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Abstract

Mean square convergence and convergence in probabilitpwfi¢r-Wavelet Models
(FWM) of stationary Gaussian Random processes in the na@tBanach space of contin-
uously differentiable functions and in Sobolev space ardist. Sufficient conditions for
the convergence formulated in the frame of spectral funstiare given. It is shown that
the given rates of convergence of FWM in the mean squarerwatain the NikolskiiBesov
classes cannot be improved.

1 Introduction

Random processes and fields provide a convenient tool foaatigative description of highly inhomo-
geneous and multiscale media such as, e.g., atmospheas, aacé soil [28], [31], [19], [6].

The random fields are defined by all their finite-dimensiomstridbutions (e.g., see [14]). Fortunately, the
most often distributions used in practice are Gaussian.@dussian random fields are defined uniquely
by their expectations and covariances which greatly sfieplthe measurement design. Along with the
Gaussian random fields, one exploits often random fieldshwduie obtained by some transformations
of the Gaussian fields through either an explicit transformmplicitly, through differential or integral
equations where the Gaussian random fields are entereddmnwarefficients, or random source term,
or boundary functions. As an important example we mentienhtydraulic conductivity which is often
modelled as a lognormal random field, e.g., see [6]. The Didoayitself is obtained as a random field
which solves the Darcy equation with the lognormal hyd@abtnductivity.

Another question about the structure of the random field kivicpractice is of extremely high im-
portance sounds: is the random field homogeneous or notkdJhike first feature, the gaussinity, the
most practically interesting random fields are non-homeges. However the homogeneous Gaussian
random fields can be treated as perfect approximations iy weses, and they are indeed the most fre-
guently used models in all branches of science and techyalinge the simulation technique based on
the spectral representation is well developed.

Simulation of non-homogeneous random fields is a much mdiieui problem. The most developed

are the Cholesky (singular) decomposition (e.g., see,[B) and Karhunen-Loeve expansion tech-
nigues(e.g., see, [43]). We mention also the wavelet deositipn method which is applied to many
interesting multiscale resolution problems, e.g., seg [84].

There is very extensive literature on simulation of homagers random fields, and even for a short
discussion of recent publications in this field we would nédvrite a large review article. So we



mention here only some publications, and the reader hassibitg to search further leading by the
references inside these publications: [8], [9], [11]-[42B], [25], [27], [30]-[36], [40].

It should be mentioned that there are also a lot of publioatidevoted to a comparative analysis of the
cost of the simulation algorithms, but as we have concludel®@], the most competitive simulation
method for multiscale random fields are the randomized sdenethods, Fourier-wavelet methods, and
wavelet decomposition technique (e.qg., see, [2],[12]],[[231]).

Having an approximate model for our random fieldu(x) (say, the paramete¥ is integer), there is
only an approximate closeness between the statisticahcteistics ofuy andu(x). The convergence
uy — uasN — oo can be defined differently: (i) convergence of the relevanitefidifference distribu-
tions, (ii) convergence in a relevant functional space. ddmvergence in functional spaces is important
for practical applications, and they were considered inyr@mblications (e.g., for the spectral models
see [1], [21], [22], [42]). In [4], [5], the convergence of waet decomposition models is studied. As to
the Fourier-wavelet models (FWM), the first convergencaltesvere obtained in [23] where the conver-
gence of the correlation function of the model process FWk), By (x,1) = E(un(x+r)un(X)), to the
correlation functiorB(r) = E(u(x+r)u(x)) of the original Gaussian proces&x) has been established.
In the language of spectral functidik), we have obtained an estimation of gug, [B(r) — Bn(x,r)|
which shows that this quantity can be made arbitrarily s@mN — oo,

In this paper we study the convergence of FWiyl— uasN — o in Sobolev space#/'|a, b] and in the
space ofi-times continuously differentiable functio@$[a, b] wherenis a nonnegative integer. We study
conditions on the spectral functidh which are sufficient fOIEHfNH\%\/Zﬂ[a.b] — 0 and||En||cnjab) Po
asN — c. Herela,b] C R is an arbitrary fixed finite interval, andy(X) = u(x) — un(x). To make
the presentation clear, we first consider the case of a sal@lom processi(x) and give sufficient
conditions for the convergend| £y | \fz[a’b] — 0 and||En||cjap) P, 0asN — . Then we give a relevant
generalization of the results to vector processes and éxienstudy for some stronger metrics.

The paper is organized as follows. The definition of the FWKMGaussian random processes is given
in Section 2 . Convergence of FWM I3[0, 1] is presented in section 3, while an analysis of the quality
of the derived estimations is given in section 4. ConvergasicFWM in the spac€]0,1] is given in
section 5. In section 6 we study the convergence FWM in soroagtr metrics (in spac&¥7[0,1] and
C"[0,1]) and for vector processes. Conclusions are made in sectibinally, we present some known
results from the theory of Besov's space we used in our wotkeémAppendix.

2 Fourier-Wavelet models of Gaussian random processes

2.1 Fourier-Wavelet expansions of Gaussian random process

Let u(x) = (ug(X),...,u(x))T, x € R = (o, ) be anl-dimensional real valued Gaussian stationary
(homogeneous) random process with zero mean and a giveziatamn tensoB(r):

Bij(r) =E[u(x+r)uyx)], i,j=1,...1, (2.1)



or the corresponding spectral tengar

00

F,j(k):/e*iznk"Bij(r)dr, Bij(r):/ézm‘klz,j(k)dlg =11, 2.2)

—00

Here and throughout the pafestands for the mathematical expectation. We will assumqfh@z'jzl szj (r)dr<
c which ensures the existence of the spectral tefigain the spacd.»(R) [28]. Moreover,B;(0) =
EW(x) < o impliesB;j (0) = [, Fi (k) dk < », that isF € L1(R). HenceF € Li(R) NLy(R).

For some positive integerlet Q(k) be anl x n-matrix satisfying the condition

Qk)Q" (k) =F(k), Q(=k) =Q(k) . (2.3)

Here the star stands for the complex conjugate transposghvidiequivalent to taking two operations,
the transposé, and the complex conjugation of each entry.

Let @(x) andy(x), x € R be orthonormal scaling and wavelet functions (for the diéding see, e.g., [7],
[26], [15], [3]), respectively, anﬂ)(k), ((k) are Fourier transformations of these functions:

a0 = [ e gax ik = [ e 2™y

Assume, thatp(k), {(k) are even functions
oK) = @), B(—K) = BK). (2.4)

Then the Fourier-Wavelet expansion of the random progégsreads [11], [23]:

[o0] [ee]

U = S Fad 2™+ )E; + Z Sl @M+ ) &) (2.5)
j=—00 M=y j=—oc0
whereny is an arbitrary (but fixed) integet;, £ (j € Z, m>mp) is a family of mutually independent
standard real valued Gaussian random vectors of dimensamd# (9 (-), ¥ W) (.) arel x n-dimensional
matrix functions defined by

00

Py = [ eI dk

—00

00

iy = [ e Z2mAQRm (k) dk 26)
SinceB(0) = [F(k)dk < o, andQQ" = F, we conclude that all the entries of the matgbelong to
Lo(R). Therefore, the functions (2.6) are well defined.

Let us give a comment concerning some difference betwedranger-Wavelet and Wavelet decomposi-
tions. In both methods, the random process is representedages of deterministic functions weighted
by a random Gaussian coefficients. The crucial differend¢katunlike the Wavelet decomposition, in
the Fourier-Wavelet method these random coefficients aepiendent which might be quite convenient



in practical simulations, see for instance [20]. The Wavdecomposition is more general and can be
used also to simulate inhomogeneous random fields [44].

Further in Fourier-Wavelet expansion (2.5) we will use Mé&yeavelet functionsp(x) andy(x) which
are defined by their Fourier transforms (e.g., see [7]):

/ g2k dk (X / g2y (k) @2.7)
where
1 K <1/3,
@k) =9 codBv(@K —1)], 1/3<|k<2/3 (2.8)
0, otherwise
e ™sin[Iv(3lk — 1)),  1/3< |k <2/3
b(k) =1 e'™codfv(3ki-1)], 2/3<[|k<4/3 (2.9)
0, otherwise.

Herev(x) is a smooth function satisfying the following conditiong(x) = 0 for x < 0, v(x) = 1 for
x>1, andv(x)+Vv(1—-x) =1 for 0< x < 1. As an example of such a function, we mention a function
V(X) = Vp(x) depending on a positive parametefsee [11]):

1 p-1
Vp(X) = 4pp {[x X0]% + [x—xpl% +ZZ x—x]% }

wherex; = (1/2)[cog((p—j)/p)™) + 1], and[a], = maxa,0). The functionvy is p— 1 times continu-
ously differentiable, therefore, choosipgufficiently large, we can make the functiopsnd{ smooth
enough.

2.2 Fourier-Wavelet models of Gaussian random processes

In the numerical implementation of (2.5) we have to find aoeable choice of the cut-off parameters
my andby, by, (M= My, ...,my) in the approximations:

00 b—[2Mox|
3 M@y 5 ey, @210
j=—00 i b ZmOXJ
) 0 m Pm—[2Mx]
) @M+ [ ey S Y @™+ ) (2.11)
m:moj:—oo m=my  j=—by—|2Mx|

where|a] stands for the integer part af General idea is thdt, by, should be chosen so that supports of
the functions%({,p) and 7V belong essentially to the intervdlsb, b] and[—bm, b, respectively.
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In previous papers on Fourier-Wavelet models ([2],[11]{223]) the authors use approximations of type
(2.10)-(2.11). Unfortunately, functions staying in thght-hand sides of (2.10)-(2.11) are discontinuous
in X (with the jump discontinuity). Therefore, to ensure tha famples of the approximation process
are continuous we have to modify the model. So let us definéotlmeving modification of the Fourier-
Wavelet model (FWM) of the random fieldx). Let {p }{_; be a sequence of positive integgug, >

mo, N=1,2,... and{bn }{_1, {bmn}N_1, M=0, ..., be sequences of positive real numbers depending
on a positive integeN so that

|\|llm My = oo, |\|1im by = o, |\|1im bhpn=0, m=0,1,... . (2.12)

For fixed positive numbeh denote byna(-) a cut-off functionna : [0,00) — [0, 1] defined by

0, 0<x<A,
nax) =4 1, x> A+1, (2.13)
X—A, A<x<A+1

Define functiong(n : R — [0,1] andXmn : R — [0,1], m=0,1,..., sy assuming
XN(X) = Noy (X, XmN(X) = Moy (X)),
X)) =1=XN(),  Xmn(X) =1—Xmn(X), M=0,1,....u.

Under FWM of the random proces$x) we understand the following sequence of random functions

UNG) =T XN ) Fy (27X ])E

JEZL
N
+Y S XK@+ ) (@ DEm, N=12,... (2.14)
m=my  jeZ

Our aim is to study the convergenag — u asN — o in functional space®\'[a, b] andC"[a, b] where
nis a nonnegative integer. Here we suggest sufficient camditon the spectral tensbrwhich ensure
EHZNH\%VZ”[a,b] — 0 and||En||cnjap) P, 0asN — . Here [a,b] C R is an arbitrary fixed finite interval,
and £y(X) = u(x) —un(X). Further, not loosing in generality, we can tdkeb] = [0,1], andmy = 0.
Moreover, for the simplicity of presentation we first coreidhe case of a scalar random process
(i.e.,1 = 1) and give sufficient conditions for the convergel’fn‘qez|\|||l_2 ab] — 0 and||En||cfa b P oas

N — o0, In section 6 we give relevant generalizations of resultséator processes and stronger metrics.

3 Convergence of FWM inL, metric

Let u(x), x € R be a real-valued scalar stationary zero mean Gaussianmapdiress with a spectral
functionF (k), and@(x), W(x) be orthonormal Meyer’s scaling and wavelet functions. tésr that their
Fourier transformsp(k), {)(k) are even functions. In this case FWM (i) is (see (2.14), recall that
mp = 0):

= Y X+ D) R P O )E
JEZ
. 70
+ 05 Y Xmn@™X A+ ) Fm (27X ) Emj (3.1)
m=0 jez



whereéj, Emj, m=0,1,...; j € Zis a set of mutually independent standard Gaussian randoabies.

Let us introduce some notations.

We denoteA = [—4/3,4/3], An=[-4-2"/3,-2"/3|U[2"/3,4-2"/3], m=0,1,2,..., andA’ =
Um_ofm. For a functionf : R — R andD C R we denote byf|p the restriction of the functiori in D.
For a measurablB C R we write|D| = [ dx

In this paper we use some results from the theory of NikoBksov spaces (e.g., see [29], [39]). For
r >0, atriple(r, j,l) is called admissible if e N, | e Npandj >r —1 > 0. HereNo = {0,1,2,...} and
N ={1,2,...}. Letus denote bﬁﬁ]’)g the j-th difference ofg:

8rg(-) = g(-+h) —g(),.... AV g(-) = Asal) V().

For1<p,g<o,r >0, Nikolski-Besov spaceB?)q(R) is defined as a set of all functiorfse L such
that the norm
[ f{lepg = [ FlIL, + [ b

1
1 ()¢ q E
18, 9L, | dh
f%</< h,h,r_l p W 1<g<w, (3.2)
-1

||f||brpm:03|:El|h|lr||A,(1])f(|)||Lp (3.3)
<|h|<

where

makes sense and is finite for some admissible tfiplgl ). Heref(!) (x) = D' f(x) is thel-th derivative of
the functionf. The ambiguity in the choice of tripl, j,|) is not essential: different admissible triples
correspond to equivalent norms. For a measurable stibseR the spaceBj,(D) is defined as above
but changing| - ||, with |[ - |[,(p;,), whereDp = {x € D : x+Ah € Dforall A € [0,1]}. For a function

f R — R such thatf[p € Bjy(D) we will simply write ||f|[g; o) instead of more exact but complex
notation||(f|o)||ey,o)-

We will exploit the following imbeddings (e.g., see [29]93:

Bpg(R) — Bpq(R), p=r (1— % : [% - piD , 1<p<p<o, (3.4)
1
B (R) — Bpg(R) = B, (R), 1<g<q <o, £>0, (3.5)

whereX — Y means thaK C Y for seminormed spaceéandY, and there exists a constant- 0 such
that the inequality|x||y < c||x||x is fulfilled.

3.1 Convergence of FWM in the mean square

We shall assume
(HO) for somes >0

1 /m F(K)(1+ [K[2)5dk < co. (3.6)
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Theorem 1. Assume, that the spectral functioriky satisfies the condition (HO). Lépm}hY , be a finite
sequence of positive numbers such thtpr, > 1/2. Suppose that 2 € B (A) and Qa,, € B™(Am)
for 1 < m< uy, and assume that the Meyer wavelet functignsnd { belong to the class G for
v=max|p], |s|}, wherep= max pm. Then

0<m<pn

Ci(s ¥ Ca(po,
B () < Wy gpo LATST
< Cs(Pm W . .
+ Z(anf?l) . (2 mHQHfl(Am)Jrzzm(pm 1/2)HQH§§;‘;(Am)>’ 3.7)
m=0 mN

where constants;Ci = 1,2, 3 depend only on the shown arguments.

Proof. From the definition (3.1 ) we have:
1 S @ 3
() =)+ )+ 3 vin’ (0 +v(x), (3.8)
m=0

where

v (x) = ZXN(X—I— DE To( (x+1)&j,

JEZL

vid (x) = > Xmn(2™X+ ) - F Fol 2™+ }) Emj,
JEZ

W= Y Y ) @%+ )
m=pn+1 j=—o

The random variable§;, &m; are mutually independent, hence the terms in the right-isadelof (3.8 )
are also independent, therefore

E(UX) - ()2 = EVY X2+ S EMD ()2 +EMI)2 39)

m=0

Let us estimate the terms in the right-hand side. First, we fiar the last term

EVI)?=Y Y |mm’@%+))2 (3.10)
m=pN+1  j=—o
Further, from the definition (2.6 ) of the function, and since the functionr®(k) andy(k) are even we
have

00

7y = [ e B2 (kydk— / eZ2M2Q(2"K) (k) dk

—00

Therefore,

( )(me+ /e|2T[k (2™x+]) 2m/2Q(2mk)lﬁ(k)dk:

/ &2 () G (K) dk = / G(X+Y)Wmj(y)dy. (3.11)



where

G = [ €™ Qudk

Wmj(x) = 272P(2"x— j),  Bmj(k) =27 ™2 ZIZT @27 Mk).

Consequently for fixed, the quantitiesrrﬁq’)(ZmXJr i) (m, j € Z) are Fourier coefficients in the expansion
of G(x+ -) with respect to the orthonormal systejm; (m, j € Z).

Notice that the condition (3.6 ) can be formulated equivilyehat the functionG belongs to the Sobolev
spaceHS(R). This is becaus& € HS(R) means that the functio®(k)(1+ [k|?)%2 is from L»(R)) and
|Gl |ns = Il/z(more details in [39]). Further we use the fact th§(R) coincides with the Besov space
B3,(R), and the norms in these spaces are equivalent (see [399rs2@.9). Sinc& € B3,, we conclude
by virtue of Corollary A3 that

> I @™+ )P < B2 |IG(x+ )l (3.12)

j=—00

for someBs = Bs()) depending only os andy. From this we get by|G(x+ )| ]E'ZS = |G| ]E'ZS = |s that

0 ) BZ
EVIW2 =Y Y 5@+ )P < Jmemss (3.13)
m=pPn+1 j=—o

Now we turn to the estimation of the first two terms in the rididnd side of (3.9). It is obvious, due to
independency of random variablgs j € Z that

EVP02= Y e+ DI 17 DP< Y 5P xR (314)
€7 JEZ: %+ ]|>bn

We first estimate each term of this sum. The funct'@q")(y) has the Fourier transforn (k) =
Q(—k)@(—k) = Q(k)p(—k) (see (2.6 )). Due to the conditiomsc C’+* andQ|s € BY%(A) it follows
from Corollary A2 that | # HBpo < C(po, )HQHBpo . Then from Lemma Al we get

C p 7(p - C p 7(p
769001 < 20017 g gy < “E0E Qg (3.15)
Note that from (3.14 ) and (3.15 ) we get
£V (x))2 < S0 11Ql1geo (3.16)

bZPO

Let us turn to estimation of the terrﬁf(v,(ﬁ) (x))2, m=0,...,n. Denote byQn, the functionQp, : Ag — R
defined am(k) = Q(2Mk). Then by the same arguments as we used in the derivation iofatishn
(3.16), we obtain

E(viy (x)2 < S 17 W 2™+ )2 < (pmll) 2" 1 QumlZm
. . bP
JE2: 276 ][> b mey
C(pm. ) 2 2
<t 2" (21l e + Q) (3.17)
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Putl = [pm] — 1. Then

1 ) = sp‘h‘p / AR (9] dic (3.1

Define a functiorgy, : Am — R by gn(k) = Aff)Q(')(k). ThenAﬁl 1O (K) = 2™ gomy (27K). Therefore,

Qulliomn . = sU /"2m' on(27K) | dK
| megm(Ao) |h\<ri‘h‘pm |Gomn (27K
02h
— sup 2 [ 2gem()/ k. (3.19)
<1 [h[Pm
Am,2m+1h
By the definition we have
[ lan0ldk= [ 187QV0] < [IQllymo,y P, HER, (3.20)
Dmoh Dmoh
Therefore it follows from (3.19) and (3.20) that
[1Qumllem gy < 2™ V11Q - (3.21)

Now taking into account thatQm||.,ap) < 2™ ™ ||Q||L,(a,) @nd using the estimates (3.17) and (3.21) we
obtain

2 2C p ,lIJ — —
E0 00 < 20l (2 MQIR 0+ 2 VIRl ) (3.22)
mN

form=0,1,...,un. This completes the proof of Theorem 1. [

We shall assume
(H1) there exist positive constants, €, po > 1/2, p1 > 1/2 and positive integemy such that
() Qla€B(L), Qlao € B (A0), -, Qo 1 € B (A1)
(i) Qlay € Blu(Bm), m>my;
(i) [Qllggr () < Co2 mp1-1/2+8) M > my. (3.23)

Proposition 1. Assume

lim py =0, lim by =0, lim min {me} = o0, (3.24)

N—o0 N—o0 N—o00 0<m<

Then under the assumptions (H0)-(H1),

SUpEZ3(x) =0 as N— . (3.25)
x€[0,1]

Proof. Indeed, as a simple consequence of Theorem 1 we have

Gy |, Capo,9@)
4S(UN+1) IS+ 2p0 1 ||Q||BPO

sup E£3(x) <
x€[0,1]

-1
C3 pOa _
+ Z 2po ( "IQIIE ay + 22 HQHbPo )

o C3(p17 lIJ)
T Z bZPl

m=Nyp

(2RI, o + 2™ 2N QI ) (3.26)

9



To show (3.25), it is sufficient to check that the last sum mith.s of this inequality converges to zero
asN — oo, For this sake, for gived > 0, let us choos®&ly = Np(d) so that

min <®d N>N
0<m<py b201 1= 0-

Denote bySy the lust sum in r.h.s. of (3.26). Then due to the conditio@3Bwe get folN > Ny

Sv < Ca(p1. W) (zzwqm%+%zﬁ%ﬂ.

From
QI oy < 18- | Flkak

and due to the assumption (HO) we get
1QIIE, (4 < 1Bm|(3-27™)%-15=2-2M(3-27™)%. I,

This implies thatSy < C- & for N > Np(6) with a constant C which is not dependent on N. Since the
parameted can be chosen arbitrarily smafly — 0 asN — co. The proof of the proposition is complete.
O

A straightforward consequence of Theorem 1 is the followasgertion on the rate of the mean square
convergence of FWM (3.1).

Corollary 1. Assume that the hypothesis (H0)-(H1) are valid. Chooseamthdel (3.1)

2p0—1
:\‘( pOZS )IOQZNJ—i—l? bN:N7 me:N,OSménb—l,

2pp—1

by =Nz, mg <m< py. (3.27)

Assume, thap, ¢ € C’*1 wherev = max{|s|, [po], |p1]}. Then for each positive integer N the follow-
ing estimation is valid:

sup Ez3(x) <C-N~(2Po~1) (3.28)
x€[0,1]

where C is a constant not depending on N.

From the results given above it follows that the conditior28} is crucial in the analysis of the mean
square convergence of FWM.

3.2 Sufficient conditions for validity of (3.23)

Proposition 2. For a nonnegative kand a nonnegative integer |, assume that @ll'(ko,oo), and

Y
8P Q0 (k)| < Cl vhe[-1,1], and Vk>ko (3.29)

S Kl+1/2+y+e’
for some positive numbers €andy € (0,2). Then the following estimate is true

[1Qlog2 () < C0-2” MP1=1/2+8) " forall m > log,(3ko), (3.30)

10



wherep; =1 +yand @ = Co(p1,€).
Proof. Since the triplgl +v,2,1) is admissible,

1 @A
Qe 5y < C(P1) |§\£W . A7 QY (k)| dk

Therefore, for 2 > 3ky we have

1 ClhlY —m(py—
HQHbﬁi(Am) <C(p1) ﬁﬁ?W/A %dké Co(py,€) - 2~ MPr-1/2+8)

Corollary 2. Assume that for some nonnegatiyeakd positive integer n, @ W;'(ko, ), and

C
QM (k)| < POV vk > ko (3.31)

for some positive numbers € Then the following estimate is valid
[1Qllby (am) < Co- 2™ Y20 forall m>log,(3(ko+2)), (3.32)
for some positive = cp(n, €).
Indeed,
87QM Y (k)| < [80Q" (k-+h)[ +8,Q" Y (k+ h)| < - |Q™ (k+ Bh)| +h- |Q™ (k+ahy)]

for somea € [0,1] and € [1,2]. Hence, by virtue of (3.31)

Cih
kn+1/2+e’

yAﬁf)Q(”_l)(k)\ < forall k>ko+2.

Therefore fol = n—1 andy =1 all the conditions of Proposition 2 are fulfilled. [

Remark. Conditions (3.29) and (3.31) can be replaced with the fatgwveaker conditions:

/k:’ KHv-1/2+e |Ar(12)‘(§‘(\'/)(k)| dk< o, (3.33)
and
/ko " -1/2+¢1 Q) (1)) dk < oo, (3.3)
respectively.

3.3 Cost estimations for FWM

Now let us discuss the efficiency of FWM. Let us denoteTQythe number of arithmetic operations for
calculation of the value of FWM (3.1) in one poixtE R. It is obvious thafly ~ by + ZnuN\:o bmn. Here
Tn ~ any means that there exist constants G, < C, not depending oiN, such thaCiay < Ty <Cy-an.
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Therefore, if we choose the parameters of the FWM in accaelarth (3.27), then under the conditions
of Corollary 1 it follows that

Tn~N if  p1> po; (3.35)
Tn ~NInN if  p1=po; (3.36)
Ty ~ N(2Po—D/Cr=D) 1y N if p1<po. (3.37)

Let us denote 1/2
1 1/2
EN = (/0 E(u(x) — uN(x))de> = (EHENHEZ[O.H) ’

the root mean square (r.m.s.) discrepancy of FWM (3.1) inntiedric of L,[0,1]. Then under the
conditions of Corollary 1 the following estimation holds:

ey <C-N"P-12  N=12 . (3.38)

whereC is some positive constant not dependinghainHence under the conditions of Corollary 1 the
number of operationdy, to achieve a given value of the r.m.s. ergQr= ¢, satisfies the estimation

Te < g VPo-1/2) if p1> po; (3.39)
T, <g VP12 ng if p1=po; (3.40)
T, <eg VP12 ng if p1<po. (3.41)

HereT; < a(g) means that there exists a const@ntot depending og, such thafly <C-a(g).

4 Analysis of the estimations (3.16)-(3.17)

In this section we show that the exponenty 2 1 and P, — 1 appearing in the estimations (3.16
)-(3.17) cannot be improved in NikolskBesov spaceB‘l’fo and B‘l’gg, respectively. This will be done by
construction of a functio® which makes it possible to writg(v( (x))2 ~ by~ andE (V2 (x))2 ~

—(2pm—1
Sl

Let us consider the following example.
Example 1.Letky > 0 andp > 0. Define

0, 0<k<ko,
(k_kO)pila k> kO
Qo(k) = Qo(—K) if k<.

Letq: R — [0,) be an arbitrary(l + 1) -times differentiable even function with compact suppattss
fying the conditionq(ky) # 0 . Within this section we denote= |p|. DefineQ(k) = q(k)Qo(k). By the
definition it follows thatQ € BY,..

Qo(k) = { (4.1)

Now let us consider asymptotic behavior of functi(y’té‘p> (y), fnﬂw)(y) asy — co. We will separately
consider two cases: () is noninteger and (iip is integer.

12



4.1 Asymptotics ofgfo(q’) and ﬂﬁ‘“) for a noninteger p

Let us first assume thég < 2/3, fpe C', and consider the functiOﬂO(‘p) (y). If we denoteg = quthen

0o

%(cp)(y):/e—iany.Q(k)@k)dk:/e*iz”"y'Qo(k)g(k)dk

—00

= gy ] €™ (@00 (k= s [ €700 kogth + 1 (]

whereg (k) = z'j;%,cleéj)(k)g("j)(k). It is obvious thatg is a function fromB1,,. Therefore, due to
Lemma Al the integral

R(y) =

|
8 —3
(D\
=
3
<
A
—
=
SN—
o
~

satisfies the following estimation

IR(y)| < yeR.

1+|yI’

Now let us consider the integral

Foly) = [ €™ Q)) (kg dk

2-fcos(2nky)-Q8)(k) -g(k) dk, if liseven
0

2i. [sin(2nky) - QY (k) -g(k)dk, i s odd
0

(4.2)

Let us assume thatis even. Then,

Fo(y) = 2C; cog21koy) Fc(211y) — 2Cy Sin(21koy) Fs(211y),

whereC; =Ci(p)=(l—-0a)-(I-1-a)-...-(1—0a),a=1—p+1,and

Fe(X) = / cogkn) - f(K)dk,  Fe(x) = / sin(kx) - f (k) dk 4.3)
0

0

are the respective Fourier cosine and sine transformatibtie functionf (k) = g(k+ko)k™®. Now we
will use the following assertion:

Theorem ([38], Theorem 126)Let f(k) =k %¢(k), whereO < a < 1, and¢ (k) is of bounded variation
in (0,). Let i and F are Fourier sine and cosine transformations of f. Then

o\ 1/2
Fc(x):¢(+0)-<ﬁ> Ml-a)sin(m/2)-x*1. (1+0(1)) as x—

and N | )
Fc(x):cl)(oo)-(—) M(1—a)sin(ra/2)-x* 1-(14—0(1)) as x—0.
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Fs(X) satisfies similar conditions within(twr/2) replaced bycog i /2).
For evenl it follows from this theorem that
sin(mo /2 — 21koy)

Fo(y) = C2(p)9(ko) - yia (1+0(1)), as y— . (4.4)
For oddl it can be obtained a similar asymptotic:
Foly) = —i -Ca(p)g(ko) - CST/2E2MY) (1 L 51)) as y . (4.5)

ylf a

Thus we have obtained the following asymptotical resultﬂfé)?):

A(ko) - @(ko)
yp

whered(x) = sin(to /2 — 21x) if | = [p] is even, andP(x) = cog T /2+ 21x) if | is odd.

749(y) = Ca(p) - D(koy) - -(14+0(1)), as y—o (4.6)

Recall that we have assumed tkgt [0,2/3]. If ko > 2/3 thenfo(q’) = 0. By the same arguments it can
be shown that fom such that 2 < 3k, < 2™2 the following asymptotic is valid

9(2""ko) - P(2"ko)

T’ (y) = Ca(p) - 2" M2 D(2 Mkoy) - v (1+0(2)) )
as y— oo, providedq(2 "kp) # 0.
4.2 Asymptotics offo( ? and ﬂﬁ Y for an integer p
Letl =p=1. Then
7y = 2 / cog 21ky)g( / g(y) - d(sin(2rky))
:—M-(lJrO(l/]y\)), as y— oo, (4.8)
y
If | > 2then
©) 1 iomky 1 ~(-1)
73 0) = g | €7 198 (gt + & ()] dk
where® € B?,. Therefore
(@ ) — 1 . — 00
73" ) = grgyer - (o) +O(1/YP),  as y

where

e 2. Qf Y (K)g(k) dk

d
=
‘ I
8\8

2. [cog2mky)-g(k)dk,  if lisodd
= ko, (4.9)
—2i- [sin(2mky) - g(k) dk, if liseven
ko

14



Using the integration by part and using Lemma Al we can eabibyv that

To((p)(Y):C(P)‘q’(ko)’)'w'ﬂ*'o(l))a as y o (4.10)

where®(x) = cog2rx) if | = p is even, andpb(x) = sin(2rnx) if | is odd.

By the same arguments can be established that (4.7) is ndle icase of integey with ®(x) = coq21x)
if | = pis even, andpP(x) = sin(2rx) if | is odd.

4.3 Lower bounds for the estimations (3.16)-(3.17)

Now let us turn to the estimations (3.16)-(3.17). Assume gphia not integer, andl = [p| is even. Let
ko = 1/2. Then, by virtue of (4.6) we get for some positive inteljgiand for eaciN > No

EVY(x)? > |70 (x+ )2

JEZ: |x-l%2bN+l

>C(p)- S sin?(Tm /2 — Tt (X4 j))

S
jeZ: A TT=bn+1 X+ ]

> Cy(p) sir2(T /z—nx)le_l, (4.11)
N

whereC;(p) > 0. By the same way similar estimation can be establishedddt and nonintegep. For
integerp one can use (4.10) and establish analogous result.

If, for nonnegativemy, one putky = 2™~ then by (4.7)

(2) 2 . 2| —1/2 1
B () > Clp)sim(ro/2-m2™2me s 5 ety
JEZ:|2M0x4- || >bmgn+1
-~ Cy(p)sir?(rm /2_-,-[2"70)()22"70@*1/2)%7 N > No (4.12)
moN

for nonintegemp with evenl = |p|. For other values gb (|p] is odd orp is integer) similar estimations
can be obtained by analogous way.

Therefore in NikolskiBesov classepl’o";, m=0,1,...,lUn, exponents @,—1, m=0,1,...,uy inr.h.s. of

estimation (3.7) are best possible values. In this conmectiould be pointed out that for Sobolev spaces
Wlp’“, this is not the case. More precisely, if, for positive intege, ...,l,,, we replace the conditions
Qla € B (&) andQ|a, € BY™(A) in Theorem 1 with the conditior®|a € Wy°(A) andQ|a,, € W™ (Am)
then the following estimation holds true

Ci(s ) Ca(lo, ®)

2 1 2

E(U(X) —UN (X)) < 4S(UN+1) : lS bﬁloil HQH\Nl'O(A)
o C3(I 7"“) — _

£y Sl (2 QIR E QU ) - @13
m=0 mN

But exponents I2,— 1, m=0,1,...,N in this estimation might be not best possible. To illustrtis
idea let us consider the following
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Example 2 Forp € (1,2) let us consider the functio@(k) constructed as above in Example 1 with
ko = 1/2 andg € C%(R) such, thasupg(d) C (—3, ). Then a maximum possible value of an intefger
in the conditionQ|a € Wl'O(A) is lo = 1. Therefore taking into account th@fa, =0, m= 1,2, ... we get
by (4.13

E(u(x) —un(x))2 <C- (% + %)

while the estimation (3.7) ensures more exact inequalityuis

1 1
E(u(x) —un(x))? <C- (W + W) .

5 Convergence of FWM inC metric

Now let us turn to the problem of convergence of FWM (3.1) inkability, in the metric ofC[0, 1].
Recall £y (X) = u(x) — uy(X). Denote byD = [0, 1] a unit interval, andC(D) is the space of continuous
scalar functions on D with the uniform norifrf ||cp) = maxcp | f (). Let us mention that the functional
convergencely P uin C(D) asN — « means||En||c(p) P.0asN — o, that is, for each nonnegative
g andd there existNo = No(&, d) such thatr {||En||cp) > €} < 8 for eachN > No. Thus to study the
convergence in probabilityy P uin C(D) asN — o« we need to estimate the probability{ || £n |c(p) >
e}
Let&(x), x € D =[0,1] be a Gaussian random process with zero mean. Let

de(h) = sup (EE()—&(y)?)"% helo,1].

x,yeD
Ix=yl<h

The following assertion is a 1-dimensional variant of thel weown Fernique’s inequality.
Theorem ([10]). If f¢5(e*X2)dx< o then almost all samples of the random procg&sg are continuous.
1

Moreover, for each t /5 the following estimation is valid
P{SuplE(x)| > ot} <10 [ e*/2dx (5.1)
xeD t

where

q=SUpE[E(X)[D)Y2 + 2+ V2) ./¢E(2*Xz)dx
1

xeD

Taking into account the following inequality

0 et?/2 g t?2
e ¥ /2dx< <= _ . t>5
e T

and the estimation (5.1), one can derive the following estiom:

2{suplE()| > qt} <2v5-e/? 1> 5 (5.2)
xeD
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Thus, in order to use this estimation fix) = £n(x) we have to analyze the function

¢z () = sup (Elzn(x) —Zn(y)P)Y% he[01].

x,yeD
Ix=yl<h

Let us turn to estimation of this function.
For a fixed positive integed we denote

Qa5 1

& R
b2po 1 N 4(n+1)s’

8N—

2 1 _ _
e =z (2 IQUE ) + 2™ 2 IRl ) M=0.1
mN

Theorem 2. Assume that all the conditions of Theorem 1 are satisfied.n Tétweeacha € (0,1) and
h € [0, 1] the following inequality is valid

El£n(x+h) — £n(X)|2 < C(5)- (Is- [N €5, N=1,2,..., (5.3)

where s\ 1 =min{s,1}, and

N
en=Ci1(Po. @) & + 3 ColPm W) -y +Ca(s ) &)
m=0

and C G, i = 1,2,3 are some constants depending on the shown arguments
Proof. From independency of random variablgsémj, j € Z, m> 0 it follows that (see (3.9))

E[ZN(X+ h) — £n(X)]? = EVY (x+ h) = v (x)]? +

ZE ) (x+h) —vig (%)]2 + EN® (x+ h) — v (x)] 2 (5.4)

Let us first estimate the first term in r.h.s. of the last edqyali
Lemma 1. For eacha € (0, 1) the following estimation holds

EVY (x4h) ~ VI X2 < (C(9)ls[h) - Calpo, )& )* . (5.5)
Proof. Indeed, for eaclr € (0,1) one has
ENVY (x+h) =V (2 = 5 [Xn(x+h+ ) - F @ (x4 h+ ) = xn(x+ ) - 7 @D+ )2

JEZ

1-a
=D laj—- J|2§<Z|aj b1|> <Z(|a1|+|b1|)> : (5.6)

JEZ JEZ €L

Here we denote

aj =XnOXHh+ ) 7Pt ht ), by =xn+ ) - 70 ? (x+ ),
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and in the second line of (5.6) we uselHer’s inequality:

Y laj-bi? <y {|aj —bjlza-(Iaj|+|bj|)2'(1*°)}

JEL JEZL
1/p 1/q
< (z a —bjrz‘*p) - (zuaj\ﬂbj\)z‘(mq) )
I€Z jez

with parameterp=1/a,q=1/(1—a). Let us estimate each factor in the right-hand side of (5i65t
note that

&) — bj| = [Xn(X+h+ J) - 7P (x4 h+ ) — X0 ) - 7@ (x+ )|
< XnHh+ ) - 7 P Hh 4 ) = Xnx+ e+ §) - 7@+ )|
XN ) - 7 P ) =X+ 1) R P o )

< 7@ (x+ht ) — £ (x+ )]+ 17D O+ )] - XN b ) = XX+ ) (5.8)
Therefore,
3 la=bi* <25 15 Dx+h+ ) — 7 (x+ )2
JEZ JEZ
2.3 1% (D)2 IO D+ ) = X+ )2, (5.9)
6

Note that the sequena{s;ro(“’)(wr h+j) — 74 (x+ j)}_ ., and{fo(‘p) (x+ j)}_ , are the Fourier co-
JE je
efficients ofAnG(x+ -) andG(x+ -), respectively, in the orthonormal systeiq(- + j)} ;. Therefore

ZZ\% X+ DIZ < NIGx+)IE, = [IGO)IIE, < s, (5.10)
IS
and

3 [#0? (x+h+ ) — 76 (x+ )] < [|anG(x+ )|, = [18eG ()2, (5.11)

JEL
Note thatG € BS, — BS, — B, for each 0< y < s. Therefore, taking = min{1/2,s/2} we have
188G (I, < Ca(s)- Y- [[AG()[lgy, < Ca(s)-[h[Y-[|AnG()lles,
< Ca(s) - |hY-157 (5.12)

for eachh € [—1, 1]. From (5.9)-(5.12), taking into account thgi (X+h+ j) —xn(X+ j)| < |h|, we
obtain

> laj—bjl* <C(s)ls- [, (5.13)
I/

wheresA 1= min{1, s}.

Now, let us estimate the second factor in r.h.s. of (5.6)nFro

S (ajl+lbjh? <2 5 Jagf? + 2 5 |bj? = 2-E(v (x+))? + 2-E(VY (x))?
JEZL JEZL JEZL

18



and (3.16) we obtain
4-C(po,
Y (laj] +[bj])? < 7220 1 9 IIQIIBpo (5.14)
ez by

Thus by virtue of (5.6) and (5.13)-(5.14) the estimatior)(follows. The proof of Lemma 1 is complete.
O

Lemma 2. For eacha € (0,1) the following estimation is valid

oy
Y EfMia (x+h) — WP (]2 < (C(s)-Is- [h[1)°
m=0
1-a
(Z Ca(Pm W) - Eﬁ&,) . N=1,2... (5.15)
Proof. For eacha € (0,1), by the same arguments as we used in proof of Lemma 1, we atrive
[of 1-a
E[via (x-+h) —via) (x)]2 < (z [am; — bmJF) (z (Jamj] + \bmj\)2> , (5.16)
1EZ JEZ

where
amj = XeN(2™ (X+h) + 1) - Fh? (2™ X+ )+ ), Brnj = X (2™ X+ ) - F? (27 X+ ).

From (5.16) it follows that

1-a
ZE J(x+h) - (Z Y lamj— bm1|> (ZZ [8mi[ + [bmj]) > :
m=0jeZ m=0j€Z
Now obviously
ami — bmjl < [Fa? (2 (x+h) + ) — 7 (27 x+ )|
(2™ x4 )] X2 (X)) = X2 X+ ). (5.17)

Since{fn(qq’)(zm- (x+h)+j)— 7,#“)(2'“ X+ j)}jeZ ,m=0,..., 4y are Fourier coefficients in the expan-

sion of AnG(x+ -) with respect to the orthonormal systgim; }
m=0,...,Un, then (see (5.12-(5.13)

jezZ>

HN
S 7 27+ h) + ) — Fa’) (27%+ )2 < (180G L, < C(9) |l (5.18)
m=0jeZ
When we estimate the second term in r.h.s. of (5.17) we censwlo cases: (i) 2|h| < 1, and (ii)
2Mh| > 1. In the first case, taking into account thatn(2™- (X+h) + j) — Xmn(2™- x4+ j)|? < (2Mh|)?
(see (5.12) and (3.12) we have

Hn
S 17 (@ x4 1)+ [Xin (2™ (D) + ) = Xen(2™ X+ )P
m=0jeZ
< (2Mhl)? z 3 17 (@™ x4 )P < (27 z S 17 (@27 x+ )2

m=0 jeZ m=0jeZ

<BZ.ls-h,if 2Mh <1
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In the case (ii) (i.e. 2|h| > 1) it is obvious, that2™h|)® > 1 and|Xmn(2™- (X+h) + )
j)|? < 1. Therefore, in this case

S 17 (@7 x4 P [Xeon(2™ (X D) + ) = Xenn(2™ X+ )P

m=0jeZ
N

<Y Y I @M x4 ) < (M) z 3 17 @™ x+ )2
m=0jeZ m=0jeZ

<Bg-ls-|n%, if 2Mh > 1.

Thus in general case we have
S lFm (@ x+ DR X (@™ D)+ §) = Xmn(2™ X+ )2

m=0 j€Z

<BZ2.ls- b, if |h <1

Using (5.18), (5.20) and taking into account (5.17) we abtai
HN
S Y laj—bj><C(9)-Is-[N*, if |h <1

m=0jeZ
To estimate the second factor on r.h.s. of inequality (5ak6first notice that

S (laj]+[bj])? < 2 E(vin (x+h))? + 2 E(vin ()2,
JEZL

Then using the inequality (3.22) we get

C p 7l'|"l — C p 7lIJ —
5 (ajl+ bi)? < SR 2 Qi g, + SR 200 B QU
JEZL mN mN

form=0,1,..., .
From (5.16), (5.21) and (5.22) we get (5.15). The proof of ® is complete. O

It is easy to see that

00

EVI(x+h) -v¥x)2="5 5 |amj—bmjl,
M=pPn+1jEZ

where
amj = F” (2™ (X D)+ 1), by = (27 X+ ).
Therefore using

Z |amj — bmj|> < HAhGHL27
i€z

for each integem, and

[ee]

Y (|amil + [bmj)? < 2- [E(V® (x4 h))? + E(V¥ (x))?]
m=pN+1j€Z

and taking into account (3.13) and (5.12) we get
1—
E(V (x-+h) v ()2 < (O(9) 1s- ™)™ (Cals ) &)
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Finally, using (5.4), (5.9), (5.15 and the last inequality obtain
E|Zn(X+h) — £x(X)|?

< (C(9) Is- [P [<C ) Zsz o)+ <c3-e<N3>>1‘a]
1-a

N
<3 (C(9) Is- [N [Croey’ + Y Com i +CaE)) (5.24)
m=0

Theorem 2 is proven. [

Now we are in a position to formulate an assertion on convexg®f FWM in probability:
Theorem 3. Assume that all the conditions of Corollary 1 are fulfilledheh for eacha € (0,1) and

t>+5

?{ sup |En(X)| > C-en(0) -t} < 2v/5.e /2, (5.25)
x€[0,]

where C is some positive constant not depending and N, and

1 (2p0-1)-(1-0)
en(0) = —-N‘M

Va

Proof. From the estimation (5.3), taking into account (3.23) and{3we get

sup E(En(X) — gN(y))2 < Cl|h|0((sAl)Nf(Zpofl)(lfd)
X,ye [0*1] s |X7Y|§h

for eacha € (0,1) and |h| < 1, whereC; is some positive constant not dependingoom andN. Now
let&(x) = £n(X). Then

de(h) = sup EY2(JE(x) —&(y)[?) < Cp- |n[*MD/2N~ (2P0~ D-(1-a)/2
X-yi<h

Therefore, by (3.28)

q=SupEY2[E(x)[>+ (2+V2) - /(I)E “Ydx < Cs- N

xeD

4Gy N / 2 ¥a(s\D/2) gy < Cey(ar).
1
Now (5.25) is a direct consequence of estimation (5.2). Témaas proved. O
Corollary 3. Under the conditions of Theorem 3y t U in the metric of @,1] as N— oo.

Indeed, by (5.25) for each> 0 andd > 0 it can be found a positive integilp such that

?{ sup |En(X)| > €} <39, N > No.
xe€[0,1]
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6 Generalization of results to vector processes and someastrger
metrics

6.1 Convergence irL, metric

Recall the well known relation between different momentzesb mean Gaussian random variables. Let
& be a zero mean real-valued Gaussian random variable. Thengee, [18])

2p/2

Therefore, under the conditions of Theorem 1, using thenesidn (3.7) forE£5(x) = E(u(x) — un(X))?
it is easy to obtain an estimation for the convergence E@tBNHEp[O 1= JoE(En(X))Pdxin the metric
of Lp[0,1], p> 1.

EIE[P=cp(EE?)P2, p>1, ¢ (6.1)

6.2 Convergence in the metric of Sobolev spa(wl{,‘
For a positive integen andp > 1 letW[0, 1] be a Sobolev space with the norm

[ hwro. = I fllLp0,2 + 1] FL 0.0

In the study of convergencEHzNH\'j’VS[Ql] — 0, due to the relation (6.1), we can restrict ourselves to
the casep = 2. Therefore let us consider the convergence of FWM (3.1)dhofev spacéV)’. In
order to analyze the convergence of FWlg,(x) to u(x) asN — o in W3[0, 1] it is sufficient to study:

(i) convergencaiy — uin L,[0,1], and (ii) convergence’ — u™ in L2[0,1]. The first question was
already studied in section 3. Therefore we will concentoaitéhe second questiouﬂ') —uinLy[0,1].
Recall that for a functiorf : R — R we denote byf (" the n-th derivativeD" f (if it exists).

First of all note that a necessary and sufficient conditiat #amples of a random procegs) belong
to W;'[0, 1] (with probability 1) is (e.qg., see, [17])

/ IK|2F (k) dk < oo . 6.2)
If this condition is satisfied, thed"u(x) = u™ have the spectral functid®"F (k). In order to ensure that

Uy is n-times differentiable we have to choose the cut-off funthj@ n-times differentiable. Therefore
we will assume, thaya € C", and

=7= (6.3)
X > .

Thus, using results of section 3 one can formulate sufficentitions foruf\l”) —uM asN — o in
L,[0,1]. Denote byQ, the functionQn(k) = |k|"Q(k) = |k|"F/2(k). Then the following assertion is
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valid:

Theorem 1a.Assume that the spectral functiorikg satisfies the condition
Inss dif/ F(K) (L4 [K|2)™3dk < o (6.4)

for some s> 0. Let{pm}ﬁ?zo be a finite sequence of positive numbers suchrtiiapy, > 1/2. Assume
m

that Qh|a € B (A) and Qa,, € BI™(Am) for 1 < m < py. Assume that the Meyer wavelet functigns
and s belong to the class\G* for v =max{|p|, |s|}, wherep = o max pm. Then
<m<py

Ci(s g C2(po.
EUM(x) —u (0)? < 4;&%13 nist bgpo 1)||Qn||Bp0
N C
+ i)(ZErTilw) : (2—2ms_ In 22m pm—1/2 HQngPm ) 5 (65)
m=0 mN

where G, i = 1,2, 3 are some positive constants depending only on the showmagjs.

Proof. Indeed, this assertion is a direct consequence of Theoreplied to the random proceﬂg‘)(x)
with the spectral functiotk|2"F (k). Then the estimation (6.5) is a consequence of (3.7) andtlosving
simple inequality

1/2
[Qnlliag = [, Qs a2 ([ KPR gdk) < 2m e me

Proposition 3. Assume that for some nonnegatiyeakd positive integer | @ Wl'(ko,oo), and for
each nonnegative integer j such tita j < nAl the following condition is valid:

Ae

|
QUM < e K2k (6.6)

for some positive numbers Ande. Then
[1Qnll, (8 < Ae-Co-2 ™72 forall m>logy(3(ko+2)), 6.7)

for some positivec= co(n,1,€).
Proof. Indeed,

IAPQEY ()] < [8nQR 7 (k4 h)| + [8nQh ™ (k+h)| < h-|QY (k+ Bh)| +h- QR (k+ ah)|

for somea € [0,1] andf € [1,2]. Since

nAl

(k) = ZJC'j n-(n=1)-...-(n— j+1)-kIQl-D(k),
J:
we find for eactk € Ay, andm > log,(3(ko + 2))
\qu)(k)\ < C(n7|)2—m(l+1/2+a)
by virtue of condition (6.6). Therefore,

/ N K)| < C(n,1)2-™I+2/2+8) .y AL < Cy(n, 1) -h- 2 M- 1/248)
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This completes the proof of (6.7). [
Corollary 4. Assume that the spectral functior{kj satisfies the condition (6.4) for some-9 and a
positive integer n, the functionGk) = |k|"- F1/2(k) = |k|"- Q(k) satisfies the conditions

Qnla €B(A), Qv €W, (A) (6.8)

for some positivgo > 1/2 and positive integer |. Assume that for each nonnegatiegert jc [0, nAl]
the function Q satisfies the condition (6.6) and supposeghétc CV+1 wherev = max{|s|, |po], !}
Let us choose in FWM (3.])

m:\‘%lnNJ’ bN:N7 me:Nz_g‘%Lamzo7l7'“7uN' (69)

Then for each positive integer N andR the following estimation is valid:

E(U ()~ w(9)? < N~
X |:C1(S7 Ll")ln-i-s + Cz(p07 (p) : HQH‘ ’E?g(ﬂ) + C3(n7 p17 87 lIJ) : C82:| 9 (610)

where G, i = 1,2, 3 are some positive constants depending only on the showmangs.

Thus if the spectral functioR (-) satisfies all the conditions of the last corollary &id € B (A) then
the estimates (3.38) and (6.10) imply the following resulconvergence of FWM il\":
Corollary 5. Let all the conditions of Corollary 4 be fulfilled and Qe B (A). Then

C

W, N:1,2,

2
EllznIfypoy <

for some positive C not depending on N.

6.3 Convergence irC"[0, 1]

For positive integen, letC"[0, 1] be the space of afi-times continuously differentiable real valued scalar
functionsf : [0,1] — R with the norm
[ flleroqy = sup [F()]+ sup |[f™(x).
x€[0,1] x€[0,1]
By the definition of this norm it follows thafun (x) }x_; » X € [0,1] converges in the metric &"[0, 1] to
a random fieldi(x), x € [0,1] asN — oo iff: (i) uy — uin C[0,1] asN — o, and (ii)ul’ — u™ in C[0, 1]
asN — oo, Since the first question was studied in section 5, we coretendn the second one. To ensure

the samples of FWM (3.1) are @"[0, 1], we assume below that, € C"(R) and the condition (6.3) is
satisfied.

The following assertion is an analog of Theorem 3 and can tweeprby the similar way.
Theorem 3a.Let all the conditions of Corollary 4 are fulfilled. Then faagha < (0,1) and t> /5,

2 { sup |£”(x)| > Cen(a) -t} < 2v/5-e /2, (6.11)
x€[0,1]
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where C is a positive constant not dependingioand N, and

1 (2pg-1)-(1-a)
en(al) = LN By

Va

Now let all the conditions of Corollary 5 be valid. Then usthg simple inequality {& +n > x+y} <
?{& > x} +2{n >y} and the results of Theorems 3 and 3a we arrive at the follawing
Corollary 6. Let all the conditions of Corollary 5 be satisfied. Then foctea € (0,1) and t> /5

C-t (2p0-1)-(1-0) 2
2 ||ENlcrioy > —= N~ 2 <4/5.et/2
{H N|lenjo.) NG }_
where C is some positive constant not depending.on

Under the conditions of this Corollary it follows immedibtéhat uy P, Uin the metric ofC"[0,1] as

N — oo,

6.4 Generalizations for vector processes

Letu(x) = (ug(X),...,u(x))T, x€ R be arl-dimensional real valued stationary Gaussian random psoce
with mean zero and spectral tengoik) = (F;(k)),i=1,...,I; j =1,...,1, andun(X) is its FWM given

by (2.14). Denote bya| = (y|_;a?)Y/? the Euclidean norm of ahdimensional real valued vecteg
and by|A| = (¥]_; 5, a%)"/2 the Euclidean norm of a matrik = (a;),i = 1,...I; j = 1,...,n which
can be realized as the Euclidean norm of lthen-vector A. For anl x n dimensional functioQ(k) =
(@ij(k),i=1,..1; j=1,...,n,andD C R, denote (if it makes a sense)

Con 1/2
QL) = (izljleQij |Ifl<o>>

and

I n 1/2
_ 112
|||Q|||b§w(D) = (;,;Hq”"bgw([’)) .

Finally, denote bys pHK) the tracez}:1 Fi (k) of the spectral tensdf. Then by the same arguments as
in the scalar case one can establish the following result:
Theorem 1b. Assume that the spectral tensofl satisfies the condition

|Sd§f/ SPF(K) (L + |K|2)Sdk < o0 (6.12)

for some s> 0. Let{pm}n“”):0 be a finite sequence of positive numbers such rt!lapm > 1/2. Assume
that

11QLu) < oo, QMo (a) < e,

and
1 Laam < @ [Qllppmiany < M=0,1,..., k.
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Assume that the Meyer wavelet functigrend belong to the class'\G* for v = max{|p|, | s|}, where
p= max pm. Then

0<m<py
Cl S,lIJ C2 Po, P
EluX) —un(x)>? < 45((HN+13.|5+ bélpo—l)'{‘HQ’HEl(A)+H‘Q’H§gg(ﬂ)}
al C3 p ,lIJ — _
5 SomY) Q) + 22 Q) ). 613)
m=0 DN

where G, i = 1,2, 3 are some constants depending only on the shown arguments.

Analogous convergence results can be obtained in strongicm

7 Conclusion and discussion

Functional convergence of Fourier-Wavelet Models (FWM)dtationary Gaussian random processes
is studied in Sobolev spac®][0, 1] and in the space af-times continuously differentiable functions
C"[0,1]. Conditions sufficient for the convergence of FWMs are fdated in terms of spectral functions

F (spectral tensors, in the case of vector random procesBgekind of assumptions on the behaviour of
the spectral functions are made: (i) finiteness of certa@etspl moments (ii) a generalized smoothness
of the functionQ = F¥/2 in different wave bands. This is formulated in terms of srhoess in Besov's
spaces)..

The condition (i) is related to the behaviour of the highgfrency part of the spectrum which is stan-
dard in the convergence studies. Condition (i) is relatethe rate of convergence of the tales of the
wavelet functiong! for a given spectral band. For these tales, we obtained ggpenations which are
improvable in the sense that for some functions these etitinsaare exact to within a constant factor.

This analysis is new and provides a constructive algoritbmchoosing the cut-off parameters for all
spectral bands to ensure a uniform behaviour of the erron@mhole spectral interval.

We give also estimations of the cost needed to guaranteesiieed root mean square erin L,[0, 1]
depending on the smoothness parameter of the relevant Bpage. The typical behaviour of the cost
has the fornTl, < =€ wherepmin is the minimal smoothness parameter.

€ min—"

The Fourier-Wavelet models are well suited for simulatidmamdom processes with smooth spectral
functions as is clearly seen from our presentation. Howievease the spectral function is not smooth in
an isolated point, it is reasonable to use a hybrid methodllsvs. The spectral function is decomposed
into two parts, the first being smooth, and the second is noadmand has a compact support in the
neighbourhood of the isolated point. Then, the random E®de represented respectively as a sum
of two independent processes, the first having the smoottirgpdunction, and the second with the
nonsmooth spectral function. The smooth part is simulayeeWM, and the second part, by a standard
deterministic spectral method which takes into accounsihgularity.
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8 Appendix

We present here some technical results which we use in the padi of this paper.

Lemma Al. Let f € B} (R), r > 1/2. Then f is uniformly continuous, € L,(R) and there exists a
positive constant Cdepending only on r such that for allxR

X" 1] < Crl[fley,.- (8.1)

Proof. The uniform continuity off follows from the fact thaff € L3(R), sinceB},,(R) C L1(R). Then,
for a positivee € (0,r —1/2) by (3.4 ) and (3.5),

' (R) — By, 2(R) — B, *(R). (8:2)
From this we get thaf € L,(R), hencef € L»(R). Letl = |r] be the integer part af. From
A}(1|+2> f(k) _ / efi2rrkX(efi2rrhx _ l)|+2f(x) dx (8.3)

andf € Ly(R) it follows by the inverse Fourier transform

f(x)(efiZTIhx_l)lJrZ:/_meiZHkxAﬂ-i-Z) f(k)dk. (8.4)
Taking the absolute values and dividing this equatiofhfywe then take the supremum ovee R. This

yields

_ | F
X" F(9IC; < suplh| = [[a5 Fllu, (85)
heR
where
—i2mt _ q(1+2
C :sup{‘ele}. (8.6)
taR

Since the triple(r,1 + 2,0) is admissible, we have sy, |h| =" [|ah 2 f||., < C7||f||y, for someC;
depending only om, which completes the proof of Lemma Al. O

Lemma A2. Assumep € C2(R) is chosen so thap, ¢ = Do, ¢ = D?@ € L.(R). Then fore € [0,1)
and Q< B1¥(R) the productp- Q € BIf£(R) andH(pQHbiﬂ < CHQHB?E for some constant €& C(&, @)
depending only om and @.

Proof. From the obvious equalities

@(x+h) = @(x) + hgf (x) + h;cd’(x+c>( -h), ae€][0,1];

QX+ 2h) = @(x) + 2hg (X) + 4Thz(p(’(x+[3>-2h), Be[0,1];

it follows that
A (@Q)(X) = ¢(x) - AP Q(x) + 2h- ¢ () AQ(x+ h)
+2h?@’ (x+ B- 2)Q(x+ 2h) — h?@’ (x+a - h)Q(x+ h).
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Therefore

2 2
182 (@)L, < 1@l - 1857 Qs + 210 - 1] - [188Ql 1, + 3021 - [1QU -
Since
2
1857 QlIw, < [1Qllgzse ™, [180Ql[L, < 1[Qlles, - [MIF < C(e)[[Qlgaze - [hI°

then for|h| < 1 we have

187 (9Q) L < (16t +2C(0)] 1] L + 311 lIL.) - [|Qllgaee .

This completes the proof. [

Corollary A1. Forr >0, let e Cl"/+1 be chosen so that

max  ||D"Y||L, < .
n=0,1,...[r|+1

Then there exists a constantEC(r, ) such that|yF ||y < C||F||g; for each Fe B} (R).

Since

1 (2 0]
WF |y, = sup —7- 1Ay (WF) V]|,
0F g, = sup iz 1105 (WF)

wherel = |r| —1, ande =r — [r|, it is sufficient to show that
2
1857 WF) VL, < C(w)IF ey, - MM,

Indeed,
|
2 2 _
a7 W) = Y o (pmF(),
n=

For alln (0 < n < 1), the functionsp = Y andQ = F(~" satisfy all the conditions of Lemma A2.
Therefore, taking into account thaﬁﬁz)QHB?a < ¢(r)h*¢||Q||g;. and using the result of Lemma A2
one completes the proof of the corollary. O

Corollary A2. Letr> 0andy e Cl"/+1 be a function with a compact suppdxt= supgy}. Then there
exists a constant € C(r, ) such that | f||g; &) < C|[f|[p, (a) for each fe B, (A).

Indeed, let us denote by the extension operatdk: B (A) — B, (R), i.e. (Af)(x) = f(x) for x e A
andf € B}, (A). Existence of a bounded linear extension operator is wellhkn(e.g., see [29]). The
corollary then follows from

W fley, m) = [IW-Afller, &) < C(LW)||AT][B; &) <C(LW) - [IA]]-[| Tl a)-

Below we give a result about characterization of the Besaesmorms through wavelet coefficients.

For a nonnegative integérwe denote by " the class ofL + 1)-times continuously differentiable func-
tions f : R — R satisfying the following conditions:

/x”f(x)dx:o, for n=0,1,2,...,L; (8.7)
R
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C

Jy>0,C>0 such that |f(x)§ml Vx e R; (8.8)
C
n
< . .
Je>0,Cy >0 such that lgannL%\D f(x)\_(lﬂx‘)1+€ vxeR (8.9)

It is known(e.qg., see, [26], [16], [41]), that under the amsption € % |8/ on a wavelet function),
the norm|| f||gs, in Besov's spac@(R), 1 < p,q < «, s> 0 can be equivalently defined through the
wavelet coefficient®m(f) = [ f(X) Wmj(X)dx, m, j € Z, whereym(x) = 2™2g(2Mx— j). Namely, let
us introduce the norrj} - |||(3”%()1 by

Tl

m—=—oo j:—co

- - q/p) Va
fgi;;pr+{ > [z (1Bmy(1)-2M72 >)"] } (1<g<w),

00

. Z (|Bm](f)| .zm(st%i%))> p] 1/p

j=—0

171185, = [/l + sup
mez
Then there exist constar®y = C;(p,q,s,W) > 0,C, = Cy(p,q,s,y) > 0 such that

Cr- I8 < Iflleg, <Co-lIfllsh,  VF € Bq(R). (8.10)

Pqa —

As an immediate consequence of the last inequality we aative

Corollary A3. Fors> 0, lety be an orthonormal wavelet function satisfying the conditipoc % /.
Then there exists a constadit= C(p,d,s, ) such that for eacli € B}4(R)

® 1/p
Cmsri_l
(_z rsmju)\p) <C- 2720 g, (8.11)
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