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Abstract

A smooth variation of constants formula for semilinear hyperbolic systems is es-
tablished using a suitable Banach space X of continuous functions together with its
sun dual space X®*. It is shown that mild solutions of this variation of constants
formula generate a smooth semiflow in X. This proves that the stability of stationary
states for the nonlinear flow is determined by the stability of the linearized semigroup.

1 Introduction

This paper is concerned with the variation of constants formula for semilinear hyperbolic
systems of the following type:

ForO<z<landt >0

o (wlt,x)\ _ gy o (ult2) I
(SH) ot (U t,x))_K( )ax( (t, ) —G-H(, (t’ )’ (t’ ))’

where u(t,z) € R™, v(t,z) € R"™, K(z) = 1ag( i(7))1<i<, 18 a diagonal matrix of
functions k; € C* ([0,1], R), k;(z) < Oforz: 1,...,nyand ki(x) > 0fori=ny+1,...,n =

n1 + ng, and D = (dj;) 1<i<n, » £ = (€ij) 1i<n, are matrlces.
1<j<ns 1<j<ns

We consider the prototype system

o (WD) _ s (ultia)

(Ho) z (v@f,l’)) = Kl)a: (v<t,x>) ’

) w(t,0) = Ev(t,0), wv(t,1) = Du(t,l)
uo(z), ©v(0,2) = vo(x).

Let T(t) denote the semigroup for (Hp), obtained by integrating along characteristics
(Proposition 2.1).

The nonlinearity H :]0,I[ x R* — R", H = H(x,2), x € ]0,1[, 2 = (u,v) € R" := R™*"2
generates a Nemytskij oprator

9 (u,v) (x) = H(z,u(x),v(z))



defined on a suitable function space
X(:{CD]u:MJ}aR@,vﬁ&H—»RM}.

Formally the variation of constants formula for (SH) reads

(40) =20 (10) = [ 6= p90u(s) 0661 as. 0

Vo

Now the question arises which choice of Banach space X is best suited for (1). It is tempting
to take the Hilbert space L*(]0,1[,R™). The semigroup 7T'(¢) is strongly continuous on L.
Since the Nemytskij operator § is not defined on L?, a standard procedure then is to
truncate the nonlinearity H so that $ : L?> — L? becomes well defined and globally
Lipschitz. However, $ will not be Fréchet differentiable due to the (rather surprising) fact
that ) : L? — L? is differentiable at some (u,v) € L*(]0,1[, R™) if and only if for almost all
x €]0,{[ the function z — H(z, 2) is affine [3]. Our aim is to establish a smooth variation
of constants formula (1) for a large class of nonlinearities H (as appearing in applications)
which can be used to prove principle of linearized stability and smooth center manifold
theorem.

We choose the phase space

X:{CDeammRWmHmm:&m%wde@}

T'(t) is a strongly continuous semigroup on X, but the Nemytskij operator $ maps out
of X for almost any choice of H. The main idea is to embed X into a larger space X®*
(called X sun star) which is defined in terms of a combination of properties of the space
X and the semigroup 7. On X* there acts the sun star semigroup 7%*(¢) : X©* — X©*
which is an extension of T" onto X®*. Using this extension we arrive at the following

Definition 1.1 (Variation of constants formula). Let T > 0. The pair <Z) e C([0,7],X)
is called a mild (or weak) solution to (SH) if

@8):“”cﬁ+l%mwﬂmW@w@m&

Vo

This variation of constants formula in terms of the spaces X and X®* has the following
main advantages: First the Nemytskij operator $ is a smooth map from X into X®*,
And second the weak star integral fot T (t — $)9(u(s),v(s)) ds is norm continuous with
values in X (Lemma 2.6) so that we get back from the extended space X®* into the
phase space X. This in a certain sense allows to treat semilinear hyperbolic systems like
ordinary differential equations. By applying the implicit function theorem it follows that

2



mild solutions to (SH) generate a smooth Frechet differentiable semiflow in X (section
3, theorem 3.7). In particular this implies that the stability of stationary states for the
nonlinear hyperbolic system (SH) is determined by the stability of the linearized semigroup.
Moreover, our variation of constants formula can be used to prove smooth center manifold

theorem for (SH) [5].

We calculate representations of X® and X®* for hyperbolic systems with static (section 2)
and dynamic (section 4) boundary conditions. For static reflection boundary conditions
we prove that X®* is isomorphic to L*(]0,![,R™) and that the canonical injection j :
X — X©* which is defined by the pairing on X* (jz,2%) := (x® x)x~, is simply the
inclusion of X in L*. For dynamic boundary conditions we prove that X®* is isomorphic to
L>(]0,1[,R™) x R™ and one has to use the identification X ~ j(X) C X®* in the variation
of constants formula (Def. 4.5). In section 3 we apply the results and prove unique local
existence of mild solutions, the smooh semiflow generation (linearization theorem) which,
by a standard argument, implies theorem 3.9 on linearized stability. This theorem does
not include spectrum (of the generator) determined growth of the linearized semigroup.
For this a spectral mapping problem has to be solved. How the spectrum of the semigroup
is related to the spectrum of its generator is not obvious since (SH) is hyperbolic. It is
addressed in two other articles, see [6, 5].

The author would like to thank Julia Ehrt for reading the manuscript.

2 Variation of Constants Formula

The semigroup T'(t) to (Hg) shifts the components of u to the right according to the
characteristic speeds k;(x), 1 < i < ny, where u is reflected at z = [ via the matrix D to
v, the components of v are shifted to the left according to the characteristic speeds k1,
1 <i < no, and reflected at x = 0 to u via E.

We have the following formula for the semigroup 7'(¢), obtained by integrating along char-
acteristics:

Proposition 2.1. Let 't : [0,1] — R be the solution map to the characteristic equation

Soult) = ~k(i(1).

i.e. Ttx is the solution v;(t) with initial condition v;(0) = x (the maximal time t depends on
z). Let t* := min {t € R | J1<i<n, [(0) =1 V Ty 1<j<nl(1) = 0}. Then for 0 <t < ¢*

the semigroup T(t) to (Hy) is expressed by the formula

r0(2)-()



where for 1 <i <mny
ui(z) = ugi(a), if Ti(a) = =,

UZ(.CI?) = Zeijvoj(@j), ZfF:O(O) =z, t1 =1t—1 >0, F;l(&j) =0, 1< 75 < no,
Jj=1

and for 1 < 7 < no
vj(z) = vo;(a), if T}, 4 (a) = z,

ni
Uj(f[’) = Zdﬁum(ai), ifFi?lH(Z) =, tl =t — to > O, Ffl (CLZ) = l, ]_ S Z S ni.
i=1

We calculate the space X©.

Let A denote the infinitesimal generator of the semigroup 7'(t),

A=K-0,, D(A):{(Z) eX]A(Z) EX}.

Let T*(t) : X* — X* be the adjoint semigroup, i.e. T*(t)z* := z*T(t) for z* € X*.
T*(t) is not necessarily strongly continuous, it is continuous with respect to the weak star
topology, i.e. t — (T*(t)x*, x) is continuous for all z € X. The “sun” space X© is precisely
the subspace on which 7™ is strongly continuous, i.e.,

One has

X© =D(A*), (3)
where A* is the adjoint of the generator A of the semigroup 7" [2, §|.

By Riesz representation theorem to each functional A on C([0,!], R™) there corresponds a
unique row vector of Radon measures p : 8 — R"”, defined on the ¢ Algebra of Borel sets
B, so that

l
A(f):/o duf for feC(0,1],RY).

Moreover, there is a one to one correspondence of Radon measures p, and equivalence
classes [n] of functions of bounded variation (written as row vectors), which are right
continuous on |0, /[, expressed by

77(5) - 77(@) = Uy (]CL, b]) y  a be ]07 l] . (4)

According to (4) two functions are equivalent if their difference is constant on [0, [].



Due to the boundary conditions incorporated in the space X the dual space X* consists
of all bounded Radon measures (p,v), g : 8 — R™ and v : B — R, such that u is not
atomic at {0} and v is not atomic at {/}:

X" = {([p], [0]) € BV([0,1],R") | p, o are right continuous on |0, ([, (5)

p is continuous in 0, o is continuous in l}.

Let
K,(z) := diag (ki(x))lngr“? K,(r) := diag (ki(‘r))n1+1§i§n'

Theorem 2.2. ([(],[n]) € D(A*) and A*([C],[n]) = ([p],[c]) if and only if there exist
representatives p € [p|, ¢ € [o] which satisfy

p()+e(l)D =0, (p(0)E+45(0))D =0

[C()] = [— /0. p(x) K () dx} . ()] = [/o (P(0)E +5(0) — &(z)) K, (x)dx| . (6)
Proof. Suppose ([¢], []) € D(A") and A” ([¢], [n]) = ([p], [0]). This means that

Y(u,v) € D(A) : <([g], ), A (Z)> _ /O e Ko By + / ' Koo (7)

0

! !
:/ d,upu—i-/ dpsv
0 0

= (p() + o)D) u(l) = (p(0)E + 7(0)) v(0)

1 !
—/ p&vudx—/ o 0v dzx.
0 0

By choosing an appropriate pair of representatives we can assume that
(p(l) + (1) D) = 0. (8)
Let (u,)new be a sequence of smooth and bounded maps from [0, ] into R™ so that

i
Kuaxun —n—oo X[s1,t1]€i

un(0) = Jpun(0) = dpun(l) = 0.

where 0 < 51 <t <, X[s;,1,] denotes the characteristic function to the interval [s1,t1] and
ey is the i-th canonical basis in R™. Further choose smooth v, : [0,]] — R"* with

Kva:vvn ? N—00 X[sg,tg}cna

U (0) = 0,v,(0) = Oy, (1) =0,



where the column vector ¢, € R™ is determined by the boundary condition v,,(l) = Du,(l).
Then

to -1 t1
Crn —n—oo ( K (z) dx) D K (z)dze! =:c.

S1

By construction (u,,v,) € D(A) and by inserting (u,,v,) into (7), using the normalization
(8), and passing n — oo we get

(C(t) = Clo) el + (alts) = nis))e == [ pla) K, (@) doet [ o), () dae

Hence

Vocmenat : (1) — C(s1) = — / ple) K (x) da (9)

S1

Since we use the representation (5) ¢ is continuous at z = 0, but it may have a jump at
xz =1[. Using (9) and (8) we get from (7) V(u,v) € D(A) :

l l
/0 dpiy K00 = — (C(1) = C(1-)) Ku(Ddu(l) — (p(0)E + 5(0)) w(0) — / o dudr. (10)

Choose (uy,v,) € D(A) so that d,u,(l) = 0, K,0xvn —n—oo €7 X[s1,t:), Where e} € R™ is
the j-th unit vector in R and 0 < s; < t; < [. Clearly, such exist with v,(l) —,_ 0,
0 (0) = — fstll K, '(z) dzey. Putting such (uy,v,) into (10) and passing to the limit
we get, since 7 is right continuous in [,

VOSMSUSZ : 77(751) - 77(31) = / 1 (p(O)E + U(O) - O'(l‘)) Kgl(l‘) dz. (11)

S1

From (11) and (10) we get
Viwwenw) : (C(1) = ((1=)) Ku(D)0zu(l) + (p(0) E + ¢(0)) Du(l) = 0.

Hence

For [(] and [n] satisfying (6) we have for the total variation of the measures

licllvar = 10K Lo,
enllvar = || (p(0)E + o(0) — &) K || Loy



Hence Theorem 2.2 and (3) yield that X© is just the space of Radon measures who have
an L' density:

X© = {(,u, v)e X" | ulA) = /Ap(x) dx,v(A) = /Aa(x) dz, (p,0) € L'([0,1,R"), A € %},

where [l#lly,, = llpllss. [/l = o]l 5. We have proven

Theorem 2.3. X© is isomorphic to L*([0,1], R™). For (p,o) € L'([0,1], R") and (Z) €eX

the dual pairing is given by

(p, ), (Z)“* _ /0 (e )u(z) de + /0 ' o(@)o(a) dr.

It follows that X©* := (X®)* can be indentified with L*>([0,], R™). Using this identifica-
tion the canonical inclusion

J:X — X9 (jx,2%) = (29, 1) x~,
becomes the standard inclusion of X into L>([0, ], R™). Moreover, it is straightforward to
calculate T® = T} and T = (T®)" on L' and L*, respectively. Indeed, for “)ex
X v

let T'(t) (Z) =: (Z) Then for (¢,n) € L'([0,{], R") ~ X® we have

oo (1)) = (o () = [cwitar+ [ i)
/ E@yulz) dz + / H(@)o() de,

where ( is obtained by shifting ¢ to the left with characteristic speeds —K, and extending
at x = [ with nD, the whole multiplied by a Jacobian. 7 is obtained by shifting 1 to the
right with characteristic speeds — K, and extending at x = 0 with (E, the whole multiplied
by a Jacobian. Using this notation

T°(¢,n) = (¢, 7).

For (Jgf ) € L([0,1], R") ~ X and (¢, n) € LM([0,1], R") ~ X© we have

o (1) = (6 () = [cws@ s [ it s

/ () f () do + / n(@)g(x) de.
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Here f and g are defined as @ and v in an almost everywhere sense on L. So
~()-0)
g g
We have proven

Theorem 2.4 (Representation of X®* and T%*). X®* is isomorphic to L>([0,1],R™).
A formula for T®* on X®* is given as for T in Proposition 2.1. Hence T®* is just the
extension of T to L>([0,1], R™).

From the formula in Proposition 2.1 it follows that ¢t — Tz (z € X®*) is strongly
continuous if and only if z € X. This means that T is ®-reflexive on X:

X9 =3 (X) ~ X.
Further note

Remark 2.5. 7% : X©* — X%* is weak star continuous, but not Bochner measurable.

We have the following important

Lemma 2.6. Let f:[0,T] — X®* be norm continuous. Then the weak-star integral

t
tr—>/ T (t — s)f(s)ds (12)
0
18 norm continuous and takes values in X.

Lemma 2.6 is known for general sun reflexive semigroups [2, Lemma 2.1, p.54|. We give a
simple alternative proof which does not use sun reflexivity:

Proof. Let Ty(t) be the extension of T'(t) onto the space L?([0, ], R"), defined as in Proposi-
tion 2.1. Then Ty(¢) is strongly continuous. Further let A5 denote its infinitesimal generator
with domain D(Ay) = {(u,v) € WH2([0,1], R") | u(0) = Ev(0), v(l) = Du(l)}.

Since f : [0,7] — X®* is norm continuous, there exists a sequence fy : [0,7] — X®* of
smooth maps so that f, — f uniformly on [0, 7] with respect to the norm of X®*. By
standard semigroup theory we have

/0'T®*(- ) fu(s) ds — /0 Ty(- — 8)fu(s) ds € C([0, T], D(As)) — C((0,T], X).
Since we have for ¢ € [0, 7]
| 7o =9 ) = i) s

it follows that (12) belongs to C'([0,T7], X). O

< sup [|[T9°(") |l cxon Tl f = fellegorxe)
XO* rel0,T7]

Lemma 2.6 leads us to Definition 1.1.



3 Smooth Semiflow

In this section we use Definition 1.1 and prove local existence, uniqueness and Fréchet
differentiability of the solution map in X. We show the existence of a smooth semiflow on
X for (SH). Due to Lemma 2.6 and Lemma 3.2 the proofs work straightforwardly as in
the theory of ODEs.

We need the following assumptions on H:
Definition 3.1. We say that the nonlinearity H : )0,l[[xR" — R", H = H(x, z), € ]0,1],
z = (u,v) € R", satisfies the C* Carathéodory condition, k > 1, if:

e Fora.a. x €)0,l[ H(x,-) € C*(R™) and H(-,z) is measurable for all = € R™.

0 H (z,2)
0z*

o For all compact IC C R™ there exists a constant M > 0 such that H
0<i<k, alzeK and a.a. x €]0,l].

< M for

e For all compact K C R™ and € > 0 there exists a 6 > 0 such that for all z1 € IC,

k k
29 € R™ with ||z1 — 22]| < § and a.a. x € ]0,1[ we have Ha Ig;ﬁ’zl) — 2 Iggﬁ’”) < €.

One of the main advantages of using the space X together with its sun dual X®* is based
on the following simple

Lemma 3.2. If H satisfies the C* Carathéodory condition then the Nemytskij operator
9 (u,v) (z) := H(z,u(x),v(zx)) is a C* smooth map from X into X*.

Theorem 3.3 (Unique local existence). For any (ZO) € X there exists a 6 > 0, de-
0

pending only on || (7;0) lx, $ and T(t), such that (SH) has a unique weak solution
0

(Z) € C([0, 9], X) with u(0) = ug, v(0) = vy.

Proof. Let 0 < < 1. By Lemma 2.6 the map

G (“) (t) := T(¢) (“0) + /0 t T (t — $)$(u(s), v(s)) ds (13)

(% Vo

maps C([0,d], X) into itself. Define the closed subspace

(g) (t) — T(t) (gg) < 1}.

X

Bs :{(Z) e C([0,48], X) | for t € [0, ] '




Since ) is locally Lipschitz on X with values in X®* there exists L > 0, depending only
<ZO) , $ and T'(t) such that if zq, zo € Bs then
0

X
1G(21)(t) = G(22) ()|l x < L ||lz1 — 22|l o(po5,x) - (14)
Because $) is locally bounded there exists M > 0 such that for z € Bs

'g (g) (t) - T(#) (ZS) /0 T (1 — 8)(u(s), o(s) ds
<Ms  fortel0,d].

Therefore (14) and (15) yield that for sufficiently small § > 0 G maps Bjs into itself and
becomes a contraction. By Banachs contraction mapping theorem G has a fixed point in
Bs. O

on

(15)

X X Ox

Theorem 3.4 (Regularity). Let <Z) € C([0,T],X) be a weak solution to (SH) with
initial data ( ) e Wtr(]0,1[,R"™), p € |1,00[. Then (Z) e C([o,T),wtrqo,I[,R")) N
C*([0,T), LP(]0,1[,R™)) and (SH) holds in a classical sense.

Proof. Let T,(t) be the extension of T'(¢) onto the space LP([0,!], R"™), defined as in Propo-

sition 2.1. T),(t) is strongly continuous. Further let A, denote its infinitesimal generator
with domain D(A,) = W'P(J0,{[,R")NX. Let h>0and 0 <t <t+h<T

() wsn=(4) 0= @ -nro (1)

+ / T (t — 3) (9(u(s + h),v(s + h)) — Hu(s),v(s))) ds
o
+ /0 T*(t +h — 5)9(u(s),v(s)) ds
Because (z) € C([0,T], X) there exists L > 0 so that

19 (u(s + h),v(s + h)) = Huls), v($)| o(o.1.mm)
<L|[(uls + h),v(s + h)) = (u(s), v() 0., - (16)

Hence

/0 T (t = s) (9(uls + h), v(s + h)) = H(u(s),v(s))) ds

Lr([0,]],R™)

[ = 9 (Oluls 1)l + 1) = Slu(s),v(s) ds

Lr([0,l],R™)

<L . ITo ()l J s + ), 0s + ) = (u(s), 00 ) oo ey ds-

rel0

10



Moreover,

Lr([0,]],R"™)

[ nma, ()
» ()

h
/ T (t 4+ h — )9 (u(s),v(s)) ds
0 X Ox
< h sup HTQ*(T)H Hﬁ(u:UwC([O,T},X@*)'

r€l0,7T)
Hence there exists ¢ > 0 so that
t
< hc+c /
Lr 0

B)esn-(el, zeve ) eon- ()0

Applying Gronwalls Lemma yields that ¢ — (Z) (t) is Lipschitz from [0,7] into LP. By

-1 (1)

Vo

Lr([0,]],R™)

)

<1 sup ||Tp<r>||]
Lr([0,]],R"™)

rel0,7]

and

/o T*(t +h — )9 (u(s),v(s)) ds

S ’

Lr([0,]],R"™)

ds.

Lp

(16) t — $H(u(t),v(t)) is Lipschitz from [0,7] into LP. Since 1 < p < oo the space LP is
reflexive, so we have

9(u,v) € Wh=([0,T], LF([0,1],R™)).

Then by standard semigroup theory [1, Proposition 4.1.6, p.51| we get for

At) = /0 T (t — )9 (u(s), v(s)) ds = /0 T (t — )9 (u(s), v(s)) ds
that

2 € O([0,T], D(4,)) N C1([0,T], L7(0,1[ ,R")) and %Z(t) = Ayz(t) + H(=(1)).

O

For zp € X let w = w(zp) € ]0, 00] denote the maximal time up to which the solution with
initial data z, exists, i.e.

w(zo) := sup{t € R | there exists a mild solution z € C([0, ], X) with 2(0) = z,}.
The following is a standard consequence of Theorem 3.3

Theorem 3.5. For any zy € X either

1) w(zp) = 00

or

1) w(zg) < 00 and limyysy) [|2(t)||x = oo, where z : [0,w(z)] — X denotes the weak
solution with z(0) = 2.

11



Theorem 3.6. Let z € C([0,T],X) be a weak solution of (SH) up to T. Then there
exists a neighborhood U of z(0) in X such that for all yo € U there is a weak solution
y € C([0,T],X) of (SH) satisfying y(0) = yo.

There exists a constant ¢ > 0 such that for all yo € U

12(8) =yl x < ¢ll2(0) = yollx -
Proof. Let M := supy<,<r ||T(r)|| + 1 and L be a Lipschitz constant for ) on the Ball

{x eX||zlly <1+ sﬁpBSTST ||z(7“)||X} Then for t € [0, T] such that SUP << ly(r)||x <
1+ supg<,<r || 2(7)]| x We have

ly(t) = 2Ol x < M llyo — 20l +/O ML |ly(s) = 2(s)] x ds.

Gronwall’s inequality yields

ly(t) — 2()llx < Me™" lyo — 2ol - (17)
Set
U={yeX|lly—zly<M'e™™}.
Hence for yo € U and ¢ € [0,T] ||y(¢)|| < 1+ ||z(¢)|| and (17) holds. O

Suppose there exists a weak solution z € C([0,7], X) of (SH). Then according to Theo-
rem 3.6 there exists an open neighborhood U of z(0) in X so that we can define a solution
map

S U — X, S'y) :=y(t) (te€]0,T]). (18)

Theorem 3.7 (Smooth semiflow property). For each t € [0,T] the map S*: U — X is C*
smooth. The map (t,u) — Stu is continuous from [0,T] x U into X. The total derivative
DS satisfies the equation

() =25 (i) () =70 (i) + [ 70000000 (j0)) s

Proof. For z = (z) € C([0,7],X) and initial data zy = (?;o) € X the operator G(z),
0

defined in formula (13), maps C([0,7],X) into itself (Lemma 2.6). To emphasize the
dependence on z; we write G(z, zp). Define

F:C(0,T],X) x X = C([0,T], X), (F(z,20))(t) :==(G(z,20)) (t) — 2(t).

By assumption for each zy € U the equation F(z,2y) = 0, z € C([0,7], X), has a unique
solution z = (o).

12



G is C* from C([0,T], X)x X into C([0, T, X ) and we have for h; € C([0,7],X),1 < j <k,
tel0,7]

(gjf(z 20)hs - .hj) (1) :/0 T (t — ) D $(2(s)) (hi(s))1<i<; ds. (19)

Indeed, for 7 = 1 we have

t

I:=G(z+ h1,20)(t) — G(z, 20)(t) — / TO*(t — 8)D$H(2(s))hi(s) ds

0

_ /0 t TO(t — s) [—Dﬁ(z(s))hl(s) +9(2(s) + hu(s)) — ﬁ(z(s»} ds
_ /0 T — 8 /0 1 [—Dg(z(s)) + D$(2(s) +eh1(s))}h1(s) df ds

Therefore, by the uniform continuity of the derivative of H on compact sets, see Defini-
tion 3.1, we have

I
Ileqorx. / 17t = 9)]| ;o / |=D$H(=()) + DH(=(s) + 0h1(5)) | o o) A6 ds
||h1HC[OT]X) 7

Ilegor. 10,
By induction one obtains (19) for 1 < j < k.

A generalization of Banachs fixed point theorem yields that %F is an isomorphism from
C([0,T], X) onto itself: Indeed, assume w € C([0,T], X) is given. Then for h € C([0,T], X)
the equation 22 (z, z9)h = w is equivalent to Ph = h, where P : C([0,T], X) — C([0,T], X),

t
(Ph) (t) = / T (t — s)D$H(2(s))h(s) ds — w(t).
0
There exists a constant M > 0, depending only on T'(¢), $, z, so that for hy, hy € C([0,T], X)

[Phi(t) = Pha(t)llx < Mt |lha = hallogor x) -

Proceeding with P? = P o P we get ||[(P?h1)(t) — (P*ha)(t)||x < (Mt 171 = halloqpo.z1.5)-
By induction

(M T)

szhl - PZhQ HC([O,T],X) th hQHC([O,T},X) :

Thus for i sufficiently large P* is a contraction on C([0,T], X).
By applying the implicit function theorem we get that v is a C* smooth map from U into
C([0, 7], X). O
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Remark 3.8. The map x € U — Sz € C([0,7T], X) is C* smooth.

The formula in Theorem 3.7 means that the linearized flow <Z~“(t)> = DSt <Z”) is the

weak solution of the linearized system

)

i}“(t’x) + DH (z,u(t,z),v(t,x)) }:L“(t’x) :
(LH) ? (t x)) (h (t )

Let zg be a stationary state of the flow, i.e.
Slzg =29 fort>0.

Then the linearized flow DS*(z) is a Cy semigroup on X.

A standard consequence of Theorem 3.7 (see |7, Theorem 11.22|) is

Theorem 3.9 (Linearized Stability). Let zy be a stationary state. Suppose that the lin-
earized semigroup DS'(zo) is exponentially stable, i.e. there exist constants wy > 0 and

M > 0 so that

HDSt(ZO < Me " fort > 0.

M o
Then zq is exponentially stable for the nonlinear flow S*: There exists a neighbourhood U
of zo in X and constants N > 0, w € |0, wo[ so that for all z € U

w(z) =00 and ||z(t) — 2|l < Ne ™" fort > 0.
The natural question arises how to determine the stability of the semigroup DS*(z). A

standard method is to estimate the spectral bound of the operator

9,
K(m)% + Doy H(z,u(t,z),v(t,z)) + boundary reflection conditions

in the complexification of the space X. That this works is not obvious due to hyperbolicity
of (LH).

This problem is addressed in [6, 5].
4 Dynamic boundary conditions

In this section we briefly consider systems with dynamic boundary conditions:

14



ForO<z<landt >0

G (500) = x40 + a0, uta),
u(t,0) = Ev(t,0),
u(0, ) = up(x), v(0,z) = vo(x),

where F : C([0,{],R") — R"™ is C* smooth with bounded and uniformly continuous
derivatives on bounded sets.

Remark 4.1. If we cancel the u equation and put H = 0 then (SHD) simplifies to a
retarded functional differential. By choosing ny = ny, £ = 1I,, and H = 0 (SHD) becomes
a functional differential equation of neutral type [4, chapter 3].

We consider the prototype problem

(HDo) { 4

For the phase space we choose

X = {(u,v) € C([0,1], R") | u(0) = Bv(0)}.

As in Proposition 2.1 we can calculate the semigroup 7'(t) for (HDy): vy is shifted to the
left, reflected at x = 0 via E to u, and extended at x = [ by D times u plus the constant
vector vo(l) — Dug(l) (so that the solution stays continuous). The generator for T'(¢) is

given by A (z) = Ko, (Z) with domain

D(4) = {(u,v) € C1([0.1, R") | u(0) = Ev(0), K,(0)0,u(0) = BK,(0)9,v(0).
Ko ()d(l) = DKu(l)é?xu(l)}.

We use the representation

X* = {([p], [0]) € BV([0,1],R") | p, o are right continuous on |0, [, (20)

p is continuous in 0}.
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Theorem 4.2. ([(],[n]) € D(A*) and A*([C],[n]) = ([p],[c]) if and only if there exist
representatives p € [p|, & € [o] which satisfy

(1) =0, (1) =0, p(0)E+5(0) =0

and there exists a row vector ¢ € R™ so that

(O] = [em { SRS e 0 t<t ], (21)
) = [ {ff yds 0<t<t],

Proof. Suppose ([C],[n]) € D(A*) and A* ([¢], [n]) = ([p], [¢]). This means that

suo) e o) (004 (1)) = [ e Kovuus [ dpyicion )

! !
:/ dupu—l—/ dpi,v
0 0

p(Du(l) +a(l)v(l) = (p(0)E + o(0)) v(0)

I l
—/ p@xudx—/ o 0,vdx.
0 0

We normalize the representatives p and o such that

p(l) =0 and o(l) =0. (23)

For fixed 0 < s; < t; < [ we can choose a bounded sequence (u,,0) € D(A) such that
K Opty —n—oo X[s1,t1)¢; and insert it into (22). By passing to the limit we get

Yomeloa s C(0) = C(s1) == [ pla) K5 z) da 4

Note that we have chosen a representation of X* where ( is continuous at x = 0.

Inserting (23) and (24) into (22) we get since ( is allowed to have a jump at x =

(C(1) = C(1=)) Ku(Dsu(l) + / A1y K00 = — (p(0)E + 9(0)) v(0) - / 00,0 dx.

By taking a sequence (u,,v,) € D(A) such that v,(0) = 0, d,u,(l) = 0 and K,0,v, —n—co
X[Sl,tl]a where 0 S 51 S tl < l, we get

Vo<s;<ti<1 = (t1) —n(s1) = —/ 1 o(r)K; ' (x) da. (25)

S1
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So 7 is continuous in = 0 but may have a jump at x = [. Inserting (25), (23) and (24)
into (22) yields

V(u,v) € D(A) : ((C(1) = ¢(I=)) + (1) = n(l=)) D) Ku(1)dou(l) +(p(0) E + ¢(0)) v(0) = 0.

Hence
(€)= <=))+ () —n(=)) D=0 and p(0)E+0(0)=0.

From Theorem 4.2 and (3) we get

X© = {(u, v)e X" | u(A) = /Ap(x) dx — cDéy, v(A) = /Ao(x) dx + cdy,

(p,0) € LM([0,1],R™), ¢ € ]R”Q}.

Here §; : 8 — R is the dirac mass on {l} and ¢, p, o are written as row vectors.

Because ilyar = 1D] + olsgoq oy a0 [9]yar = el + o]l oayoe) we obtain that
X© is isomorphic to L([0,1], R") x R"2,

X©~ L'([0,1],R") x R".

We describe how TQ(t) acts on X. Let (pa g, C) € X0~ Ll([O, l]a Rn) x R™2. For <:j) eX

denote (qf) =T(t) (u) We have
v v

Hence 1

T(t)(p,0,c) = (ﬁ,&,c+/ o(z)dx).
v(t)
Here p is obtained from p by left translation using the characteristic speeds —K, and
extending at = [ with ¢ - D, multiplied by a Jacobian. & is obtained by right translation
of o with speeds —K, and extending at x = 0 with p - E, multiplied by a Jacobian. ~(t)
is a R™ vector where each component is the distance which each point z = [ has traveled
to the left during time ¢ using the characteristic speed K,.
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We use the standard identification
XO* ~ L*([0,1],R") x R™
f

and calculate 7% on L*°([0, ], R™) x R"2. For each column vector | g | € L>® x R and
d
row vector (p,o,¢) € L*([0,1], R™) x R"2 ~ X® we have

f f !
<Ww>g,mmm:<g,mﬁmf/oumm
d d 7(t)

:/Olpf(a:)dx—i—/olég(x)dx—l—/vl o(x)dx-d+c-d

()
- [ i@+ [ o@g @ e a

Now (g:d)(x) means left translation of g with characteristic speeds K, extending at z =
with D - f +d. f(z) means right translation of f with characteristic speeds K, extended
at v = 0 with £ - g.

Theorem 4.3. For sufficiently small t > 0

N[
" t) (g | = (g9,d)
d d

The canonical injection 7 : X — X©* takes the form

u
(u
)=
v(l) — Du(l)
The extended semigroup T%* is like T just that there is an additional freedom in extending
the left traveling solution v(¢,x) at z = [ by the formula
v(t,l) = Du(t,l)+d, deR™,

in a possibly discontinuous manner. If d = v(l) — Du(l) then the solutions stay in X, or
in other words j o T'(t) = T®* o j.

f f
According to (4.3) the map ¢t — T®*(¢t) | g | is strongly continuous if and only if | g | €
d d

J(X). Hence
X = j(X) ~ X.

18



Therefore Lemma 2.6 holds true. Moreover we have

Lemma 4.4. The map

is C* smooth.

In the following definition we need to identify X with j(X) C X®*.

Definition 4.5 (Variation of constants formula). Let T' > 0. The pair (u,v) € C([0,T], X)
is called a mild (or weak) solution to (SHD) if

u(t)) _ Uo oy oy ((Duls) v(s))
(i) =70 () = [re=o () »
The results of section 3 transfer to hyperbolic systems with dynamic boundary conditions
(SHD).
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