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ABSTRACT: This work is devoted to the numerical analysis of surface waves in two-component saturated
poroelastic media. We use the ”simple mixture model” which is a simplification of the classical Biot’s model
for poroelastic media.
For the interface porous medium/vacuum there exist two surface waves in the whole range of freuencies – a
leaky Rayleigh wave and a true Stoneley wave. For the interface porous medium/fluid one more surface wave
appears – a leaky Stoneley wave. For this boundary velocities and attenuations of the waves are shown in
dependence on the surface permeability. The true Stoneley wave exists only in a limited range of this parameter.

1 INTRODUCTION
The theoretical investigation of surface waves in
porous materials is motivated by the possible con-
struction of a method of nondestructive testing of ma-
terials. Different operational areas require very dif-
ferent regions of frequencies of the waves: e.g. for
field measurements in soil mechanics the range of ap-
plicable frequencies lies between 1 Hz and 100 Hz
while testing of nanomaterials requires frquencies of
approx. 100 MHz. Therefore we investigate the dis-
persion relation in the whole range of frequencies.

Apart from the frequency range, the acoustic pa-
rameters are also investigated in dependence on two
other parameters. One of them is the bulk permeabil-
ity of the porous material,π. Furthermore the prop-
erties of the boundary are described by the surface
permeability,α. It controls the intensity of the in- and
outflow of the fluid from the porous medium.

2 SIMPLE MIXTURE MODEL
In our analysis we rely on a simpler model than this
of Biot. We neglect two effects:
• the added mass effect reflected in Biot’s model

by off-diagonal contributions to the matrix of
partial mass densities (the parameterρ12),

• the static coupling effect between partial stresses
(the parameterQ).

The first one is neglected because it yields a non-
objectivity of Biot’s equations (Wilmanski 2004).

The second contribution, the coupling of partial
stressesQ, is neglected because it yields at most

quantitativecorrections without changing thequali-
tativebehavior of the system, at least in the range of a
relatively high stiffness of the skeleton in comparison
with the fluid. This has been analyzed for bulk waves
in (Albers and Wilmanski 2003b).

Bearing these remarks in mind it seems to be appro-
priate to rely on the simplified model (”simple mix-
ture model” in whichQ = 0, ρ12 = 0). It has the ad-
vantage to reduce essentially technical difficulties.

We present here the linear form of the ”simple mix-
ture” model for a two-component poroelastic satu-
rated medium (for details see: (Wilmanski 1999)).

In the simple mixture model a process is described
by the macroscopicfields ρF (x,t), the partial mass
density of the fluid,vF (x,t), vS (x,t) , the velocities of
the fluid and of the skeleton, respectively,eS (x,t), the
symmetric tensor of small deformations of the skele-
ton andn, the porosity. The following set of linear
equations is satisfied by those fields

∂ρF

∂t
+ ρF

0 divvF = 0,
∣∣∣∣ρF−ρF

0

ρF
0

∣∣∣∣� 1,

ρF
0

∂vF

∂t
+ κgradρF + βgrad∆ + p̂ = 0, (1)

ρS
0

∂vS

∂t
− div

(
λS(tr eS)1+ 2µeS + β∆1

)
−

−p̂ = 0,

p̂ :=π
(
vF − vS

)
, ∆ := n− nE,
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∂eS

∂t
= sym gradvS,

∥∥∥eS
∥∥∥� 1,

(1)cont.
∂∆

∂t
+ Φdiv

(
vF − vS

)
+

∆

τn

= 0,

nE := n0

(
1 + δ tr eS

)
,

∣∣∣n−n0

n0

∣∣∣� 1.

In these relationsρF
0 , ρS

0 , n0 are the constant refer-
ence values of partial mass densities, and porosity,
respectively. There appear constant material parame-
ters κ,λS, µS, β, π, τn, δ,Φ. In particular,κ denotes
the macroscopic compressibility of the fluid compo-
nent,λS andµS are macroscopic elastic constants of
the skeleton,β is the coupling constant between the
components,π denotes the bulk permeability coeffi-
cient,τn describes the relaxation time of porosity and
δ, Φ are material parameters related to equilibrium
and nonequilibrium changes of porosity, respectively.
As already done in the works (Albers 2005) and (Al-
bers and Wilmanski 2003a) for the analysis of sur-
face waves the coupling parameterβ is assumed to be
zero. Then the problem of evolution of porosity can
be solved separately from the rest of the problem.

The additional equations for the fluid in the exterior
of the porous material read

∂ρF+

∂t
+ ρF+

0 divvF+ = 0,

(2)

ρF+
0

∂vF+

∂t
+ κ+gradρF+ = 0.

The quantities outside of the porous medium are de-
noted by a ”+” sign. ThusρF+ denotes the partial
mass density of the fluid in the +-region andρF+

0 is its
constant reference value.κ+ describes the true com-
pressibility of the fluid.

3 BOUNDARY CONDITIONS
For the determination of surface waves in saturated
poroelastic media conditions forz = 0 are needed.
Boundary conditions for the interface between a sat-
urated porous material and an ideal fluid were for-
mulated by Deresiewicz & Skalak (Deresiewicz and
Skalak 1963). In a slightly changed notation they have
the following form

•
(
T13 − T+

13

)∣∣∣
z=0
≡ T S

13

∣∣∣
z=0

=

= c2
SρS

0

(
∂uS

1

∂z
+

∂uS
3

∂x

)∣∣∣∣∣
z=0

= 0, (3)

•
(
T33 − T+

33

)∣∣∣
z=0
≡ (T S

33 + pF+ − pF )
∣∣∣
z=0

=

= c2
P1ρ

S
0

(
∂uS

1

∂x
+

∂uS
3

∂z

)
− 2c2

SρS
0

∂uS
1

∂x
+

+c2
+

(
ρF+ − ρF+

0

)
−

− c2
P2

(
ρF − ρF

0

)∣∣∣
z=0

= 0,

• ρF
0

∂

∂t

(
uF

3 − uS
3

)∣∣∣∣∣
z=0

= (3)cont.

= ρF+
0

∂

∂t

(
uF+

3 − uS
3

)∣∣∣∣∣
z=0

,

• ρF
0

∂

∂t

(
uF

3 − uS
3

)
+ α

(
pF − n0p

F+
)∣∣∣∣∣

z=0

= 0.

Here uS
1 , uS

3 are x-, and z-components of the dis-
placementuS, respectively, anduF

3 , uF+
3 denotez-

components of the displacementsuF and uF+, re-
spectively. Simultaneously,c2

P1 := (λS + 2µS)/ρS
0 ,

c2
S := µS/ρS

0 , c2
P2 := κ andc2

+ := κ+ are squares of the
front velocities of bulk waves in the porous material:
P1 (fast wave),S (shear wave),P2 (slow wave, also
called Biot’s wave), and of theP -wave in the fluid, re-
spectively. In the case of Biot’s model there would be
an additive contribution of the coupling parameterQ
in the numerator ofcP1 which is of the order of a few
percent ofλS (see: (Albers and Wilmanski 2003b) for
a detailed analysis).

Two of the boundary conditions, (3)1 and (3)2,
describe the continuity of the full traction,t :=(
TS + TF

)
n, n =(0,0,1)T , on the boundary; (3)3

reflects the continuity of the fluid mass flux, and con-
dition (3)4 specifies the mass transport through the
surface. The difference of the pore pressures on both
sides of the boundary determines the in- and outflow
through the boundary.α denotes a surface permeabil-
ity coefficient, which corresponds to1

T
in the works

(Feng and Johnson 1983), (Gubaidullin et al. 2004),
andpF+ is the external pressure. Condition (3)4 relies
on the assumption that the pore pressurep and the par-
tial pressurepF satisfy the relationpF ≈ n0p at least
in a small vicinity of the surface.

For the boundary porous medium/vacuum isα = 0
and also the quantities outside of the porous medium
are equal to zero. Then the third and the fourth condi-
tions are identical.

4 SOLUTION OF THE PROBLEM
We consider monochromatic waves with a givenreal
frequencyω. The construction of the solution for
some problems was shown already in earlier works
(see e.g. (Wilmanski and Albers 2003), (Albers and
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Wilmanski 2003a) or (Albers 2005)) therefore we do
not show it here but give an impression how it was
done.

We have introduced displacement vectors for the
three components using potentials. In the two-
dimensional case for those potentials monochromatic
wave solutions in thex-direction (exponential ansatz)
have been assumed. The solutions have been sub-
stituted in the field equations of the simple mixture
model. This has led to seven compatibility conditions
containing some unknown coefficients. A dimension-
less notation has been introduced. This has the advan-
tage to connect characteristica of the surface waves to
those of the better known bulk waves (e.g. with the ve-
locity of theP1-wavecP1). The dimensionless quan-
tities are defined as

cs := cS

cP1
, cf := cP2

cP1
, c+

f :=
√

κ+

cP1
,

k′ := kcP1τ, ω′ := ωτ, π′ := πτ
ρS
0
,

α′ := αcP1, r :=
ρF
0

ρS
0
, r+ :=

ρF+
0

ρS
0

,

z′ := z
cP1τ

.

(4)

Here τ is an arbitrary reference time. We further
use the dimensionless quantities omitting the prime.
Substitution of these quantities into the compat-
ibility conditions yields for the boundary porous
medium/fluid four equations, for the boundary porous
medium/vacuum three equations still containing un-
known coefficients. However, in contrast to heteroge-
neous media, they are for homogeneous materials in-
dependent ofz. This leads to a differential eigenvalue
problem which can be easily solved. We seek solu-
tions in exponential form. In these relations the expo-
nentsγ1, γ2, ζ must possess negative real parts andγ+

must possess a positive real part to describe a surface
wave. We obtain relations for the exponents:

ζ1,2

k
follow from(

ζ
k

)2
= 1− 1

c2s

(
1 + iπ

ω+i
π
r

)(
ω
k

)2
, (5)

γ1,2,3,4

k
result as solutions of the relation

c2
f

[(
γ
k

)2
− 1

]2
+
[
1 +

(
1 + 1

r

)
iπ
ω

] (
ω
k

)4
+ (6)

+
[
1 + c2

f +
(
c2
f + 1

r

)
iπ
ω

] [(
γ
k

)2
− 1

](
ω
k

)2
= 0,

and
γ+
1,2

k
as solutions of(

γ+

k

)2
= 1− 1

c+2
f

(
ω
k

)2
. (7)

However, the unknown constants have still to be de-
termined by the boundary conditions. We use the con-
stitutive relations

pF = pF
0 + κ

(
ρF − ρF

0

)
,

pF+ = pF+
0 + κ+

(
ρF+ − ρF+

0

)
,

(8)

and assume

pF+
0 =

pF
0

n0

, n0 =
r

r+
if r+ 6= 0. (9)

The first condition means that the initial external pres-
sure is equal to the initial pore pressure. After inser-
tion into the boundary conditions we obtain the fol-
lowing eigenvalue problem

AX = 0, (10)

where

A :=



(
ζ
k

)2
+ 1 −2i γ1

k

2ic2s
ζ
k

(
γ1
k

)2
− 1 + 2c2s+

+rc2f

[(
γ1
k

)2
− 1

]
δf

− π
rω+iπ

+ i

(
r+

r
− 1

)
γ1
k

[
δf +

(
r+

r
− 1

)]
rω

rω+iπ
ω
k

i ω
k

γ1
k

(
δf − 1

)
+

+αc2f

[(
γ1
k

)2
− 1

]
δf

(11)

−2i γ2
k

δs 0[(
γ2
k

)2
− 1 + 2c2s

]
δs+

+rc2f

[(
γ2
k

)2
− 1

] −r+c+2
f

[(
γ+

k

)2

− 1

]
γ2
k

[
1 + δs

(
r+

r
− 1

)]
− r+

r
γ+

k

i ω
k

γ2
k

(1− δs)+

+αc2f

[(
γ2
k

)2
− 1

]
−αc+2

f

[( γ+
k

)2
− 1

]


,

X :=
(

Bs, A1
s, A2

f , A+
f

)T
, (12)

and auxiliary quantities

δf :=
1

r

iπ
ω

ω2

k2

c2
f

[(
γ1

k

)2
− 1

]
+
(

ω
k

)2
+ iπ

ωr
ω2

k2

,

(13)

δs :=
iπ
ω

ω2

k2(
γ2

k

)2
− 1 +

(
ω
k

)2
+ iπ

ω
ω2

k2

.

This homogeneous set yields thedispersion relation:
detA = 0 determining the relation betweenω andk.

5 PARAMETERS, NUMERICAL PROCEDURE
For both boundaries the problemdetA =0 has been
solved for the complex wave number,k, using the
two computing packages MAPLE and MATLAB. It is
possible to use the existing equation solvers although
they need for calculations with complex variables a
very extensive main memory.
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The calculations have been performed for the fol-
lowing data which correspond to water saturated
sandstones:

Table 1. Parameters for water saturated sandstones.

For both boundaries:
β = 0, cP1 = 2500m

s , cP2 = 1000m
s ,

ρS
0 = 2500 kg

m3 , ρF
0 = 250 kg

m3 , r = ρF
0

ρS
0

= 0.1,

cf = cP2
cP1

= 0.4, τ = τn = 10−6 s,

For the boundary porous medium/vacuum:

cS = 1500m
s , cs = cS

cP1
= 0.6,

For the boundary porous medium/fluid:

cS = 1250m
s , cs = cS

cP1
= 0.4, ρF+

0 = 1000 kg
m3 ,

c+ = 1500m
s , c+

f = c+
cP1

= 0.6, r+ = ρF+
0
ρS
0

= 0.4.

6 RESULTS
6.1 Boundary porous medium/vacuum
In the whole range of frequencies there exist two sur-
face waves corresponding to the classical Rayleigh
and Stoneley waves. The results for the phase veloci-
ties and attenuations are shown for different values of
the bulk permeability coefficient,π. This parameter
describes the resistance of the porous medium against
the flow of the fluid. Figures 1 and 2 show the phase
velocities of the Rayleigh and Stoneley waves in de-
pendence on the frequency. They are normalized by
theP1-velocity. We see a range of frequencies from
zero to the very large value of 100 MHz. Certainly, all
values lie below the normalized velocity of the shear
wavecs ≡ cS

cP1
= 0.6.

The Stoneley velocity increases from the zero value
for ω = 0. The growth is faster than the growth of the
Rayleigh velocity but the maximum value is smaller.
It lies always below the normalized velocity of the
fluid cf ≡ cP2

cP1
= 0.4. The maximum value of the

Stoneley velocity appearing forω → ∞ is approxi-
mately 0.15% smaller than the velocity of the fluid.

Figure 1:Boundary porous medium/vacuum. Normalized ve-
locity of the leaky Rayleigh wave in dependence on the fre-
quency and the surface permeability.

Figure 2:Boundary porous medium/vacuum. Normalized ve-
locity of the true Stoneley wave in dependence on the frequency
and the surface permeability.

One should point out that – differently than often
stated – the Stoneley velocity behaves regularly in the
whole range of frequencies and it ceases to exist only
for ω = 0. In the vicinity of this point the Stoneley
velocity possesses a similar feature to the P2-wave: it
decays to zero as

√
ω. Imaginary parts of the wave

numberk determine the damping of waves. It is nor-
malized by the product with theP1-velocity and the
relaxation time. Figure 3 shows the attenuation of the
Rayleigh wave. It is obvious that this wave is strongly
attenuated. The attenuation linearly increases to infin-
ity asω→∞, i.e. the Rayleigh wave is leaky. Similar
to the attenuation ofP1-waves these curves intersect
for different values ofπ. The attenuation for all values
of π starts from zero.

Figure 4 shows that also the normalized attenua-
tion of the Stoneley wave starts from the zero value
for ω = 0. But in contrast to the Rayleigh wave atten-
uation for small frequencies it increases much faster
and then approaches a horizontal asymptotic value for
larger values of the frequency. This means the limit
ω → ∞ is finite and dependent on the permeability
coefficientπ.

Figure 3:Boundary porous medium/vacuum. Normalized at-
tenuation of the leaky Rayleigh wave in dependence on the fre-
quency and the surface permeability.
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Figure 4:Boundary porous medium/vacuum. Normalized at-
tenuation of the Stoneley wave in dependence on the frequency
and the surface permeability.

6.2 Boundary porous medium/fluid

Figures 5 to 10 show the phase velocities and the at-
tenuations of all three surface waves appearing at the
interface between a porous halfspace and a fluid half-
space. Also here we show the wide range of frequen-
cies between 1 Hz and 100 MHz. The curves depend
on the frequency and on the surface permeability pa-
rameterα. α = 0 means that the surface is completely
impermeable whileα = ∞ corresponds to an open
pore situation. Both the frequency and the attenua-
tions are shown in logarithmic scale while the veloc-
ity is presented in normal scale. Again, the velocity
of the Rayleigh wave lies under the velocity of the
bulk shear wave,cS, whose normalized value is now
cs ≡ cS

cP1
= 0.5. While for small frequencies the veloc-

ity is independently ofα, the high frequency limit de-
creases with increasingα. For the open pore situation
the difference between high and low frequency limits
is approximately one half of the difference for a close
boundary. For frequencies around 100 kHz there is a
steep increase of the Rayleigh velocity. For small val-
ues ofα there appears a small plateau in the frequency

Figure 5:Boundary porous medium/fluid. Normalized velocity
of the leaky Rayleigh wave in dependence on the frequency and
the surface permeability.

Figure 6:Boundary porous medium/fluid. Normalized velocity
of the leaky Stoneley wave in dependence on the frequency and
the surface permeability.

range. This may be an indication of the change of the
Riemann surface which is, however, much better pro-
nounced in the attenuations.

The velocity of the leaky Stoneley wave behaves
similar to the Rayleigh wave. Also this wave pos-
sesses high an low frequency limits unequal to zero
and the steep increase inbetween appears in the
same frequency region. However, in contrast to the
Rayleigh wave for this wave the high frequency limit
is larger for bigger values ofα than for smaller ones.
The frequency behavior of this wave is – at least for
smallα – not monotonous. A maximum value appears
in the region of order 100 kHz.

The true Stoneley wave exists only for small values
of α, and, therefore, we show its behavior only for
two values ofα. For those the velocities do not differ
substantially. They start form zero atω = 0 and in-
crease until around 100 kHz where they nearly reach
a high frequency limit which is a little bit smaller than
the velocity of theP2 wave,cf ≡ cP2

cP1
= 0.4.

Figure 7:Boundary porous medium/fluid. Normalized velocity
of the true Stoneley wave in dependence on the frequency and
the surface permeability.
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Figure 8:Boundary porous medium/fluid. Normalized attenu-
ation of the leaky Rayleigh wave in dependence on the frequency
and the surface permeability.

The attenuation of the true Stoneley wave has the
same appearance as this obtained for the boundary
porous medium/vacuum. We show a log-log-plot of
this attenuation. It starts from zero asω = 0 and nearly
reaches a horizontal asymptote at around 100 kHz. In
contrast to the true surface wave the remaining leaky
waves possess singularities in the attenuation for two
intermediate frequencies. These frequencies seem to
be related with characteristic frequenciesπ

2ρS
0

and π
2ρF

0

which have already appeared in the stability analy-
sis of adsorption processes (Albers 2003). However,
there exists an influence of the parameterα, responsi-
ble for dissipation, and, consequently, the location of
the singularities changes with the variation of this co-
efficient. Hence, as indicated also in some papers on
Biot’s model, the diffusion-driven resonances appear
also in the surface waves. Little is known about their
mathematical origin. However, the numerical analy-
sis indicates that they appear due to the change of the
Riemann surface. In any case, it is obvious that the

Figure 9:Boundary porous medium/fluid. Normalized attenu-
ation of the leaky Stoneley wave in dependence on the frequency
and the surface permeability.

Figure 10:Boundary porous medium/fluid. Normalized atten-
uation of the true Stoneley wave in dependence on the frequency
and the surface permeability.

curves show a leaky character.
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