than the mean longitudinal Lagrangian velocities of the second and third particles.

But this is not a contradictory, and can be explained as follows.
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Let us consider a one-dimensional movement governed by the following equation

dX/dt = u+ σ cos(2π ∗X), X(0) = 0.

In Figure 14 (right panel) we show two variants of the solution to this equation corresponding to
the following values of the mean (u) and variance (σ): (1) u = 1.1, σ = 1, and (2), u = 0.8, σ =
0.4. It is seen that the particle having larger values of u and σ has smaller mean displacement
than that of the particle with smaller u and σ. The reason of this phenomenon is clear: the
particle with a larger value of σ spends more time in regions with very small Eulerian velocities.
Thus the particles with smaller value of σ are not so often trapping by this ”stagnation regions”,
and their average movement is faster. Of course, this is only an illustrative example, but it clearly
shows that the particles with larger velocity and larger variance may be more probable trapped
by the stagnation regions.

Back to the Figure 12, the non-monotone behavior of 〈X ′2(t, x0, ρ)〉 for the second particle (see
Figure 12, right panel) is due to the stopping rule of our simulation algorithm: particles reaching
the right end of the tube at a certain time are staying there, hence many of particles show after
t > 35 unphysical behavior.

In Figure 13 (left panel) we present the mean longitudinal Lagrangian velocity versus time. The
same as in Figure 12, the value of this velocity for the first particle is less than that of the
second and third particles. In Figure 13 (right panel) and Figure 14 (left panel) we present
the Lagrangian correlation functions for the transverse and longitudinal velocity components,
respectively. From the results of Figure 13 (right panel) it is seen that for all the particles,
the Lagrangian correlation function for the transverse velocity tends to zero as time increases,
while the Lagrangian correlation function for the longitudinal velocity it is not so. This is in
agreement with the relevant Eulerian statistical characteristics, see Figures 5 and 6. This may
lead to a failure of the Fickian diffusion law , see the curves 〈X ′2(t, x0, ρ)〉 in Figure 12 (right
panel).

In Figure 15 we show the coefficients of the transverse and longitudinal diffusion. Notice that
the transverse diffusion coefficient is first rapidly increasing in time, reaches a maximum, and
then slowly decreases and fluctuates around zero. This behavior was also reported in [27].

As to the longitudinal diffusion coefficient, it monotonically increases in time. It should be noted
that as σY increases, the longitudinal diffusion coefficient tends to a constant asymptotics. This
implies that as σY increases, we may expect the Fickian law for long tubes.

There is a high both theoretical and practical interest in finding relations between Lagrangian
and Eulerian statistical characteristics, in particular, the time evolution of the Lagrangian ve-
locity pdf starting from the known Eulerian pdf at the initial time instant. In our numerical
experiments we have compared pL(u; t) = 〈u − Vx(t)〉, the pdf of the longitudinal Lagrangian
velocity, for two times, t = 0, and t = 13. Note that after t = 13, the density pL(u, t) behaves
close to a quasi-stationary regime, i.e., it weakly depends on time.

In Figures 16-18 we present the histograms for the pdf pL(u, t) at t = 0 (left panels) and t = 13
(right panels), for our three particles’ starting positions, for a fixed value of dispersion, σY = 1.
As mentioned above, the statistics was carried out over Ns = 1000 samples, for the tube with
R = 2, L = 50. To see a deviation from the Gaussian behavior, we plot also the Gaussian
densities with the means and variances of the corresponding histograms.

From these results it is seen that only for the second particle the pdf can be approximated by
a Gaussian curve for all times. It was also noticed that with the time, the right tails become
weaker while the left tails’ weight increases.
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Figure 16: Histograms of the longitudinal Lagrangian velocity, for the first particle (ρ0 = 0.1),

at the time instants t = 0 (left panel), and t = 13 (right panel), for σY = 1.
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Figure 17: The same as in Figure 16, but for the second particle (ρ0 = 0.9).
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Figure 18: The same as in Figure 16, but for the third particle (ρ0 = 1.9).
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Figure 20: The same as in Figure 19 but for the fifth particle

In the sensitivity analysis it is important to relate the input characteristics, in our case say the
correlation scale of the log conductivity and its rms, with the measurable quantities, like the
concentration of a passive scalar from an instantaneous point source which is in the case of an
incompressible flow just a transition probability density function of a Lagrangian trajectory. In
our numerical experiments we have studied the transition density characterizing a transverse
(radial) migration of the Lagrangian trajectories in the tube.

Let us denote by pρ0→ρ(t, x0) the transition density (in ρ ) which is a probability density of a
particle started at t0 = 0 in a point (x0, ρ0. We are studying the situation where pρ0→ρ(t, x0) is
weakly dependent on the starting coordinate for x > 2. Therefore, there is no need to include
x0 in the transition density.

Thus let us denote by pρ0→ρ(t) the transition density which is a probability density that a particle
starting at the radial distance ρ0 will have the radial coordinate ρ at the time t. To present the
calculation of this function, we divide the interval 0 ≤ ρ ≤ 2 in 10 parts: ∆i = [(i−1) ·0.2, i ·0.2],
i = 1, ..., 10, [0, 2] = ∪1≤i≤10∆i. By pi j(t) we denote the probability that a particle starting at
the center of the interval ∆i (we call it i-th particle) will appear in the interval ∆j at the time
t. For simplicity we have not normalized these probabilities on the number of tracking particles
(which was Ns = 1000), hence in Figures 19 and 20 pij is simply the number of Lagrangian
particles involved in the transition i→ j versus time. We show in Figure 19 the time evolution
of p1 j for two different values of σY : σY = 1 (left panel), σY = 2 (right panel). It is seen
from these results that if the changes are happened in a short time interval (t < 10), then the
curves tend to a quasi-stationary regime. In Figure 20 we show the same picture but for the
fifth particle.

Let us introduce a transition probability averaged over the time interval [t0, t1]:

Pi j =
1

t1 − t0

∫ t1

t0

pi j(t) dt .

We choose t0 = 15, t1 = 35. The choice t0 = 15 corresponds to the time where pi j(t) begins
to have a quasi-stationary behavior. The choice of t1 = 35 is made so that for t < t1, the
trajectories started at x0 = 2) do not reach the right end of the tube x = L = 50 with high
probability.
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Table 1: Transition probabilities

1 2 3 4 5 6 7 8 9 10
1 0.74 0.23 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.12 0.42 0.29 0.12 0.03 0.00 0.00 0.00 0.00 0.00
3 0.02 0.19 0.32 0.25 0.14 0.05 0.01 0.00 0.00 0.00
4 0.00 0.06 0.19 0.27 0.23 0.15 0.06 0.01 0.00 0.00
5 0.00 0.02 0.09 0.19 0.25 0.22 0.14 0.06 0.01 0.00
6 0.00 0.00 0.03 0.10 0.19 0.24 0.23 0.14 0.04 0.00
7 0.00 0.00 0.01 0.04 0.11 0.19 0.26 0.25 0.12 0.01
8 0. 00 0. 00 0.00 0.01 0.04 0.11 0.21 0.30 0.27 0.05
9 0. 00 0. 00 0. 00 0.00 0.00 0.03 0.09 0.24 0.41 0.22
10 0.00 0. 00 0. 00 0.00 0.00 0.00 0.00 0.03 0.20 0.76

Table 2: Transition probabilities

1 2 3 4 5 6 7 8 9 10
1 0.48 0.28 0.12 0.06 0.03 0.01 0.00 0.00 0.00 0.00
2 0.14 0.25 0.20 0.16 0.10 0.07 0.04 0.02 0.00 0.00
3 0.07 0.13 0.19 0.17 0.15 0.11 0.08 0.04 0.02 0.01
4 0.04 0.08 0.13 0.17 0.16 0.14 0.11 0.08 0.04 0.03
5 0.03 0.05 0.09 0.13 0.16 0.15 0.14 0.11 0.06 0.04
6 0.03 0.03 0.07 0.11 0.13 0.15 0.15 0.14 0.10 0.07
7 0.02 0.02 0.04 0.07 0.11 0.14 0.16 0.16 0.14 0.11
8 0.02 0.01 0.03 0.05 0.08 0.11 0.14 0.18 0.19 0.16
9 0.02 0.01 0.01 0.03 0.04 0.08 0.12 0.17 0.24 0.27
10 0.01 0.01 0.01 0.01 0.02 0.03 0.06 0.11 0.24 0.5

In Tables 1, 2 we present the transition probabilities Pi j for the same values of σY which were
taken in Figures 19-20: σY = 1 (Table 1), and σY = 2 (Table 2).

The detailed distribution shown in the Tables can be used to study the probability density
function of the transverse Lagrangian coordinate,

pR(r, t;x0, ρ0) = 〈δ(r −R(t;x0, ρ0; ))〉.

Note that the incompressibility of the flow implies that after some time, say, τwm, the distribu-
tion of the transverse coordinates X2(t;x0) and X3(t;x0) will be almost uniform in the disc of
radius R, i.e., the density of the transverse coordinate R(t;x0, ρ0; ) in the cylindrical coordinates
becomes linear, pR(r, t;x0, ρ0) = 2r/R2.

For t ≥ τwm, the average of the longitudinal Lagrangian velocity V̄x(t;x0, ρ0) will be equal to
the Eulerian average Ux. Therefore, the curve V̄x(t;x0, ρ0) considered as a function of t can be
used to estimate τwm.

Along with τwm, there is another Lagrangian time scale, τL which characterizes the Lagrangian
characteristic time of the transverse velocity which is defined so that for t ≥ τL, the longitudinal
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dispersion DX(t;x0, ρ0) becomes linear in time, and hence the diffusion coefficient Kx(t;x0, ρ0)
tends to an asymptotic constant value K∞ . These two time scales, τwm and τL, are practically
independent of the starting coordinate (x0, ρ0), but they do depend on the external parameters
R and σY . These time scales are important which shows the following arguments. Let us
introduce a length scale x∗ = Ux max{τwm, τL}. Then the mean concentration C = 〈c〉 will
be governed for x ≥ x∗ by a one-dimensional diffusion equation (3), where we should take
Q0 =

∫

IR2 q0(x1, x2)dx1dx2, U = Ux and Dm = K∞.

5 Appendix: some simulation formulae

5.1 Simulation of log conductivity

Let F (k), k ∈ IR2 be the spectral function of Y ′:

BY(x, ρ) = 〈Y ′(x+ x′, ρ+ ρ′)Y ′(x′, ρ′)〉 =

∫

IR2

ei2π(k1x+k2ρ)F (k1, k2) dk1dk2.

The field Y ′ can be simulated by the randomization method:

Y ′(x, ρ) =
1√
n0

n0
∑

j=1

(

F (kj)

p(kj)

)1/2
{

ξj cos θj + ξ′j sin θj

}

where ξj, ξ
′
j, j = 1, ..., n0 are mutually independent, standard Gaussian random variables,

kj, j = 1, ..., n0 are mutually independent and independent of ξj, ξ
′
j, j = 1, ..., n0, 2D random

vectors with the common pdf p(k) (satisfying the consistency condition p(k) > 0 if F (k) > 0),
θj = 2π(k1,jx+ k2,jρ).

5.2 Simulation of random fields with the Gaussian correlation

function (11)

BY(x, ρ) = σ2e−x2/l2x−ρ2/l2ρ , F (k1, k2) = σ2πlxlρe
−π2(k2

1
l2x+k2

2
l2ρ).

Take the 2D pdf
p(k) = πlxlρe

−π2(k2

1
l2x+k2

2
l2ρ).

Then the random vector k with this pdf can be simulated by the formula k = 1√
2π

(η/lx, η
′/lρ)

where η, η′ are independent standard Gaussian random variables. Therefore,

Y ′(x, ρ) =
σ√
n0

n0
∑

j=1

(ξj cos θ̃j + ξ′j sin θ̃j) (27)

where θ̃j =
√

2(ηjx/lx + η′jρ/lρ), and ξj , ξ
′
j, ηj , η

′
j , (j = 1, ..., n0) are mutually independent

standard Gaussian random variables.

5.3 Simulation of random fields with the exponential correlation
function (12)

The correlation function
BY(x, ρ) = σ2

Y e
−(x2/l2x+ρ2/l2ρ)1/2
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has the spectral function

F (k1, k2) = 2πlxlρσ
2
Y

(

1 + (2πk1lx)2 + (2πk2lρ)
2
)−3/2

.

If we take
p(k) = 2πlxlρ

(

1 + (2πk1lx)2 + (2πk2lρ)
2
)−3/2

,

then the simulation formula for k = (k1, k2) with this probability density function is k1 = (1/γ2
2−

1) cos(2πγ1)/(2πlx), k2 = (1/γ2
2 −1) sin(2πγ1)/(2πlρ), where γ1, γ2 are two independent random

variables uniformly distributed in [0, 1]. Therefore, the random field Y with the exponential
correlation function (12) can be simulated by the formula (27) where ξj and ξ′j, j = 1, ..., n0 are

mutually independent standard Gaussian random variables; θ̃j = (1/γ2
2,j − 1)[cos(2πγ1,j)x/lx +

sin(2πγ1,j) ρ/lρ], and γ1,j, γ2,j, j = 1, ..., n0 are mutually independent and independent of ξj and
ξ′j, j = 1, ..., n0 random variables uniformly distributed in [0, 1].

Remark 2. Let us recall that in the literature, one uses different definitions of the Fourier
transform which leads also to different definitions of the spectral tensors. We give here the
relation between the two different definitions, namely,

Fij(k) =

∫

IRd

e−i 2π k·rBij(r) dr, with Bij(r) =

∫

IRd

ei 2π r·kFij(k) dk, (28)

and

F ′
ij(k) =

1

(2π)d

∫

IRd

e−ik·rBij(r) dr, with Bij(r) =

∫

IRd

ei r·kF ′
ij(k) dk . (29)

It follows from these definitions that

F (k) = (2π)d F ′(2π k), and F ′(k) =
1

(2π)d
F (

k

2π
).

For example, let us consider the correlation function B(ρ) = e−|ρ|, ρ ∈ IR1. In this case,
F (k) = 2

1+(2πk)2
, and F ′(k) = 1

π(1+k2)
.

6 Conclusion

We have developed a Monte Carlo method for stochastic simulation of flows and particle trans-
port in tubes filled with a porous medium. The porous medium is characterized by a hydraulic
conductivity which is assumed to be a lognormal random field with a Gaussian correlation func-
tion. A crucial role plays a multiscale randomization spectral method for simulation of fractal
random fields developed in a recent author’s paper. Numerical experiments are carried out by
solving the random Darcy equation for each sample of the hydraulic conductivity by a SOR
iteration method, and tracking Lagrangian trajectories in the simulated flow.

We present a numerical analysis of different Eulerian and Lagrangian statistical characteristics
of the flow such as transverse and longitudinal velocity correlation functions, diffusion coeffi-
cients, the mean and variance of Lagrangian trajectories, and probability density function of the
Lagrangian velocities. We give an explanation of a “stagnation” effect which was found in our
simulations. The next step in these studies on the extension of the model to a full 3D case will
be shown in a forthcoming publication.
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