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Abstract

Mean square convergence and convergence in probability of Fourier-Wavelet Models

(FWM) of stationary Gaussian Random processes in the metricof Banach space of contin-

uously differentiable functions and in Sobolev space are studied. Sufficient conditions for

the convergence formulated in the frame of spectral functions are given. It is shown that

the given rates of convergence of FWM in the mean square obtained in the Nikolskĭi-Besov

classes cannot be improved.

1 Introduction

Random processes and fields provide a convenient tool for a quantitative description of highly inhomo-

geneous and multiscale media such as, e.g., atmosphere, ocean and soil [28], [31], [19], [6].

The random fields are defined by all their finite-dimensional distributions (e.g., see [14]). Fortunately, the

most often distributions used in practice are Gaussian. TheGaussian random fields are defined uniquely

by their expectations and covariances which greatly simplifies the measurement design. Along with the

Gaussian random fields, one exploits often random fields which are obtained by some transformations

of the Gaussian fields through either an explicit transform or implicitly, through differential or integral

equations where the Gaussian random fields are entered as random coefficients, or random source term,

or boundary functions. As an important example we mention the hydraulic conductivity which is often

modelled as a lognormal random field, e.g., see [6]. The Darcyflow itself is obtained as a random field

which solves the Darcy equation with the lognormal hydraulic conductivity.

Another question about the structure of the random field which in practice is of extremely high im-

portance sounds: is the random field homogeneous or not? Unlike the first feature, the gaussinity, the

most practically interesting random fields are non-homogeneous. However the homogeneous Gaussian

random fields can be treated as perfect approximations in many cases, and they are indeed the most fre-

quently used models in all branches of science and technology since the simulation technique based on

the spectral representation is well developed.

Simulation of non-homogeneous random fields is a much more difficult problem. The most developed

are the Cholesky (singular) decomposition (e.g., see, [9],[34]) and Karhunen-Loeve expansion tech-

niques(e.g., see, [43]). We mention also the wavelet decomposition method which is applied to many

interesting multiscale resolution problems, e.g., see [37], [44].

There is very extensive literature on simulation of homogeneous random fields, and even for a short

discussion of recent publications in this field we would needto write a large review article. So we
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mention here only some publications, and the reader has a possibility to search further leading by the

references inside these publications: [8], [9], [11]-[13], [23], [25], [27], [30]-[36], [40].

It should be mentioned that there are also a lot of publications devoted to a comparative analysis of the

cost of the simulation algorithms, but as we have concluded in [20], the most competitive simulation

method for multiscale random fields are the randomized spectral methods, Fourier-wavelet methods, and

wavelet decomposition technique (e.g., see, [2],[12], [13], [24]).

Having an approximate modeluN for our random fieldu(x) (say, the parameterN is integer), there is

only an approximate closeness between the statistical characteristics ofuN andu(x). The convergence

uN → u asN → ∞ can be defined differently: (i) convergence of the relevant finite-difference distribu-

tions, (ii) convergence in a relevant functional space. Theconvergence in functional spaces is important

for practical applications, and they were considered in many publications (e.g., for the spectral models

see [1], [21], [22], [42]). In [4], [5], the convergence of wavelet decomposition models is studied. As to

the Fourier-wavelet models (FWM), the first convergence results were obtained in [23] where the conver-

gence of the correlation function of the model process FWMuN(x), BN(x, r) = E(uN(x+ r)uN(x)), to the

correlation functionB(r) = E(u(x+ r)u(x)) of the original Gaussian processu(x) has been established.

In the language of spectral functionF(k), we have obtained an estimation of supx,r∈R
|B(r)−BN(x, r)|

which shows that this quantity can be made arbitrarily smallasN → ∞.

In this paper we study the convergence of FWMuN → u asN → ∞ in Sobolev spacesWn
2 [a,b] and in the

space ofn-times continuously differentiable functionsCn[a,b] wheren is a nonnegative integer. We study

conditions on the spectral functionF which are sufficient forE||EN||2Wn
2 [a,b] → 0 and||EN||Cn[a,b]

P→ 0

asN → ∞. Here [a,b] ⊂ R is an arbitrary fixed finite interval, andEN(x) = u(x)− uN(x). To make

the presentation clear, we first consider the case of a scalarrandom processu(x) and give sufficient

conditions for the convergenceE||EN||2L2[a,b] → 0 and||EN||C[a,b]
P→ 0 asN → ∞. Then we give a relevant

generalization of the results to vector processes and extend the study for some stronger metrics.

The paper is organized as follows. The definition of the FWM for Gaussian random processes is given

in Section 2 . Convergence of FWM inL2[0,1] is presented in section 3, while an analysis of the quality

of the derived estimations is given in section 4. Convergence of FWM in the spaceC[0,1] is given in

section 5. In section 6 we study the convergence FWM in some stronger metrics ( in spacesWn
p [0,1] and

Cn[0,1]) and for vector processes. Conclusions are made in section 7. Finally, we present some known

results from the theory of Besov’s space we used in our work inthe Appendix.

2 Fourier-Wavelet models of Gaussian random processes

2.1 Fourier-Wavelet expansions of Gaussian random processes

Let u(x) = (u1(x), . . . ,ul (x))T , x ∈ R = (−∞, ∞) be anl -dimensional real valued Gaussian stationary

(homogeneous) random process with zero mean and a given correlation tensorB(r):

Bi j (r) = E[ui(x+ r)u j(x)], i, j = 1, . . . l , (2.1)
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or the corresponding spectral tensorF:

Fi j (k) =

∞
Z

−∞

e−i2πk·r Bi j (r)dr, Bi j (r) =

∞
Z

−∞

ei2πr ·kFi j (k)dk, i, j = 1, . . . l . (2.2)

Here and throughout the paperE stands for the mathematical expectation. We will assume that
R ∞
−∞ ∑l

j=1 B2
j j (r)dr <

∞ which ensures the existence of the spectral tensorFi j in the spaceL2(R) [28]. Moreover,Bii (0) =

Eu2
i (x) < ∞ impliesBii (0) =

R ∞
−∞ Fii (k)dk< ∞, that isF ∈ L1(R). HenceF ∈ L1(R)∩L2(R).

For some positive integern let Q(k) be anl ×n-matrix satisfying the condition

Q(k)Q∗(k) = F(k), Q(−k) = Q̄(k) . (2.3)

Here the star stands for the complex conjugate transpose which is equivalent to taking two operations,

the transposeT , and the complex conjugation of each entry.

Let φ(x) andψ(x), x∈ R be orthonormal scaling and wavelet functions (for the definitions see, e.g., [7],

[26], [15], [3] ), respectively, and̂φ(k), ψ̂(k) are Fourier transformations of these functions:

φ̂(k) =

∞
Z

−∞

e− i2πkxφ(x)dx, ψ̂(k) =

∞
Z

−∞

e− i2πkxψ(x)dx.

Assume, that̂φ(k), ψ̂(k) are even functions

φ̂(−k) = ¯̂φ(k), ψ̂(−k) = ¯̂ψ(k). (2.4)

Then the Fourier-Wavelet expansion of the random processu(x) reads [11], [23]:

u(x) =
∞

∑
j=−∞
F

(φ)
m0 (2m0x+ j)ξ j +

∞

∑
m=m0

∞

∑
j=−∞
F

(ψ)
m (2mx+ j)ξm j . (2.5)

wherem0 is an arbitrary (but fixed) integer,ξ j , ξm j ( j ∈Z, m≥m0) is a family of mutually independent

standard real valued Gaussian random vectors of dimensionn, andF (φ)(·), F (ψ)(·) arel ×n-dimensional

matrix functions defined by

F
(φ)

m (y) =

∞
Z

−∞

e−i2πky2m/2Q̄(2mk)φ̂(k)dk,

F
(ψ)

m (y) =

∞
Z

−∞

e−i2πky2m/2Q̄(2mk)ψ̂(k)dk. (2.6)

SinceB(0) =
R

F(k)dk < ∞, andQQ∗ = F , we conclude that all the entries of the matrixQ belong to

L2(R). Therefore, the functions (2.6) are well defined.

Let us give a comment concerning some difference between theFourier-Wavelet and Wavelet decomposi-

tions. In both methods, the random process is represented asa series of deterministic functions weighted

by a random Gaussian coefficients. The crucial difference isthat unlike the Wavelet decomposition, in

the Fourier-Wavelet method these random coefficients are independent which might be quite convenient
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in practical simulations, see for instance [20]. The Wavelet decomposition is more general and can be

used also to simulate inhomogeneous random fields [44].

Further in Fourier-Wavelet expansion (2.5) we will use Meyer’s wavelet functionsφ(x) andψ(x) which

are defined by their Fourier transforms (e.g., see [7]):

φ(x) =

∞
Z

−∞

ei2πkxφ̂(k)dk, ψ(x) =

∞
Z

−∞

ei2πkxψ̂(k)dk, (2.7)

where

φ̂(k) =































1 |k| ≤ 1/3 ,

cos[π
2ν(3|k|−1)], 1/3≤ |k| ≤ 2/3

0 , otherwise

(2.8)

ψ̂(k) =































e−i πk sin[π
2ν(3|k|−1)], 1/3≤ |k| ≤ 2/3

e−i πk cos[π
2ν(3

2 |k|−1)], 2/3≤ |k| ≤ 4/3

0 , otherwise.

(2.9)

Hereν(x) is a smooth function satisfying the following conditions:ν(x) ≡ 0 for x ≤ 0, ν(x) ≡ 1 for

x≥ 1, andν(x)+ ν(1−x) = 1 for 0< x < 1. As an example of such a function, we mention a function

ν(x) = νp(x) depending on a positive parameterp (see [11]):

νp(x) =
4p−1

p

{

[x−x0]
p
+ +[x−xp]

p
+ +2

p−1

∑
j=1

(−1) j [x−x j ]
p
+

}

,

wherex j = (1/2)[cos(((p− j)/p)π)+1], and[a]+ = max(a,0). The functionνp is p−1 times continu-

ously differentiable, therefore, choosingp sufficiently large, we can make the functionsφ̂ andψ̂ smooth

enough.

2.2 Fourier-Wavelet models of Gaussian random processes

In the numerical implementation of (2.5) we have to find a reasonable choice of the cut-off parameters

m1 andb0, bm(m= m0, ...,m1) in the approximations:

∞

∑
j=−∞
F

(φ)
m0 (2m0x+ j)ξ j ≃

b−⌊2m0x⌋

∑
j=−b−⌊2m0x⌋

F
(φ)

m0 (2m0x+ j)ξ j , (2.10)

∞

∑
m=m0

∞

∑
j=−∞
F

(ψ)
m (2mx+ j)ξm j ≃

m1

∑
m=m0

bm−⌊2mx⌋

∑
j=−bm−⌊2mx⌋

F
(ψ)

m (2mx+ j)ξm j (2.11)

where⌊a⌋ stands for the integer part ofa. General idea is thatb, bm should be chosen so that supports of

the functionsF (φ)
m0 andF (ψ)

m belong essentially to the intervals[−b,b] and[−bm,bm], respectively.
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In previous papers on Fourier-Wavelet models ([2],[11],[20], [23]) the authors use approximations of type

(2.10)-(2.11). Unfortunately, functions staying in the right-hand sides of (2.10)-(2.11) are discontinuous

in x (with the jump discontinuity). Therefore, to ensure that the samples of the approximation process

are continuous we have to modify the model. So let us define thefollowing modification of the Fourier-

Wavelet model (FWM) of the random fieldu(x). Let {µN}∞
N=1 be a sequence of positive integers,µN ≥

m0, N = 1,2, ... and{bN}∞
N=1, {bmN}∞

N=1, m= 0, ...,µN be sequences of positive real numbers depending

on a positive integerN so that

lim
N→∞

µN = ∞, lim
N→∞

bN = ∞, lim
N→∞

bmN = ∞, m= 0,1, ...,µN. (2.12)

For fixed positive numberA denote byηA(·) a cut-off functionηA : [0,∞) → [0,1] defined by

ηA(x) =











0, 0≤ x≤ A,

1, x≥ A+1,

x−A, A < x < A+1.

(2.13)

Define functionsχN : R → [0,1] andχmN : R → [0,1], m= 0,1, ...,µN assuming

χN(x) = ηbN(|x|), χmN(x) = ηbmN(|x|),

χ′
N(x) = 1−χN(x), χ′

mN(x) = 1−χmN(x), m= 0,1, ...,µN .

Under FWM of the random processu(x) we understand the following sequence of random functions

uN(x) = ∑
j∈Z

χ′
N(2m0x+ j) ·F (φ)

m0 (2m0x+ j)ξ j

+
µN

∑
m=m0

∑
j∈Z

χ′
mN(2mx+ j) ·F (ψ)

m (2mx+ j)ξm j , N = 1,2, ... . (2.14)

Our aim is to study the convergenceuN → u asN → ∞ in functional spacesWn
2 [a,b] andCn[a,b] where

n is a nonnegative integer. Here we suggest sufficient conditions on the spectral tensorF which ensure

E||EN||2Wn
2 [a,b] → 0 and||EN||Cn[a,b]

P→ 0 asN → ∞. Here[a,b] ⊂ R is an arbitrary fixed finite interval,

andEN(x) = u(x)− uN(x). Further, not loosing in generality, we can take[a,b] = [0,1], andm0 = 0.

Moreover, for the simplicity of presentation we first consider the case of a scalar random processu(x)

(i.e., l = 1) and give sufficient conditions for the convergenceE||EN||2L2[a,b] → 0 and||EN||C[a,b]
P→ 0 as

N → ∞. In section 6 we give relevant generalizations of results for vector processes and stronger metrics.

3 Convergence of FWM inL2 metric

Let u(x), x ∈ R be a real-valued scalar stationary zero mean Gaussian random process with a spectral

functionF(k), andφ(x), ψ(x) be orthonormal Meyer’s scaling and wavelet functions. It isclear that their

Fourier transformŝφ(k), ψ̂(k) are even functions. In this case FWM ofu(x) is (see (2.14), recall that

m0 = 0):

uN(x) = ∑
j∈Z

χ′
N(x+ j) ·F (φ)

0 (x+ j)ξ j

+
µN

∑
m=0

∑
j∈Z

χ′
mN(2mx+ j) ·F (ψ)

m (2mx+ j)ξm j , (3.1)
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whereξ j , ξm j, m= 0,1, ...; j ∈ Z is a set of mutually independent standard Gaussian random variables.

Let us introduce some notations.

We denote∆ = [−4/3, 4/3], ∆m = [−4 · 2m/3, −2m/3]∪ [2m/3, 4 · 2m/3], m = 0,1,2, ..., and∆′ =

∪∞
m=0∆m. For a functionf : R → R andD ⊂ R we denote byf |D the restriction of the functionf in D.

For a measurableD ⊂ R we write|D| = R

D dx.

In this paper we use some results from the theory of Nikolskiĭ-Besov spaces (e.g., see [29], [39]). For

r > 0, a triple(r, j, l) is called admissible ifj ∈ IN, l ∈ IN0 and j > r − l > 0. HereIN0 = {0,1,2, . . .} and

IN = {1,2, . . .}. Let us denote by∆( j)
h g the j-th difference ofg:

∆hg(·) = g(·+h)−g(·), . . . ,∆( j)
h g(·) = ∆h∆( j−1)

h g(·).

For 1≤ p,q ≤ ∞, r > 0, Nikolskĭi-Besov spaceBr
pq(IR) is defined as a set of all functionsf ∈ Lp such

that the norm

|| f ||Br
pq

= || f ||Lp + || f ||br
pq
,

where

|| f ||br
pq

=





1
Z

−1

(

||∆( j)
h f (l)||Lp

|h|r−l

)q
dh
|h|





1
q

, 1≤ q < ∞, (3.2)

|| f ||br
p∞ = sup

0<|h|≤1
|h| l−r ||∆( j)

h f (l)||Lp (3.3)

makes sense and is finite for some admissible triple(r, j, l). Here f (l)(x) = Dl f (x) is thel -th derivative of

the function f . The ambiguity in the choice of triple(r, j, l) is not essential: different admissible triples

correspond to equivalent norms. For a measurable subsetD ⊂ R the spaceBr
pq(D) is defined as above

but changing|| · ||Lp with || · ||Lp(D jh), whereDh = {x∈ D : x+ λh∈ D for all λ ∈ [0,1]}. For a function

f : R → R such thatf |D ∈ Br
pq(D) we will simply write || f ||Br

pq(D) instead of more exact but complex

notation||( f |D)||Br
pq(D).

We will exploit the following imbeddings (e.g., see [29], [39]):

Br
pq(IR) →֒ Bρ

p1q(IR), ρ = r

(

1− 1
r
·
[

1
p
− 1

p1

])

, 1≤ p < p1 < ∞, (3.4)

Br+ε
p∞ (IR) →֒ Br

pq(IR) →֒ Br
pq1

(IR), 1≤ q < q1 ≤ ∞, ε > 0, (3.5)

whereX →֒Y means thatX ⊂Y for seminormed spacesX andY, and there exists a constantc > 0 such

that the inequality||x||Y ≤ c||x||X is fulfilled.

3.1 Convergence of FWM in the mean square

We shall assume

(H0) for somes> 0

Is
de f
=

Z ∞

−∞
F(k)(1+ |k|2)sdk< ∞. (3.6)
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Theorem 1. Assume, that the spectral function F(k) satisfies the condition (H0). Let{ρm}µN
m=0 be a finite

sequence of positive numbers such thatmin
m

ρm > 1/2. Suppose that Q|∆ ∈ Bρ0
1∞(∆) and Q|∆m ∈ Bρm

1∞(∆m)

for 1 ≤ m≤ µN, and assume that the Meyer wavelet functionsφ and ψ belong to the class Cν+1 for

ν = max{⌊ρ⌋, ⌊s⌋}, whereρ = max
0≤m≤µN

ρm. Then

E(u(x)−uN(x))2 ≤ C1(s,ψ)

4s(µN+1)
· Is+

C2(ρ0,φ)

b2ρ0−1
N

||Q||2
B

ρ0
1∞(∆)

+
µN

∑
m=0

C3(ρm,ψ)

b2ρm−1
mN

·
(

2−m||Q||2L1(∆m) +22m(ρm−1/2)||Q||2
bρm

1∞ (∆m)

)

, (3.7)

where constants Ci , i = 1,2,3 depend only on the shown arguments.

Proof. From the definition (3.1 ) we have:

u(x) = uN(x)+v(1)(x)+
µN

∑
m=0

v(2)
m (x)+v(3)(x), (3.8)

where

v(1)(x) = ∑
j∈Z

χN(x+ j) ·F (φ)
0 (x+ j)ξ j ,

v(2)
m (x) = ∑

j∈Z

χmN(2mx+ j) ·F (ψ)
m (2mx+ j)ξm j ,

v(3)(x) =
∞

∑
m=µN+1

∞

∑
j=−∞
F

(ψ)
m (2mx+ j)ξm j .

The random variablesξ j , ξm j are mutually independent, hence the terms in the right-handside of (3.8 )

are also independent, therefore

E(u(x)−uN(x))2 = E(v(1)(x))2 +
µN

∑
m=0

E(v(2)
m (x))2 +E(v(3)(x))2. (3.9)

Let us estimate the terms in the right-hand side. First, we have for the last term

E(v(3)(x))2 =
∞

∑
m=µN+1

∞

∑
j=−∞

|F (ψ)
m (2mx+ j)|2. (3.10)

Further, from the definition (2.6 ) of the functionF , and since the functionsQ(k) andψ(k) are even we

have

F
(ψ)

m (y) =

∞
Z

−∞

e−i2πky2m/2Q̄(2mk)ψ̂(k)dk=

∞
Z

−∞

ei2πky2m/2Q(2mk) ¯̂ψ(k)dk.

Therefore,

F
(ψ)

m (2mx+ j) =

∞
Z

−∞

ei2πk(2mx+ j)2m/2Q(2mk) ¯̂ψ(k)dk=

∞
Z

−∞

ei2πkxQ(k) ¯̂ψm j(k)dk=

∞
Z

−∞

G(x+y)ψm j(y)dy, (3.11)
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where

G(x) =

∞
Z

−∞

ei2πkxQ(k)dk,

ψm j(x) = 2m/2ψ(2mx− j), ψ̂m j(k) = 2−m/2 e−i2πk j2−m
ψ̂(2−mk).

Consequently for fixedx, the quantitiesF (ψ)
m (2mx+ j) (m, j ∈Z) are Fourier coefficients in the expansion

of G(x+ ·) with respect to the orthonormal systemψm j (m, j ∈ Z).

Notice that the condition (3.6 ) can be formulated equivalently that the functionG belongs to the Sobolev

spaceHs
2(IR). This is becauseG∈ Hs

2(IR) means that the functionQ(k)(1+ |k|2)s/2 is from L2(IR)) and

||G||Hs
2
= I1/2

s (more details in [39]). Further we use the fact thatHs
2(IR) coincides with the Besov space

Bs
22(IR), and the norms in these spaces are equivalent (see [39], section 2.3.9). SinceG∈Bs

22, we conclude

by virtue of Corollary A3 that

∞

∑
j=−∞

|F (ψ)
m (2mx+ j)|2 ≤ B2

s 4−ms· ||G(x+ ·)||2Hs
2

(3.12)

for someBs = Bs(ψ) depending only onsandψ. From this we get by||G(x+ ·)||2Hs
2
= ||G||2Hs

2
= Is that

E(v(3)(x))2 =
∞

∑
m=µN+1

∞

∑
j=−∞

|F (ψ)
m (2mx+ j)|2 ≤ B2

s

4(µN+1)s
Is. (3.13)

Now we turn to the estimation of the first two terms in the right- hand side of (3.9 ). It is obvious, due to

independency of random variablesξ j , j ∈ Z that

E(v(1)(x))2 = ∑
j∈Z

|χN(x+ j)|2 · |F (φ)
0 (x+ j)|2 ≤ ∑

j∈Z: |x+ j|≥bN

|F (φ)
0 (x+ j)|2. (3.14)

We first estimate each term of this sum. The functionF (φ)
0 (y) has the Fourier transform̂F (k) =

Q(−k)φ̂(−k) = Q(k)φ̂(−k) (see (2.6 )). Due to the conditionsφ ∈ Cν+1 andQ|∆ ∈ Bρ0
1∞(∆) it follows

from Corollary A2 that||F̂ ||Bρ0
1∞(R) ≤C(ρ0,φ)||Q||Bρ0

1∞(∆). Then from Lemma A1 we get

|F (φ)
0 (y)| ≤ C(ρ0,φ)

|y|ρ0
· ||F̂ ||Bρ0

1∞(R) ≤
C(ρ0,φ)

|y|ρ0
· ||Q||Bρ0

1∞(∆). (3.15)

Note that from (3.14 ) and (3.15 ) we get

E(v(1)(x))2 ≤ C(ρ0,φ)

b2ρ0−1
N

· ||Q||2
B

ρ0
1∞(∆)

. (3.16)

Let us turn to estimation of the termsE(v(2)
m (x))2, m= 0, ...,µN. Denote byQm the functionQm : ∆0 → R

defined asQm(k) = Q(2mk). Then by the same arguments as we used in the derivation of estimation

(3.16), we obtain

E(v(2)
m (x))2 ≤ ∑

j∈Z: |2mx+ j|≥bmN

|F (ψ)
m (2mx+ j)|2 ≤ C(ρm,ψ)

b2ρm−1
mN

·2m||Qm||2Bρm
1∞ (∆0)

≤ C(ρm,ψ)

b2ρm−1
mN

·2m ·
(

2||Qm||2L1(∆0)
+ ||Qm||2bρm

1∞ (∆0)

)

. (3.17)
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Put l = ⌊ρm⌋−1. Then

||Qm||bρm
1∞ (∆0)

= sup
|h|≤1

1
|h|ρm−l

Z

∆0,2h

|∆(2)
h Q(l)

m (k)|dk. (3.18)

Define a functiongh : ∆m → R by gh(k) = ∆(2)
h Q(l)(k). Then∆(2)

h Q(l)
m (k) = 2mlg2mh(2mk). Therefore,

||Qm||bρm
1∞ (∆0)

= sup
|h|≤1

1
|h|ρm−l

Z

∆0,2h

2ml|g2mh(2
mk)|dk

= sup
|h|≤1

2−m

|h|ρm−l

Z

∆m,2m+1h

2ml|g2mh(k)|dk. (3.19)

By the definition we have
Z

∆m,2h

|gh(k)|dk=
Z

∆m,2h

|∆(2)
h Q(l)(k)| ≤ ||Q||bρm

1∞ (∆m)|h|ρm−l , h∈ R. (3.20)

Therefore it follows from (3.19) and (3.20) that

||Qm||bρm
1∞ (∆0)

≤ 2m(ρm−1)||Q||bρm
1∞ (∆m). (3.21)

Now taking into account that||Qm||L1(∆0) ≤ 2−m · ||Q||L1(∆m) and using the estimates (3.17) and (3.21) we

obtain

E(v(2)
m (x))2 ≤ 2C(ρm,ψ)

b2ρm−1
mN

·
(

2−m||Q||2L1(∆m) +2m(2ρm−1)||Q||2bρm
1∞ (∆m)

)

(3.22)

for m= 0,1, ...,µN. This completes the proof of Theorem 1. �

We shall assume

(H1) there exist positive constantsc0, ε, ρ0 > 1/2, ρ1 > 1/2 and positive integerm0 such that

(i) Q|∆ ∈ Bρ0
1∞(∆), Q|∆0 ∈ Bρ0

1∞(∆0), . . . , Q|∆m0−1 ∈ Bρ0
1∞(∆m0−1);

(ii) Q|∆m ∈ Bρ1
1∞(∆m), m≥ m0;

(iii) ||Q||bρ1
1∞(∆m) ≤ c0 ·2−m(ρ1−1/2+ε), m≥ m0. (3.23)

Proposition 1. Assume

lim
N→∞

µN = ∞, lim
N→∞

bN = ∞, lim
N→∞

min
0≤m≤µN

{bmN} = ∞. (3.24)

Then under the assumptions (H0)-(H1),

sup
x∈[0,1]

EE 2
N(x) → 0 as N→ ∞. (3.25)

Proof. Indeed, as a simple consequence of Theorem 1 we have

sup
x∈[0,1]

EE 2
N(x) ≤ C1(s,ψ)

4s(µN+1)
· Is+

C2(ρ0,φ)

b2ρ0−1
N

||Q||2
B

ρ0
1∞(∆)

+
m0−1

∑
m=0

C3(ρ0,ψ)

b2ρ0−1
mN

·
(

2−m||Q||2L1(∆m) +22m(ρ0−1/2)||Q||2
b

ρ0
1∞(∆m)

)

+
µN

∑
m=m0

C3(ρ1,ψ)

b2ρ1−1
mN

·
(

2−m||Q||2L1(∆m) +22m(ρ1−1/2)||Q||2
b

ρ1
1∞(∆m)

)

. (3.26)
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To show (3.25), it is sufficient to check that the last sum in the r.h.s of this inequality converges to zero

asN → ∞. For this sake, for givenδ > 0, let us chooseN0 = N0(δ) so that

min
0≤m≤µN

1

b2ρ1−1
mN

≤ δ N ≥ N0.

Denote bySN the lust sum in r.h.s. of (3.26). Then due to the condition (3.23) we get forN ≥ N0

SN ≤C3(ρ1,ψ) ·δ ·
(

∞

∑
m=0

2−m||Q||2L1(∆m) +c0 ·
∞

∑
m=0

2−2εm

)

.

From

||Q||2L1(∆m) ≤ |∆m| ·
Z

∆m

F(k)dk,

and due to the assumption (H0) we get

||Q||2L1(∆m) ≤ |∆m|(3·2−m)2s · Is = 2·2m(3·2−m)2s · Is.

This implies thatSN ≤ C · δ for N ≥ N0(δ) with a constant C which is not dependent on N. Since the

parameterδ can be chosen arbitrarily small,SN → 0 asN → ∞. The proof of the proposition is complete.

�

A straightforward consequence of Theorem 1 is the followingassertion on the rate of the mean square

convergence of FWM (3.1).

Corollary 1. Assume that the hypothesis (H0)-(H1) are valid. Choose in the model (3.1)

µN =

⌊

(2ρ0−1)

2s
· log2N

⌋

+1, bN = N, bmN = N, 0≤ m≤ m0−1;

bmN = N
2ρ0−1
2ρ1−1 , m0 ≤ m≤ µN. (3.27)

Assume, thatφ, ψ ∈ Cν+1 whereν = max{⌊s⌋, ⌊ρ0⌋, ⌊ρ1⌋}. Then for each positive integer N the follow-

ing estimation is valid:

sup
x∈[0,1]

EE 2
N(x) ≤C ·N−(2ρ0−1) (3.28)

where C is a constant not depending on N.

From the results given above it follows that the condition (3.23) is crucial in the analysis of the mean

square convergence of FWM.

3.2 Sufficient conditions for validity of (3.23)

Proposition 2. For a nonnegative k0 and a nonnegative integer l, assume that Q∈Wl
1(k0,∞), and

|∆(2)
h Q(l)(k)| ≤ C|h|γ

kl+1/2+γ+ε , ∀h∈ [−1,1], and ∀k≥ k0 (3.29)

for some positive numbers C, ε andγ ∈ (0,2). Then the following estimate is true

||Q||bρ1
1∞(∆m) ≤ c0 ·2−m(ρ1−1/2+ε), for all m≥ log2(3k0), (3.30)
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whereρ1 = l + γ and c0 = c0(ρ1,ε).
Proof. Since the triple(l + γ,2, l) is admissible,

||Q||bρ1
1∞(∆m) ≤C(ρ1) sup

|h|≤1

1
|h|γ

Z

∆m

|∆(2)
h Q(l)(k)|dk.

Therefore, for 2m > 3k0 we have

||Q||bρ1
1∞(∆m) ≤C(ρ1) sup

|h|≤1

1
|h|γ

Z

∆m

C|h|γ
kl+1/2+γ+ε dk≤ c0(ρ1,ε) ·2−m(ρ1−1/2+ε).

Corollary 2. Assume that for some nonnegative k0 and positive integer n, Q∈Wn
1 (k0,∞), and

|Q(n)(k)| ≤ C

kn+1/2+ε , ∀k≥ k0 (3.31)

for some positive numbers C, ε. Then the following estimate is valid

||Q||bn
1∞(∆m) ≤ c0 ·2−m(n−1/2+ε), for all m≥ log2(3(k0 +2)), (3.32)

for some positive c0 = c0(n,ε).

Indeed,

|∆(2)
h Q(n−1)(k)| ≤ |∆hQ(n−1)(k+h)|+ |∆hQ(n−1)(k+h)| ≤ h· |Q(n)(k+ βh)|+h· |Q(n)(k+ αh)|

for someα ∈ [0,1] andβ ∈ [1,2]. Hence, by virtue of (3.31)

|∆(2)
h Q(n−1)(k)| ≤ C1h

kn+1/2+ε , for all k≥ k0 +2.

Therefore forl = n−1 andγ = 1 all the conditions of Proposition 2 are fulfilled. �

Remark. Conditions (3.29) and (3.31) can be replaced with the following weaker conditions:

Z ∞

k0

kl+γ−1/2+ε · |∆
(2)
h Q(l)(k)|
|h|γ ·dk< ∞, (3.33)

and
Z ∞

k0

kn−1/2+ε|Q(n)(k)|dk< ∞, (3.34)

respectively.

3.3 Cost estimations for FWM

Now let us discuss the efficiency of FWM. Let us denote byTN the number of arithmetic operations for

calculation of the value of FWM (3.1) in one pointx∈ R. It is obvious thatTN ∼ bN + ∑µN
m=0bmN. Here

TN ∼ aN means that there exist constants 0<C1 ≤C2 not depending onN, such thatC1aN ≤ TN ≤C2 ·aN.

11



Therefore, if we choose the parameters of the FWM in accordance with (3.27), then under the conditions

of Corollary 1 it follows that

TN ∼ N if ρ1 > ρ0; (3.35)

TN ∼ N lnN if ρ1 = ρ0; (3.36)

TN ∼ N(2ρ0−1)/(2ρ1−1) lnN if ρ1 < ρ0. (3.37)

Let us denote

εN =

(

Z 1

0
E(u(x)−uN(x))2dx

)1/2

=
(

E||EN||2L2[0,1]

)1/2
,

the root mean square (r.m.s.) discrepancy of FWM (3.1) in themetric of L2[0,1]. Then under the

conditions of Corollary 1 the following estimation holds:

εN ≤C ·N−(ρ0−1/2), N = 1,2, ... (3.38)

whereC is some positive constant not depending onN. Hence under the conditions of Corollary 1 the

number of operations,Tε, to achieve a given value of the r.m.s. errorεN = ε, satisfies the estimation

Tε . ε−1/(ρ0−1/2) if ρ1 > ρ0; (3.39)

Tε . ε−1/(ρ0−1/2) lnε if ρ1 = ρ0; (3.40)

Tε . ε−1/(ρ1−1/2) lnε if ρ1 < ρ0. (3.41)

HereTε . a(ε) means that there exists a constantC not depending onε, such thatTε ≤C ·a(ε).

4 Analysis of the estimations (3.16)-(3.17)

In this section we show that the exponents 2ρ0 − 1 and 2ρm− 1 appearing in the estimations (3.16

)-(3.17) cannot be improved in Nikolskiĭ-Besov spacesBρ0
1∞ andBρm

1∞, respectively. This will be done by

construction of a functionQ which makes it possible to writeE(v(1)(x))2 ∼ b−(2ρ0−1)
N andE(v(2)(x))2 ∼

b−(2ρm−1)
mN .

Let us consider the following example.

Example 1.Let k0 ≥ 0 andρ > 0. Define

Q0(k) =

{

0, 0≤ k≤ k0,

(k−k0)
ρ−1, k > k0.

(4.1)

Q0(k) = Q0(−k) if k < 0.

Let q : R → [0,∞) be an arbitrary(l +1) -times differentiable even function with compact support satis-

fying the conditionq(k0) 6= 0 . Within this section we denotel = ⌊ρ⌋. DefineQ(k) = q(k)Q0(k). By the

definition it follows thatQ∈ Bρ
1∞.

Now let us consider asymptotic behavior of functionsF (φ)
0 (y), F (ψ)

m (y) asy → ∞. We will separately

consider two cases: (i)ρ is noninteger and (ii)ρ is integer.

12



4.1 Asymptotics ofF (φ)
0 and F (ψ)

m for a noninteger ρ

Let us first assume thatk0 < 2/3, φ̂ ∈Cl , and consider the functionF (φ)
0 (y). If we denoteg = qφ̂ then

F
(φ)

0 (y) =

∞
Z

−∞

e−i2πky ·Q(k)φ̂(k)dk=

∞
Z

−∞

e−i2πky ·Q0(k)g(k)dk

=
1

(−i2πy)l

∞
Z

−∞

e−i2πky · (Q0g)(l)(k)dk=
1

(−i2πy)l

∞
Z

−∞

e−i2πky · [Q(l)
0 (k)g(k)+R (k)]dk,

whereR (k) = ∑l−1
j=0C j

l Q( j)
0 (k)g(l− j)(k). It is obvious thatR is a function fromB1

1∞. Therefore, due to

Lemma A1 the integral

R(y) =

∞
Z

−∞

e−i2πky ·R (k)dk

satisfies the following estimation

|R(y)| ≤ A1

1+ |y| , y∈ R.

Now let us consider the integral

F0(y) =

∞
Z

−∞

e−i2πky ·Q(l)
0 (k)g(k)dk

=















2·
∞
R

0
cos(2πky) ·Q(l)

0 (k) ·g(k)dk, if l is even,

−2i ·
∞
R

0
sin(2πky) ·Q(l)

0 (k) ·g(k)dk, if l is odd.
(4.2)

Let us assume thatl is even. Then,

F0(y) = 2C1 cos(2πk0y)Fc(2πy)−2C1 sin(2πk0y)Fs(2πy),

whereC1 = C1(ρ) = (l −α) · (l −1−α) · . . . · (1−α), α = 1−ρ+ l , and

Fc(x) =

∞
Z

0

cos(kx) · f (k)dk, Fs(x) =

∞
Z

0

sin(kx) · f (k)dk (4.3)

are the respective Fourier cosine and sine transformationsof the function f (k) = g(k+k0)k−α. Now we

will use the following assertion:

Theorem ([38], Theorem 126).Let f(k) = k−αϕ(k), where0 < α < 1, andϕ(k) is of bounded variation

in (0,∞). Let Fc and Fs are Fourier sine and cosine transformations of f . Then

Fc(x) = ϕ(+0) ·
(

2
π

)1/2

Γ(1−α)sin(πα/2) ·xα−1 · (1+o(1)) as x→ ∞

and

Fc(x) = ϕ(∞) ·
(

2
π

)1/2

Γ(1−α)sin(πα/2) ·xα−1 · (1+o(1)) as x→ 0.
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Fs(x) satisfies similar conditions withsin(πα/2) replaced bycos(πα/2).

For evenl it follows from this theorem that

F0(y) = C2(ρ)g(k0) ·
sin(πα/2−2πk0y)

y1−α · (1+o(1)), as y→ ∞. (4.4)

For oddl it can be obtained a similar asymptotic:

F0(y) = −i ·C2(ρ)g(k0) ·
cos(πα/2+2πk0y)

y1−α · (1+o(1)), as y→ ∞. (4.5)

Thus we have obtained the following asymptotical result forF (φ)
0 :

F
(φ)

0 (y) = C3(ρ) ·Φ(k0y) · q(k0) · φ̂(k0)

yρ · (1+o(1)), as y→ ∞ (4.6)

whereΦ(x) = sin(πα/2−2πx) if l = ⌊ρ⌋ is even, andΦ(x) = cos(πα/2+2πx) if l is odd.

Recall that we have assumed thatk0 ∈ [0,2/3]. If k0 ≥ 2/3 thenF (φ)
0 ≡ 0. By the same arguments it can

be shown that formsuch that 2m < 3k0 < 2m+2 the following asymptotic is valid

F
(ψ)

m (y) = C3(ρ) ·2m(ρ−1/2)Φ(2−mk0y) · q(2−mk0) · ψ̂(2−mk0)

yρ · (1+o(1)) (4.7)

as y→ ∞, providedq(2−mk0) 6= 0.

4.2 Asymptotics ofF (φ)
0 and F (ψ)

m for an integer ρ

Let l = ρ = 1. Then

F
(φ)

0 (y) = 2
Z ∞

k0

cos(2πky)g(k)dk =
1
πy

Z ∞

k0

g(y) ·d(sin(2πky))

= −g(k0)

πy
· (1+O(1/|y|)), as y→ ∞. (4.8)

If l ≥ 2 then

F
(φ)

0 (y) =
1

(−i2πy)l−1

∞
Z

−∞

e−i2πky · [Q(l−1)
0 (k)g(k)+R (k)]dk,

whereR ∈ B2
1∞. Therefore

F
(φ)

0 (y) =
1

(−i2πy)l−1 · (F0(y)+O(1/|y|2), as y→ ∞

where

F0(y) =

∞
Z

−∞

e−i2πky ·Q(l−1)
0 (k)g(k)dk

=















2·
∞
R

k0

cos(2πky) ·g(k)dk, if l is odd,

−2i ·
∞
R

k0

sin(2πky) ·g(k)dk, if l is even.
(4.9)
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Using the integration by part and using Lemma A1 we can easilyshow that

F
(φ)

0 (y) = C(ρ) ·Φ(k0y) · q(k0) · φ̂(k0)

yl · (1+o(1)), as y→ ∞ (4.10)

whereΦ(x) = cos(2πx) if l = ρ is even, andΦ(x) = sin(2πx) if l is odd.

By the same arguments can be established that (4.7) is valid in the case of integerρ with Φ(x) = cos(2πx)

if l = ρ is even, andΦ(x) = sin(2πx) if l is odd.

4.3 Lower bounds for the estimations (3.16)-(3.17)

Now let us turn to the estimations (3.16)-(3.17). Assume that ρ is not integer, andl = ⌊ρ⌋ is even. Let

k0 = 1/2. Then, by virtue of (4.6) we get for some positive integerN0 and for eachN ≥ N0

E(v(1)(x))2 ≥ ∑
j∈Z: |x+ j|≥bN+1

|F (φ)
0 (x+ j)|2

≥C(ρ) · ∑
j∈Z: |x+ j|≥bN+1

sin2(πα/2−π · (x+ j)) · 1
|x+ j|2ρ

≥C1(ρ)sin2(πα/2−πx)
1

b2ρ−1
N

, (4.11)

whereC1(ρ) > 0. By the same way similar estimation can be established for odd l and nonintegerρ. For

integerρ one can use (4.10) and establish analogous result.

If, for nonnegativem0, one putk0 = 2m0−1 then by (4.7)

E(v(2)
m0 (x))

2 ≥ C(ρ)sin2(πα/2−π2m0x)22m0(ρ−1/2) ∑
j∈Z: |2m0 x+ j|≥bm0N+1

1
|2m0x+ j|2ρ

≥C1(ρ)sin2(πα/2−π2m0x)22m0(ρ−1/2) 1

b2ρ−1
m0N

, N ≥ N0 (4.12)

for nonintegerρ with evenl = ⌊ρ⌋. For other values ofρ (⌊ρ⌋ is odd orρ is integer) similar estimations

can be obtained by analogous way.

Therefore in Nikolskĭi-Besov classesBρm
1∞, m= 0,1, ...,µN , exponents 2ρm−1, m= 0,1, ...,µN in r.h.s. of

estimation (3.7) are best possible values. In this connection should be pointed out that for Sobolev spaces

Wρm
1 , this is not the case. More precisely, if, for positive integers l0, ..., lµN we replace the conditions

Q|∆ ∈ Bρ0
1∞(∆) andQ|∆m ∈ Bρm

1∞(∆m) in Theorem 1 with the conditionsQ|∆ ∈Wl0
1 (∆) andQ|∆m ∈Wlm

1 (∆m)

then the following estimation holds true

E(u(x)−uN(x))2 ≤ C1(s,ψ)

4s(µN+1)
· Is+

C2(l0,φ)

b2l0−1
N

||Q||2
W

l0
1 (∆)

+
µN

∑
m=0

C3(lm,ψ)

b2lm−1
mN

·
(

2−m||Q||2L1(∆m) +22m(lm−1/2)||Q||2
Wlm

1 (∆m)

)

. (4.13)

But exponents 2lm− 1, m= 0,1, ...,µN in this estimation might be not best possible. To illustratethis

idea let us consider the following
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Example 2. For ρ ∈ (1,2) let us consider the functionQ(k) constructed as above in Example 1 with

k0 = 1/2 andq∈C2(R) such, thatsupp(q) ⊂ (−2
3, 2

3). Then a maximum possible value of an integerl0
in the conditionQ|∆ ∈Wl0

1 (∆) is l0 = 1. Therefore taking into account thatQ|∆m = 0, m= 1,2, ... we get

by (4.13)

E(u(x)−uN(x))2 ≤C ·
(

1
bN

+
1

b0N

)

while the estimation (3.7) ensures more exact inequality istrue

E(u(x)−uN(x))2 ≤C ·
(

1

b2ρ−1
N

+
1

b2ρ−1
0N

)

.

5 Convergence of FWM inC metric

Now let us turn to the problem of convergence of FWM (3.1) in probability, in the metric ofC[0,1].

RecallEN(x) = u(x)−uN(x). Denote byD = [0,1] a unit interval, andC(D) is the space of continuous

scalar functions on D with the uniform norm|| f ||C(D) = maxx∈D | f (x)|. Let us mention that the functional

convergenceuN
P→ u in C(D) asN → ∞ means||EN||C(D)

P→ 0 asN → ∞, that is, for each nonnegative

ε andδ there existsN0 = N0(ε, δ) such thatP {||EN||C(D) > ε} < δ for eachN ≥ N0. Thus to study the

convergence in probabilityuN
P→ u in C(D) asN→ ∞ we need to estimate the probabilityP {||EN||C(D) >

ε}.

Let ξ(x), x∈ D = [0,1] be a Gaussian random process with zero mean. Let

ϕξ(h) = sup
x,y∈D

|x−y|≤h

(E|ξ(x)−ξ(y)|2)1/2; h∈ [0,1].

The following assertion is a 1-dimensional variant of the well known Fernique’s inequality.

Theorem ([10]). If
∞
R

1
ϕξ(e

−x2
)dx< ∞ then almost all samples of the random processξ(x) are continuous.

Moreover, for each t≥
√

5 the following estimation is valid

P {sup
x∈D

|ξ(x)| ≥ qt} ≤ 10·
Z ∞

t
e−x2/2dx, (5.1)

where

q = sup
x∈D

(E|ξ(x)|2)1/2 +(2+
√

2) ·
∞

Z

1

ϕξ(2
−x2

)dx.

Taking into account the following inequality

Z ∞

t
e−x2/2dx≤ e−t2/2

t
≤ e−t2/2

√
5

, t ≥
√

5

and the estimation (5.1), one can derive the following estimation:

P {sup
x∈D

|ξ(x)| ≥ qt} ≤ 2
√

5 ·e−t2/2, t ≥
√

5. (5.2)
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Thus, in order to use this estimation forξ(x) = EN(x) we have to analyze the function

ϕEN(h) = sup
x,y∈D

|x−y|≤h

(E|EN(x)−EN(y)|2)1/2; h∈ [0,1].

Let us turn to estimation of this function.

For a fixed positive integerN we denote

ε(1)
N =

||Q||2
B

ρ0
1∞(∆)

b2ρ0−1
N

· , ε(3)
N =

Is
4(µN+1)s

,

ε(2)
mN =

1

b2ρm−1
mN

·
(

2−m||Q||2L1(∆m) +22m(ρm−1/2)||Q||2
bρm

1∞ (∆m)

)

, m= 0,1, ...,µN.

Theorem 2. Assume that all the conditions of Theorem 1 are satisfied. Then for eachα ∈ (0,1) and

h∈ [0,1] the following inequality is valid

E|EN(x+h)−EN(x)|2 ≤C(s) ·
(

Is · |h|s∧1)α · ε1−α
N , N = 1,2, ..., (5.3)

where s∧1 = min{s,1}, and

εN = C1(ρ0,φ) · ε(1)
N +

µN

∑
m=0

C2(ρm,ψ) · ε(1)
mN+C3(s,ψ) · ε(3)

N ,

and C, Ci , i = 1,2,3 are some constants depending on the shown arguments.

Proof. From independency of random variablesξ j , ξm j, j ∈ Z, m≥ 0 it follows that (see (3.8))

E[EN(x+h)−EN(x)]2 = E[v(1)(x+h)−v(1)(x)]2 +
µN

∑
m=0

E[v(2)
m (x+h)−v(2)

m (x)]2 +E[v(3)(x+h)−v(3)(x)]2. (5.4)

Let us first estimate the first term in r.h.s. of the last equality.

Lemma 1. For eachα ∈ (0,1) the following estimation holds

E[v(1)(x+h)−v(1)(x)]2 ≤
(

C(s)Is · |h|(s∧1)
)α

· (C1(ρ0,φ) · ε(1)
N )1−α . (5.5)

Proof. Indeed, for eachα ∈ (0,1) one has

E[v(1)(x+h)−v(1)(x)]2 = ∑
j∈Z

[χN(x+h+ j) ·F (φ)(x+h+ j)−χN(x+ j) ·F (φ)(x+ j)]2

= ∑
j∈Z

|a j −b j |2 ≤
(

∑
j∈Z

|a j −b j |2
)α

·
(

∑
j∈Z

(|a j |+ |b j |)2

)1−α

. (5.6)

Here we denote

a j = χN(x+h+ j) ·F (φ)
0 (x+h+ j), b j = χN(x+ j) ·F (φ)

0 (x+ j),
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and in the second line of (5.6) we use H ¨older’s inequality:

∑
j∈Z

|a j −b j |2 ≤ ∑
j∈Z

{

|a j −b j |2α · (|a j |+ |b j |)2·(1−α)
}

≤
(

∑
j∈Z

|a j −b j |2αp

)1/p

·
(

∑
j∈Z

(|a j |+ |b j |)2·(1−α)q

)1/q

(5.7)

with parametersp = 1/α, q = 1/(1−α). Let us estimate each factor in the right-hand side of (5.6).First

note that

|a j −b j | = |χN(x+h+ j) ·F (φ)
0 (x+h+ j)−χN(x+ j) ·F (φ)

0 (x+ j)|

≤ |χN(x+h+ j) ·F (φ)
0 (x+h+ j)−χN(x+h+ j) ·F (φ)

0 (x+ j)|

+|χN(x+h+ j) ·F (φ)
0 (x+ j)−χN(x+ j) ·F (φ)

0 (x+ j)|

≤ |F (φ)
0 (x+h+ j)−F (φ)

0 (x+ j)|+ |F (φ)
0 (x+ j)| · |χN(x+h+ j)−χN(x+ j)|. (5.8)

Therefore,

∑
j∈Z

|a j −b j |2 ≤ 2· ∑
j∈Z

[F
(φ)

0 (x+h+ j)−F (φ)
0 (x+ j)]2

+2· ∑
j∈Z

|F (φ)
0 (x+ j)|2 · |χN(x+h+ j)−χN(x+ j)|2. (5.9)

Note that the sequences
{

F
(φ)

0 (x+h+ j)−F (φ)
0 (x+ j)

}

j∈Z

and
{

F
(φ)

0 (x+ j)
}

j∈Z

are the Fourier co-

efficients of∆hG(x+ ·) andG(x+ ·), respectively, in the orthonormal system{φ(·+ j)} j∈Z
. Therefore

∑
j∈Z

|F (φ)
0 (x+ j)|2 ≤ ||G(x+ ·)||2L2

= ||G(·)||2L2
≤ Is, (5.10)

and

∑
j∈Z

[F
(φ)

0 (x+h+ j)−F (φ)
0 (x+ j)]2 ≤ ||∆hG(x+ ·)||2L2

= ||∆hG(·)||2L2
. (5.11)

Note thatG∈ Bs
22 →֒ Bs

2∞ →֒ Bγ
2∞ for each 0< γ ≤ s. Therefore, takingγ = min{1/2,s/2} we have

||∆hG(·)||L2 ≤C1(s) · |h|γ · ||∆hG(·)||Bγ
2∞

≤ C2(s) · |h|γ · ||∆hG(·)||Bs
22

≤C3(s) · |h|γ · I1/2
s (5.12)

for eachh ∈ [−1, 1]. From (5.9)-(5.12), taking into account that|χN(x+ h+ j)− χN(x+ j)| ≤ |h|, we

obtain

∑
j∈Z

|a j −b j |2 ≤C(s) Is · |h|s∧1, (5.13)

wheres∧1= min{1, s}.

Now, let us estimate the second factor in r.h.s. of (5.6). From

∑
j∈Z

(|a j |+ |b j |)2 ≤ 2· ∑
j∈Z

|a j |2 + 2· ∑
j∈Z

|b j |2 = 2·E(v(1)(x+h))2 + 2·E(v(1)(x))2

18



and (3.16) we obtain

∑
j∈Z

(|a j |+ |b j |)2 ≤ 4·C(ρ0,φ)

b2ρ0−1
N

· ||Q||2
B

ρ0
1∞(∆)

. (5.14)

Thus by virtue of (5.6) and (5.13)-(5.14) the estimation (5.5) follows. The proof of Lemma 1 is complete.

�

Lemma 2. For eachα ∈ (0,1) the following estimation is valid

µN

∑
m=0

E[v(2)
m (x+h) − v(2)

m (x)]2 ≤
(

C(s) · Is · |h|s∧1)α

·
(

µN

∑
m=0

C2(ρm,ψ) · ε(2)
mN

)1−α

, N = 1,2, ... . (5.15)

Proof. For eachα ∈ (0,1), by the same arguments as we used in proof of Lemma 1, we arriveat

E[v(2)
m (x+h)−v(2)

m (x)]2 ≤
(

∑
j∈Z

|am j−bm j|2
)α

·
(

∑
j∈Z

(|am j|+ |bm j|)2

)1−α

, (5.16)

where

am j = χmN(2m · (x+h)+ j) ·F (ψ)
m (2m · (x+h)+ j), bm j = χmN(2m ·x+ j) ·F (ψ)

m (2m ·x+ j).

From (5.16) it follows that

µN

∑
m=0

E[v(2)
m (x+h)−v(2)

m (x)]2 ≤
(

µN

∑
m=0

∑
j∈Z

|am j−bm j|2
)α( µN

∑
m=0

∑
j∈Z

(|am j|+ |bm j|)2

)1−α

.

Now obviously

|am j − bm j| ≤ |F (ψ)
m (2m · (x+h)+ j)−F (ψ)

m (2m ·x+ j)|
+|F (ψ)

m (2m ·x+ j)| · |χmN(2m · (x+h)+ j)−χmN(2m ·x+ j)|. (5.17)

Since
{

F
(ψ)

m (2m · (x+h)+ j)−F (ψ)
m (2m ·x+ j)

}

j∈Z

, m= 0, ...,µN are Fourier coefficients in the expan-

sion of∆hG(x+ ·) with respect to the orthonormal system
{

ψm j
}

j∈Z
,

m= 0, ...,µN, then (see (5.12)-(5.13))
µN

∑
m=0

∑
j∈Z

|F (ψ)
m (2m(x+h)+ j)−F (ψ)

m (2mx+ j)|2 ≤ ||∆hG||L2 ≤C(s) Is|h|s∧1. (5.18)

When we estimate the second term in r.h.s. of (5.17) we consider two cases: (i) 2m|h| ≤ 1, and (ii)

2m|h| > 1. In the first case, taking into account that|χmN(2m · (x+h)+ j)−χmN(2m ·x+ j)|2 ≤ (2m|h|)2

(see (5.12) and (3.12)) we have
µN

∑
m=0

∑
j∈Z

|F (ψ)
m (2m ·x+ j)|2 · |χmN(2m · (x+h)+ j)−χmN(2m ·x+ j)|2

≤ (2m|h|)2 ·
µN

∑
m=0

∑
j∈Z

|F (ψ)
m (2m ·x+ j)|2 ≤ (2m|h|)s∧1 ·

µN

∑
m=0

∑
j∈Z

|F (ψ)
m (2m ·x+ j)|2

≤ B2
s · Is · |h|s∧1, if 2m|h| ≤ 1.
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In the case (ii) (i.e. 2m|h| > 1) it is obvious, that(2m|h|)s > 1 and|χmN(2m · (x+ h)+ j)−χmN(2m · x+

j)|2 ≤ 1. Therefore, in this case

µN

∑
m=0

∑
j∈Z

|F (ψ)
m (2m ·x+ j)|2 · |χmN(2m · (x+h)+ j)−χmN(2m ·x+ j)|2

≤
µN

∑
m=0

∑
j∈Z

|F (ψ)
m (2m ·x+ j)|2 ≤ (2m|h|)2s ·

µN

∑
m=0

∑
j∈Z

|F (ψ)
m (2m ·x+ j)|2

≤ Bs2· Is · |h|2s, if 2m|h| > 1. (5.19)

Thus in general case we have

µN

∑
m=0

∑
j∈Z

|F (ψ)
m (2m ·x+ j)|2 · |χmN(2m · (x+h)+ j)−χmN(2m ·x+ j)|2

≤ B2
s · Is · |h|s∧1, if |h| ≤ 1. (5.20)

Using (5.18), (5.20) and taking into account (5.17) we obtain

µN

∑
m=0

∑
j∈Z

|a j −b j |2 ≤C(s) · Is · |h|s∧1, if |h| ≤ 1. (5.21)

To estimate the second factor on r.h.s. of inequality (5.16)we first notice that

∑
j∈Z

(|a j |+ |b j |)2 ≤ 2·E(v(2)
m (x+h))2 + 2·E(v(2)

m (x))2.

Then using the inequality (3.22) we get

∑
j∈Z

(|a j |+ |b j |)2 ≤ C(ρm,ψ)

b2ρm−1
mN

·2−m||Q||2L1(∆m) +
C(ρm,ψ)

b2ρm−1
mN

·2m(2ρm−1)||Q||2
bρm

1∞ (∆m)
(5.22)

for m= 0,1, ...,µN.

From (5.16), (5.21) and (5.22) we get (5.15). The proof of Lemma 2 is complete. �

It is easy to see that

E(v(3)(x+h)−v(3)(x))2 =
∞

∑
m=µN+1

∑
j∈Z

|am j−bm j|2,

where

am j = F
(ψ)

m (2m · (x+h)+ j), bm j = F
(ψ)

m (2m ·x+ j).

Therefore using

∑
j∈Z

|am j−bm j|2 ≤ ||∆hG||2L2
,

for each integerm, and

∞

∑
m=µN+1

∑
j∈Z

(|am j|+ |bm j|)2 ≤ 2· [E(v(3)(x+h))2 +E(v(3)(x))2]

and taking into account (3.13) and (5.12) we get

E(v(3)(x+h)−v(3)(x))2 ≤
(

C(s) · Is · |h|s∧1)α ·
(

C3(s,ψ) · ε(3)
N

)1−α
. (5.23)
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Finally, using (5.4), (5.5), (5.15) and the last inequalitywe obtain

E|EN(x+h)−EN(x)|2

≤
(

C(s) · Is · |h|s∧1)α ·
[

(C1 · ε(1)
N )1−α +(

µN

∑
m=0

C2m · ε(2)
mN)1−α +(C3 · ε(3)

N )1−α

]

≤ 3α (C(s) · Is · |h|s∧1)α ·
[

C1 · ε(1)
N +

µN

∑
m=0

C2m · ε(2)
mN+C3 · ε(3)

N

]1−α

. (5.24)

Theorem 2 is proven. �

Now we are in a position to formulate an assertion on convergence of FWM in probability:

Theorem 3. Assume that all the conditions of Corollary 1 are fulfilled. Then for eachα ∈ (0,1) and

t >
√

5

P { sup
x∈[0,1]

|EN(x)| > C · εN(α) · t} ≤ 2
√

5·e−t2/2, (5.25)

where C is some positive constant not depending onα and N, and

εN(α) =
1√
α
·N− (2ρ0−1)·(1−α)

2 .

Proof. From the estimation (5.3), taking into account (3.23) and (3.27) we get

sup
x,y∈[0,1], |x−y|≤h

E(EN(x)−EN(y))2 ≤C1|h|α(s∧1)N−(2ρ0−1)·(1−α)

for eachα ∈ (0,1) and|h| ≤ 1, whereC1 is some positive constant not depending onα, h andN. Now

let ξ(x) = EN(x). Then

ϕξ(h) = sup
x,y∈D

|x−y|≤h

E1/2(|ξ(x)−ξ(y)|2) ≤C2 · |h|α(s∧1)/2N−(2ρ0−1)·(1−α)/2.

Therefore, by (3.28)

q = sup
x∈D

E1/2|ξ(x)|2 +(2+
√

2) ·
∞

Z

1

ϕξ(2
−x2

)dx≤C3 ·N− (2ρ0−1)
2

+C4 ·N− (2ρ0−1)·(1−α)
2 ·

Z ∞

1
2−x2α(s∧1)/2)dx≤CεN(α).

Now (5.25) is a direct consequence of estimation (5.2). Theorem is proved. �

Corollary 3. Under the conditions of Theorem 3, uN
P→ u in the metric of C[0,1] as N→ ∞.

Indeed, by (5.25) for eachε > 0 andδ > 0 it can be found a positive integerN0 such that

P { sup
x∈[0,1]

|EN(x)| > ε} ≤ δ, N ≥ N0.
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6 Generalization of results to vector processes and some stronger

metrics

6.1 Convergence inLp metric

Recall the well known relation between different moments ofzero mean Gaussian random variables. Let

ξ be a zero mean real-valued Gaussian random variable. Then (e.g., see, [18])

E|ξ|p = cp(Eξ2)p/2, p≥ 1, cp =
2p/2
√

π
. (6.1)

Therefore, under the conditions of Theorem 1, using the estimation (3.7) forEE 2
N(x) = E(u(x)−uN(x))2

it is easy to obtain an estimation for the convergence rateE||EN||pLp[0,1] =
R 1

0 E(EN(x))p dx in the metric

of Lp[0,1], p≥ 1.

6.2 Convergence in the metric of Sobolev spaceWn
p

For a positive integern andp≥ 1 letWn
p [0,1] be a Sobolev space with the norm

|| f ||Wn
p [0,1] = || f ||Lp[0,1] + || f (n)||Lp[0,1].

In the study of convergenceE||EN||pWn
p [0,1] → 0, due to the relation (6.1), we can restrict ourselves to

the casep = 2. Therefore let us consider the convergence of FWM (3.1) in Sobolev spaceWn
2 . In

order to analyze the convergence of FWM,uN(x) to u(x) asN → ∞ in Wn
2 [0,1] it is sufficient to study:

(i) convergenceuN → u in L2[0,1], and (ii) convergenceu(n)
N → u(n) in L2[0,1]. The first question was

already studied in section 3. Therefore we will concentrateon the second question:u(n)
N → u(n) in L2[0,1].

Recall that for a functionf : R → R we denote byf (n) the n-th derivativeDn f (if it exists).

First of all note that a necessary and sufficient condition that samples of a random processu(x) belong

toWn
2 [0,1] (with probability 1) is (e.g., see, [17])

Z ∞

−∞
|k|2nF(k)dk< ∞ . (6.2)

If this condition is satisfied, thenDnu(x) = u(n) have the spectral functionk2nF(k). In order to ensure that

uN is n-times differentiable we have to choose the cut-off function ηA n-times differentiable. Therefore

we will assume, thatηA ∈Cn, and

ηA(x) =

{

0, 0≤ x≤ A,

1, x≥ A+1.
(6.3)

Thus, using results of section 3 one can formulate sufficientconditions foru(n)
N → u(n) as N → ∞ in

L2[0,1]. Denote byQn the functionQn(k) = |k|nQ(k) = |k|nF1/2(k). Then the following assertion is
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valid:

Theorem 1a.Assume that the spectral function F(k) satisfies the condition

In+s
de f
=

Z ∞

−∞
F(k)(1+ |k|2)n+sdk< ∞ (6.4)

for some s> 0. Let{ρm}µN
m=0 be a finite sequence of positive numbers such thatmin

m
ρm > 1/2. Assume

that Qn|∆ ∈ Bρ0
1∞(∆) and Q|∆m ∈ Bρm

1∞(∆m) for 1 ≤ m≤ µN. Assume that the Meyer wavelet functionsφ
andψ belong to the class Cν+1 for ν = max{⌊ρ⌋, ⌊s⌋}, whereρ = max

0≤m≤µN

ρm. Then

E(u(n)(x)−u(n)
N (x))2 ≤ C1(s,ψ)

4s(µN+1)
· In+s+

C2(ρ0,φ)

b2ρ0−1
N

||Qn||2Bρ0
1∞(∆)

+
µN

∑
m=0

C3(ρm,ψ)

b2ρm−1
mN

·
(

2−2ms· In+s+22m(ρm−1/2)||Qn||2bρm
1∞ (∆m)

)

, (6.5)

where Ci , i = 1,2,3 are some positive constants depending only on the shown arguments.

Proof. Indeed, this assertion is a direct consequence of Theorem 1 applied to the random processu(n)(x)

with the spectral function|k|2nF(k). Then the estimation (6.5) is a consequence of (3.7) and the following

simple inequality

||Qn||L1(∆m) =

Z

∆m

|k|nQ(k)dk≤ |∆m|1/2
(

Z

∆m

|k|2nF(k)dk

)1/2

≤ 2(m+1)/2−msI1/2
n+s.

Proposition 3. Assume that for some nonnegative k0 and positive integer l Q∈ Wl
1(k0,∞), and for

each nonnegative integer j such that0≤ j ≤ n∧ l the following condition is valid:

|Q(l− j)(k)| ≤ Aε

kn+l− j+1/2+ε , ∀k≥ k0 (6.6)

for some positive numbers Aε andε. Then

||Qn||bl
1∞(∆m) ≤ Aε ·c0 ·2−m(l−1/2+ε), for all m≥ log2(3(k0 +2)), (6.7)

for some positive c0 = c0(n, l ,ε).
Proof. Indeed,

|∆(2)
h Q(l−1)

n (k)| ≤ |∆hQ(l−1)
n (k+h)|+ |∆hQ(l−1)

n (k+h)| ≤ h· |Q(l)
n (k+ βh)|+h· |Q(l)

n (k+ αh)|

for someα ∈ [0,1] andβ ∈ [1,2]. Since

Q(l)
n (k) =

n∧l

∑
j=0

C j
l ·n· (n−1) · ... · (n− j +1) ·kn− jQ(l− j)(k),

we find for eachk∈ ∆m andm≥ log2(3(k0 +2))

|Q(l)
n (k)| ≤C(n, l)2−m(l+1/2+ε)

by virtue of condition (6.6). Therefore,
Z

∆m

|∆(2)
h Q(l−1)(k)| ≤C(n, l)2−m(l+1/2+ε) ·h· |∆m| ≤C1(n, l) ·h·2−m(l−1/2+ε).
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This completes the proof of (6.7). �

Corollary 4. Assume that the spectral function F(k) satisfies the condition (6.4) for some s> 0 and a

positive integer n, the function Qn(k) = |k|n ·F1/2(k) = |k|n ·Q(k) satisfies the conditions

Qn|∆ ∈ Bρ0
1∞(∆), Q|∆′ ∈Wl

1(∆′) (6.8)

for some positiveρ0 > 1/2 and positive integer l. Assume that for each nonnegative integer j∈ [0, n∧ l ]

the function Q satisfies the condition (6.6) and suppose thatφ, ψ ∈ Cν+1 whereν = max{⌊s⌋, ⌊ρ0⌋, l}.

Let us choose in FWM (3.1)

µN =

⌊

(2ρ0−1)

sln4
· lnN

⌋

, bN = N, bmN = N
2ρ0−1
2l−1 , m= 0,1, ...,µN. (6.9)

Then for each positive integer N and x∈ R the following estimation is valid:

E(u(n)(x)−u(n)
N (x))2 ≤ N−(2ρ0−1)

×
[

C1(s,ψ)In+s+C2(ρ0,φ) · ||Qn||2Bρ0
1∞(∆)

+C3(n,ρ1,ε,ψ) ·C2
ε

]

, (6.10)

where Ci , i = 1,2,3 are some positive constants depending only on the shown arguments.

Thus if the spectral functionF(·) satisfies all the conditions of the last corollary andQ|∆ ∈ Bρ0
1∞(∆) then

the estimates (3.38) and (6.10) imply the following result on convergence of FWM inWn
2 :

Corollary 5. Let all the conditions of Corollary 4 be fulfilled and Q|∆ ∈ Bρ0
1∞(∆). Then

E||EN||2Wn
2 [0,1] ≤

C
N2ρ0−1 , N = 1,2, . . .

for some positive C not depending on N.

6.3 Convergence inCn[0,1]

For positive integern, letCn[0,1] be the space of alln-times continuously differentiable real valued scalar

functions f : [0,1] → R with the norm

|| f ||Cn[0,1] = sup
x∈[0,1]

| f (x)|+ sup
x∈[0,1]

| f (n)(x)|.

By the definition of this norm it follows that{uN(x)}∞
N=1 , x∈ [0,1] converges in the metric ofCn[0,1] to

a random fieldu(x), x∈ [0,1] asN → ∞ iff: (i) uN → u in C[0,1] asN → ∞, and (ii)u(n)
N → u(n) in C[0,1]

asN → ∞. Since the first question was studied in section 5, we concentrate on the second one. To ensure

the samples of FWM (3.1) are ofCn[0,1], we assume below thatηA ∈Cn(R) and the condition (6.3) is

satisfied.

The following assertion is an analog of Theorem 3 and can be proved by the similar way.

Theorem 3a.Let all the conditions of Corollary 4 are fulfilled. Then for eachα ∈ (0,1) and t>
√

5,

P { sup
x∈[0,1]

|E (n)
N (x)| > CεN(α) · t} ≤ 2

√
5·e−t2/2, (6.11)
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where C is a positive constant not depending onα and N, and

εN(α) =
1√
α
·N− (2ρ0−1)·(1−α)

2 .

Now let all the conditions of Corollary 5 be valid. Then usingthe simple inequalityP {ξ+η > x+y} ≤
P {ξ > x}+P {η > y} and the results of Theorems 3 and 3a we arrive at the following:

Corollary 6. Let all the conditions of Corollary 5 be satisfied. Then for each α ∈ (0,1) and t>
√

5

P

{

||EN||Cn[0,1] >
C · t√

α
·N− (2ρ0−1)·(1−α)

2

}

≤ 4
√

5·e−t2/2,

where C is some positive constant not depending onα.

Under the conditions of this Corollary it follows immediately that uN
P→ u in the metric ofCn[0,1] as

N → ∞.

6.4 Generalizations for vector processes

Letu(x) = (u1(x), . . . ,ul (x))T , x∈R be anl -dimensional real valued stationary Gaussian random process

with mean zero and spectral tensorF(k) = (Fi j (k)), i = 1, ..., l ; j = 1, ..., l , anduN(x) is its FWM given

by (2.14). Denote by|a| = (∑l
i=1 a2

i )
1/2 the Euclidean norm of anl -dimensional real valued vectora,

and by|A| = (∑l
i=1∑n

j=1a2
i j )

1/2 the Euclidean norm of a matrixA = (ai j ), i = 1, ...l ; j = 1, ...,n which

can be realized as the Euclidean norm of thel ×n-vectorA. For anl ×n dimensional functionQ(k) =

(qi j (k)), i = 1, ...l ; j = 1, ...,n, andD ⊂ R, denote (if it makes a sense)

|||Q|||L1(D) =

(

l

∑
i=1

n

∑
j=1

||qi j ||2L1(D)

)1/2

and

|||Q|||bρ
1∞(D) =

(

l

∑
i=1

n

∑
j=1

||qi j ||2bρ
1∞(D)

)1/2

.

Finally, denote bySpF(k) the trace∑l
i=1 Fii (k) of the spectral tensorF. Then by the same arguments as

in the scalar case one can establish the following result:

Theorem 1b.Assume that the spectral tensor F(k) satisfies the condition

Is
de f
=

Z ∞

−∞
SpF(k)(1+ |k|2)sdk< ∞ (6.12)

for some s> 0. Let{ρm}µN
m=0 be a finite sequence of positive numbers such thatmin

m
ρm > 1/2. Assume

that

|||Q|||L1(∆) < ∞, |||Q|||bρ0
1∞(∆) < ∞,

and

|||Q|||L1(∆m) < ∞, |||Q|||bρm
1∞ (∆m) < ∞, m= 0,1, . . . ,µN.
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Assume that the Meyer wavelet functionsφ andψ belong to the class Cν+1 for ν = max{⌊ρ⌋, ⌊s⌋}, where

ρ = max
0≤m≤µN

ρm. Then

E|u(x)−uN(x)|2 ≤ C1(s,ψ)

4s(µN+1)
· Is+

C2(ρ0,φ)

b2ρ0−1
N

·
{

|||Q|||2L1(∆) + |||Q|||2
b

ρ0
1∞(∆)

}

+
µN

∑
m=0

C3(ρm,ψ)

b2ρm−1
mN

·
(

2−m|||Q|||2L1(∆m) +22m(ρm−1/2)|||Q|||2bρm
1∞ (∆m)

)

, (6.13)

where Ci , i = 1,2,3 are some constants depending only on the shown arguments.

Analogous convergence results can be obtained in stronger metrics.

7 Conclusion and discussion

Functional convergence of Fourier-Wavelet Models (FWM) for stationary Gaussian random processes

is studied in Sobolev spacesWn
p [0,1] and in the space ofn-times continuously differentiable functions

Cn[0,1]. Conditions sufficient for the convergence of FWMs are formulated in terms of spectral functions

F (spectral tensors, in the case of vector random processes).Two kind of assumptions on the behaviour of

the spectral functions are made: (i) finiteness of certain spectral moments (ii) a generalized smoothness

of the functionQ = F1/2 in different wave bands. This is formulated in terms of smoothness in Besov’s

spaceBρ
1∞.

The condition (i) is related to the behaviour of the high-frequency part of the spectrum which is stan-

dard in the convergence studies. Condition (ii) is related to the rate of convergence of the tales of the

wavelet functionF ψ
m for a given spectral band. For these tales, we obtained upperestimations which are

improvable in the sense that for some functions these estimations are exact to within a constant factor.

This analysis is new and provides a constructive algorithm for choosing the cut-off parameters for all

spectral bands to ensure a uniform behaviour of the error on the whole spectral interval.

We give also estimations of the cost needed to guarantee the desired root mean square errorε in L2[0,1]

depending on the smoothness parameter of the relevant Besovspace. The typical behaviour of the cost

has the formTε . lnε
ε1/(ρmin−0.5) whereρmin is the minimal smoothness parameter.

The Fourier-Wavelet models are well suited for simulation of random processes with smooth spectral

functions as is clearly seen from our presentation. Howeverin case the spectral function is not smooth in

an isolated point, it is reasonable to use a hybrid method as follows. The spectral function is decomposed

into two parts, the first being smooth, and the second is nonsmooth, and has a compact support in the

neighbourhood of the isolated point. Then, the random process is represented respectively as a sum

of two independent processes, the first having the smooth spectral function, and the second with the

nonsmooth spectral function. The smooth part is simulated by FWM, and the second part, by a standard

deterministic spectral method which takes into account thesingularity.
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8 Appendix

We present here some technical results which we use in the main part of this paper.

Lemma A1. Let f̂ ∈ Br
1∞(IR), r > 1/2. Then f is uniformly continuous, f∈ L2(IR) and there exists a

positive constant Cr depending only on r such that for all x∈ IR

|x|r | f (x)| ≤Cr || f̂ ||br
1∞

. (8.1)

Proof. The uniform continuity off follows from the fact thatf̂ ∈ L1(IR), sinceBr
1∞(IR) ⊂ L1(IR). Then,

for a positiveε ∈ (0, r −1/2) by (3.4 ) and (3.5 ),

Br
1∞(IR) →֒ Br−1/2

2∞ (IR) →֒ Br−1/2−ε
22 (IR). (8.2)

From this we get that̂f ∈ L2(IR), hencef ∈ L2(IR). Let l = ⌊r⌋ be the integer part ofr. From

∆(l+2)
h f̂ (k) =

Z ∞

−∞
e−i2πkx(e−i2πhx−1)l+2 f (x)dx (8.3)

and f ∈ L2(IR) it follows by the inverse Fourier transform

f (x)(e−i2πhx−1)l+2 =
Z ∞

−∞
ei2πkx∆(l+2)

h f̂ (k)dk. (8.4)

Taking the absolute values and dividing this equation by|h|r we then take the supremum overh∈ IR. This

yields

|x|r | f (x)|C′
r ≤ sup

h∈IR
|h|−r ||∆(l+2)

h f̂ ||L1, (8.5)

where

C′
r = sup

t∈IR

{ |e−i2πt −1|l+2

|t|r
}

. (8.6)

Since the triple(r, l + 2,0) is admissible, we have suph∈R
|h|−r ||∆(l+2)

h f̂ ||L1 ≤ C′′
r || f̂ ||br

1∞
for someC′′

r

depending only onr, which completes the proof of Lemma A1. �

Lemma A2. Assumeφ ∈ C2(R) is chosen so thatφ, φ′ = D1φ, φ′′ = D2φ ∈ L∞(R). Then forε ∈ [0,1)

and Q∈ B1+ε
1∞ (R) the productφ ·Q∈ B1+ε

1∞ (R) and ||φQ||b1+ε
1∞

≤C||Q||B1+ε
1∞

for some constant C= C(ε,φ)

depending only onε andφ.

Proof. From the obvious equalities

φ(x+h) = φ(x)+hφ′(x)+
h2

2
φ′′(x+ α ·h), α ∈ [0,1];

φ(x+2h) = φ(x)+2hφ′(x)+
4h2

2
φ′′(x+ β ·2h), β ∈ [0,1];

it follows that

∆(2)
h (φQ)(x) = φ(x) ·∆(2)

h Q(x)+2h·φ′(x)∆hQ(x+h)

+2h2φ′′(x+ β ·2h)Q(x+2h)−h2φ′′(x+ α ·h)Q(x+h).
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Therefore

||∆(2)
h (φQ)||L1 ≤ ||φ||L∞ · ||∆

(2)
h Q||L1 +2|h| · ||φ′||L∞ · ||∆hQ||L1 +3h2||φ′′||L∞ · ||Q||L1.

Since

||∆(2)
h Q||L1 ≤ ||Q||B1+ε

1∞
|h|1+ε, ||∆hQ||L1 ≤ ||Q||Bε

1∞
· |h|ε ≤C(ε)||Q||B1+ε

1∞
· |h|ε

then for|h| ≤ 1 we have

||∆(2)
h (φQ)||L1 ≤ (||φ||L∞ +2C(ε)||φ′||L∞ +3||φ′′||L∞) · ||Q||B1+ε

1∞
|h|1+ε.

This completes the proof. �

Corollary A1. For r > 0, let ψ ∈C⌊r⌋+1 be chosen so that

max
n=0,1,...,⌊r⌋+1

||Dnψ||L∞ < ∞.

Then there exists a constant C= C(r,ψ) such that||ψF ||br
1∞
≤C||F ||Br

1∞
for each F∈ Br

1∞(R).

Since

||ψF||br
1∞

= sup
h: |h|≤1

1
|h|1+ε · ||∆

(2)
h (ψF)(l)||L1,

wherel = ⌊r⌋−1, andε = r −⌊r⌋, it is sufficient to show that

||∆(2)
h (ψF)(l)||L1 ≤C(r,ψ)||F ||Br

1∞
· |h|1+ε.

Indeed,

∆(2)
h (ψF)(l) =

l

∑
n=0

Cn
l ∆(2)

h (ψ(n)F (l−n)).

For all n (0 ≤ n ≤ l ), the functionsφ = ψ(n) andQ = F(l−n) satisfy all the conditions of Lemma A2.

Therefore, taking into account that||∆(2)
h Q||B1+ε

1∞
≤ c(r)h1+ε||Q||Br

1∞
and using the result of Lemma A2

one completes the proof of the corollary. �

Corollary A2. Let r > 0 andψ ∈C⌊r⌋+1 be a function with a compact support∆ = supp{ψ}. Then there

exists a constant C= C(r,ψ) such that||ψ f ||Br
1∞(R) ≤C|| f ||Br

1∞(∆) for each f∈ Br
1∞(∆).

Indeed, let us denote byA the extension operatorA : Br
1∞(∆) → Br

1∞(R), i.e. (A f)(x) = f (x) for x∈ ∆
and f ∈ Br

1∞(∆). Existence of a bounded linear extension operator is well known (e.g., see [29]). The

corollary then follows from

||ψ f ||Br
1∞(R) = ||ψ ·A f ||Br

1∞(R) ≤C(r,ψ)||A f ||Br
1∞(R) ≤C(r,ψ) · ||A|| · || f ||Br

1∞(∆).

Below we give a result about characterization of the Besov space norms through wavelet coefficients.

For a nonnegative integerL we denote byR L the class of(L+1)-times continuously differentiable func-

tions f : R → R satisfying the following conditions:

Z

R

xn f (x)dx= 0, for n = 0,1,2, ...,L; (8.7)
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∃γ > 0, C > 0 such that | f (x) ≤ C
(1+ |x|)2+L+γ ∀x∈ R; (8.8)

∃ε > 0, C1 > 0 such that max
1≤n≤L+1

|Dn f (x)| ≤ C
(1+ |x|)1+ε ∀x∈ R. (8.9)

It is known(e.g., see, [26], [16], [41]), that under the assumption ψ ∈ R ⌊s⌋ on a wavelet functionψ,

the norm|| f ||Bs
pq

in Besov’s spaceBs
pq(IR), 1≤ p,q≤ ∞, s> 0 can be equivalently defined through the

wavelet coefficientsβm j( f ) =
R

R
f (x)ψm j(x)dx, m, j ∈ Z, whereψm j(x) = 2m/2ψ(2mx− j). Namely, let

us introduce the norm|| · ||(ψ)
Bs

pq
by

|| f ||(ψ)
Bs

pq
= || f ||Lp +







∞

∑
m=−∞

[

∞

∑
j=−∞

(

|βm j( f )| ·2m(s+ 1
2− 1

p)
)p
]q/p







1/q

(1≤ q < ∞),

|| f ||(ψ)
Bs

p∞
= || f ||L∞ + sup

m∈Z

[

∞

∑
j=−∞

(

|βm j( f )| ·2m(s+ 1
2− 1

p)
)p
]1/p

.

Then there exist constantsC1 = C1(p,q,s,ψ) > 0, C2 = C2(p,q,s,ψ) > 0 such that

C1 · || f ||(ψ)
Bs

pq
≤ || f ||Bs

pq
≤C2 · || f ||(ψ)

Bs
pq

∀ f ∈ Bs
pq(R). (8.10)

As an immediate consequence of the last inequality we arriveat

Corollary A3. For s> 0, let ψ be an orthonormal wavelet function satisfying the condition ψ ∈ R ⌊s⌋.

Then there exists a constantC = C(p,q,s,ψ) such that for eachf ∈ Bs
pq(IR)

(

∞

∑
j=−∞

|βm j( f )|p
)1/p

≤C ·2−m(s+ 1
2−

1
p) · || f ||Bs

pq
. (8.11)
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