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AbstratA doubly nonlinear paraboli equation of the form α(ut)−∆u+W ′(u) = f ,omplemented with initial and either Dirihlet or Neumann homogeneousboundary onditions, is addressed. The two nonlinearities are given by themaximal monotone funtion α and by the derivative W ′ of a smooth but pos-sibly nononvex potential W ; f is a known soure. After de�ning a propernotion of solution and realling a related existene result, we show that fromany initial datum emanates at least one solution whih gains further regular-ity for t > 0. Suh regularizing solutions onstitute a semi�ow S for whihuniqueness is satis�ed for stritly positive times and we an study long timebehavior properties. In partiular, we an prove existene of both global andexponential attrators and investigate the struture of ω-limits of single tra-jetories.1 IntrodutionIn this paper we are interested in the following doubly non linear paraboli equation
α(ut) − ∆u+W ′(u) = f, for a.e. (x, t) ∈ Ω × (0,+∞), (1.1)where Ω ⊂ R
N , 1 ≤ N ≤ 3, is a bounded domain with smooth boundary ∂Ω. Here

α is a di�erentiable and strongly monotone (i.e., α′ ≥ σ > 0) funtion in R, W ′ isthe derivative of a λ-onvex (i.e., W ′′ ≥ −λ, λ ≥ 0) on�guration potential, and
f is a soure. The equation is omplemented with the initial onditions and withhomogeneous boundary onditions of either Dirihlet or Neumann type. Equationslike (1.1), apart from their own mathematial interest, an arise in large variety ofappliations, as the modelization of phase hange phenomena [9, 11, 25, 33, 34℄, gas�ow through porous media [23℄ and damaging of materials [10, 24, 37℄.Existene of (at least) one solution to initial-boundary value problems for a lassof doubly nonlinear equations inluding (1.1) was proved in the paper [15℄ (see also[3, 7, 44℄ for preeding related results). The questions of regularity, uniqueness,ontinuous dependene on data and long time behavior of solutions, however, werenot dealt with in [15℄ and remained widely open for a long time. Moreover, theresults of [15℄ require the restritive assumption that α is bounded in the senseof operators (i.e. it maps bounded sets into bounded sets), whih is not alwaysful�lled in physial appliations (see the papers quoted above referring to spei�models). On aount of these onsiderations, in the former paper [43℄, written inollaboration with U. Stefanelli, we introdued a new onept of solution (stronger1



than that in [15℄, see Def. 3.1 below) and showed existene of this kind of solutionwith essentially no restrition on α. This permitted to prove also uniqueness, atleast in some speial ases, as well as existene of nonempty ω-limits. A furtherontribution in this �eld has been reently given in [19℄, where a doubly nonlinearequation stritly related to (1.1), but of degenerate type, is addressed from theviewpoint of both well-posedness and long time behavior.One of the main issues of this paper is a regularization property, holding for t > 0,of the solutions to the IBV problem for (1.1). Due to the strong paraboliity of thesystem (α′ ≥ σ > 0) suh a fat is to be expeted; however, the proof requires asomehow triky mahinery due to the presene of very general nonlinearities. Thekey point, resembling in some way the approah given also in [19℄, onsists in anAlikakos-Moser [1℄ iteration sheme, operated here on the (formal) time derivativeof (1.1), oupled with the use (in�nitely many times) of the uniformGronwall lemma(see, e.g., [49℄). In this way we demonstrate that, if the soure f is essentiallybounded, then there exist solutions u(t) (alled �regularizing solutions� in the sequel,see Def. 3.4) whih, for t > 0, are in L∞(Ω) together with their Laplaian and with
W ′(u(t)). Moreover, for t > 0 uniqueness holds, whereas from any initial datum anstart more than one trajetory, unless the datum is more regular itself.The regularization property serves also as a starting point to improve the resultsof [43℄ regarding the long time behavior. Atually, in ase the potential W is realanalyti we an show, using the Simon-�ojasiewiz method (f. [31, 32, 48℄, seealso [14, 26℄), that ω-limits of all single trajetories ontain only one point. Thisan be done without the severely restritive assumptions on the growth of α at ∞whih were onsidered in [43℄. We remark that the Simon-�ojasiewiz method is adeep and powerful tool that in reent year has been applied to haraterize ω-limitsets of solutions to several di�erent types of nonlinear evolution equations (see, e.g.,[13, 14, 22, 28, 29℄ among the many related works).From the viewpoint of long time behavior, however, our main result regards theexistene and regularity properties of attrators. We have to stress that a ontribu-tion to this question was already provided in [45℄, where a (rather weak) notion ofglobal attrator was introdued for a lass of equations inluding (1.1). However,due to the very general and abstrat setting adopted there (very similar to that of[15℄), the attrator onstruted in [45℄ seems not very �exible from the point of viewof regularity (more preisely, it appears di�ult to haraterize it beyond its mereexistene property). Moreover, the result in [45℄ holds only under the boundednessassumption on α onsidered in [15℄ and onsequently is not suitable for our spei�situation.Here, also thanks to the muh more spei� form of equation (1.1), we an provethe existene of a global attrator in the natural phase spae (i.e. under the preiseonditions ensuring existene). The key point is the use of the so-alled energymethod by J. Ball (f. [6℄, see also [39℄ and the referenes therein), whih permitsto prove this result without reinforing the onditions on the soure f (namely, wedo not need to ask summability of its spae derivatives) and despite the apparent2



lak of a dissipative estimate in the natural phase spae (see Remark 5.1 below).We point out that, due to the (possible) non-uniqueness at t = 0, the semi�ow Sassoiated to (1.1) for whih we an prove existene of the global attrator has tobe arefully de�ned (in partiular, �nonregularizing� solutions have to be exluded,see Remark 3.11). This is in agreement with other works where equations with (atleast partial) lak of uniqueness are addressed (see, e.g., [5, 6, 35, 42, 45, 46℄).Our �nal issue is onerned with exponential attrators, whose existene is proved byusing as a tehnial tool the so-alled method of short trajetories (or ℓ-trajetories)due to Málek and Praºák [35℄. Atually, this devie permits to get in a simple waythe ontrative estimates required to have the exponential attration property. Westress that this approah is quite similar to that used in [38℄, where the equation(stritly related to (1.1) or, more preisely, to its time derivative)
α(u)t − ∆u+W ′(u) = f, for a.e. (x, t) ∈ Ω × (0,+∞), (1.2)is addressed (although under partly di�erent assumptions on the nonlinearities).We onlude with the plan of the paper. In the next Setion some preliminary ma-terial is realled. Next, our results are presented in a rigorous way in Setion 3,where in partiular the required notions of solution are introdued. The subsequentSetion 4 ontains the proof of the regularization property and Setions 5 and 6 aredevoted to global and exponential attrators, respetively. Finally, an abstrat exis-tene Theorem for global attrators, partially generalizing [5, Thm. 3.1℄, is reportedin the Appendix.2 PreliminariesIn this setion we introdue some notations and reall some preliminary notionswhih are needed to state our problem in a preise way. First of all, we set H :=

L2(Ω) and denote by (·, ·) the salar produt in H and by ‖ · ‖ the related norm.The symbol ‖ · ‖X will indiate the norm in the generi Banah spae X. Moreover,fousing on the Dirihlet ase, we set V := H1
0 (Ω), V ′ := H−1(Ω) and identify Hand H ′ so that we obtain the Hilbert triplet V ⊂ H ⊂ V ′, where inlusions areontinuous and ompat. The notation 〈·, ·〉 will stand for the duality between Vand V ′. We also let B : V → V ′ denote the distributional Laplae operator, namely

B : V → V ′, 〈Bu, v〉 = (∇u,∇v) ∀u, v ∈ V. (2.1)Remark 2.1. Here and in the sequel we assumed Dirihlet onditions just for sim-pliity. Indeed, the (homogeneous) Neumann ase works as well with the followingsimple hange: we have to set V := H1(Ω), V ′ := H1(Ω)′ and, in plae of (2.1),
B : V → V ′, 〈Bu, v〉 = (u, v) + (∇u,∇v) ∀u, v ∈ V. (2.2)All the results and proofs in the sequel then still work with no further hange.3



In order to orretly desribe the asymptoti behavior of solutions, we need tointrodue the spae of Lp
loc-translation bounded funtions. As X is a Banah spaeand p ∈ [1,+∞) we set

T p(T,∞;X) :=

{

v ∈ Lp
loc(T,∞;X) : sup

t≥T

∫ t+1

t

‖v(s)‖p
X ds <∞

}

, (2.3)whih is a Banah spae with respet to the natural (graph) norm
‖v‖p

T p(T,∞;X) := sup
t≥T

∫ t+1

t

‖v(s)‖p
X. (2.4)Next, we reall the uniform Gronwall Lemma (see, e.g., [49, Lemma III.1.1℄), whihwill be repeatedly used in the sequel:Lemma 2.2. Let y, a, b ∈ L1

loc(0,+∞) three non negative funtions suh that y′ ∈
L1

loc(0,+∞) and, for some T ≥ 0,
y′(t) ≤ a(t)y(t) + b(t) for a.e. t ≥ T , (2.5)and let k1, k2, k3 three nonnegative onstants suh that

‖a‖T 1(T,∞;R) ≤ k1, ‖b‖T 1(T,∞;R) ≤ k2, ‖y‖T 1(T,∞;R) ≤ k3. (2.6)Then, we have that
y(t+ τ) ≤

(

k2 + k3/τ
)

ek1 for all t ≥ T . (2.7)Now, let us reall some basi fats about absorbing sets and attrators. Assumingthat X is a omplete metri spae, we shall (onventionally) all a semi�ow on Xa family S of maps from [0,∞) to X , alled trajetories, satisfying properties (S1)-(S5) listed below. We stress that this de�nition, whih partly follows the approahin [5, 6℄ (see also [42℄), is not standard at all. Atually, in Ball's terminology, Sould be noted like a �strongly-weakly ontinuous generalized semi�ow with uniqueontinuation�. We say here �semi�ow� just for brevity.(S1 � existene) For all u0 ∈ X there exists at least one u ∈ S suh that u(0) = u0;(S2 � translation invariane) For all u ∈ S and T ≥ 0, the map v : [0,∞) → Xgiven by v(t) := u(T + t) still belongs to S;(S3 � onatenation) For all u, v ∈ S suh that for some T > 0 it is u(T ) = v(0),the map z : [0,∞) → X oiniding on u on [0, T ] and given by z(t) = v(t− T ) on
(T,∞) belongs to S;(S4 � unique ontinuation for T > 0) For all u, v ∈ S suh that u(T ) = v(T ) forsome T > 0, it is u(t) = v(t) for all t ∈ [T,∞);(S5 � strong-weak semiontinuity) We assume that, beyond the strong topologyindued by the metri, X is endowed with a weaker topology. Then, we �rstly askthat all elements of S are weakly ontinuous from [0,∞) to X . Next, that for allsequene {un} ⊂ S suh that un(0) =: u0,n tends strongly (i.e. with respet to themetri) to some u0 ∈ X , there exist a subsequene (not relabelled) of {un} and
u ∈ S with u(0) = u0 suh that, for all t > 0, un(t) tends weakly to u(t).4



Remark 2.3. Regarding (S5), if X is a Banah spae, a natural hoie for the�weak topology� mentioned there is of ourse that indued by the weak (or, in someases, the weak star) onvergene. We will show in the sequel (see in partiular theAppendix) that the lak of a more usual �strong-strong� ontinuity property doesnot prevent use of time regularization-ompatness methods to get existene of theglobal attrator. This fat has been noted also in other reent papers [40, 51℄.We assumed property (S4), whih is not ompletely standard, just to �t the ase ofour system for whih uniqueness holds only from t > 0. If S is a semi�ow, we de�nethe spae of regularized values of S as
Xreg :=

{

u(t) : u ∈ S, t > 0
}

. (2.8)Moreover, if u ∈ S, we reall that the (strong) ω-limit of u is the set of all limit(w.r.t. the metri) points of subsequenes of u(t) as t ր ∞. >From (S2) and (S4),it is also apparent that it an be naturally assoiated to a semi�ow S the family
{S(t)}, t ∈ [0,∞), of operators from Xreg to itself, with S(t) mapping x ∈ Xreg into
u(t), where u ∈ S is the (unique) trajetory suh that u(0) = x. It is then learthat {S(t)} satis�es the usual semigroup properties. Due to the lak of uniqueness,
S(t) annot be extended to the whole X . Nevertheless, we an introdue the familyof multivalued mappings {T (t)}, t ∈ [0,∞), given by

T (t) : X → 2X , T (t)u :=
{

v(t) : v ∈ S, v(0) = u
} (2.9)and by (S4) it is then lear that the restrition of T (t) to Xreg oinides with S(t).Next, we reall that a ompat subset A of the phase spae X is the global attratorfor the semi�ow S if the following onditions are satis�ed:(A1) The set A is stritly invariant, i.e., T (t)A = A for all t ≥ 0;(A2) A attrats the images of all bounded subsets of X as tր +∞, namely

lim
tր+∞

dist(T (t)B,A) = 0, for all bounded B ⊂ X , (2.10)where dist is the non-symmetri Hausdor� distane between sets in X (see, e.g.,[21, 49℄).We point out that the global attrator represents the �rst (although extremely im-portant) step in the understanding of the long-time dynamis of a given evolutiveproess. However, it may also present some drawbaks. First of all, it may beredued to a single point, thus failing in apturing all the transient behaviour ofthe system. Moreover, in general it is extremely di�ult to estimate the rate ofonvergene in (2.10) and to express it in terms of the physial parameters of thesystem. In this regard, simple examples show that this rate of onvergene may bearbitrarily slow. This fat makes the global attrator very sensitive to perturbationsand to numerial approximation. The onept of exponential attrator has thenbeen proposed (see, e.g., [16℄) to possibly overome this di�ulty. We reall that a5



ompat subset M of the phase spae X is alled an exponential attrator for thesemi�ow S if the following onditions are satis�ed:(E1) The set M is positively invariant, i.e., T (t)M ⊂ M for all t ≥ 0;(E2) The fratal dimension (see, e.g., [36, 49℄) of M in X is �nite;(E3) The set M attrats exponentially fast the images of the bounded sets B of thephase spae X . Namely, for every bounded B ⊂ X there exist C, β > 0 dependingon B and suh that
dist(T (t)B,M) ≤ Ce−βt, ∀ t ≥ 0. (2.11)Thanks to (E3) it follows that, ompared to the global attrator, an exponential at-trator is muh more robust to perturbation and to the important issue of numerialapproximation (see, e.g., [16℄ and [20℄). Moreover, when the exponential attrator

M exists, it ontains the global attrator A. Thus, in this ase also A has �nitefratal dimension. We point out that, however, also the theory of exponential at-trators presents some disadvantages, like the lak of uniqueness of M, whose hoieor onstrution may be in some sense arti�ial. However, we refer to [18℄ where itis proposed a onstrution of an exponential attrator whih selets a proper onevalued branh of the exponential attrators depending in an Hölder ontinuous wayon the dynamial system under study. In reent years several di�erent tehniqueshave been provided to guarantee existene of exponential attrators. Beyond theoriginal method [16℄ based on a diret veri�ation of the disrete squeezing property,we quote the �deomposition tehnique� developed in [17℄ and, in partiular, the so-alled method of �ℓ-trajetories� (or �short trajetories�), introdued by Málek andPraºák in [35℄, whih provides a simpli�ed framework whih an be adopted to verifythe theoretial onditions of [16℄ leading to existene of M. Sine we shall use thismethod in the sequel, we reall here, for onveniene of the reader, its highlights,partly adapting the presentation in [35℄ to our more spei� framework.Let X be a Hilbert spae and, for given τ > 0, let us set Xτ := L2(0, τ,X ). Weassume that there exists a subset B1 of X suh that for any u0 ∈ B1 there existsat least one map u ∈ Cw([0,∞);X ) suh that u(0) = u0. These maps u are alled�solutions� in what follows, and we assume that they form a semi�ow S on the set B1endowed with the strong and weak topologies inherited from X . We then introduethe spae of ℓ-trajetories (where ℓ > 0) as
B1

ℓ :=
{

χ : (0, ℓ) → X , χ is a solution on (0, ℓ)
}

. (2.12)The spae B1
ℓ inherits its topology from Xℓ. Moreover, aording to (S4), any ℓ-trajetory has, among all solutions, unique ontinuation. We shall assume that

B1
ℓ is relatively ompat in Xℓ, (2.13)where the losure is taken with respet to the topology of Xℓ. Then, the method of

ℓ-trajetories basially onsists in lifting the dynamial system from the phase spae6



of initial onditions to the spae B1
ℓ of ℓ-trajetories. In partiular, by (S4) we ande�ne a semigroup Lt on B1

ℓ by setting
{Lt

χ} (τ) := u(t+ τ), τ ∈ [0, ℓ], (2.14)where χ is an ℓ-trajetory and u is the unique solution suh that u|[0,ℓ] = χ. We thende�ne Then, the assumptions that lead to the existene of the exponential attratorin the spae of ℓ-trajetories endowed with the topology of Xℓ read as follows (see[35℄):(M1) There exists a spae Wℓ ompatly embedded into Xℓ and τ > 0 suh that
Lτ : Xℓ → Wℓ is Lipshitz ontinuous on B1

ℓ ;(M2) For all τ > 0 the family of operators Lt : Xℓ → Xℓ is uniformly (w.r.t. t ∈ [0, τ ])Lipshitz ontinuous on B1
ℓ ;(M3) For all τ > 0 there exist c > 0 and β ∈ (0, 1] suh that for all χ ∈ B1

ℓ and
t1, t2 ∈ [0, τ ] it holds that ‖Lt1

χ− Lt2
χ‖Xℓ

≤ c|t1 − t2|
β.In [35, Theorem 2.5℄ it is proved that, under the assumptions above, there existsan exponential attrator Mℓ in Xℓ for the dynamial system Lt on B1

ℓ . One of thestriking features of this method is that, one we have onstruted an exponentialattrator in the spae of ℓ-trajetories, we an reover the dynamis in the originalphase spae B1 and obtain an exponential attrator M for the semi�ow S. Tothis end, we introdue the evaluation map e : B1
ℓ → X whih assigns to a given

ℓ-trajetory χ its end point. More preisely, we de�ne
e : B1

ℓ → X , given by e(χ) := χ(ℓ). (2.15)By requiring(M4) The map e is Hölder ontinuous on B1
ℓ ,we obtain the exponential attrator in the phase spae as the image of Eℓ (see [35,Theorem 2.6℄), namely we have that M := e(Mℓ) is an exponential attrator forthe semi�ow S on the spae B1.Remark 2.4. In general, the semi�ow S is originally de�ned on a spae X �larger�than the bounded set B1 (usually, but not in our ase, on the whole X ), and B1is hosen �a posteriori� as a bounded, absorbing and positively invariant set for the�original� S. One of the advantages of this approah is then that property (2.13)requires in general very little smoothing e�et (and is usually straighforward to beheked in onrete situations). We also note that, one we have the exponentialattrator M on B1, as B1 is absorbing, M turns out to be an exponential attratoron the whole spae X .3 Main resultsWe begin by speifying our basi assumptions on data. First of all, we ask

α ∈ C1(R; R), α(0) = 0, α′(r) ≥ σ > 0 for all r ∈ R. (hpα)7



Next, given λ ≥ 0 and an open (either bounded or unbounded) interval I ⊂ R with
0 ∈ I, we assume that the potential W ful�lls

W ∈ C1,1
loc (I; R), W ′(0) = 0, W ′′ ≥ −λ a.e. in I, (hpW1)

lim
r→∂I

W ′(r) sign r = +∞. (hpW2)Property (hpW1) is alled λ-onvexity in what follows (see [2℄ for the de�nition).Sine W is de�ned up to an additive onstant, it is also not restritive to supposethat
∃ η > 0 : W (r) ≥

ηr2

2
for all r ∈ I. (3.1)We then introdue the basi phase spae for our analysis:

X2 :=
{

u ∈ H : Bu, W ′(u) ∈ H
}

, (3.2)whih is endowed with the metri
d2

2(u, v) := ‖u− v‖2 + ‖Bu−Bv‖2 + ‖(W ′ + λ)(u) − (W ′ + λ)(v)‖2. (3.3)Proeeding as in ite [41, Lemma 3.8℄ (ompare also with [45, Se. 3℄), it is easyto show that X2 is a omplete metri spae. It is also lear that X2 ⊂ V ∩ H2(Ω)(ontinuously); however, if I 6= R, in general the inlusion is strit.We an now list our hypotheses on the initial and soure data:
u0 ∈ X2, (hpu0)
f ∈ L∞(Ω). (hpf)Then, standardly identifying α and W ′ as operators from H to itself, we introduetheDe�nition 3.1. We all an X2-solution to the Problem (P) given by

α(ut) +Bu+W ′(u) = f, in H, a.e. in (0,∞), (3.4)
u|t=0 = u0, in H (3.5)one funtion u : [0,∞) → H satisfying (3.4), (3.5), and, for some C > 0,

u, ut, α(ut), Bu, W
′(u) ∈ L∞(0,∞;H), (3.6)

d2
2(u(t), 0) = ‖u(t)‖2 + ‖Bu(t)‖2 + ‖(W ′ + λ)(u(t))‖2 ≤ C2 for all t ∈ [0,∞).(3.7)We note that (3.4)�(3.5) give a rigorous formulation of the IBV problem for (1.1).With ondition (3.7) we ask the solution to stay in the phase spae X2 for any (andnot just a.e.) value of the time variable. We an now reall the statement of theexistene result proved in [43, Thm. 2.5℄:8



Theorem 3.2. Assume (hpα), (hpW1)�(hpW2), and (hpu0)�(hpf). More preisely,suppose that for some κ > 0 it is
d2

2(u0, 0) = ‖u0‖
2 + ‖Bu0‖

2 + ‖(W ′ + λ)(u0)‖
2 ≤ κ2. (3.8)Then, Problem (P) admits at least one X2-solution, whih additionally satis�es

‖ut‖
2
L2(0,t;V ) ≤ C2. (3.9)Moreover, the onstants C in (3.7), (3.9) depend only on Ω, α, W , f , and (linearly)on κ in (3.8). In partiular, they do not depend on the time t.We remark that (3.9), whih was not stated in [43, Thm. 2.5℄ sine the oerivityhypotheses on α onsidered there were weaker, follows easily from the proof in [43,Se. 3℄ thanks to the last assumption in (hpα). Let us now see that some solutionsto Problem (P) gain more spatial regularity for t > 0. With this aim, we introduethe new spae

X∞ :=
{

u ∈ L∞(Ω) : Bu, W ′(u) ∈ L∞(Ω)
}

, (3.10)whih is naturally endowed with the (omplete) metri
d2
∞(u, v) := ‖u−v‖2

L∞(Ω)+‖Bu−Bv‖2
L∞(Ω)+‖(W ′+λ)(u)−(W ′+λ)(v)‖2

L∞(Ω). (3.11)We also introdue weaker notions of onvergene (and, in fat, weaker topologies)on the spaes X2, X∞. Namely, we say that a sequene {un} tends to u weakly in
X2 (in X∞) if un → u, Bun → Bu, and (W ′ + λ)(un) → (W ′ + λ)(u) weakly in H(weakly star in L∞(Ω), respetively). When we onstrut below the semi�ow S on
X2, property (S5) will be impliitly intended with respet to this weak struture.To proeed, we need to introdue a ouple of funtionals de�ned on the spae X2,the �rst of whih has the meaning of energy:

E(u) :=

∫

Ω

[

|∇u|2

2
+W (u) − fu

]

, (3.12)
F(u) :=

1

2
‖Bu+W ′(u)‖2 − (f, Bu+W ′(u)). (3.13)It is lear that, sine (3.1) and (hpf) hold, both funtionals are �nite and boundedfrom below on X2. Moreover, mimiking the proedure given in [43, Se. 3℄, i.e.,formally testing (3.4) by λut + (Bu+W ′(u))t, and using in partiular (hpW1), onean expet that solutions u to Problem (P) satisfy

d

dt

(

λE + F
)

(u(t)) ≤ 0 for a.e. t ≥ 0. (3.14)Setting then G := λE + F and noting that there exist η1, η3 > 0 and η2 ≥ 0 suhthat
η1d

2
2(u, 0) − η2 ≤ G(u) ≤ η3

(

d2
2(u, 0) + 1

)

∀u ∈ X2, (3.15)9



relation (3.14) takes the form of a deay (or Liapounov) ondition for the distane
d2.However, the formal proedure used to get (3.14) seems very di�ult to be justi�edif we just know that u is an X2-solution. Atually, (3.4) is settled in H and (3.6)does not imply that the test funtion λut + (Bu+W ′(u))t takes values in H .To overome this di�ulty, we reall that the existene Theorem 3.2 was shownin [43℄ via approximation and ompatness methods. We sketh here, and partlyre�ne, just the highlights of this proedure. Let us substitute α and W in (3.4) withregularized funtions αn and Wn still satisfying (hpα), (hpW1) and suh that

αn, (W
′
n + 2λ Id) are Lipshitz ontinuous with their inverses, (3.16)

αn, (W
′
n + 2λ Id) → α, (W ′ + 2λ Id) in the sense of graphs [4℄, (3.17)the latter onvergenes intended as nր ∞. Then, noting as (Pn) the problem stillgiven by (3.4) (with the regularized funtions) and (3.5) (note that the initial datumis not regularized), it is not di�ult to show theProposition 3.3. For every n > 0, Problem (Pn) has one and only one solution unsuh that
un,tt ∈ L2(0,∞, H), un, un,t ∈ L2(0,∞, H2(Ω)). (3.18)Moreover, un satis�es estimates (3.6), (3.7) with C independent of n. Finally, forany subsequene of n ր ∞, there exists a subsubsequene (still noted here as un)suh that un suitably (i.e., in the sense spei�ed by (3.6) and (3.7)) tends to u,where u is an X2-solution to Problem (P).We point out that the proof of the above Proposition ould be performed just byre�ning the estimates and the passage to the limit in [43, Se. 3℄. We omit, forbrevity, the tehnial details of the argument and rather fous our attentions onthe more subtle onsequenes of working with solutions un of (Pn). Of ourse, thefuntions un do satisfy (3.14) (where, of ourse, Wn replaes W in G). However,the onvergene un → u spei�ed by estimate (3.7) is too weak to let (3.14) passto the limit with n. Moreover, due to nonuniqueness for the problem (P), theremight exist some X2-solutions whih are not, or at least are not known to be, limitof (sub)sequenes of solutions to (Pn). Atually, we shall note in the sequel aslimiting (respetively, nonlimiting) the solutions to (P) whih are (respetively, arenot) limits of (sub)sequenes of solutions to (Pn). For all these reasons, we haveto introdue a new onept of solution, where a (muh weaker than (3.14)) form ofLiapounov property (f. (3.20) below) for G is postulated. From the proofs, it will belear that all limiting solutions satisfy (3.20), but there might also exist nonlimitingsolutions satisfying it.De�nition 3.4. A regularizing solution to Problem (P) is an X2-solution whih,additionally, ful�lls the regularization property
ut, α(ut), Bu, W

′(u) ∈ L∞(Ω × (T,∞)) ∀T > 0 (3.19)10



and the Liapounov ondition
G(u(t)) ≤ G(u(0)) for all t ≥ 0. (3.20)Then, we have the following result, whih will be proved in the next Setion 4:Theorem 3.5 (Regularizing solutions). Let (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf) with (3.8) hold. Then, Problem (P) admits at least one regularizing solution.Moreover, there exist onstants c1, c2 > 0 and a ontinuous and monotone funtion

φ : [0,∞) → [0,∞), all independent both of the initial data and of time, andexpliitly omputable in terms of Ω, α, W , f , suh that, for every regularizingsolution and all T > 0, it is
‖ut(t)‖

2
L∞(Ω) ≤ c1

1 + G(u0)

T c2
∀ t ≥ T, (3.21)

d2
∞(u(t), 0) ≤ φ

(

c1
1 + G(u0)

T c2

)

∀ t ≥ T. (3.22)In partiular, thanks to the seond inequality in (3.15) and to (3.8), the bounds(3.21), (3.22) depend only on the �radius� κ of the initial datum with respet to d2.Theorem 3.5 is the starting point for all the subsequent investigations. As a �rstonsequene, using the last of (3.21) and (hpW2), from straightforward argumentsthere follows theCorollary 3.6 (Separation). Let (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf) hold,and let u be a regularizing solution. Then, for any T > 0 there exist r < 0, r > 0,with inf I < r < 0 < r < sup I, suh that
r ≤ u(x, t) ≤ r ∀x ∈ Ω, t ≥ T. (3.23)Remark 3.7. The separation property (3.23) stated in the Corollary improves theanalogous property shown in [43, Prop. 2.10℄ and holding for less regular solutions(i.e., X2-solutions in our notation) under additional assumptions on W .The loal Lipshitz ontinuity of W ′ (following from (hpW1)) and the simple argu-ment used in [43, Proof of Thm. 2.11℄ permit then to obtain immediately theCorollary 3.8 (Uniqueness). Assume (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf).Let also u, v be a pair of X2-solutions satisfying, for some T, c ≥ 0,

d∞(u(t), 0) + d∞(v(t), 0) ≤ c ∀ t ≥ T, (3.24)with c independent of t. Then, u ≡ v on [T,∞).The proof of the next result will be detailed in Setion 4.Corollary 3.9. Under assumptions (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf), theset S of regularizing solutions to Problem (P) is a semi�ow, whose spae of regular-ized values is ontained into X∞. 11



Remark 3.10. Comparing our assumptions on α, W with those taken in [43℄, wepoint out that here (f. (hpW2)), if I 6= R, we are not able to onsider potentialsbounded in I (like, e.g., the �double obstale� W (r) ∼ I[−1,1](r)−λr
2/2, I[−1,1] beingthe indiator funtion of [−1, 1]). More preisely, this restrition is not requiredin the proof of Theorem 3.5, where only (hpW1) is used, but in the subsequentCorollaries 3.6 and 3.8. Conerning α, di�erently from [43℄, we annot onsider herethe ase in whih α is a maximal monotone funtion with some multivalued branh,and in partiular we are not able to deal with the situation where the domain of αis stritly inluded in R (as it happens, e.g., in the appliation to irreversible phasetransitions onsidered in [25, 33, 34℄). Indeed, in ase domα 6= R, one an stilldedue (3.21), but not (3.22), whih is ruial for the long time analysis.Remark 3.11. The non-uniqueness of solutions to (P) an be preised as follows.Given an initial datum u0 ∈ X2, from it more than one solution an emanate. Inpartiular, there are one, or more, regularizing solutions, starting from u0, at leastone of whih is limiting, and all these regularizing solutions are taken as elementsof the semi�ow S. Other solutions an also exist whih are not elements of S.In partiular, (nonlimiting) smooth solutions enjoying (3.21) but not (3.20) areexluded from S.Let us now ome to the long time behavior.Theorem 3.12 (Global attrator). Assume (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf). Then, the semi�ow S assoiated with Problem (P) admits the global at-trator A, whih is ompat in X2 and �sequentially weakly ompat� in X∞ (i.e.,sequenes in A admit subsequenes �weakly� onverging in X∞).Theorem 3.13 (Exponential attrators). Suppose that (hpα), (hpW1)�(hpW2)and (hpu0)�(hpf) hold. Then, the semi�ow S assoiated with Problem (P) admitsan exponential attrator M. More preisely, M is a ompat subset of V whihattrat exponentially fast with respet to the V -norm any d2-bounded subsets of X2.Remark 3.14. We showed existene of M by working in V rather than in X2 sine,due to the nonlinear harater ofW , it seems di�ult to prove a ontrating estimatein the metri d2. Instead, re�ning our proedure it should be possible to hoose, atleast, X = V ∩H2(Ω). Nevertheless, in this ase, the argument (espeially the proofof (M1)) would have beome very tehnial.As realled in Setion 2, the existene of M entails that the global attrator A isontained in M and has �nite fratal dimension in V .As a �nal issue, by virtue of the L∞-bound on ut, we are able to sharpen the resultsin [43℄ onerning ω-limits of the elements of S. Atually, sine α(0) = 0, it is lear(f. [43, Thm. 2.13℄) that the stationary states u∞ of (3.4) are solutions of

Bu∞ +W ′(u∞) = f in H. (3.25)12



It is well known that, sine W needs not be onvex, (3.25) may well admit in�nitelymany solutions [27℄, all of whih, due to (hpW1), (hpW2) and standard elliptiregularity results, belong to X∞. Thus, given u ∈ S, the question of the onvergeneof all the trajetory u(t) to one of these solutions may be non trivial. As in [43℄,we are able to show this property by making use of the so-alled �ojasiewiz-Simoninequality [31, 32, 48℄, at least provided that
W |I0 is real analyti, (3.26)where I0 ⊂ I is an open interval ontaining 0 and suh that W ′(r)r > 0 for all

r ∈ I \ I0. Clearly, I0 exists thanks to (hpW2); moreover, by maximum priniplearguments, any solution to (3.25) takes values in a ompat subset of I0. Then, wehave the followingTheorem 3.15 (Convergene to the stationary states). Let us assume hypotheses(hpα), (hpW1)�(hpW2), (hpu0)�(hpf) and (3.26). Then, letting u be a regular-izing solution, the ω-limit of u onsists of a unique funtion u∞ solving (3.25).Furthermore, as tր +∞,
u(t) → u∞ strongly in V ∩ C(Ω), (3.27)i.e., we have onvergene for the whole trajetory u(t).The di�erene between this result and [43, Thm. 2.18℄ lies in the fat that, thanksto (3.19), we need not assume any growth ondition on α. Roughly speaking, the

L∞-bound on ut ombined with the regularity and the oerivity of α (see (hpα))redues the nonlinearity α to an almost �linear� ontribution and makes the analysisof the onvergene of the trajetory simpler. In fat, Theorem 3.15 an be provedby simply adapting the proof given in [14℄. We leave the details to the reader.Remark 3.16 (The asymptotially autonomous ase). For the sake of studying
ω-limits, we ould also onsider time dependent soures, by assuming, instead of(hpf),

f ∈ L2(0,+∞;L∞(Ω)), ft ∈ L1(0,+∞;L∞(Ω)). (3.28)Indeed, it ould be shown that Theorem 3.5 and Corollaries 3.6, 3.8, and 3.9 stillhold in this setting. Moreover, assuming also that there exist c, ξ > 0 suh that
t1+ξ

∫ ∞

t

‖f(s)‖2 ds ≤ c for all t ≥ 0, (3.29)Theorem 3.15 ould be extended as well (see also [14, 26℄ for this kind of assump-tions).4 Regularization in timeProof of Theorem 3.5. We shall use an Alikakos-Moser [1℄ iteration argumentfor whih some a priori estimates are needed. In partiular, we shall work on the13



(formal) time derivative of (3.4), namely given by
α′(ut)utt +But +W ′′(u)ut = 0. (4.1)Of ourse, (4.1) needs not make sense if u is just an X2-solution. However, we anwrite it for Problem (Pn), derive the estimates at the level n, and then let thempass to the limit n ր ∞ using the semiontinuity properties of norms w.r.t. weakonvergenes. This approah has the drawbak that, at a �rst stage, the estimateswill hold only for the �limiting solutions�. They will be properly extended to allregularizing solutions in the seond part of the proof.Before proeeding, we introdue some further notation. For simpliity, we shall omitthe index n of the approximation in all what follows. The symbol c will stand fora positive onstant, possibly varying even inside one single line, whih is allowed todepend on the data Ω, α, W , f , but neither on the initial values, nor on time. Theonstant(s) c will be also independent of the exponents pj of the iteration proess(see below) and, of ourse, of n. Some c's whose preise value is needed will bedistinguished by noting them as ci, i ≥ 0. Let us now set, for p ∈ [2,∞),
ap(s) :=

∫ s

0

α′(r)|r|p−2r dr (4.2)and notie that (reall that α(0) = 0)
σ

p
|s|p ≤ ap(s) ≤ α(s)|s|p−2s ∀ s ∈ R. (4.3)Moreover, it is lear that (at least formally, as noted above)

d

dt
ap(ut) = α′(ut)|ut|

p−2ututt. (4.4)Then, testing (4.1) by ut, realling the seond of (hpW1) and adding λ‖ut‖
2 on bothhands sides, and integrating over (0, t), we get

2‖a2(ut(t))‖L1(Ω) + 2‖ut‖
2
L2(0,t;V ) ≤ 2‖a2(ut(0))‖L1(Ω) + c‖ut‖

2
L2(0,t;H). (4.5)To ontrol the latter term in the right hand side above, we an use (3.9). The otherone, by (4.3) with p = 2 and Young's inequality, beomes

2‖a2(ut(0))‖L1(Ω)) ≤ ‖α(ut(0))‖2 + ‖ut(0)‖2 ≤ c(1 + κ)2, (4.6)where the latter inequality is a onsequene of a omparison in (3.4) (written for(Pn)) and of assumption (hpu0) (κ is as in (3.8)). Atually, α−1 is Lipshitz ontin-uous due to (hpα). In onlusion, from (4.5) we obtain
2‖a2(ut)‖L∞(0,∞;L1(Ω)) + 2‖ut‖

2
L2(0,∞;V ) ≤ c0(1 + κ)2. (4.7)We an now desribe the two estimates whih are at the ore of the iteration proess.14



First estimate. Let j ≥ 1, pj > 1, and let us test (4.1) by |ut|
pj−2ut, so that

d

dt

∫

Ω

apj
(ut) +

(

But, |ut|
pj−2ut

)

≤ λ‖ut‖
pj
pj

(4.8)(we agree, here and in the sequel, to note by ‖ · ‖p the norm in Lp(Ω) for p ∈ [1,∞]).By de�nition of B and Poinaré's inequality (everything works with minor hangesalso in the Neumann ase),
(

But, |ut|
pj−2ut

)

≥
4(pj − 1)

p2
j

∫

Ω

∣

∣

∣

∣

∇
(

|ut|
pj−2

2 ut

)

∣

∣

∣

∣

2

≥
c1
pj
‖ut‖

pj

3pj
, (4.9)for some c1 > 0. Assuming then that there exist Tj , ℓj > 0 suh that

pj‖apj
(ut)‖T 1(Tj ,∞;L1(Ω)) ≤ ℓj, pj‖ut‖

pj

T
pj (Tj ,∞;Lpj (Ω))

≤ ℓj (4.10)and multiplying (4.8) by pj , from Lemma 2.2 we get, for τj ∈ (0, 1],
pj‖apj

(ut(t+ τj))‖L1(Ω) ≤ ℓj

(

λ+
1

τj

)

∀ t ≥ Tj , (4.11)whene, realling (4.3), we also have
‖ut(t+ τj)‖

pj
pj
≤
ℓj
σ

(

λ+
1

τj

)

∀ t ≥ Tj . (4.12)Moreover, integrating pj times (4.8) over (t, t+ 1) for t ≥ Tj + τj , and taking (4.9),(4.11) into aount, it is not di�ult to infer
∫ t+1

t

‖ut(s)‖
pj

3pj
ds ≤

ℓj
c1

(

2λ+
1

τj

)

∀ t ≥ Tj + τj . (4.13)Interpolation argument. By elementary interpolation of Lp spaes, we have
‖ut(t)‖7pj/3 ≤ ‖ut(t)‖

1/7
pj

‖ut(t)‖
6/7
3pj

∀ t ≥ Tj + τj . (4.14)Hene, still for t ≥ Tj + τj ,
∫ t+1

t

‖ut(s)‖
7pj/6

7pj/3 ds ≤ ‖ut‖
pj/6

L∞(t,t+1,Lpj (Ω))

∫ t+1

t

‖ut(s)‖
pj

3pj
ds. (4.15)Thus, from (4.12) and (4.13),

‖ut‖
7pj/6

T
7pj/6(Tj+τj ,∞;L7pj/3(Ω))

≤

(

ℓj
σ

)1/6(

λ+
1

τj

)1/6
ℓj
c1

(

2λ+
1

τj

)

. (4.16)In onlusion, there exists c2 depending only on c1, σ, λ and suh that
‖ut‖

pj

T
7pj/6(Tj+τj ,∞;L7pj/3(Ω))

≤ c2ℓj

(

1 +
1

τj

)

. (4.17)15



Seond estimate. We now test (3.4) by |ut|
q−2ut, with q > 1 to be hosen later.Owing to the bound (3.7) and using (hpα), it is lear that

∫

Ω

α(ut)|ut|
q−2ut ≤ ‖ − Bu−W ′(u) + f‖2‖ut‖

q−1
2q−2 ≤ c(1 + κ)‖ut‖

q−1
2q−2. (4.18)Consequently,

σ‖ut‖
q
q ≤ c(1 + κ)‖ut‖

q−1
2q−2. (4.19)The above relations (4.18)�(4.19) hold pointwise in t. Then, integrating (4.18) over

(t, t+ 1) for t greater than a suitable S and using the latter inequality in (4.3), weget, for some c3 depending only on C, σ,
q‖aq(ut)‖T 1(S,∞;L1(Ω)) + q‖ut‖

q
T q(S,∞;Lq(Ω)) ≤ c3q(1 + κ)

∫ t+1

t

‖ut(s)‖
q−1
2q−2 ds. (4.20)Bootstrap. At this point, if we take in the previous argument

S = Tj+1 := Tj + τj , q = pj+1 :=
7pj

6
+ 1, (4.21)relation (4.20) is readily rewritten as

pj+1‖apj+1
(ut)‖T 1(Tj+1,∞;L1(Ω)) + pj+1‖ut‖

pj+1

T
pj+1 (Tj+1,∞;Lpj+1(Ω))

≤ c3pj+1(1 + κ)

∫ t+1

t

‖ut(s)‖
pj+1−1
2pj+1−2 ds. (4.22)Hene, realling (4.17), the left hand side above is majorized by

c3pj+1(1 + κ)c
7/6
2 ℓ

7/6
j

(

1 +
1

τj

)7/6

≤ c4ℓ
7/6
j pj

(

1 +
1

τj

)7/6

(1 + κ). (4.23)Thus, we an de�ne
ℓj+1 := c4ℓ

7/6
j pj

(

1 +
1

τj

)7/6

(1 + κ), (4.24)so that (4.23) implies (4.10) at the step j + 1. More preisely, sine by (4.7) we antake
T1 := 0, p1 := 2, ℓ1 := c0(1 + κ)2, (4.25)assuming that ǫ ∈ (0, 1) is given, we also hoose

τj :=
ǫ

j2
, so that Tj+1 = Tj + τj ≤ cǫ ∀ j ≥ 1 (4.26)and for c > 0 independent of j. At this point, let us set, for notational simpliity,
b := 7/6, Bj :=

j
∑

i=0

bi ≤ 6bj+1. (4.27)16



Then, it is not di�ult to get from (4.24) (f. also (4.25))
ℓj+1 ≤ c

Bj−1

4 cb
j

0 (1 + κ)pj+1

j
∏

i=1

pbj−i

i

j
∏

i=1

(

1 +
i2

ǫ

)bj−i+1

, (4.28)whene, noting that
c5b

j ≤ pj ≤ c6b
2j ∀ j ≥ 1 (4.29)and for some c5, c6 > 0 independent of j, and passing to the logarithm, it is notdi�ult to show that

( j
∏

i=1

pbj−i

i

)1/pj

≤ c, (4.30)
(

j
∏

i=1

(

1 +
i2

ǫ

)bj−i+1
)1/pj

≤
c

ǫc7
. (4.31)Colleting the above estimates, we infer

ℓ
1/pj+1

j+1 ≤
c(1 + κ)

ǫc7
. (4.32)Thus, (4.12) (written at the step j + 1) gives, for all j ∈ N,

‖ut(t)‖pj
≤
c(1 + κ)

ǫc8
∀ t ≥ Tj+1. (4.33)>From (4.17) we also have

‖ut‖T pj+1−1(Tj+1,∞;L2(pj+1−1)(Ω))
≤
c(1 + κ)

ǫc8
. (4.34)Finally, taking the limit of (4.33) as j ր ∞ we obtain

‖ut(t)‖∞ ≤
c9(1 + κ)

ǫc8
∀ t ≥ cǫ, (4.35)where the last c is the same as in (4.26). Hene, by arbitrariness of ǫ, ut(t) isessentially bounded for a.e. t > 0. More preisely, squaring (4.35), realling (3.8),and owing also to the �rst inequality in (3.15), (3.21) follows at one. Realling(hpα), and using in partiular that α is de�ned on the whole real line, we alsoobtain

‖α(ut)‖∞ ≤ φ

(

c1
1 + G(u0)

T c2

)

∀ t ≥ T, (4.36)where φ depends only on α. Then, rewriting (3.4) as
Bu+W ′(u) + λu = f + λu− α(ut), (4.37)and viewing it as a time dependent family of ellipti problems with monotone non-linearity and uniformly bounded foring term, it is not di�ult to obtain also (3.22)17



as a onsequene of standard maximum priniple arguments. More preisely, onean test (4.37) by |W ′(u) + λu|p−2(W ′(u) + λu) for p ∈ [2,∞) and then let pր ∞.To onlude the proof of Theorem 3.5, we reall that the proedure above has tobe intended in the framework of Problem (Pn). Then, the bounds (3.21), (3.22),as well as the Liapounov ondition (3.20), pass easily to the limit n ր ∞ thanksto lower semiontinuity of norms with respet to weak and weak star onvergenes.More preisely, to obtain (3.20) the following property (of straightforward proof) isused:Lemma 4.1. The funtional G is weakly sequentially lower semiontinuous in X2,namely, we have
G(u) ≤ lim inf

nր∞
G(un) (4.38)if {un} ⊂ X2 tends to some limit u weakly in X2. The same property holds also for

F .The proof of Theorem 3.5 is however not yet omplete sine, up to now, we havejust showed that any limiting solution is a regularizing solution and ful�lls (3.21),(3.22) and (3.20). To onlude, we have to prove that any regularizing solution u(i.e. also a nonlimiting one) satis�es (3.21) and (3.22) (while (3.20) is now postulatedin De�nition 3.4). Here, the key point is to notie that, by (3.19) and Cor. 3.8,taken any s > 0, from the �datum� u(s) at most one solution emanates. Thus,any regularizing u is also �limiting� as it is restrited to [s,∞). This means that,referring for instane to (3.21), we have at least
‖ut(t)‖

2
L∞(Ω) ≤ c1

1 + G(u(s))

(T − s)c2
∀ t ≥ T > s > 0. (4.39)Then, (3.21) follows easily by �rst using (3.20) (with s in plae of t) and then takingthe limit for s ց 0. The bound (3.22) is proved exatly in the same way andonludes the proof of Theorem 3.5.Remark 4.2. Notie that, for any regularizing solution, there holds the property(slightly stronger than (3.20))

G(u(t)) ≤ G(u(s)) for all t ≥ s ≥ 0. (4.40)Indeed, if s = 0, then (4.40) redues to (3.20). Otherwise, u oinides on [s,∞)with a limiting solution. Thus, (4.40) an be shown by noting as before that u islimiting on [s,∞), onsidering (Pn) w.r.t. the �initial� datum u(s), and �nally letting
nր ∞.Proof of Corollary 3.9. Property (S1) is evident and (S4) follows from Cor. 3.8.Next, (S2) and (S3) are immediate one one notes that v (in (S2)) and z (in (S3))ful�ll (3.20) thanks to Remark 4.2. Finally, let us prove (S5). Although we oulduse here the regularization properties (3.21), (3.22), we rather give a proof whih18



essentially relies only on (3.7), sine we think it is interesting to notie that thestrong-weak semiontinuity properties require no smoothing e�et.Thus, to show the �rst of (S5), we start by observing that, due to (3.6), any u ∈ Sstays in Cw([0,∞);H2(Ω)), so that we just have to prove that, as s, t ∈ [0,∞) and stends to t, (W ′ + λ)(u(s)) goes to (W ′ + λ)(u(t)) weakly in H . To see this, we �rstnotie (f. also [41, Se. 6℄) that there exists c ≥ 0 suh that ‖(W ′ + λ)(u(s))‖ ≤ cfor all (not just a.e.) s ∈ [0,∞). Then, it is lear that, as s→ t, any subsequene of
(W ′+λ)(u(s)) admits a subsequene weakly onvergent inH , whose limit is identi�edas (W ′ + λ)(u(t)) thanks to the onvergene u(s) → u(t), whih is strong in H , themonotoniity of W ′ + λ Id, and [8, Lemma 1.3, p. 42℄. This proves weak ontinuityof single trajetories. If we use (3.21), (3.22), we atually get more, namelyW ′(u(·))is strongly ontinuous with values in C(Ω) at least for stritly positive times.To onlude, let us show the seond property in (S5). Letting then un, u0,n as in (S5),as u0,n tends to u0 in X2, it is in partiular bounded in X2. This entails that (3.7),(3.21), (3.22) hold uniformly in n. By ompatness arguments (similar to thosein [43, Subse. 3.3℄) and using [47, Cor. 4℄, we then obtain that (a not relabelledsubsequene of) un satis�es, for all T > 0,

un → u strongly in C0([0, T ];V ), (4.41)
(W ′ + λ)(un) → (W ′ + λ)(u) weakly in L2(0, T ;H), (4.42)where u is an X2-solution to Problem (P) with initial datum u0, and it satis�es (3.7),(3.21) and (3.22). In partiular, given any t > 0, by (4.41) un(t) goes to u(t) stronglyin V . Then, by uniform boundedness, this onvergene is also weak in H2(Ω). Asbefore, the monotoniity of W ′ + λ Id and the bound ‖(W ′ + λ)(un(t))‖ ≤ c, whihis uniform both in n and in t, permit to show that (W ′ +λ)(un(t)) → (W ′+λ)(u(t))weakly in H (no further extration of subsequene is required here, sine the limitis already identi�ed). To onlude, we have to see that u is a regularizing solution(i.e. it also ful�lls (3.20)). To prove this, it su�es to write (3.20) for un and takethe liminf as nր ∞. Indeed, the left hand side an be treated by Lemma 4.1, whilethe right hand side passes diretly to the limit sine u0,n → u0 strongly in X2 andit is easy to hek that G is ontinuous with respet to d2.5 Long time behaviorProof of Theorem 3.12. We shall show the following fats:(L1) The semi�ow S possesses a Liapounov funtion;(L2) The set of stationary points of S is bounded in X2;(L3) The semi�ow S is asymptotially ompat, namely for any sequene {u0

n

}

n∈Nbounded in X2 and any positive sequene {tn}n∈N
, tn ր ∞, any sequene of theform {un(tn)}, where un ∈ S and un(0) = u0

n, is preompat in X2.By the theory of global attrators (see, e.g., [30, Theorem 3.2℄ or [5, Thm. 5.1℄),19



(L1)�(L3) would imply the existene of a global attrator ompat in X2. However,here neither the �standard� theory in [30℄, nor the �generalized� theory in [5℄, an bediretly applied sine we have no uniqueness and just strong-weak semiontinuity.Nevertheless, we shall show in the Appendix that the validity of [5, Thm. 5.1℄ anbe extended also to this ase.Remark 5.1. The use of this method permits to bypass the diret proof of existeneof an X2-bounded absorbing set, whih seems di�ult to get here due to the possiblyfast growth of α at ∞. Of ourse, a posteriori the dissipativity property will besatis�ed just as a onsequene of the existene of the global attrator.To proeed, we �rst notie that, by the energy estimate (obtained testing (3.4) by
ut), E is a Liapounov funtional. Note that the regularity of any X2-solution issu�ient to justify this estimate (and this is the reason why we do not use herethe funtional G, whih also enjoys a Liapounov property, at least for regularizingsolutions, by Remark 4.2). Thus, (L1) holds. Seond, (L2) is an easy onsequeneof well-known ellipti regularity results (we even have boundedness in X∞). Thus,it just remains to show (L3), whose proof will be split in a number of steps.Lemma 5.2. Given 0 < τ < T < ∞, there exists c depending on τ, T and on theinitial datum suh that any regularizing solution u satis�es the further bounds

‖utt‖L2(τ,T ;H) + ‖ut‖L∞(τ,T ;V ) ≤ c, (5.1)
‖But‖L2(τ,T ;H) ≤ c. (5.2)Proof. We an prove (5.1)�(5.2) by working on (Pn) and then letting n ր ∞.As before, we omit the subsript n, for simpliity. Indeed, sine we just onsiderstritly positive times, u an be thought as a limiting solution. In this regard, (5.1)is obtained by testing (4.1) by (t− τ)utt and using monotoniity of α together with(3.9) and (3.19). Next, (5.2) follows by making a omparison in (4.1) and using theontinuity of W ′′, (3.19) and (3.23). The tehnial details of the proedure, as wellas the standard argument for passing to the limit with n, are left to the reader.To proeed, we set, just to avoid some tehnialities, f ≡ 0. We have theLemma 5.3. Let z ∈ S. Setting, for s > 0,

H(z(s)) := −
(

α(zt(s)), (Bzt +W
′′(z)zt)(s)

)

−
1

2

(

α(zt(s)), (Bz+W ′(z))(s)
)

, (5.3)for any τ,M > 0 there holds
F(z(τ +M)) = e−MF(z(τ)) +

∫ τ+M

τ

es−τ−MH(z(s)) ds. (5.4)Proof. Sine we work on [τ,∞), we an use the further regularity properties (5.1)�(5.2), whih allow us to test (3.4) by (Bzt +W ′′(z)zt) + 1
2
(Bz+W ′(z)). Integratingover (τ, τ +M), we readily get 5.4. 20



Remark 5.4. Let us note that, using, e.g., [12, Lemme 3.3, p. 73℄, we get, morepreisely, that the funtion t 7→ G(z(t)) is absolutely ontinuous on [τ,∞) for all
τ > 0. This permits, in partiular, to improve (in our spei� ase) the �rst onditionin (S5). Namely, the elements of our semi�ow S belong to C((0,∞);X2) (omparealso with [5, (C1)℄.Let us now omplete the proof of (L3). We use here the �energy method� originallydevised by Ball in [6℄ (see also [39℄ for an extension to nonautonomous systems).Take τ,M as before, and let vn be the (unique) regularizing solution satisfying, for
t ∈ [0,∞), vn(t) = un(tn + t−M−τ) (so that, in partiular, vn(0) = un(tn−M−τ),
vn(τ) = un(tn −M) and vn(τ + M) = un(tn)). Sine by (3.22) there exists k > 0suh that d∞(vn(t), 0) ≤ k for all n ∈ N and t ∈ [0,∞), by weak ompatness wehave that there exist χ−M , χ ∈ X2 suh that vn(τ) → χ

−M and vn(τ + M) → χweakly in X∞. Then, writing (5.4) for z = vn, we get
F(un(tn)) − e−MF(un(tn −M)) = F(vn(τ +M)) − e−MF(vn(τ))

=

∫ τ+M

τ

es−τ−MH(vn(s)) ds =: H(vn). (5.5)Next, let us note that, at least up to a not relabelled subsequene, vn properlytends to an X2-solution v. Thus, in partiular, we have that v(τ) = χ
−M and

v(τ + M) = χ. Moreover, still by (3.22), d∞(v(t), 0) ≤ k for all t ∈ [0,∞). Thus,setting v0 := limnր∞ vn(0), sine by the existene property there must exist at leastone z ∈ S suh that z(0) = v0, by Corollary 3.8 it must be z ≡ v on [0,∞), whihmeans that v is itself an element of S and, onsequently, satis�es (5.4). Thus, notingthat, by (5.1), (5.2) and weak ompatness, H(vn) tends to H(v), taking the lim supin (5.5) one gets
lim sup

nր∞

F(un(tn)) ≤ ke−M + lim sup
nր∞

H(vn)

= ke−M + H(v)

= ke−M + F(v(τ +M)) −F(v(τ))e−M

≤ ke−M + F(χ). (5.6)Sine un(tn) tends to χ weakly in X2 and using one more Lemma 4.1, it is then easyto see that F(un(tn)) tends to F(χ), whih readily entails that un(tn) → χ stronglyin X2, i.e. (L3).Remark 5.5. We point out that the attrator A turns out to be more regular.More preisely, it is bounded and hene �weakly� ompat in X∞. Indeed, it is easyto realize that the set of stationary points of (P) mentioned in property (L2) is alsobounded in X∞. Moreover, (3.22) entails that S is (sequentially) �weakly� ompat,i.e. (L3) holds, in X∞. Thus, Ball's proedure skethed in the Appendix an berepeated with respet to the �weak� topology in X∞. As a further onsequene, itis now easy to see that A is also strongly ompat in W 2,p(Ω) for all p ∈ [1,∞).Remark 5.6. On aount of the previous Remark, our proedure entails existeneof an absorbing ser B0 for S bounded in X∞ (not just in X2).21



6 Exponential attratorsIn this setion we prove Theorem 3.13 by means of the method of ℓ-trajetories. Inorder to apply the theory of [35℄ skethed in Setion 2, we take X := V endowed withits standard norm. In omparison with the global attrator, whih was onstrutedin the smaller spae X2, we are thus working with weaker norm and topology.We know from the previous Setion that S admits an absorbing set B0 bounded in
X∞. We let (uniqueness holds on B0, thus we an use the �semigroup� S(·))

B1 := ∪t∈[0,T0]S(t)B0, (6.1)where T0 > 0 is suh that S(t)B0 ⊂ B0 for all t ≥ T0 and the losure is takenw.r.t. the weak topology of X∞. Due to the uniform harater of estimate (3.22)(now the initial data are in B0, so they are uniformly bounded in X∞), B1 is stillabsorbing and bounded in X∞. Moreover, we laim that B1 is positively invariant.To prove this fat, we let τ > 0 and assume that u0 ∈ B1 is given by
u0 = lim

nր∞
S(tn)u0,n, (6.2)where {u0,n} ⊂ B0 and {tn} ⊂ [0, T0]. Then, using uniform boundedness, weakompatness arguments and the uniqueness property of solutions it is not di�ultto realize that

S(tn + τ)u0,n = S(τ)
(

S(tn)u0,n

)

→ S(τ)u0 (6.3)weakly in X∞ as n ր ∞ (note that we annot use diretly (S5) sine we do notknow that S(tn)u0,n onverges strongly inX2). This readily entails that S(τ)u0 ∈ B1,whih is then positively invariant.At this point, possibly making a positive and �nite time shift, we onsider elementsof S starting from initial data in B1. Following [35, Se. 2℄ and Setion 2 in thispaper, we set Xℓ := L2(0, ℓ;X ), where the hoie of ℓ ∈ (0,∞) is here arbitrary, andde�ne B1
ℓ as the set of ℓ-trajetories whose initial datum lies in B1. Using that B1is positively invariant and weakly losed in X∞, it is not di�ult to show that B1

ℓ isalso losed with respet to the norm in Xℓ.We now show the validity of onditions (M1), (M2) and (M3) reported in Setion 2.To do this, we prove a number of a priori estimates involving the di�erene of twosolutions. Namely, we take u1, u2 solving (P) and starting from u0,1, u0,2 ∈ B1,respetively, and set u := u1 − u2. Then, writing (3.4) for u = u1 and for u = u2,and taking the di�erene, we have
α(u1,t) − α(u2,t) +Bu+W ′(u1) −W ′(u2) = 0. (6.4)In the sequel, the varying onstant c > 0 and the onstants c1, c2, · · · > 0, whosenumeration is restarted, will be allowed to depend on B1 and on ℓ, additionally.Thus, let us test (6.4) by ut. We get

σ‖ut‖
2 +

d

dt
‖u‖2

V ≤ c‖u‖2, (6.5)22



where we also used the Young inequality and that, thanks to (3.22), there exists c > 0depending on B1 suh that ‖W ′′(u1(r))‖∞ + ‖W ′′(u2(r))‖∞ ≤ c for all r ∈ [0,∞).Then, by Gronwall's Lemma,
‖u(y)‖2

V ≤ ec(y−s)‖u(s)‖2
V ≤ e2cℓ‖u(s)‖2

V =: c1‖u(s)‖
2
V (6.6)for all s, y suh that 0 ≤ y−s ≤ 2ℓ. Then, taking s ∈ [0, ℓ], t ∈ [s, 2ℓ] and integrating(6.5) over [s, t], we infer

σ

∫ t

s

‖ut(r)‖
2 dr + ‖u(t)‖2

V ≤ c

∫ t

s

‖u(r)‖2 + ‖u(s)‖2
V . (6.7)Thus, using (6.6) integrated for y ∈ [s, t] to estimate the �rst term in the right handside above, we get, for t = 2ℓ,

σ

∫ 2ℓ

s

‖ut(r)‖
2 dr + ‖u(2ℓ)‖2

V ≤ c2‖u(s)‖
2
V , (6.8)whene, integrating for s ∈ [0, ℓ],

σℓ‖ut‖
2
L2(ℓ,2ℓ;H) + ℓ‖u(2ℓ)‖2

V ≤ c2‖u‖
2
L2(0,ℓ;V ). (6.9)Now, let us notie that a diret omparison argument in (3.4) gives

‖u‖2
H2(Ω) ≤ c

(

‖u‖2 + ‖Bu‖2
)

≤ c3‖u‖
2 + c3‖ut‖

2, (6.10)where the last inequality holds by the loal Lipshitz ontinuity of α and W ′ andTheorem 3.5. Thus, evaluating the above formula in y ∈ [ℓ, 2ℓ], and using (6.6),
‖u(y)‖2

H2(Ω) ≤ c3c1‖u(s)‖
2
V + c3‖ut(y)‖

2. (6.11)Finally, integrating for s ∈ [0, ℓ] and y ∈ [ℓ, 2ℓ] and realling (6.9),
‖u‖2

L2(ℓ,2ℓ;H2(Ω)) ≤ c4‖u‖
2
L2(0,ℓ;V ). (6.12)We are in the position to show properties (M1), (M2) and (M3). Setting

Wℓ :=
{

v ∈ L2(0, ℓ;H2(Ω)) : vt ∈ L2(0, ℓ;H)
}

, (6.13)from (6.12) and (6.9) we have, respetively,
‖Lℓu1 − Lℓu2‖L2(0,ℓ;H2(Ω)) ≤ c‖u1 − u2‖L2(0,ℓ;V ), (6.14)
∥

∥

∥
(Lℓu1 − Lℓu2)t

∥

∥

∥

L2(0,ℓ;H)
≤ c‖u1 − u2‖L2(0,ℓ;V ), (6.15)whih imply property (M1) thanks to a straightforward appliation of the Aubin-Lions ompatness Lemma. 23



Conerning property (M2), this follows from (6.6) taking y = s + t, with t varyingin [0, τ ], τ > 0, and integrating for s ∈ [0, ℓ] (the onstant c1 will atually take thevalue e2cτ , instead of e2cℓ, with these hoies).Finally, property (M3) is a simple and diret onsequene of the time-regularity(3.9) of the time derivatives of the solutions (f. [35, Lemma 2.2℄).Aording now to [35, Theorem 2.5℄, our proedure entails existene of an expo-nential attrator Mℓ in the spae of short trajetories. To show the existene of anexponential attrator also in the physial state spae, we have to hek the regularity(M4) for the evaluation map e, whih follows easily from (6.6) by taking y = ℓ andintegrating for s ∈ [0, ℓ]. Thus, thanks also to Remark 2.4, the set M := e(Mℓ) isan exponential attrator in X = V for the semi�ow S.Remark 6.1. We stress one more that M is a ompat set in V, but it is able toattrat exponentially fast only the sets whih are bounded in X2 (atually for initialdata lying in V also the existene theory requires additional onditions).7 AppendixWe show here that the onstrution of global attrators for generalized semi�ows(i.e., in our terminology, semi�ows with �strong-strong� ontinuity properties butwith no uniqueness at all) given in [5℄ an be extended to our situation. Atually,in omparison with J. Ball's proof, we have some simpli�ation (mainly of tehni-al harater) due to the unique ontinuation (S3). On the other hand, sine ourproperty (S5) is weaker than J. Ball's �strong-strong� ontinuity [5, (H4)℄, we haveto suitably modify some points, whih beome now slightly more ompliated. Forthe reader's onveniene we report at least the highlights of all steps of J. Ball'sargument. Conerning the proofs, we just point out the di�erent points, instead.Basially, we will see that when in J. Ball's proofs [5, (H4)℄ is used, we an replaeit by the ombined use of (S5) and the asymptoti ompatness (L3). In agreementwith our spei� situation, the phase spae will be indiated as X2 in what follows,but of ourse everything holds for a generi metri spae additionally endowed withsome �weak� topology.Proposition 7.1 (Lemma 3.4 in [5℄). Let (S1)�(S5) and (L3) hold and let B ⊂ X2a bounded set. Then, the ω-limit ω(B) is nonempty, ompat, fully invariant andattrats B.Proof. It is obvious from (L3) that ω(B) is nonempty and easy to show diretlythat it is losed. We now prove that, for all z ∈ ω(B), there exists a ompletetrajetory ψ taking values in ω(B) and suh that ψ(0) = z (we reall that �ompletetrajetory� means that ψ : R → X2 is suh that ψ(· + τ) ∈ S for all τ ∈ R). Letthen {un} ⊂ S and tn ր ∞ suh that un(tn) → z and {un(0)} ⊂ B. By (S2),the sequene {vn}, de�ned by vn(·) := un(tn + ·), lies in S and satis�es vn(0) → z24



strongly. Then, by (S5), there exist a nonrelabelled subsequene of n and a solution
v ∈ S suh that, for all t > 0, un(tn + t) = vn(t) → v(t) weakly in X2. On the otherhand, setting wn(·) := un(tn/2 + ·), it is wn ∈ S. Moreover, we notie that, withno modi�ations in the proof, it is still valid here [5, Prop. 3.1℄, whih says that(L3) entails eventual boundedness, i.e., that for any bounded B there exists τB ≥ 0suh that ∪t≥τB

T (t)B is still bounded. Thus, we have that {wn(0)} is bounded andonsequently, thanks to (L3), un(tn + t) = wn(tn/2 + t) onverges strongly to itslimit whih is already identi�ed as v(t). Moreover, it is lear that v(t) ∈ ω(B) for all
t ≥ 0. This shows that from z originates a (semi)trajetory v taking values in ω(B).The same trik used above permits to adapt also J. Ball's proof that v extends toa omplete trajetory ψ. Next, noting that on ω(B) uniqueness holds, the aboveproperty also entails the omplete invariane of ω(B) (whih did not neessarily holdin Ball's ase). Finally, the proof that ω(B) is ompat and attrats B is essentiallythe same as in [5℄.Proposition 7.2 (Lemma 3.5 in [5℄). Let (S1)�(S5) and (L3) hold and let S bepointwise dissipative, namely let there exist B0 bounded in X2 suh that any u ∈ Seventually takes values in B0. Then, there exists τ > 0 suh that, for any δ > 0, theset

B1 :=
⋃

t≥τ

T (t)(B(B0, δ)), (7.1)with B(B0, δ) denoting the open δ-neighbourhood of B0, is an absorbing set for S.Proof. Let δ > 0. By ontradition, let us assume that some bounded B is notabsorbed by B1. Then, there exist {un} ⊂ S and tn ր ∞ with {un(0)} ⊂ Bsuh that, for all n, un(tn) 6∈ B1. By eventual boundedness, there exists τ > 0(note it does not depend on δ) suh that γτ (B) = ∪t≥τT (t)B is bounded. Let usthen set vn(·) := un(tn/2 + ·), so that vn(0) = un(tn/2) and vn(tn/2) = un(tn).By (L3), at least for a subsequene, vn(0) → z strongly. This entails by (S5)that there exists v ∈ S suh that vn(t) → v(t) weakly for all t ∈ [0,∞). Asbefore, sine vn(t) = un(tn/2 + t) and {un(0)} is bounded, by (L3) the onvergene
vn(t) → v(t) is atually strong. Moreover, it is easy to see (proeed exatly as in [5℄)that vn(t) 6∈ B(B0, δ) for all t ∈ [0, tn/2− τ ]. Thus, passing to the (strong) limit, wehave that v(t) 6∈ B(B0, δ) for all t ∈ [0,∞). Sine v is a trajetory, this ontraditsthe point dissipativity of S and gives the assert.Proposition 7.3 (Theorem 3.3 in [5℄). Let (S1)�(S5) and (L3) hold and let S bepointwise dissipative. Then, S admits the global attrator A.Proof. It is as in [5℄, up to minor modi�ations.Proposition 7.4 (Theorem 5.1 in [5℄). Let (S1)�(S5) and (L1)�(L3) hold. Then, Sis pointwise dissipative (hene, by the previous result, it admits the global attrator).25



Proof. Although it is similar to that in [5℄, we prefer to give some more detail.First, it is easy to prove that, noting as V the Liapounov funtional and as E0 theset of rest (i.e., stationary) points of S, given u ∈ S, V is onstant on ω(u) and
ω(u) is ontained in E0. To onlude, we show that, given an arbitrary δ > 0, any
u ∈ S eventually takes values in the (bounded) set B0 := B(E0, δ). Atually, if byontradition u(tn) 6∈ B0 for a diverging sequene {tn}, de�ning vn(·) := u(tn/2 + ·)and being, as before, {vn} ⊂ S and {vn(0)} bounded, by asymptoti ompatness
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