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Abstract

We consider one-dimensional directed trap models and suppose that the trap-
ping times are heavy-tailed. We obtain the inverse of a stable subordinator as
scaling limit and prove an aging phenomenon expressed in terms of the gener-
alized arcsine law. These results confirm the status of universality described by
Ben Arous and éerny for a large class of graphs.

1 Introduction

What is usually called aging is a dynamical out-of-equilibrium physical phenomenon
observed in disordered systems like spin-glasses at low temperature, defined by the
existence of a limit of a given two-time (usually denoted by t,, and t, +t) correlation
function of the system as both times diverge keeping a fixed ratio between them; the
limit should be a non-trivial function of the ratio. It has been extensively studied in
the physics literature, see [11]| and therein references.

The trap model is a model of random walk that was first proposed by Bouchaud and
Dean |10, 12| as a toy model for studying this aging phenomenon. In the mathematics
litterature, much attention has recently been given to the trap model, and many aging
result were derived from it, on Z in [16| and [4], on Z? in [8], on Z% (d > 3) in 6], or
on the hypercube in [2, 3]. A comprehensive approach to obtaining aging results for
the trap model in various settings was later developed in |7]. The striking fact is that
these aging results are identical for Z¢, d > 2 and the large complete graph, or the
REM. In other terms, the mean-field results are valid from infinite dimension down
to dimension 2.

The one-dimensional trap model has some specific features that distinguish it from
all other cases. The most useful feature is that we can identify its scaling limit as
an interesting one-dimensional singular diffusion in random environment, see [16],
while the scaling limit for d > 2 is the fractional kinetics process, that is the time
change of a d-dimensional Brownian motion by the inverse of an independent a-stable
subordinator, see |6|. In fact, the universality of the aging phenomenon is a question
about the transient part of relaxation to equilibrium and not necessarily related to
equilibrium questions.

Here, we give an answer to a question of Ben Arous and Cerny [5] by studying the
influence of a drift in the one-dimensional trap model. We identify the scaling limit
of the so-called directed trap model with the inverse of an a-stable subordinator and
prove an aging result expressed in terms of the generalized arcsine law, so that it
confirms the status of universality described by Ben Arous and éerny [7]. Moreover,
this extends some results of Monthus [17], who studies the influence of a bias in the
high disorder limit (i.e. when « tends to zero with our notations, see (2.2)) using



renormalization arguments. Note that the ideas of the proof developed in this paper
are deduced from a strong comparison with one-dimensional random walks in random
environment in the sub-ballistic regime. Indeed, analogous results are obtained for
this asymptotically equivalent model in [13] and [14].

The rest of the paper is organized as follows. The main results are stated in Section
2. In Section 3, we present some elementary result about the environment, the em-
bedded random walk as well as preliminary estimates, which will be frequently used
throughout the paper. Section 4 and Section 5 are respectively devoted to the proof
of the scaling limit and to the proof of the aging result.

2 Notations and main results

Let us first fix 0 < € < 1/2. Then, the directed trap model is the nearest-neighbour
continuous-time Markov process X = (X;)¢>o given by Xy = 0 and with jump rates

1 —1 e
ste)r, ity=z+1,

lz.y) = { El _5§ Tl ify=a-1, 21)
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and zero otherwise, where 7 = (7,,),ez is a family of positive i.i.d. heavy-tailed random
variables. More precisely, we suppose that there exists a € (0, 1) such that

lim u*P(7, > u) = 1. (2.2)
In particular, this implies E [7,] = +00. Sometimes 7 is called random environment

of traps. The Markov process X; spends at site x an exponentially distributed time
of mean 7., and then jumps to the right with probability p = p. := (% +¢) and to the
left with probability ¢ = ¢. := (% — ¢). Therefore, X is a time change of a discrete-
time biased random walk on Z. More precisely, we define the clock process and the
embedded random walk associated with X as follows.

Definition 2.1. Let S(0) := 0 and let S(k) be the time of the k-th jump of X, for
k € N*. For s € Ry, we define S(s) := S([s]) and call S the clock process. Define the
embedded discrete-time random walk (Y,,),>0 by Y, := X for S(n) <t < S(n+1).
Then obviously, (Y;,),>0 is a biased random walk on Z.

Observe that (Y,),>0 satisfies P(Y,41 =Y, +1) = % +e=1-PY,11=Y,—1), for
all n > 0. Therefore, (Y,),>0 is transient to +o00 and the law of large numbers implies
that, P-almost surely,

Y,
— — v = 2e >0, n — 00. (2.3)
n

Furthermore, it follows from the definition of X that the clock process can be written

k—1
Sk)y=> me, k>1, (2.4)
=0



where (€;);>0 is a family of i.i.d. mean-one exponentially distributed random variables.
We always suppose that the e;’s are defined in this way. Then, the process (X;):>o
satisfies

Xt - stl(t)v Vt S R+, (25)

where the right-continuous inverse of an increasing function ¢ is defined by ¢~1(t) :=
inf{u >0: ¢(u) > t}.

Now, let us fix 7" > 0 and denote by D([0,T7]) the space of cadlag functions from [0, 7]
to R. Moreover, let X\™) be the sequence of elements of D([0,T]) defined by

_ X

N
Xt(): o

0<t<T. (2.6)

Then, the scaling limit result can be stated as follows.

Theorem 2.2. The distribution of the process (Xt(N); 0 <t <T) converges weakly
to the distribution of (v V. 1(t); 0 < t < T) on D([0,T)) equipped with the uni-

fgr(’m)topologyz u))here (Va(t); t > 0) is a standard a-stable subordinator and v¥ =
sin(am) o _ sin(aw (2€>a.

am e am

Although this result can be compared with the limit in [6], we do not obtain the
fractional kinetics process. This difference can be explained by recalling that the
fractional kinetics process is the time change of a Brownian motion by the inverse of
an independent a-stable subordinator while our embedded random walk satisfies the
law of large numbers with positive speed, see (2.3). Furthermore, observe that the
case € = 1/2 is trivial; indeed Y is deterministic, v. = 1 and the clock process, which
can be written S(k) = Zf:_ol 7;€;, is just a sum of i.i.d. heavy-tailed random variables.
Now let us state the second main result, concerning the aging phenomenon.

Theorem 2.3. For all h > 1, we have

. 1/h
Jlim P(Xy = Xy) = Sm;aﬂ) /0 y (L —y) " dy. (2.7)
Remark. As in [8], we think that it is possible to prove a sub-aging result for the
correlation function given by P(X,; = X, ;Vt, < s <t,+t). Note that, in [9], Bertin
and Bouchaud study the average position of the random walk at time ¢, +¢ given that
a small bias h is applied at time ¢,. They found several scaling regime depending on
the relative value of t, ¢, and h.

In the following, C' denotes a constant large enough, whose value can change from
line to line.

3 Preliminary estimates

In this section, we list some properties of the environment 7 and of the embedded
walk Y as well as preliminary results.



3.1 The environment

Let us define the critical depth for the first n traps of the environment by
nl/a
g(n) = ————. (3.1)
(logn) s

Then, we can introduce the notion of deep traps as follows:

0 = d(n):=inf{x>0: 7. > g(n)}, (3.2)
5]' = 5j(n) = lllf{l' > 5]‘_1 D Ty 2 g(n)}, j > 2.

The number of such deep traps before site n will be denoted by 6,, and defined by
0, :==sup{j > 0: §; <n}, (3.4)

where dy := 0. Now, let us define p(n) := P(m; > g(n)). We introduce the following
series of events, which will occur with high probability, when n goes to infinity:

Ei(n) = {ngo(n)(l — lo;;n> <0, < mp(n)(l + 10;71)} : (3.5)
Ew) = {onn, min (60 -6) 2 ol }, (36)

E5(n) = { max Tx<g(n)}, (3.7)

—v(n)<z<0

where p(n) := n* with 0 < k < 1/3 and v(n) := |[(logn)'™7] with 0 <y < 1.

In words, £;(n) requires that the number of deep traps is not too large, £(n) requires
that the distance between two deep traps is large enough and £;(n) will ensure that
the time spent by X on Z_ is negligible.

Lemma 3.1. Let £(n) := &1(n) N E(n) N Es(n), then we have

lim P(£(n)) = 1. (3.8)

n—oo

Proof. Note that the number of traps higher than g(n) in the first n traps is a binomial
with parameter (n,¢(n)). Then, recalling (2.2), the proof of Lemma 3.1 is easy and
left to the reader. O

Since we want to consider intervals of size 2v(n) around the §;’s that are disjoint, we
introduce now a subsequence of the deep traps defined above. These x-deep traps are
defined as follows:

07 = 4f(n):=inf{z >v(n): 7. >g(n)}, (3.9)
67 = 6;(n):=inf{z >0;  +2v(n): 7, >g(n)}, Jj>2. (3.10)

The number of such *-deep traps before site n will be denoted by 6 and defined by

0, =sup{j >0: 0; <n}. (3.11)



For any v € N* and any = € Z, let us denote by B, (z) the interval [z — v,z + v]. Ob-
serve that the intervals (B, ,)(d7))1<j<p; Will be made of independent and identically
distributed portions of environment 7 (up to some translation).

The following lemma tells us that the *-deep traps coincide with the sequence of deep
traps with an overwhelming probability when n goes to infinity.

Lemma 3.2. If £*(n) := {0, = 63}, then we have

lim P(£*(n)) = 1. (3.12)

n—oo

Proof. Recall first that the x-deep traps constitute a subsequence of the deep traps.
Furthermore, we have &(n) C £*(n). Therefore, Lemma 3.1 implies Lemma 3.2. O

3.2 The embedded random walk

Let us first introduce ¢, := inf{k > 0 : Y} = n}, the hitting time of site n € N for the
embedded random walk Y. Observe that since Y is transient, we have (,, < oo, for all
n almost surely. To control the behavior of Y, we consider the following fact, which
is a classical result for biased random walks.

Fact 1. Let A(n) := {mini<;<;j<¢, (Y; — Yi) > —v(n)}, then we have

lim P(A(n)) = 1. (3.13)

n—oo

Observe that, on A(n), each time X (or Y') hits a site z, it will necessarily exit B, ()
on the right.

3.3 Between deep traps

Here, we prove that the time spent between deep trap is negligible.

Lemma 3.3. Let us define I(n) := { flo Ty;€i1{ry. <g(n)} < i} . Then, we have

nl

logn
P(Z(n)) — 1, n — oo. (3.14)

Proof. Observe first that, on A(n), we have inf,<. Y; > —v(n) and that Fact 3.2

implies P (Z(n)¢) = P(Z(n)° N.A(n)) + o(1). Therefore, using Markov inequality, we
only have to prove that

Cn 1/a
n
E{E :Tneilmz—um)}1{m<g<n>}} = 0<10gn)= n — 00. (3.15)
=0

After reaching x € [—v(n),n| (if z is reached), the process Y visits z a geometrically
distributed number of times before hitting n. The parameter of this geometrical vari-
able is equal to ¢ + p(x,n), where (z,n) denotes the probability that Y starting
at x + 1 hits x before n. An easy computation yields that

1 — Tn—:c—l

U(x,n) = L pp— (3.16)



where 7 = r. := ¢./p. < 1. We will denote by G(z,n) the mean of this geometrical
random variable. Moreover, let us use respectively P.(-) and E.[] to denote the
conditional probability and the conditional expectation with respect to 7. Recalling
that each visit takes an exponential time of mean 7,, we obtain

Cn n
ET[Zmeil{w—u(n)}1{ryi<g(n>}} < Y nl4G@ )l ggmy. (3.17)

1=0 z=—v(n)

Since z — G(z,n) is decreasing and G(—v(n),n) — (1 —v.)/v., when n — oo, we
get that the expectation in (3.17) is, for all large n, less than CnE[ry; 70 < g(n)] =
CnE[r; 1 <1 <g(n)+0(n). Now, let us fix 0 < p < 1 and introduce w = w(n) :=
inf{j >0: p<plg(n) < 1}. Then, we get

w—1

Elr;1<m<g®)] < gn)) pPPr>p gn) (3.18)
< Cg(n)'=*» p= < Cg(n)'~,

where we used the fact that (2.2) yields that there exists 0 < C' < oo such that
P(7, > u) < Cu™, for all u > 0. Therefore, recalling (3.17), the fact that ng(n)'~* is
a o(n'/*/logn) concludes the proof of Lemma 3.3. O

3.4 Occupation time of a deep trap

Since ¢, < oo for all y € N, we can properly define for x € N,

C:v+u(n)
T.=Tun) == Y mv.ely—ay (3.19)
0
. . C:c+u(n)
Tgc:Tx(n) = Z TYieil{%eBy(n)(x)}- (3.20)
0

Moreover, let us introduce P* and [E* the probability and the expectation associated
with the process starting at site 2. For convenience of notations, we write A, := \/n'/®
for any A > 0. Then we have the following estimate for the Laplace transforms of T,
and T,.

Lemma 3.4. For all x € N and all X > 0, we have

P(7, > -1
E*|1 — e—)\nTx|7_x > g(n)] -~ (T _n.,g(n)) Sino(ézﬂ-) ,Ua—a )\a’ n — oo, (321)

and the same result holds with T, replaced by T,.

Proof. Let us first write

E* [(1 - e‘A”T”)l{mm)}] =E [Ef[l - 6‘A”Tz]1{m<n>}]- (3.22)



Starting at site x, the process Y visits x a geometrically distributed number of times
before reaching z+v(n). An easy computation yields that the mean of this geometrical
variable, denoted by G(x,z + v(n)) satisfies 1 + G(z,x + v(n)) — v=!, when n — oo.
Therefore, recalling that each visit takes an exponential time of mean 7,, we obtain

1

o[, ~AnTw] _
R W

+ o(n=Y9), n — oo. (3.23)

Now, using an integration by part, we get that E* [(1 — e_)‘"Tx)l{szg(n)}] is equal to

-1
AU 2

00 S >\n -1
‘m%?zﬂ + / e P(r, 2 2)dz +o(n V). (3.24)

g(n) (n) (14 NoTtz)?

The first term is lower than C\,g(n)!=* = CA%(\,g(n))'™* = o(n™ 1), since a < 1.
For the second term, using (2.2), we can estimate P(7, > z) by (1 —n)z=* < P(7, >
2) < (14+n)z~%, for any n, when n is sufficiently large (recall that g(n) — oo, when
n — 00). Hence, we are lead to compute the integral

RS (1 = y)*d (3.25)
g(n) (1 + Anvglz)zz = n,Ua Anvglg(n) y y y’ ’

—onte S
1+Anvg “g(n)

(making the change of variables y = \,v-'z/(1 + \,v7'2)). For a < 1 this integral

converges, when n — oo, to I'(ar + 1)I'(—ar + 1) = 72, which concludes the proof

of (3.21).

To prove that the result is true with T, in place of T}, observe first that P(r, >
g(n);maxyep, ., (@)\{=} Ty = 9(n)) = o(n~"'), when n — oo, which implies

B (1= e )Lz | = B |(1 = €T 15,00 +0(n7), (3.26)

where 84(/)7,) = {Tx > g(n)} N {maXyEBl,(n)(x)\{x} Ty < g(?’l,)} Then, let us introduce
T Cac v(n T .
T, .= ZO i T)’ieil{YiEB,,(n)(x)\{m}} =T, — T, and write

E* [(6_)‘”Tz - 6_)‘”71)1&1(”)} < M\, E* [Tmlg4(n)} , (3.27)

where we used the fact that 1 —e™ < x, for any x > 0. Using the same arguments as
in the proof of Lemma 3.3, we can prove that

Ef [Txlg4(n):| < 1{7.129(”)} Z Ty(l + G(y, T+ I/(n))l{Ty<g(n)}. (328)
yEBl,(,,L)(Z‘)\{CC}

Using the fact that the previous sum depends only on site y in B, (x) which are dif-
ferent from z, together with the same arguments as in the proof of Lemma 3.3, we get

E® [Txl&(n)] < Cv(n)g(n)'=*P(r, > g(n)) < Cv(n)g(n)'=2*. Therefore, we obtain

that the left-hand term in (3.27) is a o(n™"), which together with (3.26) concludes the
proof of Lemma 3.4. O



Remark. For any t > 0, let us first introduce n; := t"loglogt and 7(n,) := C"loglog n,.
We consider

Cac+?(nt)

T*(ZL') = T*(l’,nt) = Z T)/ieil{yie[m_y(nt)’x_,_p(nt)}}, z € 7. (329)
0

Then, observe that the same arguments as in the proof of Lemma 3.4 yield that, for
all A > 0, we have

P(r, > g(n))”! am
to sin(am

E*[1 - e > g(nt)} ~ JUUAY o (330)

4 Proof of Theorem 2.2

Let us first define H, := inf{t > 0: X; = z}, for any x € N. Now, fix 7" > 0, and let
H™) be the sequence of elements of D([0,T1]) defined by
Hin)

N
Y = e 0St<T (4.1)

Proposition 4.1. The distribution of the process (Ht(N); 0 <t<T) converges weakly
to the distribution of (vV¥)™V*V,(t); 0 <t < T) on D([0,T]) equipped with the M-
Skorokhod topology, where (V,(t); t > 0) is a standard a-stable subordinator.

Proof. Let 0 = up < u; < -+ < ug < T and B > 0 fori € {1,..., K}. We will
check the convergence of the finite-dimensional distributions of H by proving the
convergence of E[exp{— 1, @(Hﬁv) - Hﬁi\i)l)}].

Observe first that since for any x € Z, we have P(maxyep, v, @) 7y > 9(T'N)) = o(1),
when N — oo, Lemma 3.3 yields

ClugN]

P( D el vieB, o (lux N} < CNl/a(logN)_1> —1, N—oo (42)
=0

This implies that the time spent by X in B,rn)(lux—1V]) is negligible. Recalling

that on A(T'N), the process never backtracks more than v(T'N), this allows us to

decompose its trajectory in two main parts that are disjoint: the first between 0

and H\,,  Nj—v(TN), the second between H|,,  n| and H,, n| (the time spent be-

tween H|y, ,N|-v(rn) and Hy,, ,n| being negligible). More precisely, on A(T'N) the

process between H|,, ,n) and H|,,n| as the same law as the same process start-

ing at site |ug_1N|, reflected at [ux_1N| — v(T'N) and independent of (X;; <t <

H\ .y, N|-v(rn))- Therefore, recalling Fact 3.2, the expectation E[exp{— SE B (HN -
H&Ji\i)l)}] can be written

K-1
E lexp {_ 3 B(HY) —Hﬁﬁv)l)}} lur-1 V] lexp { BNV H o }} +0(1). (4.3)
i=1



Using the strong markov property at H|,, ,n| and the shift invariance of the envi-
ronment, we just have to prove that

_ -1/« aT —a
E [e PN HN’] —>eXp{ M B (uk UK—l)}a N —oo,  (4.4)

where N' := |ug N | —|ug_1N| ~ (ug —ug_1)N, when N — oco. Indeed, iterating this
procedure K —2 times will give the convergence of the finite-dimensional distributions.

Recalling Lemma 3.1, Fact 3.2 and Lemma 3.3, we obtain

_ —1/a ’ [ - o l
E o B N-VoH, ] - E 15(N’)O.A(N’)OI(N’)e B N~Yomy i| + 0(1)
_ R | xNT Vo SN Ty e, } +o(1)

- 0%

= E|le-uye . 1T6*<N’} +o(1). (4.5)

Furthermore, since on £*(N') N A(N') the process never backtracks before o — v(N')
after hitting o7 for 1 <7 < 6%, we get, by applying the strong markov property at
the stopping times Hs,, ..., Hsr,

N/

- 0*
- [e—ﬁKNil/aHN,i| = [E 15 *(N)NA(NY) HE ll(s*—,, [e_BKN*I/aT6;i| ] "‘0(1)
j=1
- 0N /
< E HE 187 —v [e_ﬁKN TéZH o) )
L j=1

where 0y, == N'o(N')(1 — %) and with E7 ~denoting the law of the process in
the environment 7, starting at x and reflected at site y. Then, applying the Markov
property (for the environment) successively at times dp 1 + V(N )y ooy 01 + (N,

. 5x —Br N~VoTy. .. .
and observing that the <E;‘5*_V [e P ‘%] ) are i.i.d. random variables
1% 1<5 <0

by definition, we obtain that
—1/a * _ —1/ap Onr
E |:e—ﬁKN / HN’:| SE [Eih(;{_y |:e Bx N~/ T51:|] N _'_0(1) (47)
Since an easy computations yields that P(d7 # 01) = P(maxo<y<,(vy 7y > g(N')) =

o((N'o(N"))~1) and P(H_,(n1) < Hyny) = o((N'@(N'))™) when N — oo (or equiv-
alently when N — o0), we get

“1/a “1/a [N
E [en eV 0 | < e [N > ()] 0(1), (4.8)
Now, using Lemma 3.4, this yields
I E[ —5KN*”“HN'} < { ar_ o . } 4.9
imsup e <P Gotam By (ux — ux—1) (4.9)

Moreover, we can similarly obtain the same lower bound, which implies (4.4) and
concludes the proof of the convergence of the finite-dimensional distributions.

For the tightness, the arguments are exactly the same as in [1]. We refer to section 5
of |1] for a detailed discussion. O



Proof of Theorem 2.2. 1If we define YEN) 1= SUPp<g<y X§N) for any ¢ > 0, then Propo-

sition 4.1 implies that the distribution of the process (YEN); 0 <t < T) converges
weakly to the distribution of (v¥V,71(¢); 0 <t < T) on D(|[0,T]) equipped with the
uniform topology. Then, Theorem 2.2 will be a consequence of the fact that

P <sup{|Xt(N) ~xXMo<t< T} > 7> .0, N — oo, (4.10)

for any v > 0. To prove (4.10), recall first that Proposition 4.1 implies that P(H yajog v >
TN) — 1, when N — oo, such that we can consider sup{|X; — X;|; 0 < t <
H|no1ogn|}, which by definition is bounded by max{|Y; — Yi; 0<k < (| Nolog N| }-
Moreover, observe that on A(| N*log N |), whose probability tends to 1 when N goes
to infinity, this quantity is less than v(|N®log N|) = o(N®), when N — oo. This
yields (4.10) and concludes the proof of Theorem 2.2. O

5 Proof of Theorem 2.3

To bound the number of traps the random walk can cross before time ¢ let us consider
n, = t"loglogt and observe that Theorem 2.2 implies that P(X, > n,) — 0, t — oco.
Moreover, since we need more concentration properties for the random walk in the
neighborhood of the §;’s, we introduce 7 = 7(n;) := C"loglogn,, for some C’ large
enough which will be chosen later. For convenience of notations we will use v, 7 and
d; in place of v(n;), 7(n;) and §;(n;) throughout this section.

Then, we define the sequence of random times (77);>1 as follows: conditioning on 7,
(T7)j>1 is defined as an independent sequence of random variables with the law of
H(;;urp in the environment 7 starting at site 5; and reflected at 5; — v. Hence, under
the annealed law IP, the T7’s are are i.i.d. since the B,(d7)’s are i.i.d. by definition.
Then, we give an analogous result to the extension of Dynkin’s theorem proved in [14]
(see Proposition 1 in [14]).

Proposition 5.1. For anyt >0, let (; :=sup{j > 0: Ty +---+T; < t}. Then, for
all 0 < 1 < x9 < 1, we have

] z2 —«
lim P(H(1 — 25) < Tj + -+ T < H(1—21)) = sin(ar) / T e (51)

t—00 T ) (1 _ $)a—1

For all 0 < x1 < x5, we have

: . . sin(ar) [ dx
tlggl?(t(l—i—xl) <STi+ o+ 15 <t(l+a)) = - /xl pryr gy (5.2)
Proof. Observe first that an easy computation yields that P*(H,_, < oo) = O(rY),
1

when t — oo (where 7. := ¢./p. < 1). Moreover, we have rrm) o((t*p(ny))~1).
Therefore, Remark 3.4 yields

* ]P) > —1
E[l — e_’\TTl} ~ (T = g(m1)) . an (U t — 0. (5.3)
to sin(ar)

10



Then, the arguments are exactly the same as in the proof of Proposition 1 in [14].
Observe that this result would exactly be Dynkin’s theorem (see Feller, vol. II, |15], p.
472) if the sequence (T7);>1 was an independent sequence of random variables in the
domain of attraction of a stable law of index a.. Here, this sequence depends implicitly

on the time ¢, since the x-deep traps are defined from the critical depth g(n;). ]

Recalling Lemma 3.3, we will now prove that the results of Proposition 5.1 are still
true if we consider, in addition, the inter-arrival times between deep traps. Before,
let us define the notion of inter-arrival times for any 0 < z < y:

H(z,y):=inf{t >0: Xpy, =1y} (5.4)
Proposition 5.2. For anyt >0, let {, :=sup{j > 0: H;s, <t}. Then, we have

lim P(H&t S t < H52t+v) =1. (55)

t—o0

For all 0 < x1 < 29 < 1, we have

hmPWl—@%EHMSKI—ﬁnzﬁmmﬂ/i Y ___dz. (56)

t—o0 T
For all 0 < 21 < x9, we have

‘ sin(ar) (" dz
tILI?o P(1+a1) < Hs, oy <t(1+72)) = ™ /xl (14 )

(5.7)

Proof. We first need to prove that after hitting ¢; 4+ 7, the particle does not backtrack
more than 7. We detail this result with the following lemma.

Lemma 5.3. Let us define B(n;) := A(ng) N ﬂ?’;tl{H((Sj +7,0;+v) < H(0; +7,6;)}.
Then, we have

lim P (B(n,)) = 1. (5.8)

t—o0

Proof. Observe first that Fact 3.2 says that P (A(n;)) tends to one. Recalling that
on E(ng) N E*(ny), whose probability tends to 1 when ¢ tends to infinity (by Lemma
3.1 and Lemma 3.2), the intervals B,(d;)’s are i.i.d. and that the number of traps is

bounded by C(log nt)lz_aa, it is sufficient to prove that
P(C_y < 00) = o((logne) T8),  t— 0. (5.9)

Since we have P((_; < oo) < CrY, we obtain (5.9) and conclude the proof of Lemma
5.3 by choosing C’ larger than —2a/(1 — «) log r.. O

Let us introduce C(n;) := {X; < n;}, whose probability tends to one (recall Theorem
2.2). Now, to prove Proposition 5.2, observe that on £*(n;) N .A(n;), the random
times (H(d;, 6;+7))1<j<o;, have the same law as the random times (77 )1<;<o; defined
previously. If we define ¢, := sup{j > 0: H(61,61+7)+---+H(d;,0,+7) < t}, then,
using Proposition 5.1, Lemma 3.2 and Fact 3.2, we get that the result of Proposition
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5.1 is true with (H(d;,0; + 7))i<j<p;, and {; in place of (T7)1<j<o;, and €. Now,

recalling Lemma 3.3 and since ni/a/ logn; = o(t), when t — oo, we obtain that

lim inf P({, = ¢, — 1; Hs, <t < H;, 1)

t—o0

> lignianP(I(nt); B(ny); C(ng); [t — (H(61,61 +7) + -+ H(0;,,0; +7))| > &t),

for all & > 0. Thus, using Lemma 3.3, Lemma 5.3, Proposition 5.1 (for ¢, and
(H (07,05 +7))1<j<o;, ) and letting & tends to 0, we get that

lim P(ly =€, —1; Hs, <t < Hy, 45) = 1. (5.10)
We conclude the proof by the same type of arguments. O

To complete the proof of Theorem 2.3, we will prove the following localization result,
which means that the particle is, with an overwhelming probability, in the last visited
deep trap.

Proposition 5.4. We have

tlim P(X; = d,,) = 1. (5.11)
Proof. Now, for any deep trap 9;, let us denote by p; the invariant measure associated
with the random walk on [0; — v, 0; + 7] reflected at sites 0, — v and J; + 7 and
normalized such that 1;(9;) = 1. Clearly, u; is the reversible measure given, for any
0 —v<x<d;+v,by

wi(z) = pi=e e (5.12)

Since the random walk is reflected at sites §; — v and 0; + 7, we have p;(0; — v) <
T5,—v/Ts, and p;(6; —v) < rl7s5,45/7s,. Moreover, since i is an invariant measure and
since p;(0;) = 1, we have, for any = € [0; —v,d; + 7] and all s > 0,

5.
]P)TJ,\&j—u,éj-kﬂ(Xs =) < p;(z). (5.13)

Furthermore, let us introduce the event

On,

D(n,) = { < ﬁ} 14
(ns) Dl e 7o < (logny) (5.14)

with > 1(2% + 1+ v). Observe that the probability of D(n;) tends to one, when

t tends to infinity. Indeed, since the number of traps is less than C'(log nt)lz_aa, and
recalling that the number of sites contained in the B,(d;)’s is less than 2v (with
v = v(n;) = (logng)'™), this fact is just a consequence of (2.2). Recalling (5.12),
observe that on D(n;), we have

1

7 2 1 _1
i, s 90 o,y < Cre(logny) e ny @ < Cny >, (5.15)
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for any 1 < j <#6,,. Hence, combining (5.13) and (5.15), we obtain on D(n;)

_ 1
Pls s am(Xe #0)) <Cn %, Vs >0, (5.16)

Now, we fix 0 < £ < 1. Then, let us write that liminf, .. P(X; = d;,) is larger than

htl'Il HlfIP)(Xt = 5515 ) gt = €(1+€)t) (517)
> ligci)gfIP’(ﬁt =Llater) — li:in sup P(X¢ # 6¢, 5 b = Liagen).

Considering the first term, we get using Proposition 5.2 that it is equal to

dz
14x)

sin

lim inf P(Hs, ., > (1 +&)t) = ETOHT) /OO 7
13

(5.18)

t—o0
In order to estimate the second term, let us introduce the event
F(ng) := B(ny) NC(ny) N D(ny) NE(ny) NE*(ny) NZ(ny) N {H% <t< ngﬁp} .

Observe that the preliminary results obtained in Section 3 together with Theorem
2.2, Proposition 5.2 and Lemma 5.3 imply that P(F(n;)) — 1, when ¢ — oco. Then,
we have that limsup, , P(X; # 0, ; €+ = l14¢)) is less than

limsup P(F () 5 X¢ # 60,5 b = Liave)) (5.19)
t—o00
ent
< hin sup K [17:(%) Z 1{Xt7$5¢t le=Le(1+)=7} | -

But on the event F(n,) N {{; = ly14¢) = j} we know that for all s € [Hs,,t] the walk
X is in the interval [§; — v, d; + 7] . Indeed, on the event B(n;)NC(n:) NZ(n:) we know
that once the position §; + 7 is reached then within a time ny’®/logn, = o(t), when
t — 00, the position ;4 is reached which would contradict the fact that £, ¢ = j.
Hence, we obtain, for all j € N,

P (F(ne); j <On; Xe # 00, b = lase) = J) (5.20)
5 _ 1
< E[l{jgew}lD(ntmant) Sl[lop}Rf\aj_V,(sjm(Xs # 5]')} < Cn *,
s€|0,t

where we used (5.16) on the event D(n;). Considering now that, on the event £(n;),
2
the number 6,,, of deep traps is smaller than C(logn;)1-= we get that

limsup P(X; # ¢, 5 €¢ = lya4¢)) = 0. (5.21)

t—o0

Then, assembling (5.17), (5.18), (5.21) and letting & tends to 0 in (5.18) concludes
the proof of Proposition 5.4. O

Proof of Theorem 2.3. let us fix h > 1 and introduce the event

g(t, h) = {Xt = 5@} N {Xth = 5€th}> (5.22)
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whose probability tends to 1, when ¢ tends to infinity (it is a consequence of Proposi-
tion 5.4). Then, we easily have { Xy, = X;} NG (t, h) = {ly, = 6:} N G(t, h). Therefore,
since Proposition 5.2 implies that lim, ., P(¢y, = ¢;) exists, we obtain

thrn P(Xth = Xt) = thm P(gth = gt) = thm P(Tgt+1 Z th) (523)
. 1/h
sin(am e ke
_ dnlom) / Y (1 —y) " dy,
™ 0
which concludes the proof of Theorem 2.3. O
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