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Abstra
tWe 
onsider one-dimensional dire
ted trap models and suppose that the trap-ping times are heavy-tailed. We obtain the inverse of a stable subordinator ass
aling limit and prove an aging phenomenon expressed in terms of the gener-alized ar
sine law. These results 
on�rm the status of universality des
ribed byBen Arous and �erný for a large 
lass of graphs.1 Introdu
tionWhat is usually 
alled aging is a dynami
al out-of-equilibrium physi
al phenomenonobserved in disordered systems like spin-glasses at low temperature, de�ned by theexisten
e of a limit of a given two-time (usually denoted by tω and tω + t) 
orrelationfun
tion of the system as both times diverge keeping a �xed ratio between them; thelimit should be a non-trivial fun
tion of the ratio. It has been extensively studied inthe physi
s literature, see [11℄ and therein referen
es.The trap model is a model of random walk that was �rst proposed by Bou
haud andDean [10, 12℄ as a toy model for studying this aging phenomenon. In the mathemati
slitterature, mu
h attention has re
ently been given to the trap model, and many agingresult were derived from it, on Z in [16℄ and [4℄, on Z
2 in [8℄, on Z

d (d ≥ 3) in [6℄, oron the hyper
ube in [2, 3℄. A 
omprehensive approa
h to obtaining aging results forthe trap model in various settings was later developed in [7℄. The striking fa
t is thatthese aging results are identi
al for Z
d, d ≥ 2 and the large 
omplete graph, or theREM. In other terms, the mean-�eld results are valid from in�nite dimension downto dimension 2.The one-dimensional trap model has some spe
i�
 features that distinguish it fromall other 
ases. The most useful feature is that we 
an identify its s
aling limit asan interesting one-dimensional singular di�usion in random environment, see [16℄,while the s
aling limit for d ≥ 2 is the fra
tional kineti
s pro
ess, that is the time
hange of a d-dimensional Brownian motion by the inverse of an independent α-stablesubordinator, see [6℄. In fa
t, the universality of the aging phenomenon is a questionabout the transient part of relaxation to equilibrium and not ne
essarily related toequilibrium questions.Here, we give an answer to a question of Ben Arous and �erný [5℄ by studying thein�uen
e of a drift in the one-dimensional trap model. We identify the s
aling limitof the so-
alled dire
ted trap model with the inverse of an α-stable subordinator andprove an aging result expressed in terms of the generalized ar
sine law, so that it
on�rms the status of universality des
ribed by Ben Arous and �erný [7℄. Moreover,this extends some results of Monthus [17℄, who studies the in�uen
e of a bias in thehigh disorder limit (i.e. when α tends to zero with our notations, see (2.2)) using1



renormalization arguments. Note that the ideas of the proof developed in this paperare dedu
ed from a strong 
omparison with one-dimensional random walks in randomenvironment in the sub-ballisti
 regime. Indeed, analogous results are obtained forthis asymptoti
ally equivalent model in [13℄ and [14℄.The rest of the paper is organized as follows. The main results are stated in Se
tion2. In Se
tion 3, we present some elementary result about the environment, the em-bedded random walk as well as preliminary estimates, whi
h will be frequently usedthroughout the paper. Se
tion 4 and Se
tion 5 are respe
tively devoted to the proofof the s
aling limit and to the proof of the aging result.2 Notations and main resultsLet us �rst �x 0 < ε ≤ 1/2. Then, the dire
ted trap model is the nearest-neighbour
ontinuous-time Markov pro
ess X = (Xt)t≥0 given by X0 = 0 and with jump rates
c(x, y) :=

{ (

1
2

+ ε
)

τ−1
x if y = x+ 1,

(

1
2
− ε

)

τ−1
x if y = x− 1,

(2.1)and zero otherwise, where τ = (τx)x∈Z is a family of positive i.i.d. heavy-tailed randomvariables. More pre
isely, we suppose that there exists α ∈ (0, 1) su
h that
lim

u→∞
uα

P(τx ≥ u) = 1. (2.2)In parti
ular, this implies E [τx] = +∞. Sometimes τ is 
alled random environmentof traps. The Markov pro
ess Xt spends at site x an exponentially distributed timeof mean τx, and then jumps to the right with probability p = pε := (1
2
+ ε) and to theleft with probability q = qε := (1

2
− ε). Therefore, X is a time 
hange of a dis
rete-time biased random walk on Z. More pre
isely, we de�ne the 
lo
k pro
ess and theembedded random walk asso
iated with X as follows.De�nition 2.1. Let S(0) := 0 and let S(k) be the time of the k-th jump of X, for

k ∈ N
∗. For s ∈ R+, we de�ne S(s) := S(⌊s⌋) and 
all S the 
lo
k pro
ess. De�ne theembedded dis
rete-time random walk (Yn)n≥0 by Yn := Xt for S(n) ≤ t < S(n + 1).Then obviously, (Yn)n≥0 is a biased random walk on Z.Observe that (Yn)n≥0 satis�es P (Yn+1 = Yn + 1) = 1

2
+ ε = 1− P (Yn+1 = Yn − 1), forall n ≥ 0. Therefore, (Yn)n≥0 is transient to +∞ and the law of large numbers impliesthat, P-almost surely,

Yn

n
−→ vε := 2ε > 0, n→ ∞. (2.3)Furthermore, it follows from the de�nition of X that the 
lo
k pro
ess 
an be written
S(k) =

k−1
∑

i=0

τYi
ei, k ≥ 1, (2.4)
2



where (ei)i≥0 is a family of i.i.d. mean-one exponentially distributed random variables.We always suppose that the ei's are de�ned in this way. Then, the pro
ess (Xt)t≥0satis�es
Xt = YS−1(t), ∀ t ∈ R+, (2.5)where the right-
ontinuous inverse of an in
reasing fun
tion φ is de�ned by φ−1(t) :=

inf{u ≥ 0 : φ(u) > t}.Now, let us �x T > 0 and denote by D([0, T ]) the spa
e of 
àdlàg fun
tions from [0, T ]to R. Moreover, let X(N)
t be the sequen
e of elements of D([0, T ]) de�ned by

X
(N)
t :=

XtN

Nα
, 0 ≤ t ≤ T. (2.6)Then, the s
aling limit result 
an be stated as follows.Theorem 2.2. The distribution of the pro
ess (X

(N)
t ; 0 ≤ t ≤ T ) 
onverges weaklyto the distribution of (v#

ε V
−1
α (t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with the uni-form topology, where (Vα(t); t ≥ 0) is a standard α-stable subordinator and v#

ε :=
sin(απ)

απ
vα

ε = sin(απ)
απ

(2ε)α.Although this result 
an be 
ompared with the limit in [6℄, we do not obtain thefra
tional kineti
s pro
ess. This di�eren
e 
an be explained by re
alling that thefra
tional kineti
s pro
ess is the time 
hange of a Brownian motion by the inverse ofan independent α-stable subordinator while our embedded random walk satis�es thelaw of large numbers with positive speed, see (2.3). Furthermore, observe that the
ase ε = 1/2 is trivial; indeed Y is deterministi
, vε = 1 and the 
lo
k pro
ess, whi
h
an be written S(k) =
∑k−1

i=0 τiei, is just a sum of i.i.d. heavy-tailed random variables.Now let us state the se
ond main result, 
on
erning the aging phenomenon.Theorem 2.3. For all h > 1, we have
lim
t→∞

P(Xth = Xt) =
sin(απ)

π

∫ 1/h

0

yα−1(1 − y)−α dy. (2.7)Remark. As in [8℄, we think that it is possible to prove a sub-aging result for the
orrelation fun
tion given by P(Xs = Xtω ; ∀ tω ≤ s ≤ tω + t). Note that, in [9℄, Bertinand Bou
haud study the average position of the random walk at time tω + t given thata small bias h is applied at time tω. They found several s
aling regime depending onthe relative value of t, tω and h.In the following, C denotes a 
onstant large enough, whose value 
an 
hange fromline to line.3 Preliminary estimatesIn this se
tion, we list some properties of the environment τ and of the embeddedwalk Y as well as preliminary results. 3



3.1 The environmentLet us de�ne the 
riti
al depth for the �rst n traps of the environment by
g(n) :=

n1/α

(logn)
2

1−α

. (3.1)Then, we 
an introdu
e the notion of deep traps as follows:
δ1 = δ1(n) := inf{x ≥ 0 : τx ≥ g(n)}, (3.2)
δj = δj(n) := inf{x > δj−1 : τx ≥ g(n)}, j ≥ 2. (3.3)The number of su
h deep traps before site n will be denoted by θn and de�ned by

θn := sup{j ≥ 0 : δj ≤ n}, (3.4)where δ0 := 0. Now, let us de�ne ϕ(n) := P(τ1 ≥ g(n)). We introdu
e the followingseries of events, whi
h will o

ur with high probability, when n goes to in�nity:
E1(n) :=

{

nϕ(n)
(

1 −
1

logn

)

≤ θn ≤ nϕ(n)
(

1 +
1

logn

)

}

, (3.5)
E2(n) :=

{

δ1 ∧ min
1≤j≤θn−1

(δj+1 − δj) ≥ ρ(n)

}

, (3.6)
E3(n) :=

{

max
−ν(n)≤x≤0

τx < g(n)

}

, (3.7)where ρ(n) := nκ with 0 < κ < 1/3 and ν(n) := ⌊(logn)1+γ⌋ with 0 < γ < 1.In words, E1(n) requires that the number of deep traps is not too large, E2(n) requiresthat the distan
e between two deep traps is large enough and E3(n) will ensure thatthe time spent by X on Z− is negligible.Lemma 3.1. Let E(n) := E1(n) ∩ E2(n) ∩ E3(n), then we have
lim

n→∞
P(E(n)) = 1. (3.8)Proof. Note that the number of traps higher than g(n) in the �rst n traps is a binomialwith parameter (n, ϕ(n)). Then, re
alling (2.2), the proof of Lemma 3.1 is easy andleft to the reader.Sin
e we want to 
onsider intervals of size 2ν(n) around the δj 's that are disjoint, weintrodu
e now a subsequen
e of the deep traps de�ned above. These ∗-deep traps arede�ned as follows:

δ∗1 = δ∗1(n) := inf{x ≥ ν(n) : τx ≥ g(n)}, (3.9)
δ∗j = δ∗j (n) := inf{x > δ∗j−1 + 2ν(n) : τx ≥ g(n)}, j ≥ 2. (3.10)The number of su
h ∗-deep traps before site n will be denoted by θ∗n and de�ned by

θ∗n := sup{j ≥ 0 : δ∗j ≤ n}. (3.11)4



For any ν ∈ N
∗ and any x ∈ Z, let us denote by Bν(x) the interval [x− ν, x+ ν]. Ob-serve that the intervals (Bν(n)(δ

∗
j ))1≤j≤θ∗n will be made of independent and identi
allydistributed portions of environment τ (up to some translation).The following lemma tells us that the ∗-deep traps 
oin
ide with the sequen
e of deeptraps with an overwhelming probability when n goes to in�nity.Lemma 3.2. If E∗(n) := {θn = θ∗n}, then we have

lim
n→∞

P(E∗(n)) = 1. (3.12)Proof. Re
all �rst that the ∗-deep traps 
onstitute a subsequen
e of the deep traps.Furthermore, we have E2(n) ⊂ E∗(n). Therefore, Lemma 3.1 implies Lemma 3.2.3.2 The embedded random walkLet us �rst introdu
e ζn := inf{k ≥ 0 : Yk = n}, the hitting time of site n ∈ N for theembedded random walk Y. Observe that sin
e Y is transient, we have ζn <∞, for all
n almost surely. To 
ontrol the behavior of Y , we 
onsider the following fa
t, whi
his a 
lassi
al result for biased random walks.Fa
t 1. Let A(n) := {min1≤i<j≤ζn(Yj − Yi) > −ν(n)}, then we have

lim
n→∞

P(A(n)) = 1. (3.13)Observe that, onA(n), ea
h timeX (or Y ) hits a site x, it will ne
essarily exit Bν(n)(x)on the right.3.3 Between deep trapsHere, we prove that the time spent between deep trap is negligible.Lemma 3.3. Let us de�ne I(n) :=
{

∑ζn

i=0 τYi
ei1{τYi

<g(n)} <
n1/α

log n

}

. Then, we have
P (I(n)) → 1, n→ ∞. (3.14)Proof. Observe �rst that, on A(n), we have inf i≤ζn Yi ≥ −ν(n) and that Fa
t 3.2implies P (I(n)c) = P (I(n)c ∩ A(n)) + o(1). Therefore, using Markov inequality, weonly have to prove that

E

[ ζn
∑

i=0

τYi
ei1{Yi≥−ν(n)}1{τYi

<g(n)}

]

= o
( n1/α

logn

)

, n→ ∞. (3.15)After rea
hing x ∈ [−ν(n), n] (if x is rea
hed), the pro
ess Y visits x a geometri
allydistributed number of times before hitting n. The parameter of this geometri
al vari-able is equal to q + p ψ(x, n), where ψ(x, n) denotes the probability that Y startingat x+ 1 hits x before n. An easy 
omputation yields that
ψ(x, n) = r

1 − rn−x−1

1 − rn−x
, (3.16)5



where r = rε := qε/pε < 1. We will denote by G(x, n) the mean of this geometri
alrandom variable. Moreover, let us use respe
tively Pτ (·) and Eτ [·] to denote the
onditional probability and the 
onditional expe
tation with respe
t to τ. Re
allingthat ea
h visit takes an exponential time of mean τx, we obtain
Eτ

[ ζn
∑

i=0

τYi
ei1{Yi≥−ν(n)}1{τYi

<g(n)}

]

≤
n

∑

x=−ν(n)

τx(1 +G(x, n))1{τx<g(n)}. (3.17)Sin
e x 7→ G(x, n) is de
reasing and G(−ν(n), n) → (1 − vε)/vε, when n → ∞, weget that the expe
tation in (3.17) is, for all large n, less than CnE [τ0 ; τ0 < g(n)] =
CnE [τ0 ; 1 < τ0 < g(n)]+O(n). Now, let us �x 0 < ρ < 1 and introdu
e ω = ω(n) :=
inf{j ≥ 0 : ρ ≤ ρjg(n) < 1}. Then, we get

E [τ0 ; 1 < τ0 < g(n)] ≤ g(n)

ω−1
∑

j=0

ρj
P(τ0 > ρj+1g(n)) (3.18)

≤ Cg(n)1−α

ω−1
∑

j=0

ρ−αj ≤ Cg(n)1−α,where we used the fa
t that (2.2) yields that there exists 0 < C < ∞ su
h that
P(τx ≥ u) ≤ Cu−α, for all u > 0. Therefore, re
alling (3.17), the fa
t that ng(n)1−α isa o(n1/α/ logn) 
on
ludes the proof of Lemma 3.3.3.4 O

upation time of a deep trapSin
e ζy <∞ for all y ∈ N, we 
an properly de�ne for x ∈ N,

Tx = Tx(n) :=

ζx+ν(n)
∑

0

τYi
ei1{Yi=x}, (3.19)

T x = T x(n) :=

ζx+ν(n)
∑

0

τYi
ei1{Yi∈Bν(n)(x)}. (3.20)Moreover, let us introdu
e P

x and E
x the probability and the expe
tation asso
iatedwith the pro
ess starting at site x. For 
onvenien
e of notations, we write λn := λ/n1/αfor any λ > 0. Then we have the following estimate for the Lapla
e transforms of Txand T x.Lemma 3.4. For all x ∈ N and all λ > 0, we have

E
x
[

1 − e−λnTx|τx ≥ g(n)
]

∼
P(τx ≥ g(n))−1

n

απ

sin(απ)
v−α

ε λα, n→ ∞, (3.21)and the same result holds with Tx repla
ed by T x.Proof. Let us �rst write
E

x
[

(1 − e−λnTx)1{τx≥g(n)}

]

= E

[

E
x
τ [1 − e−λnTx ]1{τx≥g(n)}

]

. (3.22)6



Starting at site x, the pro
ess Y visits x a geometri
ally distributed number of timesbefore rea
hing x+ν(n). An easy 
omputation yields that the mean of this geometri
alvariable, denoted by G(x, x+ ν(n)) satis�es 1 +G(x, x+ ν(n)) → v−1
ε , when n→ ∞.Therefore, re
alling that ea
h visit takes an exponential time of mean τx, we obtain

E
x
τ [e

−λnTx ] =
1

1 + λnv−1
ε τx

+ o(n−1/α), n→ ∞. (3.23)Now, using an integration by part, we get that E
x
[

(1 − e−λnTx)1{τx≥g(n)}

] is equal to
[

−
λnv

−1
ε z

1 + λnv−1
ε z

P(τx ≥ z)
]∞

g(n)
+

∫ ∞

g(n)

λnv
−1
ε

(1 + λnv−1
ε z)2

P(τx ≥ z) dz + o(n−1/α). (3.24)The �rst term is lower than Cλng(n)1−α = Cλα
n(λng(n))1−α = o(n−1), sin
e α < 1.For the se
ond term, using (2.2), we 
an estimate P(τx ≥ z) by (1 − η)z−α ≤ P(τx ≥

z) ≤ (1 + η)z−α, for any η, when n is su�
iently large (re
all that g(n) → ∞, when
n→ ∞). Hen
e, we are lead to 
ompute the integral

∫ ∞

g(n)

λnv
−1
ε

(1 + λnv−1
ε z)2

z−α dz = (λnv
−1
ε )α

∫ 1

λnv−1
ε g(n)

1+λnv−1
ε g(n)

y−α(1 − y)α dy, (3.25)(making the 
hange of variables y = λnv
−1
ε z/(1 + λnv

−1
ε z)). For α < 1 this integral
onverges, when n → ∞, to Γ(α + 1)Γ(−α + 1) = πα

sin(πα)
, whi
h 
on
ludes the proofof (3.21).To prove that the result is true with T x in pla
e of Tx, observe �rst that P(τx ≥

g(n); maxy∈Bν(n)(x)\{x} τy ≥ g(n)) = o(n−1), when n→ ∞, whi
h implies
E

x
[

(1 − e−λnT x)1{τx≥g(n)}

]

= E
x
[

(1 − e−λnT x)1E4(n)

]

+ o(n−1), (3.26)where E4(n) := {τx ≥ g(n)} ∩ {maxy∈Bν(n)(x)\{x} τy < g(n)}. Then, let us introdu
e
T̃x :=

∑ζx+ν(n)

0 τYi
ei1{Yi∈Bν(n)(x)\{x}} = T x − Tx and write

E
x
[

(e−λnTx − e−λnT x)1E4(n)

]

≤ λnE
x
[

T̃x1E4(n)

]

, (3.27)where we used the fa
t that 1− e−x ≤ x, for any x ≥ 0. Using the same arguments asin the proof of Lemma 3.3, we 
an prove that
E

x
τ

[

T̃x1E4(n)

]

≤ 1{τx≥g(n)}

∑

y∈Bν(n)(x)\{x}

τy(1 +G(y, x+ ν(n))1{τy<g(n)}. (3.28)Using the fa
t that the previous sum depends only on site y in Bν(n)(x) whi
h are dif-ferent from x, together with the same arguments as in the proof of Lemma 3.3, we get
E

x
[

T̃x1E4(n)

]

≤ Cν(n)g(n)1−α
P(τx ≥ g(n)) ≤ Cν(n)g(n)1−2α. Therefore, we obtainthat the left-hand term in (3.27) is a o(n−1), whi
h together with (3.26) 
on
ludes theproof of Lemma 3.4.

7



Remark. For any t > 0, let us �rst introdu
e nt := tκ log log t and ν(nt) := C ′ log log nt.We 
onsider
T ∗(x) = T ∗(x, nt) :=

ζx+ν(nt)
∑

0

τYi
ei1{Yi∈[x−ν(nt), x+ν(nt)]}, x ∈ Z. (3.29)Then, observe that the same arguments as in the proof of Lemma 3.4 yield that, forall λ > 0, we have

E
x
[

1 − e−λ T∗(x)
t |τx ≥ g(nt)

]

∼
P(τx ≥ g(nt))

−1

tα
απ

sin(απ)
v−α

ε λα, t→ ∞. (3.30)4 Proof of Theorem 2.2Let us �rst de�ne Hx := inf{t ≥ 0 : Xt = x}, for any x ∈ N. Now, �x T > 0, and let
H

(N)
t be the sequen
e of elements of D([0, T ]) de�ned by

H
(N)
t :=

H⌊tN⌋

N1/α
, 0 ≤ t ≤ T. (4.1)Proposition 4.1. The distribution of the pro
ess (H

(N)
t ; 0 ≤ t ≤ T ) 
onverges weaklyto the distribution of (v#

ε )−1/α Vα(t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with the M1-Skorokhod topology, where (Vα(t); t ≥ 0) is a standard α-stable subordinator.Proof. Let 0 = u0 < u1 < · · · < uK ≤ T and βi > 0 for i ∈ {1, . . . , K}. We will
he
k the 
onvergen
e of the �nite-dimensional distributions of H by proving the
onvergen
e of E[exp{−
∑K

i=1 βi(H
(N)
ui −H

(N)
ui−1)}].Observe �rst that sin
e for any x ∈ Z, we have P(maxy∈Bν(TN)(x) τy > g(TN)) = o(1),when N → ∞, Lemma 3.3 yields

P

(

ζ⌊uKN⌋
∑

i=0

τYi
ei1{Yi∈Bν(TN)(⌊uK−1N⌋)} < CN1/α(logN)−1

)

→ 1, N → ∞. (4.2)This implies that the time spent by X in Bν(TN)(⌊uK−1N⌋) is negligible. Re
allingthat on A(TN), the pro
ess never ba
ktra
ks more than ν(TN), this allows us tode
ompose its traje
tory in two main parts that are disjoint: the �rst between 0and H⌊uK−1N⌋−ν(TN), the se
ond between H⌊uK−1N⌋ and H⌊uKN⌋ (the time spent be-tween H⌊uK−1N⌋−ν(TN) and H⌊uK−1N⌋ being negligible). More pre
isely, on A(TN) thepro
ess between H⌊uK−1N⌋ and H⌊uKN⌋ as the same law as the same pro
ess start-ing at site ⌊uK−1N⌋, re�e
ted at ⌊uK−1N⌋ − ν(TN) and independent of (Xt; ≤ t ≤

H⌊uK−1N⌋−ν(TN)). Therefore, re
alling Fa
t 3.2, the expe
tation E[exp{−
∑K

i=1 βi(H
(N)
ui −

H
(N)
ui−1)}] 
an be written

E

[

exp
{

−
K−1
∑

i=1

βi(H
(N)
ui

−H(N)
ui−1

)
}

]

E
⌊uK−1N⌋

[

exp
{

−βKN
−1/αH⌊uKN⌋

}

]

+o(1). (4.3)
8



Using the strong markov property at H⌊uK−1N⌋ and the shift invarian
e of the envi-ronment, we just have to prove that
E

[

e−βKN−1/αHN′

]

−→ exp
{

−
απ

sin(απ)
v−α

ε βα
K(uK − uK−1)

}

, N → ∞, (4.4)where N ′ := ⌊uKN⌋−⌊uK−1N⌋ ∼ (uK−uK−1)N, when N → ∞. Indeed, iterating thispro
edure K−2 times will give the 
onvergen
e of the �nite-dimensional distributions.Re
alling Lemma 3.1, Fa
t 3.2 and Lemma 3.3, we obtain
E

[

e−βKN−1/αHN′

]

= E

[

1E(N ′)∩A(N ′)∩I(N ′)e
−βKN−1/αHN′

]

+ o(1)

= E

[

e−βKN−1/α
Pθ

N′
i=1 Tδi(N

′)

]

+ o(1)

= E

[

1E∗(N ′)e
−βKN−1/α

P

θ∗
N′

i=1 Tδ∗
i
(N′)

]

+ o(1). (4.5)Furthermore, sin
e on E∗(N ′)∩A(N ′) the pro
ess never ba
ktra
ks before δ∗i − ν(N ′)after hitting δ∗i for 1 ≤ i ≤ θ∗N ′ , we get, by applying the strong markov property atthe stopping times Hδθ∗
N′
, . . . , Hδ∗1

,

E

[

e−βKN−1/αHN′

]

= E

[

1E∗(N ′)∩A(N ′)

θ∗
N′

∏

j=1

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

]

]

+ o(1)

≤ E

[ θN′
∏

j=1

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

]

]

+ o(1), (4.6)where θN ′ := N ′ϕ(N ′)
(

1 − 1
log N ′

) and with E
x
τ,|y denoting the law of the pro
ess inthe environment τ, starting at x and re�e
ted at site y. Then, applying the Markovproperty (for the environment) su

essively at times δθN′−1 + ν(N ′), . . . , δ1 + ν(N ′),and observing that the (

E
δ∗i
τ,|δ∗i −ν

[

e
−βKN−1/αTδ∗

i

] )

1≤j≤θN′

are i.i.d. random variablesby de�nition, we obtain that
E

[

e−βKN−1/αHN′

]

≤ E

[

E
δ∗1
τ,|δ∗1−ν

[

e
−βKN−1/αTδ∗

1

]]θN′

+ o(1). (4.7)Sin
e an easy 
omputations yields that P(δ∗1 6= δ1) = P(max0≤y≤ν(N ′) τy ≥ g(N ′)) =
o((N ′ϕ(N ′))−1) and P(H−ν(N ′) < Hν(N ′)) = o((N ′ϕ(N ′))−1) when N ′ → ∞ (or equiv-alently when N → ∞), we get

E

[

e−βKN−1/αHN′

]

≤ E
x
[

e−βKN−1/αTx|τx ≥ g(N ′)
]θN′

+ o(1). (4.8)Now, using Lemma 3.4, this yields
lim sup

N→∞
E

[

e−βKN−1/αHN′

]

≤ exp
{

−
απ

sin(απ)
v−α

ε βα
K(uK − uK−1)

}

. (4.9)Moreover, we 
an similarly obtain the same lower bound, whi
h implies (4.4) and
on
ludes the proof of the 
onvergen
e of the �nite-dimensional distributions.For the tightness, the arguments are exa
tly the same as in [1℄. We refer to se
tion 5of [1℄ for a detailed dis
ussion. 9



Proof of Theorem 2.2. If we de�ne X(N)

t := sup0≤s≤tX
(N)
s for any t ≥ 0, then Propo-sition 4.1 implies that the distribution of the pro
ess (X

(N)

t ; 0 ≤ t ≤ T ) 
onvergesweakly to the distribution of (v#
ε V

−1
α (t); 0 ≤ t ≤ T ) on D([0, T ]) equipped with theuniform topology. Then, Theorem 2.2 will be a 
onsequen
e of the fa
t that

P

(

sup
{

|X
(N)
t −X

(N)

t |; 0 ≤ t ≤ T
}

> γ
)

−→ 0, N → ∞, (4.10)for any γ > 0. To prove (4.10), re
all �rst that Proposition 4.1 implies that P(HNα log N >
TN) → 1, when N → ∞, su
h that we 
an 
onsider sup{|Xt − X t|; 0 ≤ t ≤
H⌊Nα log N⌋}, whi
h by de�nition is bounded by max{|Yk − Y k|; 0 ≤ k ≤ ζ⌊Nα log N⌋}.Moreover, observe that on A(⌊Nα logN⌋), whose probability tends to 1 when N goesto in�nity, this quantity is less than ν(⌊Nα logN⌋) = o(Nα), when N → ∞. Thisyields (4.10) and 
on
ludes the proof of Theorem 2.2.5 Proof of Theorem 2.3To bound the number of traps the random walk 
an 
ross before time t let us 
onsider
nt := tκ log log t and observe that Theorem 2.2 implies that P(X t ≥ nt) → 0, t→ ∞.Moreover, sin
e we need more 
on
entration properties for the random walk in theneighborhood of the δj 's, we introdu
e ν = ν(nt) := C ′ log log nt, for some C ′ largeenough whi
h will be 
hosen later. For 
onvenien
e of notations we will use ν, ν and
δj in pla
e of ν(nt), ν(nt) and δj(nt) throughout this se
tion.Then, we de�ne the sequen
e of random times (T ∗

j )j≥1 as follows: 
onditioning on τ,
(T ∗

j )j≥1 is de�ned as an independent sequen
e of random variables with the law of
Hδ∗j +ν in the environment τ starting at site δ∗j and re�e
ted at δ∗j − ν. Hen
e, underthe annealed law P, the T ∗

j 's are are i.i.d. sin
e the Bν(δ
∗
j )'s are i.i.d. by de�nition.Then, we give an analogous result to the extension of Dynkin's theorem proved in [14℄(see Proposition 1 in [14℄).Proposition 5.1. For any t > 0, let ℓ∗t := sup{j ≥ 0 : T ∗

1 + · · ·+ T ∗
j ≤ t}. Then, forall 0 ≤ x1 < x2 ≤ 1, we have

lim
t→∞

P(t(1 − x2) ≤ T ∗
1 + · · · + T ∗

ℓ∗t
≤ t(1 − x1)) =

sin(απ)

π

∫ x2

x1

x−α

(1 − x)α−1
dx. (5.1)For all 0 ≤ x1 < x2, we have

lim
t→∞

P(t(1 + x1) ≤ T ∗
1 + · · · + T ∗

ℓ∗t +1 ≤ t(1 + x2)) =
sin(απ)

π

∫ x2

x1

dx

xα(1 + x)
. (5.2)Proof. Observe �rst that an easy 
omputation yields that P

x(Hx−ν < ∞) = O(rν
ε ),when t → ∞ (where rε := qε/pε < 1). Moreover, we have rν(nt)

ε = o((tαϕ(nt))
−1).Therefore, Remark 3.4 yields

E

[

1 − e−λ
T∗
1
t

]

∼
P(τx ≥ g(nt))

−1

tα
απ

sin(απ)
v−α

ε λα, t→ ∞. (5.3)
10



Then, the arguments are exa
tly the same as in the proof of Proposition 1 in [14℄.Observe that this result would exa
tly be Dynkin's theorem (see Feller, vol. II, [15℄, p.472) if the sequen
e (T ∗
j )j≥1 was an independent sequen
e of random variables in thedomain of attra
tion of a stable law of index α. Here, this sequen
e depends impli
itlyon the time t, sin
e the ∗-deep traps are de�ned from the 
riti
al depth g(nt).Re
alling Lemma 3.3, we will now prove that the results of Proposition 5.1 are stilltrue if we 
onsider, in addition, the inter-arrival times between deep traps. Before,let us de�ne the notion of inter-arrival times for any 0 ≤ x < y:
H(x, y) := inf{t ≥ 0 : XHx+t = y}. (5.4)Proposition 5.2. For any t > 0, let ℓt := sup{j ≥ 0 : Hδj

≤ t}. Then, we have
lim
t→∞

P(Hδℓt
≤ t < Hδℓt

+ν) = 1. (5.5)For all 0 ≤ x1 < x2 ≤ 1, we have
lim
t→∞

P(t(1 − x2) ≤ Hδℓt
≤ t(1 − x1)) =

sin(απ)

π

∫ x2

x1

x−α

(1 − x)α−1
dx. (5.6)For all 0 ≤ x1 < x2, we have

lim
t→∞

P(t(1 + x1) ≤ Hδℓt+1
≤ t(1 + x2)) =

sin(απ)

π

∫ x2

x1

dx

xα(1 + x)
. (5.7)Proof. We �rst need to prove that after hitting δj +ν, the parti
le does not ba
ktra
kmore than ν. We detail this result with the following lemma.Lemma 5.3. Let us de�ne B(nt) := A(nt)∩

⋂θnt
j=1{H(δj + ν, δj + ν) < H(δj + ν, δj)}.Then, we have

lim
t→∞

P (B(nt)) = 1. (5.8)Proof. Observe �rst that Fa
t 3.2 says that P (A(nt)) tends to one. Re
alling thaton E(nt) ∩ E∗(nt), whose probability tends to 1 when t tends to in�nity (by Lemma3.1 and Lemma 3.2), the intervals Bν(δj)'s are i.i.d. and that the number of traps isbounded by C(log nt)
2α

1−α , it is su�
ient to prove that
P(ζ−ν <∞) = o((log nt)

− 2α
1−α ), t→ ∞. (5.9)Sin
e we have P(ζ−ν <∞) ≤ Crν

ε , we obtain (5.9) and 
on
lude the proof of Lemma5.3 by 
hoosing C ′ larger than −2α/(1 − α) log rε.Let us introdu
e C(nt) := {X t ≤ nt}, whose probability tends to one (re
all Theorem2.2). Now, to prove Proposition 5.2, observe that on E∗(nt) ∩ A(nt), the randomtimes (H(δj, δj +ν))1≤j≤θ∗nt
have the same law as the random times (T ∗

j )1≤j≤θ∗nt
de�nedpreviously. If we de�ne ℓ̃t := sup{j ≥ 0 : H(δ1, δ1 +ν)+ · · ·+H(δj , δj +ν) ≤ t}, then,using Proposition 5.1, Lemma 3.2 and Fa
t 3.2, we get that the result of Proposition

11



5.1 is true with (H(δj, δj + ν))1≤j≤θ∗nt
and ℓ̃t in pla
e of (T ∗

j )1≤j≤θ∗nt
and ℓ∗t . Now,re
alling Lemma 3.3 and sin
e n1/α

t / lognt = o(t), when t→ ∞, we obtain that
lim inf

t→∞
P(ℓ̃t = ℓt − 1 ; Hδℓt

≤ t < Hδℓt
+ν)

≥ lim inf
t→∞

P(I(nt) ; B(nt) ; C(nt) ; |t− (H(δ1, δ1 + ν) + · · ·+H(δℓ̃t
, δℓ̃t

+ ν))| ≥ ξt),for all ξ > 0. Thus, using Lemma 3.3, Lemma 5.3, Proposition 5.1 (for ℓ̃t and
(H(δj, δj + ν))1≤j≤θ∗nt

) and letting ξ tends to 0, we get that
lim
t→∞

P(ℓ̃t = ℓt − 1 ; Hδℓt
≤ t < Hδℓt

+ν) = 1. (5.10)We 
on
lude the proof by the same type of arguments.To 
omplete the proof of Theorem 2.3, we will prove the following lo
alization result,whi
h means that the parti
le is, with an overwhelming probability, in the last visiteddeep trap.Proposition 5.4. We have
lim
t→∞

P(Xt = δℓt) = 1. (5.11)Proof. Now, for any deep trap δj, let us denote by µj the invariant measure asso
iatedwith the random walk on [δj − ν, δj + ν] re�e
ted at sites δj − ν and δj + ν andnormalized su
h that µj(δj) = 1. Clearly, µj is the reversible measure given, for any
δj − ν < x < δj + ν, by

µj(x) = rδ−x
ε

τx
τδj

. (5.12)Sin
e the random walk is re�e
ted at sites δj − ν and δj + ν, we have µj(δj − ν) ≤
τδj−ν/τδj

and µj(δj − ν) ≤ rν
ε τδj+ν/τδj

. Moreover, sin
e µj is an invariant measure andsin
e µj(δj) = 1, we have, for any x ∈ [δj − ν, δj + ν] and all s ≥ 0,

P
δj

τ,|δj−ν,δj+ν|(Xs = x) ≤ µj(x). (5.13)Furthermore, let us introdu
e the event
D(nt) :=

θnt
⋂

j=1

{

max
x∈Bν(δj)\{δj}

τx < (log nt)
β
} (5.14)with β > 1

α
( 2α

1−α
+ 1 + γ). Observe that the probability of D(nt) tends to one, when

t tends to in�nity. Indeed, sin
e the number of traps is less than C(lognt)
2α

1−α , andre
alling that the number of sites 
ontained in the Bν(δj)'s is less than 2ν (with
ν = ν(nt) = (log nt)

1+γ), this fa
t is just a 
onsequen
e of (2.2). Re
alling (5.12),observe that on D(nt), we have
µj |[δj−ν,δj+ν]\{δj}

≤ Crν
ε (log nt)

β+ 2
1−α n

− 1
α

t ≤ Cn
− 1

2α
t , (5.15)12



for any 1 ≤ j ≤ θnt . Hen
e, 
ombining (5.13) and (5.15), we obtain on D(nt)

P
δj

τ,|δj−ν,δj+ν|(Xs 6= δj) ≤ Cn
− 1

2α
t , ∀ s ≥ 0. (5.16)Now, we �x 0 < ξ < 1. Then, let us write that lim inft→∞ P(Xt = δℓt) is larger than

lim inf
t→∞

P(Xt = δℓt ; ℓt = ℓ(1+ξ)t) (5.17)
≥ lim inf

t→∞
P(ℓt = ℓ(1+ξ)t) − lim sup

t→∞
P(Xt 6= δℓt ; ℓt = ℓ(1+ξ)t).Considering the �rst term, we get using Proposition 5.2 that it is equal to

lim inf
t→∞

P(Hδℓt+1
> (1 + ξ)t) =

sin(απ)

π

∫ ∞

ξ

dx

xα(1 + x)
. (5.18)In order to estimate the se
ond term, let us introdu
e the event

F(nt) := B(nt) ∩ C(nt) ∩ D(nt) ∩ E(nt) ∩ E∗(nt) ∩ I(nt) ∩
{

Hδℓt
≤ t < Hδℓt

+ν

}

.Observe that the preliminary results obtained in Se
tion 3 together with Theorem2.2, Proposition 5.2 and Lemma 5.3 imply that P(F(nt)) → 1, when t → ∞. Then,we have that lim supt→∞ P(Xt 6= δℓt ; ℓt = ℓt(1+ξ)) is less than
lim sup

t→∞
P(F(nt) ; Xt 6= δℓt ; ℓt = ℓt(1+ξ)) (5.19)

≤ lim sup
t→∞

E

[

1F(nt)

θnt
∑

j=1

1{Xt 6=δℓt
; ℓt=ℓt(1+ξ)=j}

]

.But on the event F(nt) ∩ {ℓt = ℓt(1+ξ) = j} we know that for all s ∈ [Hδj
, t] the walk

Xs is in the interval [δj − ν, δj + ν] . Indeed, on the event B(nt)∩C(nt)∩I(nt) we knowthat on
e the position δj + ν is rea
hed then within a time n1/α
t / lognt = o(t), when

t → ∞, the position δj+1 is rea
hed whi
h would 
ontradi
t the fa
t that ℓt(1+ξ) = j.Hen
e, we obtain, for all j ∈ N,

P
(

F(nt) ; j ≤ θnt ; Xt 6= δℓt ; ℓt = ℓt(1+ξ) = j
) (5.20)

≤ E

[

1{j≤θnt}
1D(nt)∩E(nt) sup

s∈[0,t]

P
δj

τ,|δj−ν,δj+ν|(Xs 6= δj)
]

≤ Cn
− 1

2α
t ,where we used (5.16) on the event D(nt). Considering now that, on the event E(nt),the number θnt of deep traps is smaller than C(lognt)

2α
1−α we get that

lim sup
t→∞

P(Xt 6= δℓt ; ℓt = ℓt(1+ξ)) = 0. (5.21)Then, assembling (5.17), (5.18), (5.21) and letting ξ tends to 0 in (5.18) 
on
ludesthe proof of Proposition 5.4.Proof of Theorem 2.3. let us �x h > 1 and introdu
e the event
G(t, h) := {Xt = δℓt} ∩ {Xth = δℓth

}, (5.22)13



whose probability tends to 1, when t tends to in�nity (it is a 
onsequen
e of Proposi-tion 5.4). Then, we easily have {Xth = Xt}∩G(t, h) = {ℓth = ℓt}∩G(t, h). Therefore,sin
e Proposition 5.2 implies that limt→∞ P(ℓth = ℓt) exists, we obtain
lim
t→∞

P(Xth = Xt) = lim
t→∞

P(ℓth = ℓt) = lim
t→∞

P(Tℓt+1 ≥ th) (5.23)
=

sin(απ)

π

∫ 1/h

0

yκ−1(1 − y)−κ dy,whi
h 
on
ludes the proof of Theorem 2.3.Referen
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