
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

A solution of Braess’ approximation problem on

Powers of the Distance Function

Christiane Kraus

submitted: October 19, 2006

Weierstraß-Institut
für Angewandte Analysis und Stochastik
Mohrenstrasse 39
10117 Berlin, Germany

No. 1171

Berlin 2006

W I A S

2000 Mathematics Subject Classification. 41A25, 41A10, 41A60, 41A63, 41A17.

Key words and phrases. Polynomial approximation in 2–space, Maximal convergence,
Bernstein-Walsh’s type. theorems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289299619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

The polynomial approximation behaviour of the class of functions

Fs : R
2\{(x0, y0)} → R, Fs(x, y) =

(

(x − x0)
2 + (y − y0)

2
)−s

, s ∈ (0,∞),

is studied in [Bra01]. There it is claimed that the obtained results can be embedded in a
more general setting. This conjecture will be confirmed and complemented by a different
approach than in [Bra01]. The key is to connect the approximation rate of Fs with its
holomorphic continuability for which the classical Bernstein approximation theorem is
linked with the convexity of best approximants.
Approximation results of this kind also play a vital role in the numerical treatment of
elliptic differential equations [Sau].
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1 Introduction

We consider the following class of continuous functions

Fs : R
2\{(x0, y0)} → R, s ∈ (0,∞),

Fs(x, y) =
(

(x − x0)
2 + (y − y0)

2
)−s

.

The polynomial approximation behaviour for that type of functions is of special interest
in the numerical treatment of elliptic differential equations when fundamental solutions
are to be approximated, see [Sau].
In [Bra01] the polynomial approximation error of the functions Fs, s ∈ (0,∞), is examined
for the closed unit disk B2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, where the singular point (x0, y0)
of Fs lies in the complement of B2, i. e. ρ :=

√

x2
0 + y2

0 > 1.

To this end let us define the deviation of the set of real–valued polynomials Pn, n ∈ N, to
the function Fs, s ∈ (0,∞), by the standard approximation error

En(K, Fs) := inf{||Fs− Pn||K , Pn : R
2→ R, Pn a polynomial of degree ≤ n},

where || · ||K denotes the supremum norm on a compact set K ⊂ R2.

The results of [Bra01] can be summarized as follows:

For every function Fs, s ∈ (0,∞), the n–th approximation error satisfies the exponential
decay

En(B2, Fs) ≤
M

Rn
, (1)

where R is any real number of the interval (1, ρ) and M > 0 is a constant independent of
n. Consequently,

lim sup
n→∞

n

√

En(B2, Fs) ≤
1

ρ
(2)

for every s ∈ (0,∞) and ρ ∈ (1,∞).
In addition, if ρ ∈ (3,∞) and s ∈ (0,∞) or ρ ∈ (1,∞) and s ∈ (0, 1] then R in inequality
(1) can’t be replaced by any number greater than ρ. Hence the relation

lim sup
n→∞

n

√

En(B2, Fs) =
1

ρ
(3)

holds for ρ ∈ (3,∞) and s ∈ (0,∞) or ρ ∈ (1,∞) and s ∈ (0, 1].

Estimate (2) is verified by means of Newman’s trick and Cauchy’s estimates whereas the
winding number theorem and the de la Valée–Poussin theorem are applied to establish
relation (3). The restrictions for ρ and s in (3) are caused by the method of the proof and
don’t seem natural. Therefore Braess conjectures that (3) is true for any ρ ∈ (1,∞) and
any s ∈ (0,∞).

The aim of this note is to establish relation (3) for all ρ ∈ (1,∞) and s ∈ (0,∞). Thus
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we obtain a characterization of the asymptotic approximation behaviour for the functions
Fs in terms of their singularities.
According to (1) we only have to focus on the lower estimate

lim sup
n→∞

n

√

En(B2, Fs) ≥
1

ρ
(4)

for ρ ∈ (1,∞) and s ∈ (0,∞).
The nub for this bound is to study the behaviour of the functions Fs,
s ∈ (0,∞), outside the unit disk. This stands in contrast to [Bra01], where all the
estimates are deduced from the special structure of the functions Fs on the closed unit
disk.

2 Sharp asymptotic approximation results

A famous result which links the polynomial approximation rate of a function in R to its
holomorphic continuability is Bernstein’s classical approximation theorem, see Theorem
2.1. It is also an important tool for the verification of the lower bound (4).

Theorem 2.1 ([Ber52], 1912)
Let f : [−1, 1] → R be continuous and let ρ > 1. Then

lim sup
n→∞

n

√

En([−1, 1], f) ≤ 1

ρ

if and only if f has a holomorphic extension to the set

{z ∈ C : |h(z)| < ρ} ,

where h : C → C\{z ∈ C : |z| < 1} is defined by h(z) = z +
√

z2 − 1 . The branch of the

square root is chosen such that h(x) > 1 for x > 1.

A quick proof of Theorem 2.1 can be found in [DL93, p. 229–231].
Note, the function h(z) = z +

√
z2 − 1 in Theorem 2.1 is the inverse of the Joukowski

function with domain C and range C\D.

Beside Bernstein’s theorem the proof of inequality (4) requires the following property of
best approximants.

Lemma 2.1
Let X be the Banach space of all real–valued continuous functions defined on a compact

subset K ⊂ R2 and let Xn, n ∈ N, be the subspace of all real–valued polynomials Pn,

Pn : K → R, of degree ≤ n.

If K is symmetric with respect to the y–axis1, then an even function F in y has a best

approximant P̂n which is even in y.

1We call a set K ⊂ R2 symmetric with respect to the y–axis, if (x, y) ∈ K implies (x,−y) ∈ K.
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The proof follows immediately from the convexity of the (non–empty) set of best approx-
imants, cf. [DL93].

Now we have all ingredients to establish the lower bound (4). Hence we achieve a complete
characterization of the asymptotic behaviour of the approximation error for the functions
Fs, s ∈ (0,∞).

Theorem 2.2
Let the function Fs : B2 → R be given by

Fs(x, y) =
1

(

(x − x0)2 + (y − y0)2
)s , (5)

where s ∈ (0,∞) and (x0, y0) ∈ R2 such that ρ =
√

x2
0 + y2

0 > 1. Then

lim sup
n→∞

n

√

En(B2, Fs) =
1

ρ
. (6)

Proof of Theorem 2.2: We justify the inequality

lim sup
n→∞

n

√

En(B2, Fs) ≥
1

ρ

for ρ ∈ (1,∞) and s ∈ (0,∞). Then the assertion follows in conjunction with estimate
(2).

After rotating and translating coordinates we may assume that Fs takes the form

Fs(x, y) =
1

(

(x − ρ)2 + y2
)s .

Since Fs is an even function in y there exists a best polynomial approximant P̂n of degree
≤ n to Fs on B2 which is also even in y. Thus we can write

P̂n(x, y) =

n
∑

j, k=0
0≤j+2k≤n

ajkx
jy2k, ajk ∈ R.

In view of the fact that y2 = 1 − x2 for a any point (x, y) ∈ ∂B2, ∂B2 := {(x, y) ∈ R2 :
x2 + y2 = 1}, we obtain

En(B2, Fs) = ||Fs − P̂n||B2
≥ ||Fs − P̂n||∂B2

= max
x∈[−1,1]

∣

∣

∣

∣

∣

1

(ρ2 − 2xρ + 1)s
−

n
∑

j, k=0
0≤j+2k≤n

ajk xj(1 − x2)k

∣

∣

∣

∣

∣

= max
x∈[−1,1]

|fs(x) − pn(x)| ≥ En([−1, 1], fs) ,
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where fs(x) = 1/(ρ2 − 2xρ + 1)s and pn(x) =
n
∑

j, k=0
0≤j+2k≤n

ajk xj(1 − x2)k.

Consequently,

lim sup
n→∞

n

√

En(B2, Fs) ≥ lim sup
n→∞

n

√

En([−1, 1], fs). (7)

We next apply Theorem 2.1 to the function fs. Note that

f̂s(z) = 1/(ρ2 − 2zρ + 1)s

is a holomorphic extension of fs to the set Lρ = {z ∈ C : |h(z)| < ρ}, where h is defined as

in Theorem 2.1. Clearly, f̂s has a non-removable singularity at the point ẑ = 1/2(ρ+1/ρ).
Therefore the function f̂s cannot be continued analytically to any neighborhood of the
point ẑ. In other words, f̂s has no holomorphic extension to any domain containing Lρ.
Thus Theorem 2.1 implies

lim sup
n→∞

n

√

En([−1, 1], fs) ≥
1

ρ
.

The latter, combined with equation (7), gives finally

lim sup
n→∞

n

√

En(B2, Fs) ≥
1

ρ
.

�

Theorem 2.2 can be also generalized to higher dimensions.

Theorem 2.3
Let Bd = {x ∈ Rd : ||x|| =

(
∑d

k=1 x2
k

)1/2 ≤ 1}, d ∈ N\{1}, and let the function

Fs : Bd → R be given by

Fs(x) =
1

||x − x0||2s
=

1
(

∑d
k=1(xk − x0,k)2

)s , (8)

where s ∈ (0,∞) and x0 ∈ Rd such that ρ = ||x0|| > 1. Then

lim sup
n→∞

n

√

En(Bd, Fs) =
1

ρ
. (9)

Proof of Theorem 2.3: To establish the lower bound

lim sup
n→∞

n

√

En(Bd, Fs) ≥
1

ρ

we only have to substitute y2 by
∑d

k=2 x2
k and B2 by Bd in the proof of Theorem 2.2. A

simple argument for the upper bound can be found in [Bra].
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Let us conclude by remarking that Theorem 2.3 extends easily to arbitrary closed balls
in Rd, d ∈ N\{1}.
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