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1Abstra
t. Let S0 = 0, {Sn}n≥1 be a random walk generated by a sequen
eof i.i.d. random variables X1, X2, ... and let τ− := min {n ≥ 1 : Sn ≤ 0} and
τ+ := min {n ≥ 1 : Sn > 0}. Assuming that the distribution of X1 belongs to thedomain of attra
tion of an α-stable law, α 6= 1, we study the asymptoti
 behaviorof P(τ± = n) as n → ∞.1. Introdu
tion and main resultLet X, X1, X2, ... be a sequen
e of independent identi
ally distributed random vari-ables. Denote S0 = 0, Sn = X1 + X2 + ... + Xn. We assume that

∞
∑

n=1

1

n
P(Sn > 0) =

∞
∑

n=1

1

n
P(Sn ≤ 0) = ∞.This 
ondition means that {Sn}n≥0 is an os
illating random walk, and, in parti
ular,the stopping moments

τ− := min {n ≥ 1 : Sn ≤ 0} and τ+ := min {n ≥ 1 : Sn > 0}are well-de�ned proper random variables. Furthermore, it follows from the Wiener-Hopf fa
torization (see, for example, [3, Theorem 8.9.1, p. 376℄) that for all z ∈ (0, 1),
1 − Ezτ−

= exp

{

−
∞
∑

n=1

zn

n
P(Sn ≤ 0)

} (1)and
1 − Ezτ+

= exp

{

−
∞
∑

n=1

zn

n
P(Sn > 0)

}

. (2)Rogozin [15℄ has shown that the Spitzer 
ondition
n−1

n
∑

k=1

P (Sk > 0) → ρ ∈ (0, 1) as n → ∞ (3)holds if and only if τ+ belongs to the domain of attra
tion of a spe
trally positivestable law with parameter ρ. Sin
e (1) and (2) imply the equality
(1 − Ezτ+

)(1 − Ezτ−

) = 1 − z for all z ∈ (0, 1),one 
an dedu
e from the Rogozin result that (3) holds if and only if there exists afun
tion l(n) slowly varying at in�nity su
h that, as n → ∞,
P
(

τ− > n
)

∼ l(n)

n1−ρ
, P

(

τ+ > n
)

∼ 1

Γ(ρ)Γ(1 − ρ)nρl(n)
. (4)Doney [11℄ proved that the Spitzer 
ondition is equivalent to

P (Sn > 0) → ρ ∈ (0, 1) as n → ∞. (5)Therefore, both relations in (4) are valid under 
ondition (5).



2To get a more detailed information about the asymptoti
 properties of l(x) it isne
essary to impose additional hypotheses on the distribution of X. Rogozin [15℄has shown that l(x) is asymptoti
ally a 
onstant if and only if
∞
∑

n=1

1

n

(

P (Sn > 0) − ρ
)

< ∞. (6)It follows from the Spitzer-Rósen theorem (see [3, Theorem 8.9.23, p. 382℄) that if
EX2 is �nite, then (6) holds with ρ = 1/2, and, 
onsequently,

P(τ± > n) ∼ C±

n1/2
as n → ∞, (7)where C± are positive 
onstants. If EX2 = ∞ mu
h less is known about the formof l(x). For instan
e, if the distribution of X is symmetri
, then, 
learly,

∣

∣

∣

∣

P (Sn > 0) − 1

2

∣

∣

∣

∣

=
1

2
P (Sn = 0) . (8)Furthermore, a

ording to [14, Theorem III.9, p. 49℄, there exists C > 0 su
h thatfor all n ≥ 1,

P (Sn = 0) ≤ C√
n

.By this estimate and (8) we 
on
lude that (6) holds with ρ = 1/2. Thus, (7) is validfor all symmetri
 random walks. Assuming that P(X > x) = (xαl0(x))−1 , x > 0,with 1 < α < 2 and l0(x) slowly varying at in�nity, Doney [8℄ established for anumber of 
ases relationships between the asymptoti
 behavior of l0(x) and l(x) atin�nity.The aim of the present paper is to study the asymptoti
 behavior of the probabilities
P (τ± = n) as n → ∞.We assume throughout that the distribution of X is either non-latti
e or arithmeti
with span h > 0, i.e. the h is the maximal number su
h that the support of thedistribution of X is 
ontained in the set {kh, k = 0,±1,±2, ...} .Let

A := {0 < α < 1; |β| < 1} ∪ {1 < α < 2; |β| ≤ 1} ∪ {α = 2, β = 0}be a subset in R
2. For (α, β) ∈ A we write X ∈ D (α, β) if the distribution of Xbelongs to the domain of attra
tion of a stable law with 
hara
teristi
 fun
tion
Ψ(t) := exp

{

−c|t|α
(

1 − iβ
t

|t| tan
πα

2

)}

, c > 0, (9)and, in addition, EX = 0 if 1 < α ≤ 2. One 
an show (see, for instan
e, [16℄) thatif X ∈ D (α, β), then 
ondition (5) holds with
ρ =

1

2
+

1

πα
arctan

(

β tan
πα

2

)

∈ (0, 1). (10)Here is our main result.



3Theorem 1. Assume X ∈ D (α, β). If α ≤ 2 and β < 1, then, as n → ∞,
P
(

τ− = n
)

= (1 − ρ)
l(n)

n2−ρ
(1 + o(1)). (11)In the 
ase {1 < α < 2, β = 1} equality (11) remains valid under the additionalhypothesis

∫ ∞

1

F (−x)

x(1 − F (x))
dx < ∞. (12)Denote T− := min{n ≥ 1 : Sn < 0} and set

Ω(z) = exp

{

∞
∑

n=1

zn

n
P(Sn = 0)

}

=:

∞
∑

k=0

ωkz
k. (13)The next statement relates the asymptoti
 behavior of P (τ− = n) and P (T− = n).Theorem 2. If (11) holds, then

lim
n→∞

P (T− = n)

P (τ− = n)
= Ω(1).Applying Theorems 1 and 2 to the random walk {−Sn}n≥0, one 
an easily �nd anasymptoti
 representation for P (τ+ = n):Theorem 3. Assume X ∈ D (α, β). If α ≤ 2 and β > −1, then, as n → ∞,

P
(

τ+ = n
)

=
ρ

Γ(ρ)Γ(1 − ρ)n1+ρl(n)
(1 + o(1)). (14)In the 
ase {1 < α < 2, β = −1} equality (14) remains valid under the additionalhypothesis

∫ ∞

1

1 − F (x)

xF (−x)
dx < ∞. (15)In some spe
ial 
ases the asymptoti
 behavior of P (τ± = n) as n → ∞ is alreadyknown from the literature. Eppel [12℄ proved that if EX = 0 and EX2 is �nite, then

P
(

τ± = n
)

∼ C±

n3/2
. (16)Observe that in this 
ase EX2 < ∞ implies X ∈ D(2, 0).Asymptoti
 representation (16) is valid for all 
ontinuous symmetri
 (implying ρ =

1/2 in (5)) random walks (see [13, Chapter XII, Se
tion 7℄). Note that the restri
tion
X ∈ D(α, β) is super�uous in this situation.Re
ently Borovkov [2℄ has shown that if (3) is valid and

n1−ρ
(

P(Sn > 0) − ρ
)

→ const ∈ (−∞,∞) as n → ∞, (17)then (11) holds with ℓ(n) ≡ const ∈ (0,∞). Proving the mentioned result Borovkovdoes not assume that the distribution of X is taken from the domain of attra
tionof a stable law. However, he gives no explanations how one 
an 
he
k the validityof (17) in the general situation.



4Let χ+ := Sτ+ be the as
ending ladder height. Alili and Doney [1, Remark 1, p. 98℄have shown that (14) holds if Eχ+ is �nite. By Theorem 3 of [9℄ the assumption
Eχ+ < ∞ is equivalent to (15), i.e. for the 
ase {1 < α < 2, β = −1} our Theorem 3is (impli
itly) 
ontained in [1℄ . Alili and Doney analyzed the distribution of τ+only. Clearly, one 
an easily derive the statement of our Theorem 1 for the 
ase
{1 < α < 2, β = 1} from their result (for instan
e, applying Theorem 2). However,for these spe
trally one-sided 
ases we present an alternative proof, whi
h 
lari�esthe �typi
al� behavior of the random walk on the events {τ± = n}. See Se
tion 3.2and Se
tion 5 for more details.2. Auxiliary results2.1. Notation. In what follows we denote by C, C1, C2, ... �nite positive 
onstantswhi
h may be di�erent from formula to formula and by l(x), l1(x), l2(x)... fun
tionsslowly varying at in�nity whi
h are, as a rule, �xed.For x ≥ 0 let

Bn(x) := P
(

Sn ∈ (0, x]; τ− > n
)

,

bn(x) := Bn(x + 1) − Bn(x) = P
(

Sn ∈ (x, x + 1]; τ− > n
)

.Introdu
e the renewal fun
tion
H(x) := 1 +

∞
∑

k=1

P
(

χ+
1 + ... + χ+

k ≤ x
)

, x ≥ 0, H(x) = 0, x < 0,where {χ+
i

}

i≥1
is a sequen
e of i.i.d. random variables distributed the same as χ+.Observe that by the duality prin
iple for random walks for x ≥ 0

1 +
∞
∑

j=1

Bj(x) = 1 +
∞
∑

j=1

P
(

Sj ∈ (0, x]; τ− > j
)

= 1 +
∞
∑

j=1

P (Sj ∈ (0, x]; Sj > S0, Sj > S1, ..., Sj > Sj−1)

= H(x). (18)In the sequel we deal rather often with slowly varying fun
tions and, following Doney[9℄, say that a slowly varying fun
tion l∗(x) is an α-
onjugate of a slowly varyingfun
tion l∗∗(x) when the following relations are valid
y ∼ xαl∗(x) as x → ∞ if and only if x ∼ y1/αl∗∗(y).It is known that if X ∈ D (α, β) with α ∈ (0, 2), and F (x) := P (X ≤ x), then

1 − F (x) + F (−x) ∼ 1

xαl0(x)
as x → ∞, (19)where l0(x) is a fun
tion slowly varying at in�nity. Besides, for α ∈ (0, 2),

F (−x)

1 − F (x) + F (−x)
→ q,

1 − F (x)

1 − F (x) + F (−x)
→ p as x → ∞, (20)



5with p + q = 1 and β = p − q in (9). Let {cn}n≥1 be a sequen
e spe
i�ed by therelation
cn := inf

{

x ≥ 0 : 1 − F (x) + F (−x) ≤ n−1
}

. (21)In view of (19) this sequen
e is regularly varying at in�nity with index α−1, i.e.
cn = n1/αl1(n), (22)where l1(x) is a slowly varying fun
tion being an α-
onjugate of l0(x):

cα
nl0(cn) ∼ n as n → ∞. (23)Moreover,
Sn

cn

d→ Yα as n → ∞,where Yα is a random variable obeying an α−stable law.For the 
ase α = 2 the normalizing sequen
e {cn}n≥1 requires a spe
ial des
ription.Let V (x) =
∫ x

−x
y2dF (x) be the trun
ated varian
e of X. Clearly, lim infx→∞ V (x) >

0 for every nondegenerate random variable X. Furthermore, it is known ([13℄,Chapter XVII, Se
tion 5) that X ∈ D(2, 0) if and only if V (x) varies slowly atin�nity. In this 
ase the normalizing sequen
e cn satis�es
V (cn)

c2
n

∼ C

n
as n → ∞. (24)The last relation means that (22) holds with α = 2 and l1(x) is a 2-
onjugate of

1/V (x). Besides,
lim
x→∞

x2(1 − F (x) + F (−x))

V (x)
= 0. (25)2.2. Basi
 lemmas. Now we formulate a number of results 
on
erning the distri-butions of the random variables τ−, τ+ and χ+. Re
all that a random variable ζis 
alled relatively stable if there exists a nonrandom sequen
e dn → ∞ as n → ∞su
h that

1

dn

n
∑

k=1

ζk
p→ 1 as n → ∞,where ζk

d
= ζ, k = 1, 2, ... and are independent.Lemma 4. (see [15℄ and [10, Theorem 9℄) Assume X ∈ D(α, β). Then, as x → ∞,

P
(

χ+ > x
)

∼ 1

xαρl2(x)
if αρ < 1, (26)and χ+ is relatively stable if αρ = 1.Lemma 5. Suppose X ∈ D(α, β). If αρ < 1, then, as x → ∞,

H(x) ∼ xαρl2(x)

Γ(1 − αρ)Γ(1 + αρ)
. (27)If αρ = 1, then, as x → ∞,

H(x) ∼ xl3(x), (28)



6where
l3(x) :=

(
∫ x

0

P
(

χ+ > y
)

dy

)−1

, x > 0.In addition, there exists a 
onstant C > 0 su
h that in both 
ases
H(cn) ≤ Cnρl(n) for all n ≥ 1. (29)Proof. If αρ < 1, then by [13, Chapter XIV, formula (3.4)℄

H(x) ∼ 1

Γ(1 − αρ)Γ(1 + αρ)

1

P(χ+ > x)
as x → ∞.Hen
e, re
alling (26), we obtain (27).If αρ = 1, then (28) follows from Theorem 2 in [15℄.Let us demonstrate the validity of (29). We know from [15℄ (see also [7℄) that

τ+ ∈ D(ρ, 1) under the 
onditions of the lemma and, in addition, χ+ ∈ D(αρ, 1) if
αρ < 1. This means, in parti
ular, that for sequen
es {an}n≥1 and {bn}n≥1 spe
i�edby

P(τ+ > an) ∼ 1

n
and P(χ+ > bn) ∼ 1

n
as n → ∞, (30)and ve
tors {(τ+

k , χ+
k )}k≥1, being independent 
opies of (τ+, χ+), we have

1

an

n
∑

k=1

τ+
k

d→ Yρ and 1

bn

n
∑

k=1

χ+
k

d→ Yαρ as n → ∞. (31)Moreover, it was established by Doney (see Lemma in [10℄, p. 358) that
bn ∼ Cc[an] as n → ∞, (32)where [x] stands for the integer part of x. Therefore, cn ∼ Cb[a−1(n)], where, with aslight abuse of notation, a−1(n) is the inverse fun
tion to an. Hen
e, on a

ount of(30),

P(χ+ > cn) ∼ C1P(χ+ > b[a−1(n)]) ∼
C1

a−1(n)

∼ C2P(τ+ > a[a−1(n)]) ∼ C3P(τ+ > n) ∼ C4

nρl(n)
. (33)This proves (29) for αρ < 1.If αρ = 1, then, instead of the se
ond equivalen
e in (30), one should de�ne bn by

1

bn

∫ bn

0

P(χ+ > y)dy ∼ 1

n
as n → ∞(see [15, p. 595℄). In this 
ase the se
ond 
onvergen
e in (31) transforms to

1

bn

n
∑

k=1

χ+
k

p→ 1 as n → ∞,



7while (33) should be 
hanged to
1

cn

∫ cn

0

P(χ+ > y)dy ∼ C1

b[a−1(n)]

∫ b[a−1(n)]

0

P(χ+ > y)dy ∼ C1

a−1(n)

∼ C1P(τ+ > a[a−1(n)]) ∼ C2P(τ+ > n) ∼ C3

nρl(n)
.The lemma is proved. �The next result is a part of Corollary 3 in [9℄.Lemma 6. Assume X ∈ D(α, 1) with 1 < α < 2 (implying ρ = 1 − α−1). Then

P(τ− > n) ∼ C

cn
∼ C

n1/αl1(n)
as n → ∞if and only if

∫ ∞

1

F (−x)

x(1 − F (x))
dx < ∞.Now we prove a useful result whi
h may be viewed as a statement 
on
erning �small�deviations of Sn on the set {τ− > n}.Let h be the span and gα,β(x) be the density of a stable distribution with parameters

α and β in (9) (we agree to 
onsider h = 0 for non-latti
e distributions). For a set
A taken from the Borel σ-algebra on (0,∞) denote

µ(A) = gα,β(0)

∫

A

H(x − h)ν(dx),where ν is the 
ounting measure on {h, 2h, 3h, . . .} in the arithmeti
 
ase and theLebesgue measure on (0,∞) in the non-latti
e 
ase.Lemma 7. Suppose X ∈ D(α, β). Then
lim

n→∞
ncnP(Sn ∈ A; τ− > n) = µ(A) (34)for any A taken from the Borel σ-algebra on (0,∞).Proof. Assume �rst that the distribution of X is non-latti
e. Using the Stone lo
allimit theorem (see, for instan
e, [3, Se
tion 8.4, p. 351℄) it is not di�
ult to showthat for λ > 0,

lim
n→∞

cnE
(

e−λSn ; Sn > 0
)

= gα,β(0)

∫ ∞

0

e−λydy =
gα,β(0)

λ
. (35)Set

G(λ) :=
∞
∑

n=1

E
(

e−λSn ; Sn > 0
)

n
(36)and spe
ify a sequen
e of measures

µn(dx) := ncnP(Sn ∈ dx; τ− > n), n ≥ 1.



8Sin
e {cn}n≥1 varies regularly and (35) is valid, applying Theorem 2 from [6℄ to theequality
∞
∑

n=0

zn
E
(

e−λSn ; τ− > n
)

= exp

{

∞
∑

n=1

zn

n
E
(

e−λSn ; Sn > 0
)

} (37)shows that for all λ > 0,
lim

n→∞
ncnE

(

e−λSn ; τ− > n
)

= lim
n→∞

∫ ∞

0

e−λxµn(dx)

=
gα,β(0)

λ
exp {G(λ)} . (38)It follows from (37) that

gα,β(0)

λ
exp {G(λ)} =

gα,β(0)

λ

(

1 +
∞
∑

k=1

E
(

e−λSk ; τ− > k
)

)

=
gα,β(0)

λ
+

gα,β(0)

λ

∫ ∞

0

e−λx

(

∞
∑

k=1

P
(

Sk ∈ dx; τ− > k
)

)

=
gα,β(0)

λ
+

gα,β(0)

λ

∫ ∞

0

e−λx

(

∞
∑

j=1

P(χ+
1 + . . . + χ+

j ∈ dx)

)

,where at the last step we have used the duality prin
iple. Integrating by parts andre
alling the de�nition of H(x), we get
gα,β(0)

λ
exp {G(λ)} =

gα,β(0)

λ
+ gα,β(0)

∫ ∞

0

e−λx(H(x) − 1)dx

= gα,β(0)

∫ ∞

0

e−λxH(x)dx. (39)Combining (38) and (39) and using the 
ontinuity theorem for Lapla
e transforms,we obtain (34) for non-latti
e distributions.In the arithmeti
 
ase we have by the Gnedenko lo
al limit theorem
lim

n→∞
cnE

(

e−λSn ; Sn > 0
)

= gα,β(0)
∞
∑

k=1

e−λhk =
gα,β(0)e−λh

1 − e−λh
. (40)Pro
eeding as by the derivation of (39), we obtain

gα,β(0)e−λh

1 − e−λh
exp {G(λ)} =

gα,β(0)e−λh

1 − e−λh

(

1 +

∞
∑

k=1

E
(

e−λSk ; τ− > k
)

)

=
gα,β(0)e−λh

1 − e−λh
+

gα,β(0)e−λh

1 − e−λh

∞
∑

j=1

e−λhj (H(hj) − H(hj − h))

= gα,β(0)e−λh
∞
∑

j=0

e−λhjH(hj) = gα,β(0)

∞
∑

k=1

e−λhkH(hk − h).This, together with (40), �nishes the proof of the lemma. �



9Lemma 8. Under the 
onditions of Theorem 1 for any α ∈ (0, 2) there exists C > 0su
h that for all y > 0 and all n ≥ 1,
bn(y) ≤ C

cn

l(n)

n1−ρ
(41)and

Bn(y) ≤ C (y + 1)

cn

l(n)

n1−ρ
. (42)Proof. For n = 1 the statement of the lemma is obvious. Let {S∗

n}n≥0 be a randomwalk distributed as {Sn}n≥0 and independent of it. One 
an easily 
he
k that forea
h n ≥ 2,
bn(y) = P

(

y < Sn ≤ y + 1; τ− > n
)

=

∫ ∞

0

P

(

y − S[n/2] < Sn − S[n/2] ≤ y + 1 − S[n/2]; S[n/2] ∈ dz; τ− > n
)

≤
∫ ∞

0

P

(

y − z < S∗
n−[n/2] ≤ y + 1 − z; S[n/2] ∈ dz; τ− > [n/2]

)

≤ P

(

τ− > [n/2]
)

sup
z

P

(

z < S∗
n−[n/2] ≤ z + 1

)

. (43)Sin
e the density of any α-stable law is bounded, it follows from the Gnedenkoand Stone lo
al limit theorems that if the distribution of X is either arithmeti
 ornon-latti
e, then there exists a 
onstant C > 0 su
h that for all n ≥ 1 and all z ≥ 0,
P (Sn ∈ (z, z + ∆]) ≤ C∆

cn
. (44)Hen
e it follows, in parti
ular, that, for any z > 0,

P (Sn ∈ (0, z]) ≤ C(z + 1)

cn
. (45)Substituting (44) into (43), and re
alling (22) and properties of regularly varyingfun
tions, we get (41). Estimate (42) follows from (41) by summation. �Lemma 9. Under the 
onditions of Theorem 1 for any α ∈ (1, 2] there exists C > 0su
h that for all n ≥ 1 and all x > 0,

bn(x) ≤ C

(

H(x + 1)

ncn

+
l(n)

n1−ρ

x + 1

c2
n

) (46)and
Bn(x) ≤ C

(

(x + 1) H(x + 1)

ncn
+

l(n)

n1−ρ

(x + 1)2

c2
n

)

. (47)Proof. A

ording to formula (5) in [12℄,
nBn(x) = P (Sn ∈ (0, x]) +

n−1
∑

k=1

∫ x

0

Bn−k(x − y)P (Sk ∈ dy) . (48)



10Hen
e we get
nbn(x) = P (Sn ∈ (x, x + 1]) +

n−1
∑

k=1

∫ x

0

bn−k(x − y)P (Sk ∈ dy)

+

n−1
∑

k=1

∫ x+1

x

Bn−k(x + 1 − y)P (Sk ∈ dy) . (49)Using (41), (45), (22), the inequality 1/α < 1 and properties of slowly varyingfun
tions, we dedu
e
[n/2]
∑

k=1

∫ x

0

bn−k(x − y)P (Sk ∈ dy) ≤ C

[n/2]
∑

k=1

l(n − k)

cn−k (n − k)1−ρ P (Sk ∈ [0, x])

≤ C1 (x + 1)

[n/2]
∑

k=1

1

ck

l(n − k)

cn−k (n − k)1−ρ

≤ C2
x + 1

cn

l(n)

n1−ρ

[n/2]
∑

k=1

1

ck

≤ C3 (x + 1)
nρl(n)

c2
n

. (50)On the other hand, in view of (44) and monotoni
ity of Bk(x) in x we 
on
lude(assuming that x is integer without loss of generality and letting Bk(−1) = 0 and
H(−1) = 0) that

n
∑

k=[n/2]+1

∫ x

0

bn−k(x − y)P (Sk ∈ dy)

≤
n
∑

k=[n/2]+1

x
∑

j=0

(Bn−k(x − j + 1) − Bn−k(x − j − 1)) P (Sk ∈ (j, j + 1])

≤
n
∑

k=[n/2]+1

x
∑

j=0

(Bn−k(x − j + 1) − Bn−k(x − j − 1))
C

ck

≤ C

cn

x
∑

j=0

∞
∑

k=0

(Bk(x − j + 1) − Bk(x − j − 1))

=
C

cn

x
∑

j=0

(H(x − j + 1) − H(x − j − 1))

≤ C

cn
(H(x) + H(x + 1)) ≤ 2C

cn
H(x + 1),where for the intermediate equality we have used (18). This gives

n
∑

k=[n/2]+1

∫ x

0

bn−k(x − y)P (Sk ∈ dy) ≤ C

cn
H(x + 1). (51)



11Sin
e x 7→ Bn(x) in
reases for every n,
n−1
∑

k=1

∫ x+1

x

Bn−k(x + 1 − y)P (Sk ∈ dy) ≤
n−1
∑

k=1

Bn−k(1)P(Sk ∈ (x, x + 1]). (52)Further, in view of (42) and (44) we have
[n/2]
∑

k=1

Bn−k(1)P(Sk ∈ (x, x + 1]) ≤ C1

cn

l(n)

n1−ρ

[n/2]
∑

k=1

1

ck
≤ C2n

ρl(n)

c2
n

. (53)Using (44) on
e again yields
n−1
∑

k=[n/2]+1

Bn−k(1)P(Sk ∈ (x, x + 1]) ≤ C

cn

n−1
∑

k=[n/2]+1

Bn−k(1) ≤ C

cn

H(1). (54)Substituting (53) and (54) into the right hand side of (52), we obtain the upperbound
n−1
∑

k=1

∫ x+1

x

Bn−k(x + 1 − y)P (Sk ∈ dy) ≤ C
(nρl(n)

c2
n

+
1

cn

)

. (55)Combining (50), (51), (55), (44) and (49) proves (46). Observing that H(x) isnonde
reasing and integrating (46), we get estimate (47). �To prove Theorem 1 in the 
ase α = 2 we need the following te
hni
al lemma whi
hmay be known from the literature.Lemma 10. Let w(n) be a monotone in
reasing fun
tion. If, for some γ > 0, thereexist slowly varying fun
tions l∗(n) and l∗∗(n) su
h that, as n → ∞,
∞
∑

k=n

w(k)

kγ+1l∗(k)
∼ 1

nγl∗∗(n)
,then, as n → ∞,

w(n) ∼ γ
l∗(n)

l∗∗(n)
.Proof. Let, for this lemma only, ri(n), n = 1, 2, ...; i = 1, 2, 3, 4 be sequen
es of realnumbers vanishing as n → ∞. For ∆ ∈ (0, 1) we have by monotoni
ity of w(n) andproperties of slowly varying fun
tions

w([∆n])

n
∑

k=[∆n]

1

kγ+1l∗(k)
= w([∆n])

1 + r2(n)

γnγl∗(n)

(

∆−γ − 1
)

≤
n
∑

k=[∆n]

w(k)

kγ+1l∗(k)
=

1 + r1(n)

nγl∗∗(n)

(

∆−γ − 1
)

≤ w(n)
n
∑

k=[∆n]

1

kγ+1l∗(k)

= w(n)
1 + r2(n)

γnγl∗(n)

(

∆−γ − 1
)

.



12Hen
e it follows that
w([∆n]) ≤ 1 + r1(n)

1 + r2(n)

γl∗(n)

l∗∗(n)
≤ w(n)and, therefore,

1 + r1(n)

1 + r2(n)

γl∗(n)

l∗∗(n)
≤ w(n) ≤ 1 + r3([n∆−1])

1 + r4([n∆−1])

γl∗([n∆−1])

l∗∗([n∆−1])
.Sin
e l∗ and l∗∗ are slowly varying fun
tions, we get

lim
n→∞

w(n)l∗∗(n)

γl∗(n)
= 1,as desired. �Remark 11. By the same arguments one 
an show that if w(x) is a monotonein
reasing fun
tion and, for some γ > 0, there exist slowly varying fun
tions l∗(x)and l∗∗(x) su
h that, as x → ∞,

∫ ∞

x

w(y)dy

yγ+1l∗(y)
∼ 1

xγl∗∗(x)
,then, as x → ∞,

w(x) ∼ γ
l∗(x)

l∗∗(x)
.3. Proof of Theorem 13.1. Proof of Theorem 1 for {0 < α < 2, β < 1}∩{α 6= 1}. For a �xed ε ∈ (0, 1)write

P
(

τ− = n
)

= P
(

Sn ≤ 0; τ− > n − 1
)

=

∫ ∞

0

P (Xn ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

=

∫ εcn

0

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

+

∫ ∞

ε

P (X ≤ −ycn) P
(

Sn−1 ∈ cndy; τ− > n − 1
)

.We evaluate the last two integrals separately.We know from (19) and (20) that if X ∈ D (α, β) with 0 < α < 2 and β < 1, then,for a q ∈ (0, 1],
P (X ≤ −y) ∼ q

yαl0(y)
as y → ∞, (56)and, a

ording to our 
onstru
tion,

P (X ≤ −cn) ∼ qn−1 as n → ∞.Moreover, for any ε > 0,
P (X ≤ −ycn)

P (X ≤ −cn)
→ y−α as n → ∞, (57)



13uniformly in y ∈ (ε,∞). On the other hand, if M+
α (t), 0 ≤ t ≤ 1, is the Levy meanderof order α 6= 1 and the 
onditions of Theorem 1 are valid, then (see [10℄)

{

Sn

cn

∣

∣τ− > n

}

d→ M+
α := M+

α (1) as n → ∞. (58)We show that
∫ ∞

0

P (M+
α ∈ dy )

yα
< ∞. (59)Indeed, if this is not the 
ase, for any N one 
an �nd εN ∈ (0, 1) su
h that

∫ 1/εN

εN

P (M+
α ∈ dy )

yα
> 2N.This yields

lim
n→∞

∫ 1/εN

εN

P (X ≤ −ycn)

P (X ≤ −cn)
P

(

Sn−1

cn
∈ dy | τ− > n − 1

)

=

∫ 1/εN

εN

P (M+
α ∈ dy )

yα
> 2N.By (4) we have, as n → ∞,

2l(n)

n1−ρ
≥ P

(

τ− > n
)

=
∞
∑

k=n+1

P
(

τ− = k
)

≥
∞
∑

k=n+1

P (Xk ≤ −ck) P
(

τ− > k − 1
)

×

∫ 1/εN

εN

P (Xk ≤ −yck)

P (Xk ≤ −ck)
P

(

Sk−1

ck
∈ dy | τ− > k − 1

)

≥ N

∞
∑

k=n+1

P (Xk ≤ −ck) P
(

τ− > k − 1
)

∼ N

∞
∑

k=n+1

ql(k)

k2−ρ
∼ N

1 − ρ

ql(n)

n1−ρ
,leading to a 
ontradi
tion for N > 2(1 − ρ)q−1. Thus, (59) is established.It easily follows from (57) and (58) that, as n → ∞,

∫ ∞

ε

P (X ≤ −ycn) P
(

Sn−1 ∈ cndy; τ− > n − 1
)

= P (X ≤ −cn) P
(

τ− > n − 1
)

∫ ∞

ε

P (X ≤ −ycn)

P (X ≤ −cn)
P

(

Sn−1

cn
∈ dy | τ− > n − 1

)

∼ ql(n)

n2−ρ

∫ ∞

ε

P (X ≤ −ycn)

P (X ≤ −cn)
P

(

Sn−1

cn
∈ dy | τ− > n − 1

)

∼ ql(n)

n2−ρ

∫ ∞

ε

P (M+
α ∈ dy )

yα
. (60)



14Taking into a

ount (59), we obtain
lim
ε→0

lim
n→∞

n2−ρ

ql(n)

∫ ∞

ε

P (X ≤ −ycn) P
(

Sn−1 ∈ cndy; τ− > n − 1
)

=

∫ ∞

0

P (M+
α ∈ dy )

yα
. (61)To 
omplete the proof of Theorem 1 it remains to demonstrate that

lim
ε→0

lim sup
n→∞

n2−ρ

l(n)

∫ εcn

0

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

= 0. (62)To this aim we observe that
∫ εcn

0

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

≤
[εcn]+1
∑

j=0

P (X ≤ −j) bn−1(j) =: R(εcn)and evaluate R(εcn) separately for the following three 
ases:(i) 0 < α < 1, |β| < 1;(ii) 1 < α < 2, |β| < 1;(iii) 1 < α < 2, β = −1.(i). In view of (41), (19) and properties of regularly varying fun
tions with index
α ∈ (0, 1) we have

R(εcn) ≤ C
1

cn

l(n)

n1−ρ

[εcn]+1
∑

j=0

P (X ≤ −j)

≤ C1
1

cn

l(n)

n1−ρ
εcnP (X ≤ −εcn)

≤ C2
l(n)

n1−ρ
ε1−α l0(cn)

l0(εcn)
P (X ≤ −cn)

≤ C3
l(n)

n2−ρ
ε1−α l0(cn)

l0(εcn)
≤C4

l(n)

n2−ρ
ε1−α−δ (63)for any �xed δ ∈ (0, 1−α) and all su�
iently large n. At the last step we have usedthe fa
t that for every slowly varying fun
tion l∗(x) and every δ > 0 there exists a
onstant Cδ su
h that

l∗(x)

l∗(ax)
≤ Cδ max{aδ, a−δ} for all a, x > 0. (64)



15(ii) In view of (46), equivalen
es (27), (19), and estimate (64) with any �xed δ ∈
(0, min{2 − α, 1 − α(1 − ρ)}), we have for all su�
iently large n,

R(εcn) ≤ C

[εcn]+1
∑

j=1

1

jαl0(j)

(

jαρl2(j) + 1

ncn

+
l(n)

n1−ρ

j + 1

c2
n

)

≤ C1
1

ncn

[εcn]+1
∑

j=1

l2(j)

jα(1−ρ)l0(j)
+ C

l(n)

n1−ρ

1

c2
n

[εcn]+1
∑

j=1

1

jα−1l0(j)

≤ C2
1

ncn
(εcn)1−α(1−ρ) l2(εcn)

l0(εcn)
+ C3

l(n)

n1−ρ

1

c2
n

(εcn)2−α

l0(εcn)

≤ C4
1

ncn
(εcn)1−α(1−ρ)−δ + C5

l(n)

n1−ρ

1

c2
n

(εcn)
2−α−δ .Hen
e on a

ount of (22) we 
on
lude that

R(εcn) ≤ C4
ε1−α(1−ρ)−δ

nc
α(1−ρ)+δ
n

+ C5
ε2−α−δl(n)

n1−ρ

1

cα+δ
n

≤ C6
l(n)

n2−ρ

(

ε1−α(1−ρ)−δ + ε2−α−δ
)

. (65)(iii). It follows from (10) that if β = −1, then αρ = 1. By Lemma 5, H(x) ≤
Cxl3(x). Combining this estimate with (46), we get

bn(j) ≤ C

(

jl3(j) + 1

ncn

+
l(n)

n1−ρ

j + 1

c2
n

)

.Re
alling (56) and using (64) on
e again, we obtain for any �xed δ ∈ (0, 2−α) andall n ≥ n(δ),
Rn(εcn) ≤ C

[εcn]+1
∑

j=0

P (X ≤ −j)

(

jl3(j) + 1

ncn
+

l(n)

n1−ρ

j + 1

c2
n

)

≤ C1 (εcn)
2−α

(

1

ncn

l3(εcn)

l0(εcn)
+

l(n)

n1−ρ

1

c2
nl0(εcn)

)

≤ C2ε
2−α−δ

(

1

n

cnl3(cn)

cα
nl0(cn)

+
l(n)

n1−ρ

1

cα
nl0(cn)

)

≤ C3ε
2−α−δ l(n)

n2−ρ
, (66)where the inequalities H(cn) ≤ Ccnl3(cn) ≤ Cnρl(n) have been used for the laststep.Estimates (63) � (66) imply (62). Combining (61) with (62) leads to

P
(

τ− = n
)

∼ ql(n)

n2−ρ

∫ ∞

0

P (M+
α ∈ dy )

yα
=

ql(n)

n2−ρ
E
(

M+
α

)−α
. (67)



16Summation over n gives
P
(

τ− > n
)

=
∞
∑

k=n+1

P
(

τ− = k
)

∼ q

1 − ρ

l(n)

n1−ρ
E
(

M+
α

)−α
.Comparing this with (4), we get an interesting identity

E
(

M+
α

)−α
= (1 − ρ)/q (68)whi
h, in view of (67), 
ompletes the proof of Theorem 1 for {0 < α < 2, β <

1} ∩ {α 6= 1}.Remark 12. One 
an 
he
k that the proof of Theorem 1 for {0 < α < 2, β <
1} ∩ {α 6= 1} does not use the fa
t that in the latti
e 
ase the distribution of X isarithmeti
.3.2. Proof of Theorem 1 for {1 < α < 2, β = 1}. In view of (10) the assumption
β = 1 implies q = 0 in (20) and ρ = 1 − 1/α. We �x an integer N > 1 and, for
cn > N, write

P
(

τ− = n
)

=

∫ N

0

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

+

∫ cn

N

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

+

∫ ∞

cn

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

=: I1(N, n) + I2(N, cn) + I3(cn).Our aim is to show that the last two integrals divided by n−1/α−1l(n) vanish as �rst
n → ∞ and then N → ∞, while

lim
N→∞

lim
n→∞

n1+1/α

l(n)
I1(N, n) = 1/α = 1 − ρ. (69)To start with, re
all that a

ording to Lemma 4 under our 
onditions

P(χ+ > x) ∼ 1

xα−1l2(x)
as x → ∞.Moreover, it was shown by Doney [9, Corollary 3℄ that (12) is equivalent to therelation l2(x) ∼ Cl0(x) as x → ∞. Then Lemma 9 gives the upper bound

bn(x) ≤ C
(xα−1l0(x)

ncn

+
l(n)x

n1−ρc2
n

) for all x ≥ 1.Besides, Lemma 6, (22) and (4) imply exisen
e of a 
onstant K > 0 su
h that
cn ∼ n1−ρ

Kl(n)
as n → ∞. (70)This equivalen
e justi�es the inequality

bn(x) ≤ C
l(n)

n2−ρ

(

xα−1l0(x) +
nx

c2
n

) for all x ≥ 1. (71)



17As a result, we have for cn > N > 1 the estimate
I2(N, cn) ≤

[cn]+1
∑

j=N

P(X ≤ −j)bn−1(j)

≤ C
l(n)

n2−ρ

(

[cn]+1
∑

j=N

jα−1l0(j)P(X ≤ −j) +
n

c2
n

[cn]+1
∑

j=N

jP(X ≤ −j)
)

. (72)It easily follows from (12) and (20) with p = 1 and q = 0, that
[cn]+1
∑

j=N

jα−1l0(j)P(X ≤ −j) ≤ C

[cn]+1
∑

j=N

1

j

P(X ≤ −j)

P(X ≥ j)
→ 0 (73)as �rst n → ∞ and than N → ∞.Further, re
alling that P(X ≤ −j) = o(P(X ≥ j)) as j → ∞, we obtain by (23) and(20), for su�
iently large n and a fun
tion r(N) → 0 as N → ∞ :

[cn]+1
∑

j=N

jP(X ≤ −j) ≤ r(N)

[cn]+1
∑

j=N

jP(X ≥ j)

≤ Cr(N)

[cn]+1
∑

j=N

1

jα−1l0(j)
≤ C1r(N)

c2−α
n

l0(cn)

≤ C2r(N)
c2
n

n
. (74)Combining (72), (73) and (74), we 
on
lude that

lim
N→∞

lim sup
n→∞

n1+1/α

l(n)
I2(N, cn) = 0. (75)To establish a similar result for I3(cn), observe that if β = 1, then, by (20) and (21),

P(X ≤ −cn) = o(P(X ≥ cn)) = o(1/n) as n → ∞,and, therefore,
I3(cn) ≤ P(X ≤ −cn)P(τ− > n) = o

( l(n)

n2−ρ

) as n → ∞. (76)Applying Lemma 7 and re
alling (70), we have
lim

n→∞

n1+1/α

l(n)
I1(N, n) = lim

n→∞
KncnI1(N, n) = K

∫ N

0

P(X ≤ −x)µ(dx). (77)In view of (71),
µ((x, x + 1]) = lim

n→∞
ncnbn(x) ≤ Cxα−1ℓ0(x).From this, taking into a

ount 
onditions (73) and (12), we get

∫ ∞

0

P(X ≤ −x)µ(dx) < ∞.



18Hen
e we 
on
lude that
lim

N→∞
lim

n→∞

n1+1/α

l(n)
I1(N, n) = K

∫ ∞

0

P(X ≤ −x)µ(dx). (78)Combining (75), (76) and (78) yields, as n → ∞,
P(τ− = n) ∼ Kl(n)

n1+1/α

∫ ∞

0

P(X ≤ −x)µ(dx) ∼ 1

ncn

∫ ∞

0

P(X ≤ −x)µ(dx) . (79)Comparing this formula with the tail behavior of τ− given by (4) leads to theequalities
K

∫ ∞

0

P(X ≤ −x)µ(dx) = 1 − ρ = 1/α. (80)This justi�es (69), �nishing the proof of our theorem for 1 < α < 2, β = 1.3.3. Proof of Theorem 1 for {α = 2, β = 0}. Consider �rst the 
ase of arithmeti
distributions and assume for simpli
ity that h = 1 from now on. In this 
ase wewrite
P(τ− = n) =

∞
∑

j=1

P(X ≤ −j)P(Sn−1 = j; τ− > n − 1)

= ∆1(cn) + ∆2(cn),where
∆1(cn) :=

[cn]
∑

j=1

P(X ≤ −j)P(Sn−1 = j; τ− > n − 1),

∆2(cn) :=
∞
∑

j=[cn]+1

P(X ≤ −j)P(Sn−1 = j; τ− > n − 1).Re
all that if α = 2 then ρ = 1/2. In view of (24), (25) and (4)
∆2(cn) ≤ P(X ≤ −cn)P(τ− > n − 1)

= o

(

1

n

l(n)

n1/2

)

= o

(

l(n)

n3/2

) as n → ∞.To evaluate ∆1(cn) denote g2,0(x) = (
√

2π)−1 exp {−x2/2} , x ∈ (−∞,∞), thedensity of the standard normal law and set
w(n) :=

[cn]
∑

j=1

g2,0

(

j

cn

)

P(X ≤ −j)H(j − 1).By formula (3.15) in [5℄, as n → ∞,
P(Sn−1 = j; τ− > n − 1) ∼ H(j − 1)

n
P(Sn−1 = j) ∼ H(j − 1)

ncn
g2,0

(

j

cn

)uniformly in j ∈ [1, cn]. This gives
∆1(cn) =

1 + r(n)

ncn
w(n), (81)



19where r(n) → 0 as n → ∞. As a result we obtain
P(τ− = n) =

1 + r(n)

ncn
w(n) + o

(

l(n)

n3/2

)

. (82)Hen
e it follows that, as n → ∞,
l(n)

n1/2
∼ P(τ− > n) =

∞
∑

k=n+1

(

1 + r(k)

kck

w(k) + o

(

l(k)

k3/2

))

= (1 + r1(n))
∞
∑

k=n+1

w(k)

kck

+ o

(

l(n)

n1/2

)

,where r1(n) → 0 as n → ∞. Sin
e w(n) is monotone in
reasing in n, and cn ∼
n1/2l1(n) as n → ∞, Lemma 10 with γ = 1 − ρ = 1/2 yields after obvious transfor-mations

w(n)

ncn
∼ 1

2

l(n)

n3/2
as n → ∞, (83)whi
h, on a

ount of (82) �nishes the proof of (11) for {α = 2, β = 0} in the arith-meti
 
ase. To establish the same result for non-latti
e distributions one shouldapply the respe
tive statements in [4℄.4. Proof of Theorem 2Applying (2) to the random walk {−Sn}n≥0, we have

1 − EzT−

= exp

{

−
∞
∑

n=1

zn

n
P(Sn < 0)

}

.Re
alling (13) and (1) we obtain
1 − EzT−

=
(

1 − Ezτ−

)

Ω(z). (84)On a

ount of P(τ− = 0) = 0, equality (84) implies
P(T− = n) =

n
∑

k=1

P(τ− = k)ωn−k − ωn, n ≥ 1. (85)Suppose �rst that the distribution of X is arithmeti
. By the Gnedenko lo
al theo-rem we get for this 
ase
1

n
P(Sn = 0) =

gα,β(0)

ncn
(1 + o(1)) as n → ∞.This representation and Theorem 2 in [6℄ provide existen
e of a 
onstant C > 0su
h that

ωn =
C

ncn
(1 + o(1)) as n → ∞.Using this equality and (11) in (85) and re
alling that P(τ− < ∞) = 1, we obtain

P(T− = n) = Ω(1)P(τ− = n)(1 + o(1)) + o((ncn)−1) as n → ∞.Observing that P(τ− = n) ≥ C/ncn, we get the desired statement for the arithmeti

ase.



20If the distribution of X is non-latti
e, then there exists a 
onstant r ∈ (0, 1) su
hthat P(Sn = 0) ≤ rn for all n ≥ 1 (we may 
hoose r as the total mass of the latti
e
omponent of the distribution of X). Consequently, ωn ≤ rn for all n ≥ 1. From thisestimate and (85) we see that the statement of Theorem 2 is valid in the non-latti
e
ase as well. 5. Dis
ussion and 
on
luding remarksWe see by (1) that the distribution of τ− is 
ompletely spe
i�ed by the sequen
e
{P (Sn > 0)}n≥1. As we have mentioned in the introdu
tion, the validity of 
ondition(5) is su�
ient to reveal the asymptoti
 behavior of P(τ− > n) as n → ∞. Thus,in view of (4), nonformal arguments based on the plausible smoothness of l(n)immediately give the desired answer

P(τ− = n) = P(τ− > n − 1) − P(τ− > n)

=
l(n − 1)

(n − 1)1−ρ − l(n)

n1−ρ
≈ l(n)

(

1

(n − 1)1−ρ − 1

n1−ρ

)

≈ (1 − ρ)l(n)

n2−ρ
∼ 1 − ρ

n
P(τ− > n)under the Doney 
ondition only. In the present paper we failed to a
hieve su
ha generality. However, it is worth to be mentioned that the Doney 
ondition, be-ing formally weaker than the 
onditions of Theorem 1, requires in the general 
asethe knowledge of the behavior of the whole sequen
e {P (Sn > 0)}n≥1, while theassumptions of Theorem 1 
on
ern a single summand only. Of 
ourse, imposinga stronger 
ondition makes our life easier and allows us to give, in a sense, a 
on-stru
tive proof showing what happens in reality at the distant moment τ− of the�rst jump of the random walk in question below zero. Indeed, our arguments forthe 
ase {0 < α < 2, β < 1} ∩ {α 6= 1} demonstrate (
ompare (56), (57), and (60))that for any x2 > x1 > 0,

lim
n→∞

P(Sn−1 ∈ (cnx1, cnx2]|τ− = n)

= lim
n→∞

P(τ− > n − 1)

P(τ− = n)

∫ x2

x1

P(X < −ycn)P(Sn−1 ∈ cndy|τ− > n − 1)

= lim
n→∞

P(τ− > n − 1)q

P(τ− = n)n

∫ x2

x1

P(X < −ycn)

P(X < −cn)
P(Sn−1 ∈ cndy|τ− > n − 1)

=
q

1 − ρ

∫ x2

x1

P(M+
α ∈ dy)

yα
.In view of (68) this means that the 
ontribution of the traje
tories of the randomwalk satisfying Sn−1c

−1
n → 0 or Sn−1c

−1
n → ∞ as n → ∞ to the event {τ− = n}is negligibly small in probability. A typi
altraje
tory looks in this 
ase as follows:it is lo
ated over the level zero up to moment n − 1 with Sn−1 ∈ (εcn , ε−1cn) forsu�
iently small ε > 0 and at moment τ− = n the traje
tory makes a big negativejump Xn < −Sn−1 of order O(cn).



21On the other hand, if {1 < α < 2, β = 1} and 
ondition (12) holds, then (
ompare(34), (77), (79), and (80)) for any N2 > N1 > 0,
lim

n→∞
P(Sn−1 ∈ (N1, N2]|τ− = n)

= lim
n→∞

1

P(τ− = n)

∫ N2

N1

P(X < −y)P(Sn−1 ∈ dy; τ− > n − 1)

= lim
n→∞

Kαncn

∫ N2

N1

P(X < −y)P(Sn−1 ∈ dy; τ− > n − 1)

= Kα

∫ N2

N1

P(X < −y)µ(dy).Thus, the main 
ontribution to P (τ− = n) is given in this 
ase by the traje
torieslo
ated over the level zero up to moment n − 1 with Sn−1 ∈ [0, N ] for su�
ientlybig N and with not �too big� jump Xn < −Sn−1 of order O(1).Unfortunately, our approa
h to investigate the behavior of P(τ− = n) in the 
ase
α = 2 is pure analyti
al and does not allow us to extra
t typi
al traje
tories withoutfurther restri
tions on the distribution of X. However, we 
an still dedu
e from ourproof some properties of the random walk 
onditioned on {τ− = n}. Observe that,for any �xed ε > 0, the traje
tories with Sn−1 > εcn give no essential 
ontributionto P(τ− = n). Indeed, it follows from (81) and (83) that ∆1(εcn) ∼ ∆1(cn) as
n → ∞ for every �xed ε. This, along with the estimate from above for ∆2(cn),gives the 
laimed property. Furthermore, one 
an easily verify that if ∑∞

j=1 P(X ≤
−j)H(j) = ∞, then for every N ≥ 1,

N
∑

j=1

P(X ≤ −j)P(Sn−1 = j; τ− > n − 1) = o

(

l(n)

n3/2

) as n → ∞,i.e. the 
ontribution of the traje
tories with Sn−1 = O(1) to P(τ− = n) is negligiblesmall. As a result we see that Sn−1 → ∞ but Sn−1 = o(cn) for all �typi
al� traje
to-ries meeting the 
ondition {τ− = n}. Thus, under the 
onditions of Theorem 1 wehave for α = 2 a kind of �
ontinuous transition� between the two strategies that takepla
e for the 
ase α < 2. We note, for 
ompleteness, that if ∑∞

j=1 P(X ≤ −j)H(j)is �nite, then the typi
al behavior of the traje
tories is similar to that for the 
ase
{0 < α < 2, β = 1}.Unfortunately, the methods of the present paper do not work for α = 1, and weleave the problem on the asymptoti
 behavior of P(τ− = n) open for this 
ase.A
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