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SPECTRAL MAPPING THEOREM FOR LINEAR HYPERBOLIC
SYSTEMS

MARK LICHTNER

ABsTrAaCT. We show high frequency resolvent and spectral estimates and
prove spectral mapping theorem for linear hyperbolic systems in one space
dimension.

1. INTRODUCTION

As is well known stability and dichotomy of a linear system of ODEs
(1.1) z= Az

are determined by the spectrum o(A) of the matrix A. For infinite dimensional
evolution equations the issue is more complex. Let A be an infinitesimal generator
of a Cy semigroup e*. We say that A has the Spectral Mapping Property (SMP)
if
(SMP) o(e)\ {0} = e\ {0} for t>0.

It is well known that (SMP) does not hold, in general, if A is a generator of a Cy
semigroup. Several counterexamples are known for abstract Cp semigroups [8, 19].
Renardy gave a more applied counterexample [18]: He constructed a lower order de-
rivative perturbation of a two dimensional wave equation, where the growth bound
w(A) ;= inf{fw € R | IM = M(w)Vt > 0 : ||e**|| < Me'} is strictly larger than the
spectral bound s(A) :=sup {fRe A | A € 6(A)}. One has the following formula for w
[8]: For each ty > 0 w(A) = t;'logr (eA0) = limy oot~ log [|e?||, where r (e4%0)
denotes the spectral radius of ec. Hence (SMP) contains spectrum determined
growth w(A) = s(A). Renardys counterexample not only illustrates that (SMP)
is violated, in general, for linear hyperbolic PDEs in higher dimensions (see also
[7]), moreover it destroys hopes that “applied” problems are somehow well behaved.
This is annoying since computing spectra of linearizations is the most widely used
practical method for assessing stability and bifurcations of physical systems. It is
known that for Cy semigroups in Hilbert space the set of counterexamples, where
w(A) > s(A), is small in the sense of Baire category [19].

Moreover, (SMP) implies existence of dichotomic projections for (1.1) under the
presence of a spectral gap for A. Exponential dichotomies are required for proof of
center manifold theorems for nonlinear evolution equations, which are often applied
to analyse the local dynamics and bifurcations of (infinite dimensional) dynamical
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2 MARK LICHTNER

systems. The theory is, to our knowledge, restricted to classes of evolution equa-
tions where (SMP) is known, which includes ODEs and large classes of DDEs and
semilinear parabolic PDEs. The unavailability /failure of (SMP) has been a main
obstacle for extending the theory [1, 2, 3, 20] to hyperbolic PDEs. Quite recently
(SMP) has been proven for Schrédinger equations [6].

Our main result is that (SMP) holds true for a general class of linear hyperbolic
systems in one space dimension. We prove (SMP) by establishing high frequency
estimates for spectra and resolvents in terms of reduced (block)diagonal systems and
applying the Gearhart-Priiss spectral mapping theorem [5, 15] (see Theorem 4.2).
Related results can be found in [14, 17|, but precise resolvent and spectral estimates
as well as the spectral mapping property (SMP) are missing. Our estimates can
be used even in cases where the Gearhart-Priiss theorem does not apply. This has
important applications for nonlinear hyperbolic systems, see [9, 10, 11, 16], which
often appear in applied problems.

2. RESULTS

We consider linear hyperbolic systems in the following normal form

0 (u(t,z) 0 (u(t,r) u(t,z)\
ot (v(t,x)) +K(x)% (v(t,x) +C(@) o(t,x) ) 0,
7 [v(t,1) — Du(t,l)] = Fu(t,-) + Gu(t,-),

u(t,0) = Ev(t,0).

The assumptions are:
(HI) K is a blockdiagonal n x n matrix of the form

K = blockdiag (kild,)1<icoip

(H)

where d; € N, d; >0, 0 € N, € N, 20 di = n1, 30, doyi = 12, Iz, denotes
the identity matrix in C%*% and k; € C* ([0,1], R) satisfy for = € [0, ]

ki(z) >0, 1<i<a, kix)<0, a+l<j<a+p.
(HIT) C(2) = (Cij(%))1; j<ars € €™ with Cjj(x) € C%*% and
Cii € L (J0,1[,C%*%) | Ci; € BV ([0,1], C%*%) , 1 <i,j < a4 B, i # .

(HIII) If i # j and k;(z) = k;(z) for some z € [0,1], then C;; vanishes on [0, [].
(HIV) u(t,z) = (ui(t, 7))1<i<n, € €™, v(t,7) = (vi(t, T))1<i<n, € C™.
(HV) D € C*™, E € Q"% and

F:C([0,1],€™) - C™, G:0([0,]],€™) — C™

are linear continuous operators.

u o (u) A (u
Alv] = K7s (u) ¢ (’U)

d Fu+ Gov

denote the infinitesimal generator for (H) with domain
D(A) == {(u,v,d) € W"*(10,1[,C") x €™ | u(0) = Ev(0), d =v(l) — Du(l)} .

Then A generates a Cy semigroup ¢! on the Hilbert space L2 (]0,[,C") x C"2 (see
[12, 13, 14]). Let R(\,A) = (A\I — A)~" denote resolvent, o(A) spectrum, o,(A)
pointspectrum and p(A) = C\ o(A) the resolvent set of A. Our main result is
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Theorem 2.1 (Spectral Mapping Theorem).

(SMP) o(e?)\ {0} = eeMt\ {0} for t>0.

In Theorem 2.1 ¢o(4Dt denotes the closure of the set e?(1)t. We prove (SMP) by
establishing high frequency estimates for spectra and resolvents of A in terms of
reduced (block)diagonal systems: Let Cyy be the block diagonal matrix containing
the square matrices Cj;

(2.1) Chyo == blockdiag (Cii)1§i§a+ﬁ .
Then the reduced system is per definitionem given by
0 (u(t,z) 0 (u(t,x) u(t, )
_ k) K _ ) b) —
(Ho) ot (U(t,m)) +K(@)5; (w,m) +Co0(@) { 129 ) =0
u(t,0) = Ev(t,0), v(t,1) = Du(t,1).

We denote the infinitesimal generator to (Hy) by

o)) -0 ).

D(Ap) == {(u,v) € W"2(]0,1[,C") | u(0) = Ev(0), v(l) = Du(l)}.
Ag generates a Cy semigroup on L2(]0,1[,C").

Lemma 2.2. The resolvent R(\, A) (R(X, Ao)) is compact, 0(A) = 0,(A) (6(Ay) =
op(4o))-

Denote Crq:={A€C|—r <ReA<r, [JmA >d}, C,:=C,_;.

Lemma 2.3 (Estimates for spectrum). There exists an exponential polynomial hg
and an entire function h with':
e 0(A) ={Ae C| ) =0}, 0(A) ={A € C| ho(A) = 0}.
e Put h(\) := A""h(N).
~ 1
(2.2) Vr>03e,d >0YA€Crg:  |R(N) —ho(N)| < CW.

If Ao has nonempty spectrum define v_ := inf {fReX | ho(\) =0} and vy =
sup {JReA | ho(A) = 0}. Since hg is an exponential polynomial v_ and ~, are finite.
If Ay has empty spectrum put vy := —oo and v_ := oco. For A € C and € > 0 let
Bc(A) :={z € C||z— A| < €} denote the ball around A with radius e.

Lemma 2.4. For each v > -y there exist only finitely many eigenvalues A of A
that satisfy Re )\ > ~.

Lemma 2.5. Suppose Ag has nonempty spectrum. Then the following hold:

e For each 0 > 0 there are only finitely many eigenvalues A of A which satisfy
Red < y_ — 0 or ReA > 74 + 4.

e For e > 0 there exists d > 0 such that c(A) N{A € C||ImA| >d} C
Uno(x)=0 Be(A)-

Lho and h are defined in formulas (3.4) and (3.6)
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e Suppose p = inf {|A\; — Aa| | A1 # A2, ho(A1) = ho(X2) = 0} > 0. Then for
n < & there exists d > 0 such that for each Ao € C with ho(Xo) = 0 and
|Jm Xo| > d there exists A € B, (Ao) with h(X\) = 0. Both h and ho have the
same number of zeros in each B,(X\o) counted with multiplicities. If Ay only
possesses algebraically simple eigenvalues, then the eigenvalues A € B, (o)
of A are unique and algebraically simple.

Lemma 2.6 (Estimates for resolvent). Let U C p(A) so that supycy |[Re A| < oo
and inf ey [ho(A)| > 0. Then there exists d > 0 so that for A € U and |[Jm | > d

/ u . ; /
e RMA) g ]| = v ( ):R(/\,Ao)( )+§8(,\,A) g
b o(l) = Du()) \' g b
e R(\ Ap) and E(N, A) are bounded. In particular the resolvent R(A, A) is
bounded on U.
o E(X, A) can be represented as a series Y oo o A ¥Ry (X, A), where for each Ry,
there exists a closed formula in terms of integrals of elementary functions
of A.

Remark 2.7. For all applications we know of conditions (HI)-(HV) are fulfilled.
Our conditions are slightly more general than [14], we include equal speed systems
which are required for applications to semiconductor laser dynamics [9, 16].

3. ESTIMATES FOR SPECTRA AND RESOLVENTS

Consider (H) and assume (HI) — (HV). We prove Lemmas 2.2-2.6.
Let T' denote the fundamental matrix satisfying

(3.1 %T(m, y,\) = —K(z) '\ +C(z))T(z,y,\) forz,y € [0,l],
T(y,y,A) = T forye]0,l].
and Ty the fundamental system for
(3.2) %To(x,y,)\) = —K Yx) (M + Cyo(2)) To(z,y,A) forz,y € [0,1],
To(y,y,\) = I forye]l0,l].

For 1 < i < a+ (3 there exist F; depending only on Cy and K, F; : [0,1]? — C%*di
Fi(-,y) € Whe([0,1], C%>*d) for y € [0,1], so that for F' := (blockdiag F}) ;<< 5
we have -

(3.3) To(,y, \) = exp (—)\ /y "Ke) dz) Fla.y).

Moreover for © > y > z we have F;(z,z) = F;(x,y)F;(y, ). Indeed: Define F; to
be the solution to

S Ray) =k @C@F@), R) = T

From (2.1) and (HI) it follows that K, Cyo and exp (—)\ f; K=1(2) dz) commute.

Hence the right hand side of (3.3) solves (3.2).
We have X € o,(A) iff there exists vo € €2, vg # 0, such that

(u) (z) =T(z,0,)) (Jf) v and (~AD& — F,\I6 — G) (z) o

v
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Hence we define

E

H()) (=AD& — F, AI8; — G)T(-,0,) (1) (e Crmm)

(3.4) h(A) = det H(M).
Using this notation we have
op(A) ={A € C | h(N) =0}.

We call h(\) the characteristic function and H()) the characteristic matrix to (H).
For A € o(A,) the eigenspace can be represented as

Eig(A, \) = { (v(l) ZDu(Z)) | (2‘8) — T(,0,)) (?) vo, v € KerH()\)} .

The geometric multiplicity of each eigenvalue is less than or equal to ns.
The resolvent equation R(X, A)(f, g,b) = (u,v,d) for (u,v,d) € D(A) and (f,g,b) €
L?(]0,1[,C") x €™ reads

Ka% (Z) + (M +C) (3) - (ﬁ) . (“ADS — F, IS — G) (Z) _ 5.

This is equivalent to

(u) (z) = T(x,0,\) (?) v(0) + /Ox T(z,y, K (y) <§> (y) dy,

v
b= (—AD§ — F, M5, — G) (;‘) .

If A ¢ 0,(A), by inserting the first equation into the second one, we get that
the resolvent equation has a unique solution (hence 0,(4) = o0(A4)) and v(0) =
H\)™B(N)(f, g,b), where

BON(f. 9.b) = b+ (\D§ + F.G = AI§)) / Ty VK () <£E?y/;> .

0
Thus we have:

Proposition 3.1. For any A such that i (\) # 0 the resolvent R(\, A) = (A — A) ™"

is given by
f u(x)
(3.5) ROA) (o] @={ @ |
b v(l) — Du(l)
where

From Proposition 3.1 we get Lemma 2.2.
Remark 3.2. \I — A is a Fredholm operator of index zero.

Denote

(3.6)  ho(N) i=det Ho(\), Ho(\) := (=D, I)Ty(1,0,)) (?) (e @r2xmz) .
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ho is called characteristic function and H, characteristic matrix to the reduced
system (Hp).

For any A such that ho(A) # 0 we have the following explicit formula for the
resolvent R(X, Ag) = (A — Ag) "

RO A0) (1) =700, (7) o) o .94
/0- To(,y, MK ()~ (gg;) dy,

where

l
ON9) = (D 1) [ Tt DK () (§§Z§) w

Define the coupling matrix C;(z) := C(x) — Cpo(z) and for k > 1
(3.7 Ti(z,y,A) := =ATo(z,y,\) /1’ To(y, 2, VK (2)C1(2)Te—1(2,y, A) dz.
y
Each T}, k > 1, satisfies the initial value problem
%Tk(aj, Y A) = —K=1(2) (A + Coo(2)) T (2,9, A) — NK—1(@)Ca () To1 (2, 9, )

with Ty (z,z,A) = 0, and can be calculated recursively in terms of integrals of
elementary functions and F. The only unknown F' does not depend on A\. We
will see that the series Y oo A% T} (x, y, A) converges in W1 for sufficiently large
|JmA| to the fundamental matrix 7" of (3.1). However, T}, k > 2, are not bounded
for A chosen from any stripe C,. Indeed we will see in the following that the
expressions Ty, k > 2, contain some power terms \* with i up to the lower integer
part of k/2 which will be due to successive failures in partial integration in the
formula (3.7). After reordering terms for any finite x € IN we will obtain an explicit
representation of the form

T(z,y,A) = > A FF(x,y,A) + O(A~ D),
k=0

for X in a stripe C, and sufficiently large |Jm\|, where each F}, is of order 1 with
respect to A on C,.. To see this we calculate the first two steps 77 and T5. Put

fO(xa Y, )‘) = To(flf, Y, )‘)(y((]l)v .o ’y((]OHrﬁ))t
with the arbitrary fixed initial data ¢\ € €%, 1 < i < o + 3. Define

fi = —)\/I To(z, 2, VK 1(2)C1(2) fr_1(2,y,\) dz for k > 1.
y

Then according to (3.3) the i-th component, 1 <i < a+ § of f; is

P@yn) = exp (= [ M7 (w) du) Fuay)yd”,
f;(ci)(m, y,A) = —Xexp (7 f; Ak;l(u) du) Fi(x,y)
Z /z exp ()\fyz kb (w) du) Fi(y,z)%(zz)) Igl_)l(z,y,)\) dz.

1<i<a+pvY
11



SPECTRAL MAPPING THEOREM FOR LINEAR HYPERBOLIC SYSTEMS 7

By (HII) and (HIII) we can perform partial integration and get rid of the A factor
appearing in the recursion formula for f,gz): Denote #; () := k; ' (z) —k; *(z), then

FP @y, ) = = exp (<A [ k7 (w) du) Fi(, y)

e z Ci(z) Fi(zy)
1§§1+5/H Ara(yexp ([ Awa (W) Fuly, ) TS L2y ax
1#i
_ @ Cu(z) Fi(z,y) o\ _
71S§M+B{fexp (7>\Iy K () du) Fi(@) ma(z) P (7 Jy A () d“) Fi(z.y)
12
Culy) 1 I Zy . d (. Culz) Fi(z,y) W
|: Te(y) 7 () +/y exp (fy A ki (u) du) = (Fz(y,z) Fi(2) ma(e) > dz:| }yo .

Note that for partial integration we used that in the sum for [ # 4 in the formula for
£ the leading A-exponential of £\ is e~ A (W However, now f\” not only
contains 2(a+ 6 — 1) terms with A-exponential e™ Jy AR @ du b also (a+8-1)

x —1
terms of the form e v M1 (Wdv 1 <1< o431 # 1. Therefore, in the next step
for fo we are not able to get rid of all A terms by partial integration as in the first
step:

;i)(w,y,)\) = —exp (7)\‘[; k;l(u) du) Fi(z,y) Z A
1<ig,l1<a+ps
lo#i,l1#lg

i - _ _ City (22)Crg1, (22) Fiy (22,9)
/ { exp (52 Ay () du) Py, 2) =2 S

Ciiy (22)
ki(z2)

Cio14 (y) 1
kiy (¥) Kigiy (y)

22 d C z1) Fy, (21,
+/ exp (Afjl Kigty (1) du) = (Fzz (9, 21) 1914 (21) M) dm} }y[()n)d;&.
y 21

kiy(21)  Kig1q (21)

+ exp (,\ 72 ity (w) du) Fi(y, z2) Fiy (22, y)|:

Partial integration is not possible for the terms in the sum corresponding to I; = i.
Therefore we are forced to keep (o + 8 — 1) terms containing A factors:

© Ciy (22)Cryi(22) Fi(z2,y) (i)
dza “Yo
1<tsTarpty Rk (22)  Ripi(z2)
oHi

féi)(w, Yy, A\) = — Aexp (7)\ fyz ki_l(u) du) Fi(z,y)

+ terms of order 1.

However, in the next third step for these (a + 8 — 1) terms containing a A factor
partial integration can be done, so that in the third step there will be no A? factors,
only X or 1 factors. Factors with A? in the multisums will first appear in the fourth
step. Thus, generally for m € IN, terms containing A™ factors appear for the first
time in the (2m)-th recursion step. Besides these A™ terms there only appear terms,
which are bounded for A € C,.. After reordering terms we have proven the following

Lemma 3.3. There exists a sequence Fy(z,y, \) of matrices with
o Iy =Ty,
e Vr>03dc>0VAeC,, (z,y) € 0,112k € N: |[Fr(x,y,\)| < .
e Forr > 0 there exists d > 0 such that for A € C,. 4 the series > 1 o A" K Fj(x,y, \)
converges absolutely (in L*([0,1] x [0,1],C"*™)) to T(x,y, A),
o Vr>03c,d>0VA e Crg: || T(z,y, A) — To(z,y, M| < c‘—i‘.
Remark 3.4. Each F}, can be calculated from T, for n =1, ..., 2k.

Consequently we get:
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Lemma 3.5. For r > 0 there exist c¢,d > 0 such that for X\ € C, 4 we have

‘f[()\) — Ho(\) H < erkr, where H(\) = A1 H(N),

o Put h()\) := det H()\). Then

- 1
(3.8) ‘h()\) ~ho)| < ey

‘f[()\)*l - HO()\)”H <ep

We need the following Lemma

. . o T b
Lemma 3.6. Let f be an exponential polynomial of the form f(X) = 37, aje”
(Ma; €C, bj €R). Let Z={X € C| f(A) =0} denote the zero set of f. For all
d>0, a,8 € R with a < (3 there exists a constant m = m(d,«, 3) > 0 such that for
all X € C, which satisfy dist(A, Z) > §, a < ReX < 8, we have |f(N)] > m(d, a, B).
Proof. We give a correct proof of [4, Lemma 2.2]. Suppose the assertion was false. Then there exists
a sequence (Am)men, @ < Re Xy, < 3, so that f(Am) m—oo 0, dist (Am, Z) > 6 > 0. Put gm(A) :=
FOFAm) =37 1 a5 e?i*eli®m et ¥m where Apm =: Tm +4ym. Then there exists a subsequence so that
gm converges uniformly to some function g on each stripe C; for any given r > 0. Indeed, by passing
to a subsequence we can assume that x,, — = € [a,] and e'%i¥m — 55 € S'. Then g,, converges
uniformly to g(A) = >7_, ajePi*ePi®s; on each C,. Let U := {A e C ||\ < £}. By assumption
gm(A) # 0 for A € U and ¢(0) = lim g, (0) = lim f(Amn) = 0. By Hurwitz theorem g must be identical

to zero on U, and therefore on C. Hence for all A € C we get that f(A) = gm (A —An) = m—oo 0. Which
is a contradiction to the assumption that dist (A,,,, Z) > & > 0. O

We will use the following Proposition [4, Proposition 2.1] on the distribution of
zeros of an exponential polynomial

Proposition 3.7. Let f be an exponential polynomial. Then its set Z of zeros
(counted with multiplicities) is a finite union of separable sets: there exist m < oo
sets Z; with Z = U", Z; and inf ez, arpn [ — p] > 0.

Denote S, :={z€ C |y < Rez <w}.

Proof of Lemma 2.4. Let v > v4. Denote o4 := {\ € 0(A) | Re\ > v}. Suppose
o+ was infinite. Since A generates a Cp semigroup there exists an w > v so that
o4 C Sy.. For the characteristic function h(A) of (H) is analytic the infinitely
many eigenvalues of o, must accumulate at infinity within the closed stripe S, ..
Since v > 74 Lemma 3.6 yields that infyes, , |ho(A)| > 0. Therefore for sufficiently
large d > 0 (3.8) implies that inf{|A(\)| | A € S, [JmA| > d} > 0. Hence, by
choosing d > 0 sufficiently large, we get a contradiction to the assumption that
there existed infinitely many A € S, ., with [JmA| > d and h(X) = A""h(X) = 0.
Hence o is finite. O

Proof of Lemma 2.5. Because hg is an exponential polynomial Ay has infinitely
many eigenvalues. Let § > 0 be arbitrary and fixed. For 6 € [0,1] consider the
family of operators corresponding to a perturbation from the diagonal operator
with C' = Cj to the nondiagonal one with C' = Cy + C}

0 )(C’o(x)+001(x)) (:f) HFU(-)+9GU('))-

Ag(u,v,d) := (K(x)— (
Oy
Let h?()\) denote the corresponding characteristic function. Put h?(\) := h%(\).
s

Note that h° = hg. According to Lemma 3.6 outside of balls of radius 5 around

each of the zeros of hg in the stripe S,__; ., 15 the function |h| has an infimum

u
v
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m > 0. From (3.8) in Lemma 3.5 there exist ¢,d > 0 such that for A € S,__;,, 45
with |Jm(X\)| > d

(3.9) B0~ ho(N)] < e
Therefore for A € S, 5., 15 \ Uny(ro)=0B (A0, 6/2) with [Jm())| sufficiently large
it follows from (3.9) that |h%(\)| > m/2 > 0. And this holds true uniformly in
6 € [0,1]. Starting from 6 = 0 this shows that, as long as we increase 6 up to
1 all but finitely many zeros of h()\) must stay in a §/2-ball of an zero of hg(\)
(apply Proposition 3.7 and choose § > 0 sufficiently small). By the continuity of a
finite system of zeros with respect to the perturbation parameter 6 it follows that
{Ae C|Red <y —0}U{X € C|ReX > 74 + 0} contains only finitely many
eigenvalues. The remaining assertions follow by applying Lemma 3.6, Rouchés
Theorem and [12]. O

From formula (3.5) and Lemmas 3.3 and 3.5 we obtain Lemma 2.6.

4. SPECTRAL MAPPING THEOREM

We prove Theorem 2.1. For this we note some observations.
Theorem 4.1 (Spectral inclusion [8, Thm. 2.6, p.25]). Vt > 0: e C g(et).

Theorem 4.2 (Gearhart-Priiss spectral mapping theorem [5, 15]). Let (e'),  be

a Cy semigroup generated by A in a Hilbert space. Then e’ € p(et) iff

{A+i2nt™'z |z € Z} Cp(A) and sup H()\ + a2tz — A)71H < 00.
2€EZ
Proof of Theorem 2.1: Theorem 4.1 yields o(e*) \ {0} D ec(t\ {0}. Hence it

remains to show o(e4*)\ {0} C e\ {0}. Suppose e ¢ eo(ADt, Then Theorem 4.1
implies that there exists a § > 0 so that

(4.1) Us:= | Bs (A +i2nt™"2) C p(A).
2€Z
There exists d > 0 so that for all A € Us with |[Jm A| > d we have ho(A) # 0.

If that was false then we get a contradiction to (4.1) that h had a zero on Us:
Indeed, suppose the contrary. Then there exists a sequence (A, ),,c in Ug with

3 Amn| —mse 00 and ho(Am) = 0. Define hom(A) == ho(A + Am), hm(A) =
R(A+ Ay ). Since hy is an exponential polynomial, the real parts of ), are bounded
and the circle S is compact we have that hg,, converges uniformly to an exponential
polynomial h,(\) on each stripe C, for any given r > 0 (compare with the proof of
Lemma 3.6). Moreover, estimate (2.2) yields that h,, converges locally uniformly to
h.. Since h,(0) = 0 Hurwitz’ theorem implies that for any ¢ > 0 there exists A, € C,
|| < €, and m € IN so that h(Ac + Apm) = hm(A) = 0. By choosing e sufficiently
small we get A\c + A, € Us with h(Ac + A,y) = h(Ac + A) = 0. Hence, using
Lemma 3.6 it follows that there exists d > 0 so that infxcy j3maj>2d [ho(A)] > 0.

By applying Lemma 2.6 the resolvent is bounded on U 5. Theorem 4.2 yields that
eM e p(e). O
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