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Pathwise description of dynamic pitchfork bifurcations

with additive noise

Nils Berglund and Barbara Gentz

Abstract

The slow drift (with speed ") of a parameter through a pitchfork bifurcation point,

known as the dynamic pitchfork bifurcation, is characterized by a signi�cant delay of

the transition from the unstable to the stable state. We describe the e�ect of an addi-

tive noise, of intensity �, by giving precise estimates on the behaviour of the individual

paths. We show that until time
p
" after the bifurcation, the paths are concentrated in

a region of size �="
1=4 around the bifurcating equilibrium. With high probability, they

leave a neighbourhood of this equilibrium during a time interval [
p
"; c
p

"jlog�j ], after
which they are likely to stay close to the corresponding deterministic solution. We

derive exponentially small upper bounds for the probability of the sets of exceptional

paths, with explicit values for the exponents.
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lay, singular perturbations, stochastic di�erential equations, random dynamical systems, pathwise

description, concentration of measure.

1 Introduction

Physical systems are often described by ordinary di�erential equations (ODEs) of the form

dx

ds
= f(x; �); (1.1)

where x is the state of the system, � a parameter, and s denotes time. The model (1.1)

may however be too crude, since it neglects all kinds of perturbations acting on the system.

We are interested here in the combined e�ect of two perturbations: a slow drift of the

parameter, and an additive noise.

A slowly drifting parameter � = "s, (with "� 1), may model the deterministic change

in time of some exterior in�uence, such as the climate acting on an ecosystem or a magnetic

�eld acting on a ferromagnet. Obviously, nontrivial dynamics can only be expected when

� is allowed to vary by an amount of order 1, and thus the system has to be considered

on the time scale "
�1. This is usually done by introducing the slow time t = "s, which

transforms (1.1) into the singularly perturbed equation

"
dx

dt
= f(x; t): (1.2)

It is known that solutions of this system tend to stay close to stable equilibrium branches

of f [Gr, Ti], see Fig. 1a. New, and sometimes surprising phenomena occur when such an
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Figure 1. Solutions of the slowly time-dependent equation (1.2) represented in the (t; x)-
plane. (a) Stable case: A stable equilibrium branch x?(t) attracts nearby solutions xdet

t
.

Two solutions with di�erent initial conditions are shown. They converge exponentially fast

to each other, as well as to a neighbourhood of order " of x?(t). (b) Pitchfork bifurcation:

The stable equilibrium x = 0 becomes unstable at t = 0 (broken line) and expels two

stable equilibrium branches �x?(t). A solution xdet
t

is shown, which is attracted by x = 0,
and stays close to the origin for a �nite time after the bifurcation. This phenomenon is

known as bifurcation delay.

equilibrium branch undergoes a bifurcation. These phenomena are usually called dynamic

bifurcations [Ben]1. In the case of the Hopf bifurcation, when the equilibrium gets unstable

while expelling a stable periodic orbit, the bifurcation is substantially delayed: solutions

of (1.2) track the unstable equilibrium (for a non-vanishing time interval in the limit

" ! 0) before jumping to the limit cycle [Sh, Ne]. A similar phenomenon exists for the

dynamic pitchfork bifurcation of an equilibrium without drift, the simplest example being

f(x; t) = tx � x
3
(Fig. 1b). The delay has been observed experimentally, for instance, in

lasers [ME] and in a damped rotating pendulum [BK].

These phenomena have the advantage of providing a genuinely dynamic point of view

for the concept of a bifurcation. Although one often says that a bifurcation diagram

(representing the asymptotic states of the system as a function of the parameter) is obtained

by varying the control parameter �, the impatient experimentalist taking this literally may

have the surprise to discover unstable stationary states of the system (s)he investigates.

The asymptotic state of the system (1.1) with slowly varying parameter �("s) = �(t) may

depend not only on the initial condition (x0; t0), but also on the history of variation of the

parameter f�(t)gt>t0 .

The perturbation of (1.1) by an additive noise can be modeled by a stochastic di�er-

ential equation (SDE) of the form

dxs = f(xs; �) ds+ � dWs; (1.3)

where Ws denotes the standard Wiener process, and � measures the noise intensity. A

widespread approach is to analyse the probability density of xs, which satis�es the Fokker�

Planck equation. In particular, if �f can be written as the gradient of a potential function

F , then there is a unique stationary density p(x; �) = e�F (x;�)=�2
=N , where N is the

normalization. This formula shows that for small noise intensity, the stationary density is

sharply peaked around stable equilibria of f .

1Unfortunately, the term �dynamical bifurcation� is used in a di�erent sense in the context of random

dynamical systems, namely to describe a bifurcation of the family of invariant measures as opposed to a

�phenomenological bifurcation�, see for instance [Ar].
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That method has, however, two major limitations. The �rst one is that the Fokker-

Planck equation is di�cult to solve, except in the linear and in the gradient case. The

second limitation is more serious: the density gives no information on correlations in

time, and even when the density is strongly localized, individual paths can perform large

excursions. This is why other approaches are important. A classical one is based on the

computation of �rst exit times from the neighbourhood of stable equilibria [FW, FJ].

The e�ect of bifurcations has been studied more recently by methods based on the

concept of random attractors [CF94, Schm, Ar]. In particular, Crauel and Flandoli showed

that according to their de�nition, �Additive noise destroys a pitchfork bifurcation� [CF98].

The physical interpretation of random attractors is, however, not straightforward, and

alternative characterizations of stochastic bifurcations are desirable. In the same way a

slowly varying parameter helps our understanding of bifurcations in the deterministic case,

it can provide a new point of view in the case of random dynamical systems.

Let us consider the combined e�ect of a slowly drifting parameter and an additive noise

on the ODE (1.1). We will focus on the case of a pitchfork bifurcation, where the questions

How does the additive noise a�ect the bifurcation delay? and Where does the path go after

crossing the bifurcation point? are of major physical interest. The situation of the drift

term f in (1.3) depending explicitly on time is considerably more di�cult to solve than

the autonomous case, and thus much less understood. One can expect, however, that a

slow time dependence makes the problem accessible to perturbation theory, and that one

may take advantage of techniques developed to study singularly perturbed equations such

as (1.2). With � = "s, Equation (1.3) becomes

dxs = f(xs; "s) ds+ � dWs: (1.4)

If we introduce again the slow time t = "s, the Brownian motion is rescaled, resulting in

the SDE

dxt =
1

"
f(xt; t) dt+

�
p
"
dWt: (1.5)

Our analysis of (1.5) is restricted to one-dimensional x. The noise intensity � should be

considered as a function of ". Indeed, since we now consider the equation on the time scale

"�1, a constant noise intensity would lead to an in�nite spreading of trajectories as "! 0.

In the case of the pitchfork bifurcation, we will need to assume that � �
p
".

Various particular cases of equation (1.5) have been studied before, from a non-rigorous

point of view. In the linear case f(x; �) = �x, the distribution of �rst exit times was

investigated and compared with experiments in [TM, SMC, SHA], while [JL] derived a

formula for the last crossing of zero. In the case f(x; �) = �x � x3, [Ga] studied the

dependence of the delay on " and � numerically, while [Ku] considered the associated

Fokker-Planck equation, the solution of which she approximated by a Gaussian Ansatz.

In the present work, we analyse (1.5) for a general class of odd functions f(x; �) under-

going a pitchfork bifurcation. We use a di�erent approach, based on a precise control of

the whole paths fxsgt06s6t of the process. The results thus contain much more information

than the probability density. It also turns out that the technique we use allows to deal

with nonlinearities in quite a natural way. Our results can be summarized in the following

way (see Fig. 2):

� Solutions of the deterministic equation (1.2) starting near a stable equilibrium branch

of f are known to reach a neighbourhood of order " of that branch in a time of order

"jlog "j. We show that the paths of the SDE (1.5) with the same initial condition

3
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Figure 2. A typical path xt of the stochastic di�erential equation (1.5) near a pitchfork

bifurcation. We prove that with probability exponentially close to 1, the path has the

following behaviour. For t0 6 t 6
p
", it stays in a strip B(h) constructed around the

deterministic solution with the same initial condition. After t =
p
", it leaves the domain

D at a random time � = �D, which is typically of the order
p

"jlog�j. Then it stays

(up to times of order 1 at least) in a strip A� (h) constructed around the deterministic

solution x
det;�

t starting at time � on the boundary of D. The widths of B(h) and A� (h)

are proportional to a parameter h satisfying � � h�
p
".

are typically concentrated in a neighbourhood of order � of the deterministic solution

(Theorem 2.3).

� A particular solution of the deterministic equation (1.2) is known to exist in a neigh-

bourhood of order " of each unstable equilibrium branch of f . Paths that start in a

neighbourhood of order � of this solution are likely to leave that neighbourhood in a

time of order "jlog "j (Theorem 2.5).

� When a pitchfork bifurcation occurs at x = 0, t = 0, the typical paths are concentrated

in a neighbourhood of order �="
1=4

of the deterministic solution with the same initial

condition up to time
p
" (Theorem 2.8).

� After the bifurcation point, the paths are likely to leave a neighbourhood of order
p
t

of the unstable equilibrium before a time c
p

"jlog �j (Theorem 2.9).

� Once they have left this neighbourhood, the paths remain with high probability in a

region of size �=
p
t around the corresponding deterministic solution, which approaches

a stable equilibrium branch of f like "=t
3=2

(Theorem 2.10).

These results show that the bifurcation delay, which is observed in the dynamical sys-

tem (1.2), is destroyed by additive noise as soon as the noise is not exponentially small.

Do they mean that the dynamic bifurcation itself is destroyed by additive noise? This is

mainly a matter of de�nition. On one hand, we will see that independently of the initial

condition, the probability of reaching the upper, rather than the lower branch emerging

from the bifurcation point, is close to
1

2
. The asymptotic state is thus selected by the noise,

and not by the initial condition. Hence, the bifurcation is destroyed in the sense of [CF98].
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On the other hand, individual paths are concentrated near the stable equilibrium branches

of f , which means that the bifurcation diagram will be made visible by the noise, much

more so than in the deterministic case. So we do observe a qualitative change in behaviour

when � changes its sign, which can be considered as a bifurcation.

The precise statements and a discussion of their consequences are given in Section 2.

In Section 2.2, we analyse the motion near equilibrium branches away from bifurcation

points. The actual pitchfork bifurcation is discussed in Section 2.3. A few consequences

are derived in Section 2.4. Section 3 contains the proofs of the �rst two theorems on the

motion near nonbifurcating equilibria, while the proofs of the last three theorems on the

pitchfork bifurcation are given in Section 4.
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2 Statement of results

2.1 Preliminaries

We consider nonlinear Itô SDEs of the form

dxt =
1

"
f(xt; t) dt+

�p
"
dWt; xt0 = x0; (2.1)

where fWtgt>t0 is the standard Wiener process on some probability space (
;F ;P). Ini-

tial conditions x0 are always assumed to be square-integrable with respect to P and in-

dependent of fWtgt>t0 . All stochastic integrals are considered as Itô integrals, but note

that Itô and Stratonovich integrals agree for integrands depending only on time and !.

Without further mentioning we always assume that f satis�es the usual (local) Lipschitz

and bounded-growth conditions which guarantee existence and (pathwise) uniqueness of a

(strong) solution fxtgt of (2.1). Under these conditions, there exists a continuous version

of fxtgt. Therefore we may assume that the paths ! 7! xt(!) are continuous for P-almost

all ! 2 
.

We introduce the notation P
t0;x0 for the law of the process fxtgt>t0 , starting in x0

at time t0, and use E
t0 ;x0 to denote expectations with respect to P

t0;x0 . Note that the

stochastic process fxtgt>t0 is an (inhomogeneous) Markov process. We are interested in

�rst exit times of xt from space�time sets. Let A � R � [t0; t1] be Borel-measurable.

Assuming that A contains (x0; t0), we de�ne the �rst exit time of (xt; t) from A by

�A = inf
�
t 2 [t0; t1] : (xt; t) 62 A

	
; (2.2)

and agree to set �A(!) =1 for those ! 2 
 which satisfy (xt(!); t) 2 A for all t 2 [t0; t1].

For convenience, we shall call �A the �rst exit time of xt from A. Typically, we will consider
sets of the form A = f(x; t) 2 R � [t0; t1] : g1(t) < x < g2(t)g with continuous functions
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g1 < g2. Note that in this case, �A is a stopping time
2
with respect to the canonical

�ltration of (
;F ;P) generated by fxtgt>t0 .

Before turning to the precise statements of our results, let us introduce some notations.

We shall use

� dye for y > 0 to denote the smallest integer which is greater than or equal to y, and

� y_ z and y^ z to denote the maximum or minimum, respectively, of two real numbers

y and z.

� By g(u) = O(u) we indicate that there exist Æ > 0 and K > 0 such that g(u) 6 Ku for

all u 2 [0; Æ], where Æ and K of course do not depend on " or �. Similarly, g(u) = O(1)
is to be understood as limu!0 g(u) = 0. From time to time, we write g(u) = OT (1) to
indicate that choosing a priori a su�ciently small T allows to make the corresponding

term arbitrarily small for all u from some T -dependent interval.

Finally, let us point out that most estimates hold for small enough " only, and often only

for P-almost all ! 2 
. We will stress these facts only when confusion might arise.

2.2 Nonbifurcating equilibria

We start by considering the nonlinear SDE (2.1) in the case of f admitting a nonbifurcating

equilibrium branch. We will assume that there exists an interval I = [0; T ] or [0;1) such
that the following properties hold:

� there exists a function x
? : I ! R , called equilibrium curve, such that

f(x?(t); t) = 0 8t 2 I; (2.3)

� f is twice continuously di�erentiable with respect to x and t, with uniformly bounded

derivatives, for all t 2 I and all x in a neighbourhood of x
?(t);

� the linearization of f at x
?(t), de�ned as

a(t) = @xf(x
?(t); t); (2.4)

is bounded away from zero, that is, there exists a constant a0 > 0 such that

ja(t)j > a0 8t 2 I: (2.5)

In the deterministic case � = 0, the following result is known (see Fig. 1a):

Theorem 2.1 (Deterministic case [Ti, Gr]). Consider the equation

"
dxt
dt

= f(xt; t): (2.6)

There are constants "0; c0; c1 > 0, depending only on f , such that for 0 < " 6 "0,

� (2.6) admits a particular solution bx
det
t such that

jbxdet

t � x
?(t)j 6 c1" 8t 2 I; (2.7)

� if jx0�x
?(0)j 6 c0 and a(t) 6 �a0 for all t 2 I (that is, when x

?
is a stable equilibrium),

then the solution x
det
t of (2.6) with initial condition x

det

0
= x0 satis�es

jxdett � bx
det

t j 6 jx0 � bx
det

0
j e�a0t=2" 8t 2 I: (2.8)

2For a general Borel-measurable set A, the �rst exit time �A is still a stopping time with respect to the

canonical �ltration, completed by the null sets.
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Remark 2.2. The particular solution bx
det is often called a slow solution or adiabatic

solution of equation (2.6). It is not unique in general, as suggested by (2.8).

We return now to the SDE (2.1) with � > 0. We need no additional assumption on

� in this section. However, the results are only interesting when � = O"(1). Let us �rst

consider the stable case, that is, we assume that a(t) 6 �a0 < 0 for all t 2 I. We assume

that at t = 0, xt starts at some (deterministic) x0 su�ciently close to x
?(0). Theorem

2.1 tells us that the deterministic solution x
det
t with the same initial condition x

det
0 = x0

reaches a neighbourhood of order " of x?(t) exponentially fast.

We are interested in the stochastic process yt = xt�x
det
t , which describes the deviation

due to noise from the deterministic solution x
det. It obeys the SDE

dyt =
1

"

�
f(xdett + yt; t)� f(xdett ; t)

�
dt+

�
p
"
dWt; y0 = 0: (2.9)

We will prove that yt remains in a neighbourhood of 0 with high probability. It is instructive

to consider �rst the linearization of (2.9) around y = 0, which has the form

dy0t =
1

"
�a(t)y0t dt+

�
p
"
dWt; (2.10)

where

�a(t) = @xf(x
det
t ; t) = a(t) +O(") +O

�
jx0 � x

?(0)j e�a0t=2"
�
: (2.11)

Taking " and jx0 � x
?(0)j su�ciently small, we may assume the existence of constants

�a+ > �a� > 0 such that ��a+ 6 �a(t) 6 ��a� for all t 2 I. The solution of (2.10) with

arbitrary initial condition y
0
0 is given by

y
0
t = y

0
0 e

�(t)=" +
�
p
"

Z
t

0

e�(t;s)=" dWs; �(t; s) =

Z
t

s

�a(u) du; (2.12)

where we write �(t; 0) = �(t) for brevity. Note that �(t; s) 6 ��a�(t� s) whenever t > s.

If y00 has variance v0 > 0, then y
0
t has variance

v(t) = v0 e
2�(t)=" +

�
2

"

Z
t

0

e2�(t;s)=" ds: (2.13)

Since the �rst term decreases exponentially fast, the initial variance v0 is �forgotten� as

soon as e2�(t)=" is small enough, which happens already for t > O("jlog "j). For y00 = 0,

(2.12) implies in particular that for any Æ > 0,

P
0;0
�
jy0t j > Æ

	
6 e�Æ

2=2v(t)
; (2.14)

and thus the probability of �nding y
0
t , at any given t 2 I, outside a strip of width much

larger than
p

2v(t) is very small.

Our �rst main result states that the whole path fxsg06s6t of the solution of the nonlinear
equation (2.1) lies in a similar strip with high probability. We only need to make one

concession: the width of the strip has to be bounded away from zero. Therefore, we de�ne

the strip as

Bs(h) =
�
(x; t) 2 R � I : jx� x

det
t j < h

p
�(t)

	
; (2.15)

where

�(t) =
1

2j�a(0)j
e2�(t)=" +

1

"

Z
t

0

e2�(t;s)=" ds: (2.16)

7



�
2
� can be interpreted as the variance (2.13) of the process (2.12) starting with initial

variance v0 = �
2
=(2j�a(0)j). We shall show in Lemma 3.1 that

�(t) =
1

2ja(t)j
+O(") +O

�
jx0 � x

?
(0)j e�a0t=2"

�
: (2.17)

Let �
Bs(h) denote the �rst exit time of xt from Bs(h).

Theorem 2.3 (Stable case). There exist "0, d0 and h0, depending only on f , such that

for 0 < " 6 "0, h 6 h0 and jx0 � x
?(0)j 6 d0,

P
0;x0

�
�
Bs(h) < t

	
6 C(t; ") exp

n
�
1

2

h
2

�2

�
1�O(")�O(h)

�o
; (2.18)

where

C(t; ") =
j�(t)j

"2
+ 2: (2.19)

The proof, given in Section 3.1, is divided into two main steps. First, we show that an

estimate of the form (2.18), but without the term O(h), holds for the solution of the linear

equation (2.10). Then we show that whenever jy0s j < h

p
�(s) for 0 6 s 6 t, one almost

surely also has jysj < h(1 +O(h))
p
�(s) for 0 6 s 6 t.

Remark 2.4. The result of the preceding theorem remains true when 1=2j�a(0)j in the

de�nition (2.16) of �(t) is replaced be an arbitrary �0, provided �0 > 0. The terms O(�)
may then depend on �0. Note that �(t) and �

2
v(t) are both solutions of the same di�erential

equation "z
0 = 2�a(t)z + 1, with possibly di�erent initial conditions. If x0 � x

?(0) = O("),

�(t) is an adiabatic solution (in the sense of Theorem 2.1) of the di�erential equation,

staying close to the equilibrium branch z
? = 1=j2�a(t)j.

The estimate (2.18) has been designed for situations where � � 1, and is useful for

� � h � 1. We expect the exponent to be optimal in this case, but did not attempt to

optimize the prefactor C(t; "), which leads to subexponential corrections. If we assume,

for instance, that � = "
q
, q > 0, and take h = "

p
with 0 < p < q, (2.18) can be written as

P
0;x0

�
�
Bs(h) < t

	
6 (t+"

2) exp

n
�

1

2"2(q�p)

�
1�O(")�O("p)�O("2(q�p)jlog "j)

�o
: (2.20)

The t-dependence of the prefactor is to be expected. It is due to the fact that as time

increases, the probability of xt escaping from a neighbourhood of x
det
t also increases, but

very slowly if � is small. The estimate (2.18) shows that for a fraction  of trajectories to

leave the strip Bs(h), we have to wait at least for a time t given by

j�(t)j = "
2 exp

n
1

2

h
2

�2

�
1�O(")�O(h)

�o
� 2"2; (2.21)

which is compatible with results on the autonomous case.

Let us now consider the unstable case, that is, we now assume that the linearization

a(t) = @xf(x
?(t); t) satis�es a(t) > a0 > 0 for all t 2 I. Theorem 2.1 shows the existence of

a particular solution bxdet
t of the deterministic equation (2.6) such that jbxdet

t � x
?(t)j 6 c1"

for all t 2 I. We de�ne �a(t) = @xf(bxdet
t ; t) = a(t) +O(") > 0 and �(t) =

R
t

0
�a(s) ds.

The linearization of (2.1) around bxdet
t again admits a solution of the form (2.12). In

this case, however, the variance (2.13) grows exponentially fast, and thus one expects the

8



probability of xt remaining close to bx
det
t to be small. This is the contents of the second

main result of this section. We introduce the set

Bu(h) =

�
(x; t) 2 R � I : jx� bxdet

t j < hp
2�a(t)

�
(2.22)

and the �rst exit time �Bu(h) of xt from Bu(h).

Theorem 2.5 (Unstable case). There exist "0 and h0, depending only on f , such that

for all h 6 � ^ h0, all " 6 "0 and all x0 satisfying (x0; 0) 2 Bu(h), we have

P
0;x0

�
�Bu(h) > t

	
6
p
e exp

n
���

2

h2

�(t)

"

o
; (2.23)

where � = �
2e

�
1�O(h)�O(")

�
.

The proof, given in Section 3.2, is based on a partition of the interval [0; t] into small

intervals, and a comparison of the nonlinear equation with its linearization on each interval.

This result shows that xt is unlikely to remain in Bu(h) as soon as t � "�
2
=h

2
. A

major limitation of (2.23) is that it requires h 6 �. Obtaining an estimate for larger h

is possible, but requires considerably more work. We will provide such an estimate in the

more di�cult, but also more interesting case of the pitchfork bifurcation, see Theorem 2.9

below.

2.3 Pitchfork bifurcation

We now consider the SDE (2.1) in the case of f undergoing a pitchfork bifurcation. We

will assume that

� f is three times continuously di�erentiable with respect to x and t in a neighbourhood

N0 of (0; 0);
� f(x; t) = �f(�x; t) for all (x; t) 2 N0;

� f exhibits a supercritical pitchfork bifurcation at the origin, i.e.

@xf(0; 0) = 0; @txf(0; 0) > 0 and @xxxf(0; 0) < 0: (2.24)

The assumption that f be odd is not necessary for the existence of a pitchfork bifur-

cation. However, the deterministic system behaves very di�erently if x = 0 is not always

an equilibrium. The most natural situation in which f(0; t) = 0 for all t is the one where

f is odd.

By rescaling x and t, we may arrange that @txf(0; 0) = 1 and @xxxf(0; 0) = �6 as in

the standard case f(x; t) = tx� x
3
. This implies in particular that the linearization of f

at x = 0 satis�es

a(t) = @xf(0; t) = t+O(t2): (2.25)

A standard result of bifurcation theory [GH, IJ] states that under these assumptions, there

is a neighbourhood N � N0 of (0; 0) in which the only solutions of f(x; t) = 0 are the line

x = 0 and the curves

x = �x?(t); x
?(t) =

p
t
�
1 + Ot(1)

�
; t > 0: (2.26)

If N is small enough, the equilibrium x = 0 is stable for t < 0 and unstable for t > 0,
while x = �x?(t) are stable equilibria with linearization

a
?(t) = @xf(x

?(t); t) = �2t
�
1 + Ot(1)

�
: (2.27)
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The only solutions of @xf(x; t) = 0 in N are the curves

x = ��x(t); �x(t) =
p
t=3

�
1 + Ot(1)

�
; t > 0: (2.28)

If f is four times continuously di�erentiable, the terms Ot(1) in the last three equations

can be replaced by O(t).
We brie�y state what is known for the deterministic equation

"
dxt
dt

= f(xt; t); (2.29)

where we take an initial condition (x0; t0) 2 N with x0 > 0 and t0 < 0, see Fig. 1b.

Observe that �(t; t0) =
R
t

t0
a(s) ds is decreasing for t0 < t < 0 and increasing for t > 0.

De�nition 2.6. The bifurcation delay is de�ned as

�(t0) = inf
�
t > 0: �(t; t0) > 0

	
; (2.30)

with the convention �(t0) =1 if �(t; t0) < 0 for all t > 0, for which �(t; t0) is de�ned.

One easily shows that �(t0) is di�erentiable for t0 su�ciently close to 0, and satis�es

limt0!0��(t0) = 0 and limt0!0��0(t0) = �1.
Theorem 2.7 (Deterministic case). Let xdet

t be the solution of (2.29) with initial con-

dition xdet
t0

= x0. Then there exist constants "0, c0, c1 depending only on f , and times

t1 = t0 +O("jlog "j)
t2 = �(t1) = �(t0)�O("jlog "j)
t3 = �(t0) +O("jlog "j)

(2.31)

such that, if 0 < x0 6 c0, 0 < " 6 "0 and (xdet
t ; t) 2 N ,(

0 < xdet
t 6 c1" e

�(t;t1)=" for t1 6 t 6 t2

jxdet
t � x?(t)j 6 c1" for t > t3.

(2.32)

The proof is a straightforward consequence of di�erential inequalities, see for instance

[Ber, Propositions 4.6 and 4.8].

We now consider the SDE (2.1) for � > 0. The results in this section are only inter-

esting for � = O(
p
"), while one of them (Theorem 2.9) requires a condition of the form

�jlog �j3=2 = O(
p
") (where we have not tried to optimize the exponent 3=2).

Let us �x an initial condition (xt0 ; t0) 2 N with t0 < 0. For any T 2 (0; jt0j), we
can apply Theorem 2.3 on the interval [t0;�T ] to show that jx�T j is likely to be of order

�1�Æ + c1" e
�(�T;t1)=" for any Æ > 0. We can also apply the theorem for t > T to show that

the curves �x?(t) attract nearby trajectories. Hence there is no limitation in considering

the SDE (2.1) in a domain of the form jxj 6 d, jtj 6 T where d and T can be taken

small (independently of " and � of course!), with an initial condition x�T = x0 satisfying

jx0j 6 d.

We �rst show that xt is likely to remain small for �T 6 t 6
p
". Actually, it turns

out to be convenient to show that xt remains close to the solution x0 e
�(t;�T )=" of the

linearization of (2.29). We de�ne the �variance-like� function

�(t) =
1

2ja(�T )j e
2�(t;�T )=" +

1

"

Z
t

�T

e2�(t;s)=" ds: (2.33)
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We shall show in Lemma 4.2 that for su�ciently small ", there exist constants c� such

that

c�

jtj 6 �(t) 6
c+

jtj for �T 6 t 6 �p", (2.34)

c�p
"
6 �(t) 6

c+p
"

for �p" 6 t 6
p
". (2.35)

The function �(t) is used to de�ne the strip

B(h) = �
(x; t) 2 [�d; d ] � [�T;p" ] : jx� x0 e

�(t;�T )="j < h

p
�(t)

	
: (2.36)

Let �B(h) denote the �rst exit time of xt from B(h).
Theorem 2.8 (Behaviour for t 6

p
" ). There exist constants "0 and h0, depending only

on f , T and d, such that for 0 < " 6 "0, h 6 h0

p
", jx0j 6 h="

1=4 and �T 6 t 6
p
",

P
�T;x0

�
�B(h) < t

	
6 C(t; ") exp

�
�1

2

h
2

�2

�
1� r(")�O

�
h
2

"

���
(2.37)

where

C(t; ") =
j�(t;�T )j +O(")

"2
; (2.38)

and with r(") = O(") for �T 6 t 6 �p", and r(") = O(
p
") for �p" 6 t 6

p
".

The proof (given in Section 4.2) and the interpretation of this result are very close in

spirit to those of Theorem 2.3. The only di�erence lies in the kind of "-dependence of the

error terms. The estimate (2.37) is useful when � � h� p
", and shows that the typical

spreading of paths around the deterministic solution will slowly grow until t =
p
", where

it is of order �="1=4, see Fig. 2.

Let us now examine what happens for t >
p
". We �rst show that xt is likely to leave

quite soon a suitably de�ned region D containing the line x = 0. The boundary of D is

de�ned through a function ~x(t), which can be chosen somewhat arbitrarily, but should lie

between �x(t) and x
?(t), in order to simplify the analysis of the dynamics after xt has left

D. A convenient de�nition is

~x(t) =
p
�x

?(t); (2.39)

where � is a free parameter. We need to assume, however, that � 2 (1
3
;
1
2
). We now de�ne

D =
�
(x; t) 2 [�d; d ] � [

p
"; T ] : jxj < ~x(t)

	
: (2.40)

Note that D has the property that for all (x; t) 2 D with x 6= 0,

1

x
f(x; t) > �a(t) with � = 1� �� OT (1). (2.41)

Let �D denote the �rst exit time of xt from D.
Theorem 2.9 (Escape from D). Let (x0; t0) 2 D and assume that �jlog �j3=2 = O(

p
").

Then for t0 6 t 6 T ,

P
t0;x0

�
�D > t

	
6 C0 ~x(t)

p
a(t)

jlog �j
�

�
1 +

�(t; t0)

"

�
e���(t;t0)="p

1� e�2��(t;t0)="
; (2.42)

where C0 > 0 is a (numerical) constant.

11



The proof of this result (given in Section 4.3) is by far the most involved of the present

work. We start by estimating, in a similar way as in Theorem 2.5, the �rst exit time

from a strip S of width slightly larger than �=
p
a(s). The probability of returning to zero

after leaving S can be estimated; it is small but not exponentially small. However, the

probability of neither leaving D nor returning to zero is exponentially small. This fact can

be used to devise an iterative scheme that leads to the exponential estimate (2.42).

We point out that for every subset D0 � D, we have Pt0;x0f�D0 > tg 6 P
t0;x0f�D > tg,

and thus (2.42) still provides an upper bound for the �rst exit time from smaller sets.

Let us �nally consider what happens after the path has left D at time � = �D. One

can deduce from the de�nition (2.39) of ~x(t) that for
p
" 6 t 6 T and jxj > ~x(t),

@xf(x; t) 6 ~a(t) = @xf(~x(t); t) 6 ��a(t) with � = 3�� 1� OT (1). (2.43)

Let x
det;�
t denote the solution of the deterministic equation (2.29) starting in ~x(t) at time

� (the case where one starts at �~x(t) is obtained by symmetry). We shall show in Proposi-

tion 4.11 that x
det;�
t always remains between ~x(t) and x

?(t), and approaches x?(t) according
to

x
det;�
t = x

?(t)�O
�

"

t3=2

�
�O�p� e���(t;�)="

�
: (2.44)

Moreover, deterministic solutions starting at di�erent times approach each other like

0 6 x
det;

p
"

t � x
det;�
t 6

�
x
det;

p
"

� � ~x(�)
�
e���(t;�)=" 8t 2 [�; T ]: (2.45)

The linearization of f at x
det;�
t satis�es

a
� (t) = @xf(x

det;�
t ; t) = a

?(t) +O
�
"

t

�
+O�t e���(t;�)="�: (2.46)

For given � , we construct a strip A� (h) around x
det;� of the form

A� (h) =
�
(x; t) : � 6 t 6 T; jx� x

det;�
t j < h

p
�� (t)

	
; (2.47)

where the function �
� (t) is de�ned by

�
� (t) =

1

2j~a(�)j e
2�� (t;�)=" +

1

"

Z t

�

e2�
� (t;s)=" ds; �

� (t; s) =

Z t

s

a
� (u) du; (2.48)

and satis�es

�
� (t) =

1

2ja?(t)j +O
�
"

t3

�
+O

�1
t
e���(t;�)="

�
; (2.49)

cf. Lemma 4.12. Let �A� (h) denote the �rst exit time of xt from A� (h).

Theorem 2.10 (Approach to x
?). There exist constants "0 and h0, depending only on

f , T and d, such that for 0 < " 6 "0, h < h0� and � 6 t 6 T ,

P
�;~x(�)

�
�A� (h) < t

	
6 C

� (t; ") exp
n
�1

2

h
2

�2

h
1�O(") �O

�
h

�

�io
(2.50)

where

C
� (t; ") =

j�� (t; �)j
"2

+ 2 6
1

"2

����
Z t

p
"

a
?(s) ds

����+ 2: (2.51)

The proof is given in Section 4.4. This result is useful for � � h� � , and shows that

the typical spreading of paths around x
det;�
t is of order �=

p
t, see Fig. 2.
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2.4 Discussion

Let us now examine some of the consequences of these results. First of all, they allow to

characterize the in�uence of additive noise on the bifurcation delay. In the deterministic

case, this delay is de�ned as the �rst exit time from a strip of width " around x = 0,

see Theorem 2.7. A possible de�nition of the delay in the stochastic case is thus the �rst

exit time �
delay from a similar strip. An appropriate choice for the width of the strip is

~x(
p
") = O("1=4), since such a strip will contain B(h) for every admissible h, and the part

of the strip with t >
p
" will be contained in D. Theorems 2.8 and 2.9 then imply that if

t >
p
",

P
�T;x0

�
�
delay

<
p
"
	
6 C(

p
"; ") e�O("=�2) (2.52)

P
�T;x0

�
�
delay

> t
	
6 C0 ~x(t)

p
a(t)

jlog �j
�

�
1 +

�(t;
p
")

"

�
e���(t;

p
")="p

1� e�2��(t;
p
")="

: (2.53)

If we choose t in such a way that �(t;
p
") = c"jlog �j for some c > 0, the last expression

reduces to

P
�T;x0

�
�
delay

> t
	
= O

�
�
�c�1jlog �j2

�
; (2.54)

which becomes small as soon as c > 1=�. The bifurcation delay will thus lie with over-

whelming probability in the interval

�p
";O

�p
"jlog �j

��
: (2.55)

Theorem 2.10 implies that for times larger than O(
p
"jlog �j ), the paths are unlikely to

return to zero in a time of order 1. The wildest behaviour of the paths is to be expected

in the interval (2.55), because a region of instability is crossed, where @xf > 0.

Our results on the pitchfork bifurcation require � �
p
", while the estimate (2.55)

is useful as long as � is not exponentially small. We can thus distinguish three regimes,

depending on the noise intensity:

� � >
p
": A modi�cation of Theorem 2.8 shows that for t < ��, the typical spreading of

paths is of order �=
p
jtj. Near the bifurcation point, the process is dominated by noise,

because the drift term f � �x3 is too weak to counteract the di�usion. Depending

on the global structure of f , an appreciable fraction of the paths might escape quite

early from a neighbourhood of the bifurcation point. In that situation, the notion of

bifurcation delay becomes meaningless.

� e�1="
p

6 � �
p
" for some p < 1: The bifurcation delay lies in the interval (2.55) with

high probability, where
p
"jlog �j 6 "

(1�p)=2 is still �microscopic�.

� � 6 e�K=" for some K > 0: The noise is so small that the paths remain concentrated

around the deterministic solution for a time interval of order 1. The typical spreading

is of order �
p
�(t), which behaves like � e�(t)=" ="1=4 for t >

p
", see Lemma 4.2. Thus

the paths remain close to the origin until �(t) ' "jlog �j > K. If "jlog �j > �(�(t0)) =

j�(t0)j, they follow the deterministic solution which makes a quick transition to x
?(t)

at t = �(t0).

The expression (2.55) characterizing the delay is in accordance with experimental results

[TM, SMC], and with the approximate calculation of the last crossing of zero [JL]. The

numerical results in [Ga], which are �tted, at " = 0:01, to �delay ' �
0:105 for weak noise and

�
delay ' e�851 � for strong noise, seem rather mysterious. Finally, the results in [Ku], who
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approximates the probability density by a Gaussian centered at the deterministic solution,

can obviously only apply to the regime of exponentially small noise.

Another interesting question is how fast the paths concentrate near the equilibrium

branches �x?(t). The deterministic solutions, starting at ~x(t0) at some time t0 > 0, all
track x

?(t) at a distance which is asymptotically of order "=t
3=2

. Therefore, we can choose

one of them, say x
det;

p
"

t , and measure the distance of xt from that deterministic solution.

We restrict our attention to those paths which are still in a neighbourhood of the origin

at time
p
", as most paths are. We want to show that for suitably chosen t1 2 (

p
"; t) and

� 2 (0; t), most paths will leave D until time t1 and reach a Æ-neighbourhood of x
det;

p
"

t at

time �D +�. Let us estimate

P

p
";xp

"

��
�D < t1; sup

s2[�D+�;t]

���jxsj � x
det;

p
"

s

��� < Æ

�c�
(2.56)

6 P

p
";xp

"

�
�D > t1

	
+ E

p
";xp

"

�
1f�D<t1g P

�D;~x(�D)

�
sup

s2[�D+�;t]

jxs � x
det;

p
"

s j > Æ

��
:

The �rst term decreases roughly like �
�1 e���(t1;

p
")="

and becomes small as soon as

�(t1;
p
")� "jlog �j. The second summand is bounded above by

const E

p
";xp

"

n
1f�D<t1g exp

n
� t

2

�2

h
Æ �O�p�D e���(�D+�;�D)="

�2ioo
: (2.57)

Therefore, Æ should be large compared to �=t and we also need that � is at least of order

O(
p
"jlog �j). Then we see that after a time of order O(

p
"jlog �j), the typical paths

will have left D and, after another time of the same order, will reach a neighbourhood of

x
det;

p
"

t , which scales with �=t.

Finally, we can also estimate the probability of reaching the positive rather than the

negative branch. Consider xs, starting in x0 at time t0 < 0, and let t > 0. Without loss of

generality, we may assume that x0 > 0. The symmetry of f implies

P
t0;x0

�
xt > 0

	
= 1� 1

2
P
t0;x0

�9 s 2 [t0; t) : xs = 0
	
; (2.58)

and therefore it is su�cient to estimate the probability for xs to reach zero before time

zero, for instance. We linearize the SDE (2.1) and use the fact that the solution x
0
s of the

linearized equation

dx0s =
1

"
a(s)x0s ds+

�p
"
dWs; x

0
t0
= x0 (2.59)

satis�es xs 6 x
0
s as long as xs does not reach zero. For the Gaussian process x

0
s we know

P
t0;x0

�
9 s 2 [t0; t) : x

0
s = 0

	
= 2

�
1� P

t0;x0
�
x
0
t > 0

	�
= 1� 1p

2�

Z
u(t)

�u(t)
e�y

2=2 dy; (2.60)

where u(t) = x0 e
�(t;t0)=" =

p
v(t; t0) and v(t; t0) denotes the variance of x

0
t . For t = 0,

u(0) is of order x0"
1=4

�
�1 e�const t2

0
="
, see Lemma 4.2. Thus the probability in (2.60) is

exponentially close to one for small ", and we conclude that the probability for xt to reach

the positive branch rather than the negative one is exponentially close to 1=2.
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3 The motion near nonbifurcating equilibria

In this section we consider the nonlinear SDE

dxt =
1

"
f(xt; t) dt+

�p
"
dWt (3.1)

under the assumptions

� t 2 I = [0; T ] or [0;1);

� there exists an equilibrium curve x
? : I ! R such that

f(x?(t); t) = 0 8t 2 I; (3.2)

� there is a constant d > 0 such that f is twice continuously di�erentiable with respect

to x and t for jx�x
?(t)j 6 d and t 2 I, with j@xxf(x; t)j uniformly bounded by 2M > 0

in that domain;

� there is a constant a0 > 0 such that a(t) = @xf(x
?(t); t) satis�es

ja(t)j > a0 8t 2 I: (3.3)

We do not need any assumptions on � > 0, but our results are of interest only for � = O"(1).

In Section 3.1 we consider the stable case, corresponding to a(t) 6 �a0 < 0 for all

t 2 I. We �rst analyse the linearization of (3.1) around a given deterministic solution.

Proposition 3.3 shows that the solutions of the linearized equation are likely to remain in a

strip of width h
p
�(t) around the deterministic solution. Here �(t) is related to the variance

and will be analyzed in Lemma 3.1. Proposition 3.6 allows to compare the trajectories of

the linear and the nonlinear equation, and thus completes the proof of Theorem 2.3.

In Section 3.2, we consider the unstable case, i. e. a(t) > a0 > 0 for all t 2 I. Theo-

rem 2.5 is equivalent to Proposition 3.9, which is again based on a comparison of solutions

of the nonlinear equation (3.1) and its linearization around a given deterministic solution.

3.1 Stable case

We �rst consider the case of a stable equilibrium, that is, we assume that a(t) 6 �a0 for

all t 2 I. We will assume that the stochastic process xt, given by the SDE (3.1), starts

at time t = 0 in x0. By Theorem 2.1, there exists a c0 > 0 such that the deterministic

solution x
det of (2.6) with initial condition x

det

0
= x0 satis�es

jxdett � x
?(t)j 6 2c1"+ jx0 � x

?(0)j e�a0t=2" 8t 2 I; (3.4)

provided jx0 � x
?(0)j 6 c0. We are interested in the stochastic process yt = xt � x

det
t ,

which describes the deviation due to noise from the deterministic solution x
det. It obeys

an SDE of the form

dyt =
1

"

�
�a(t)yt +�b(yt; t)

�
dt+

�p
"
dWt; y0 = 0; (3.5)

where we have introduced the notations

�a(t) = �a"(t) = @xf(x
det

t ; t)

�b(y; t) = �b"(y; t) = f(xdett + y; t)� f(xdett ; t)� �a(t)y:
(3.6)
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Taking " and jx0 � x
?(0)j su�ciently small, we may assume that there exists a constant

�d > 0 such that jxdett + y � x
?(t)j 6 d whenever jyj 6 �d. It follows from Taylor's formula

that for all (y; t) 2 [� �d; �d ]� I,

j�b(y; t)j 6My
2 (3.7)

j�a(t)� a(t)j 6M
�
2c1"+ jx0 � x

?(0)j e�a0t=2"� (3.8)

By again taking " and jx0�x
?(0)j su�ciently small, we may further assume that there are

constants �a+ > �a
�

> a0=4 such that

��a+ 6 �a(t) 6 ��a
�

8t 2 I: (3.9)

Finally, the relation �a0(t) = @xtf(x
det
t ; t) + @xxf(x

det
t ; t)1

"
f(xdett ; t) implies the existence of

a constant c2 > 0 such that

j�a0(t)j 6 c2

�
1 + jx0 � x

?(0)je
�a0t=2"

"

�
: (3.10)

Our analysis will be based on a comparison between solutions of (3.5) and those of the

linearized equation

dy0t =
1

"
�a(t)y0t dt+

�p
"
dWt; y

0
0 = 0: (3.11)

Its solution is given by

y
0
t =

�p
"

Z
t

0

e�(t;s)=" dWs; �(t; s) =

Z
t

s

�a(u) du: (3.12)

We will write �(t; 0) = �(t) for brevity. The Gaussian random variable y0t has mean zero

and variance

v(t) =
�
2

"

Z
t

0

e2�(t;s)=" ds: (3.13)

Note that (3.9) implies that �(t; s) 6 ��a
�
(t� s) whenever t > s, which implies in partic-

ular, that v(t) is not larger than �
2
=2�a

�
. We can, however, derive a more precise bound,

which is useful when " and e�a0t=2" are small. To do so, we introduce the function

�(t) =
1

2j�a(0)j e
2�(t)=" +

1

"

Z
t

0

e2�(t;s)=" ds; where �(t) = �(t; 0): (3.14)

Note that v(t) 6 �
2
�(t), and that both functions di�er by a term which becomes negligible

as soon as t > O("jlog "j). The behaviour of �(t) is characterized in the following lemma.

Lemma 3.1. The function �(t) satis�es the following relations for all t 2 I.

�(t) =
1

2j�a(t)j +O(") +O�jx0 � x
?(0)j e�a0t=2"

�
(3.15)

1

2�a+
6 �(t) 6

1

2�a
�

(3.16)

�
0(t) 6

1

"
(3.17)
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Proof: By integration by parts, we obtain that

�(t) =
1

�2�a(t)
�

1

2

Z t

0

�a0(s)

�a(s)2
e2�(t;s)=" ds: (3.18)

Using (3.9) and (3.10) we get

���
Z t

0

�a0(s)

�a(s)2
e2�(t;s)=" ds

���
6

c2

�a2
�

Z t

0

e�2�a
�

(t�s)=" ds+
c2

�a2
�

jx0 � x?(0)j

"

Z t

0

e[�2�a
�

(t�s)�a0s=2]=" ds

6
c2

2�a3
�

"+
c2

�a2
�

jx0 � x?(0)j

2�a� � a0=2
e�a0t=2"; (3.19)

which proves (3.15). We now observe that �(t) is a solution of the linear ODE

d�

dt
=

1

"

�
2�a(t)� + 1

�
; �(0) =

1

2j�a(0)j
: (3.20)

Since �(t) > 0 and �a(t) < 0, we have � 0(t) 6 1=". We also see that � 0(t) > 0 whenever

�(t) 6 1=2�a+ and � 0(t) 6 0 whenever �(t) > 1=2�a�. Since �(0) belongs to the interval

[1=2�a+; 1=2�a�], �(t) must remain in this interval for all t.

As we have already seen in (2.14), the probability of �nding y0t outside a strip of width

much larger than
p

2v(t) is very small. By Lemma 3.1, we now know that
p

2v(t) behaves
approximately like �ja(t)j�1=2. One of the key points of the present work is to show that

the whole path fysg06s6t remains in a strip of similar width with high probability. The

strip will be de�ned with the help of �(t) instead of v(t), because we need the width to be

bounded away from zero, even for small t.

To investigate y0t we need to estimate the stochastic integral from (3.12). Lemma A.1

in the appendix provides the estimate

P

n
sup
06s6t

Z s

0

'(u) dWu > Æ
o
6 exp

�
�

Æ2

2
R t

0
'(u)2 du

�
(3.21)

for Borel-measurable deterministic functions '(u). Unfortunately, this estimate cannot be

applied directly, because in (3.12), the integrand depends explicitly on the upper integra-

tion limit. This is why we introduce a partition of the interval [0; t].

Lemma 3.2. Let � : I ! R + be a measurable, strictly positive function. Fix K 2 N , and

let 0 = u0 6 u1 < � � � < uK = t be a partition of the interval [0; t]. Then

P
0;0
n

sup
06s6t

jy0s j

�(s)
> h

o
6 2

KX
k=1

Pk; (3.22)

where

Pk = exp

�
�

1

2

h2

�2

�
inf

uk�16s6uk
�(s)2 e2�(uk ;s)="

��1
"

Z uk

0

e2�(uk;s)=" ds
�
�1
�
: (3.23)
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Proof: We have

P
0;0
n

sup
06s6t

jy0
s
j

�(s)
> h

o
(3.24)

= P
0;0
n

sup
06s6t

1

�(s)

���
Z

s

0

e
�(s;u)="

dW
u

��� > h
p
"

�

o

= P
0;0
n
9k 2 f1; : : : ;Kg : sup

uk�16s6uk

1

�(s)

���
Z

s

0

e
�(s;u)="

dW
u

��� > h
p
"

�

o

6 2

KX
k=1

P
0;0
n

sup
uk�16s6uk

Z
s

0

e
��(u)="

dW
u
>

h
p
"

�
inf

uk�16s6uk
�(s) e

��(s)="
o
:

Applying Lemma A.1 to the last expression, we obtain (3.22).

We are now ready to derive an upper bound for the probability that y0
s
leaves a strip

of appropriate width h�(s) before time t. Taking �(s) =
p
�(s) will be a good choice since

it leads to approximately constant P
k
in (3.22).

Proposition 3.3. There exists an r = r(�a+; �a�) such that

P
0;0
n

sup
06s6t

jy0
s
jp

�(s)
> h

o
6 C(t; ") exp

n
�1

2

h
2

�2
(1� r")

o
; (3.25)

where

C(t; ") =
j�(t)j
"2

+ 2: (3.26)

Proof: Let

K =

� j�(t)j
2"2

�
: (3.27)

For k = 1; : : : ;K � 1, we de�ne the partition times u
k
by the relation

j�(u
k
)j = 2"

2
k; (3.28)

which is possible since �(t) is continuous and decreasing. This de�nition implies in partic-

ular that �(u
k
; u

k�1) = �2"2 and, therefore, u
k
� u

k�1 6 2"2=�a
�

. Bounding the integral

in (3.23) by �(u
k
), we obtain

P
k
6 exp

n
�1

2

h
2

�2
inf

uk�16s6uk

�(s)

�(u
k
)
e2�(uk;s)="

o
: (3.29)

We have e2�(uk;s)=" > e�4" and

�(s)� �(u
k
) = �

Z
uk

s

�
0

(u) du > �u
k
� s

"
: (3.30)

Since �(u
k
) > 1=2�a+, this implies

P
k
6 exp

n
�1

2

h
2

�2

�
1� 4

�a+

�a
�

"

�
e�4"

o
; (3.31)

and the result follows from Lemma 3.2.
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Remark 3.4. If we only assume that �a is Borel-measurable with �a(t) 6 ��a
�

for all t 2 I,

we still have

P
0;0
n

sup
06s6t

jy0
s
j > h=

p
2�a
�

o
6 C(t; ") exp

n
�
1

2

h
2

�2
e�4"

o
: (3.32)

To prove this, we choose the same partition as before and bound the integral in (3.23) by

"=2�a
�

.

We now return to the nonlinear equation (3.5), the solutions of which we want to

compare to those of its linearization (3.11). To this end, we introduce the events



t
(h) =

n
! :

��y
s
(!)

�� < h

p
�(s) 8s 2 [0; t]

o
(3.33)


0
t
(h) =

n
! :

��y0
s
(!)

�� < h

p
�(s) 8s 2 [0; t]

o
: (3.34)

Proposition 3.3 gives us an upper bound on the probability of the complement of 
0
t
(h).

The key point to control the nonlinear case is a relation between the sets 

t
and 
0

t
(for

slightly di�erent values of h). This is done in Proposition 3.6 below.

Notation 3.5. For two events 
1 and 
2, we write 
1

a:s:
� 
2 if P-almost all ! 2 
1

belong to 
2.

Proposition 3.6. Let  = 2
p
2�a+M=�a2

�

and assume that h < �d
p

�a
�

=2 ^ 
�1. Then



t
(h)

a:s:
� 
0

t

��
1 +



4
h
�
h

�
(3.35)


0
t
(h)

a:s:
� 


t

��
1 + h

�
h

�
: (3.36)

Proof:

1. The di�erence z
s
= y

s
� y

0
s
satis�es

dz
s

ds
=

1

"

�
�a(s)z

s
+�b(y0

s
+ z

s
; s)

�
(3.37)

with z0 = 0 P-a.s. Now,

z
s
=

1

"

Z
s

0

e
�(s;u)=" �b(y

0
u
+ z

u
; u) du; (3.38)

which implies

jz
s
j 6

1

"

Z
s

0

e�(s;u)="j�b(y
u
; u)jdu (3.39)

for all s 2 [0; t].

2. Let us assume that ! 2 

t
(h). Then we have for all s 2 [0; t]

jy
s
(!)j 6 h

p
�(s) 6

h
p
2�a
�

6
�d

2
; (3.40)

and thus by (3.39),

jz
s
(!)j 6

1

"

Z
s

0

e�(s;u)="
Mh

2

2�a
�

du: (3.41)
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The integral on the right-hand side can be estimated by (3.16), yielding

1

"

Z
s

0

e�(s;u)=" du 6 2�2"(s) 6
1

�a
�

: (3.42)

Therefore,

jzs(!)j 6 Mh
2

2�a2
�

6
M
p
�a+ hp
2�a2
�

h

p
�(s); (3.43)

which proves (3.35) because jy0s(!)j 6 jys(!)j+ jzs(!)j.
3. Let us now assume that ! 2 
0

t (h). Then we have jy0s(!)j 6 �d=2 for all s 2 [0; t] as

in (3.40). For Æ = h, we have Æ < 1 by assumption. We consider the �rst exit time

� = inf
�
s 2 [0; t] : jzsj > Æh

p
�(s)

	 2 [0; t] [ f1g (3.44)

and the event

A = 
0
t \

�
! : �(!) <1	

: (3.45)

If ! 2 A, then for all s 2 [0; �(!)], we have jys(!)j 6 (1 + Æ)h
p
�(s) 6 �d, and thus by

(3.39) and (3.42),

jzs(!)j 6 1

"

Z
s

0

e�(s;u)="
M(1 + Æ)2h2

2�a
�

du 6
M(1 + Æ)2h2

2�a2
�

< Æh

p
�(s): (3.46)

However, by the de�nition of � , we have jz�(!)(!)j = Æh
p
�(�(!)), which contradicts

(3.46) for s = �(!). Therefore PfAg = 0, which implies that for almost all ! 2 
0
t , we

have jzs(!)j < Æh
p
�(s) for all s 2 [0; t], and hence

jys(!)j < (1 + Æ)h
p
�(s) 8s 2 [0; t] (3.47)

for these !, which proves (3.36).

We close this subsection with a corollary which is Theorem 2.3, restated in terms of

the process yt.

Corollary 3.7. There exist h0 and "0, depending only on f , such that for " < "0 and

h < h0,

P
0;0
n

sup
06s6t

jysjp
�(s)

> h

o
6 C(t; ") exp

n
�1

2

h
2

�2

�
1�O(") �O(h)

�o
: (3.48)

Proof: By Proposition 3.6 and Proposition 3.3,

P
0;0
n

sup
06s6t

jysjp
�(s)

> h

o
6 P

0;0
n

sup
06s6t

jy0s jp
�(s)

> h1

o

6 C(t; ") exp
n
�1

2

h
2
1

�2
(1� r")

o
;

(3.49)

where h = (1 + h1)h1, which implies

h1 =
1

2

�p
1 + 4h� 1

�
> h[1� h] (3.50)

where we have used the relation
p
1 + 2x > 1 + x� 1

2
x
2.
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3.2 Unstable case

We now consider a similar situation as in Section 3.1, but with an unstable equilibrium,

that is, we assume that a(t) > a0 > 0 for all t 2 I. Theorem 2.1 shows the existence of a

particular solution bx
det
t of the deterministic equation (2.6) such that jbxdet

t � x
?(t)j 6 c1"

for all t 2 I. We are interested in the stochastic process yt = xt � bx
det
t , which describes

the deviation due to noise from this deterministic solution bx
det. It obeys the SDE

dyt =
1

"

�
�a(t)yt +�b(yt; t)

�
dt+

�p
"
dWt; (3.51)

where

�a(t) = �a"(t) = @xf(bxdet
t ; t)

�b(y; t) = �b"(y; t) = f(bxdet
t + y; t)� f(bxdet

t ; t)� �a(t)y
(3.52)

are the analogs of �a and �b de�ned in (3.6). Taking " su�ciently small, we may assume

that there exist constants �a0; �a1; �d > 0, such that the following estimates hold for all t 2 I

and all y such that jyj 6 �d:

�a(t) 6 ��a0; j�a0(t)j 6 �a1; j�b(y; t)j 6My
2
: (3.53)

The bound on j�a0(t)j is a consequence of the analog of (3.10) together with the fact that

jbxdet
0 � x

?(0)j = O(").
We �rst consider the linear equation

dy0t =
1

"
�a(t)y0t dt+

�p
"
dWt: (3.54)

Given the initial value y
0
0 , the solution y

0
t at time t is a Gaussian random variable with

mean y
0
0 e

�(t)=" and variance

v(t) =
�
2

"

Z t

0

e2�(t;s)=" ds; (3.55)

where �(t; s) =
R t

s
�a(u) du > �a0(t � s) for t > s. The variance can be estimated with the

help of the following lemma.

Lemma 3.8. For 0 < " < 2�a20=�a1, one has

1

"

Z t

0

e2�(t;s)=" ds =
he2�(t)="
2�a(0)

� 1

2�a(t)

i�
1 +O(")

�
: (3.56)

Proof: By integration by parts, we obtain thatZ t

0

e2�(t;s)=" ds =
"

2�a(0)
e2�(t)="� "

2�a(t)
� "

2

Z t

0

�a0(s)

�a(s)2
e2�(t;s)=" ds; (3.57)

which implies that

h
1� "

2

�a1
�a20

i Z t

0

e2�(t;s)=" ds 6
"

2�a(0)
e2�(t)="� "

2�a(t)
6

h
1 +

"

2

�a1
�a20

i Z t

0

e2�(t;s)=" ds: (3.58)

By our hypothesis on ", the �rst term in brackets is positive.
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Unlike in the stable case, the variance grows exponentially fast (at least with e2�a0t=").

If � > jy00j, we have

P
0;y0

0

�
sup
06s6t

jy0s j < �

	
6 P

0;y0
0

�jy0t j < �

	

=

Z
��y

0

0
e�(t)="

���y
0
0 e

�(t)="

e�x
2
=2v(t)p

2�v(t)
dx 6

2�p
2�v(t)

;

(3.59)

which goes to zero as ���1 e��(t)=" for t ! 1. In this estimate, however, we neglect all

trajectories that leave the interval (��; �) before t and come back. We will derive a more

precise estimate for the general, nonlinear case by introducing a partition of [0; t].

The following proposition, which restates Theorem 2.5 in terms of yt, is the main result

of this subsection.

Proposition 3.9. There exist constants "0; h0 > 0 such that for all h 6 � ^ h0, all " 6 "0

and for any given y0 with jy0j
p

2�a(0) < h, we have

P
0;y0

n
sup
06s6t

jysj
p

2�a(s) < h

o
6
p
e exp

n
���

2

h2

�(t)

"

o
; (3.60)

where � = �

2e

�
1�O(h)�O(")

�
.

Proof:

1. Let K 2 N and let 0 = u0 < u1 < � � � < uK = t be any partition of the interval [0; t].

We de�ne the events

Ak =

n
! : sup

uk6s6uk+1

jysj
p

2�a(s) < h

o

Bk =

n
! : jyuk j

p
2�a(uk) < h

o
� Ak�1:

(3.61)

Let qk be a deterministic upper bound on Pk = P
uk;yukfAkg, valid on Bk. Then we

have by the Markov property

P
0;y0

n
sup
06s6t

jysj
p

2�a(s) < h

o

= P
0;y0

nK�1\
k=0

Ak

o
= E

0;y0
n
1TK�2

k=0
Ak
E
0;y0

�
1AK

�� fysg06s6uK�1	
o

= E
0;y0

n
1TK�2

k=0
Ak
PK�1

o
6 qK�1P

0;y0
nK�2\
k=0

Ak

o
6 � � � 6

K�1Y
k=0

qk: (3.62)

2. To de�ne the partition, we set

K =

l
1



�(t)

"

�
2

h2

m
(3.63)

for some  2 (0; 1] to be chosen later, and

�(uk+1; uk) = "
h
2

�2
; k = 0; : : : ;K � 2: (3.64)
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Since �(uk+1; uk) > �a0(uk+1 � uk), we have uk+1 � uk 6
h2

�2

�a0
", and using Taylor's

formula, we �nd for all s 2 [uk; uk+1] and all k = 0; : : : ;K � 1

1�
h
2

�2

�a1
�a20
" 6

�a(s)

�a(uk)
6 1 +

h
2

�2

�a1
�a20
"; (3.65)

where �a1 is the upper bound on j�a0j, see (3.53). In order to estimate Pk, we introduce

linear approximations (y
(k)
t )t2[uk;uk+1] for k 2 f0; : : : ;K � 2g, de�ned by

dy
(k)
t =

1

"
�a(t)y

(k)
t +

�
p
"
dW

(k)
t ; y

(k)
uk

= yuk ; (3.66)

where W
(k)
t = Wt�Wuk is a Brownian motion with W

(k)
uk = 0 which is independent of

fWs : 0 6 s 6 ukg. If ! 2 Ak, we have for all s 2 [uk; uk+1]

jys(!)� y
(k)
s (!)j 6

1

"

Z s

uk

e�(s;u)="j�b(yu; u)jdu

6
Mh

2

2�a0

e�(uk+1;uk)="

�a(uk)

�
1 +O(")

�
6 r0

h
2p

2�a(s)
;

(3.67)

where r0 = M e(2�a30)
�1=2 +O("). This shows that on Ak,

jy(k)s (!)j 6
�
1 + r0h

� hp
2�a(s)

8s 2 [uk; uk+1]: (3.68)

3. We are now ready to estimate Pk. (3.68) shows that on Bk,

Pk 6 P
uk;yuk

n
sup

uk6s6uk+1

jy(k)s j
p

2�a(s) < h(1 + r0h)
o

6 P
uk;yuk

�
jy(k)uk+1

j
p

2�a(uk+1) < h(1 + r0h)
	

6
1q

2�v
(k)
uk+1

2h(1 + r0h)p
2�a(uk+1)

;

(3.69)

where v
(k)
uk+1 denotes the conditional variance of y

(k)
uk+1, given yuk . As in (3.56),

v
(k)
uk+1

=
�
2

"

Z uk+1

uk

e2�(uk+1;s)=" ds =
�
2

2

�
e2�(uk+1;uk)="

�a(uk)
�

1

�a(uk+1)

��
1 +O(")

�
: (3.70)

It follows that

�a(uk+1)v
(k)
uk+1

>
�
2

2

h
e2h

2=�2 �a(uk+1)

�a(uk)
� 1

i�
1�O(")

�

>
�
2

2

h�
1 + 2

h
2

�2

��
1�

�a1
�a20

h
2

�2
"

�
� 1

i�
1�O(")

�

> h
2
h
1�

�a1
2�a20

�
1 + 2

�
"

i�
1�O(")

�

> h
2
�
1�O(")

�
:

(3.71)
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Inserting this into (3.69), we obtain for each k = 0; : : : ;K � 2 on Bk the estimate

Pk 6
2h(1 + r0h)p

2�

1
p

2h2

�
1 +O(")

�
=

1
p
�

�
1 +O(") +O(h)

�
=: q: (3.72)

Note that for any  2 (1=�; 1], there exist h0 > 0 and "0 > 0 such that q < 1 for all

h 6 h0 and all " 6 "0. Since qK�1 = 1 is an obvious bound, we obtain from (3.62)

P
0;y0

n
sup
06s6t

jysj
p

2�a(s) < h
o
6 qK�1 6

1

q
exp

n
�
�(t)

"

�2

h2
1

2q2
q2 log

�
1=q2

�o
: (3.73)

Choosing  so that q2 = 1= e holds, yields almost the optimal exponent, and we obtain

P
0;y0

n
sup
06s6t

jysj
p

2�a(s) < h
o
6
p
e exp

n
��

�(t)

"

�2

h2

o
: (3.74)

4 Pitchfork bifurcation

4.1 Preliminaries

We consider the nonlinear SDE

dxt =
1

"
f(xt; t) dt+

�
p
"
dWt (4.1)

in the region M = f(x; t) 2 R
2 : jxj 6 d; jtj 6 Tg. We assume that

� there exists a constantM > 0 such that f(x; t) is three times continuously di�erentiable

with respect to x and t and j@xxxf(x; t)j 6 6M for all (x; t) 2M;

� f(x; t) = �f(�x; t) for all (x; t) 2M;

� f exhibits a supercritical pitchfork bifurcation at the origin, that is (after rescaling),

@xf(0; 0) = 0; @txf(0; 0) = 1 and @xxxf(0; 0) = �6 (4.2)

Using Taylor series and the symmetry assumptions, we may write for all (x; t) 2M

f(x; t) = a(t)x+ b(x; t) = x
�
a(t) + g0(x; t)

�

@xf(x; t) = a(t) + g1(x; t)
(4.3)

where a(t), g0(x; t), g1(x; t) are twice continuously di�erentiable functions satisfying

a(t) = @xf(0; t) = t+O(t2)

g0(x; t) =
�
�1 + 0(x; t)

�
x2 jg0(x; t)j 6Mx2 (4.4)

g1(x; t) =
�
�3 + 1(x; t)

�
x2 jg1(x; t)j 6 3Mx2;

with 0; 1 some continuous functions such that 0(0; 0) = 1(0; 0) = 0. The following

standard result from bifurcation theory is easily obtained by applying the implicit function

theorem, see [GH, p. 150] or [IJ, Section II.4] for instance. We state it without proof.
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Proposition 4.1. If T and d are su�ciently small, there exist twice continuously di�er-

entiable functions x?; �x : (0; T ]! R + of the form

x?(t) =
p
t
�
1 + OT (1)

�

�x(t) =
p
t=3

�
1 + OT (1)

� (4.5)

with the following properties:

� the only solutions of f(x; t) = 0 in M are either of the form (0; t), or of the form

(�x?(t); t) with t > 0;

� the only solutions of @xf(x; t) = 0 in M are of the form (��x(t); t) with t > 0;

� the derivative of f at �x?(t) is

a?(t) = @xf(x
?(t); t) = �2t

�
1 + OT (1)

�
: (4.6)

� the derivatives of x?(t) and �x(t) satisfy

dx?

dt
=

1

2
p
t
[1 + OT (1)];

d�x

dt
=

1

2
p
3t

[1 + OT (1)]: (4.7)

As already pointed out in Section 2.3, there is no restriction in assuming T and d to

be small. Thus we may assume that the terms OT (1) are su�ciently small to do no harm.

For instance, we may and will always assume that a?(t) < 0.

Equation (4.4) also implies the existence of constants a+ > a� > 0 such that

a+t 6 a(t) 6 a�t for �T 6 t 6 0

a�t 6 a(t) 6 a+t for 0 6 t 6 T .
(4.8)

The function �(t; s) =
R
t

s
a(u) du thus satis�es

�1

2
a+(s

2 � t2) 6 �(t; s) 6 �1

2
a�(s

2 � t2) if s 6 t 6 0

1

2
a�t

2 � 1

2
a+s

2
6 �(t; s) 6 1

2
a+t

2 � 1

2
a�s

2 if s 6 0 6 t (4.9)
1

2
a�(t

2 � s2) 6 �(t; s) 6 1

2
a+(t

2 � s2) if 0 6 s 6 t.

We are going to analyse the dynamics in three di�erent regions of the (t; x)-plane: near

x = 0 for t 6
p
", near x = 0 for t >

p
", and near x = x?(t) for t >

p
". In order to

delimit the last two regions, we introduce (somewhat arbitrarily) the function

~x(t) =
p
�x?(t); (4.10)

set

~a(t) = @xf(~x(t); t); (4.11)

and de�ne the region

D =
�
(x; t) :

p
" 6 t 6 T; jxj < ~x(t)

	
; (4.12)

which has the following properties:

(a) for all (x; t) 2 D with x 6= 0, one has

1

x
f(x; t) > �a(t) with � = 1� �� OT (1). (4.13)
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(b) for all (x; t) 2 [�d; d ] � [
p
"; T ] n D,

@xf(x; t) 6 ~a(t) 6 ��a(t) with � = 3�� 1� OT (1). (4.14)

For our results to be of interest, � > 0 and � > 0 are necessary, which requires � 2 (1
3
; 1).

As we shall see, we will actually need � 2 (1
3
;
1
2
). Furthermore, in Section 4.3, we need to

assume that �jlog �j3=2 = O(
p
").

In the following subsections, we investigate the three di�erent regimes: In Section 4.2,

we analyse the behaviour for t 6
p
". Theorem 2.8 is proved in the same way as Theo-

rem 2.3, the main di�erence lying in the behaviour of the variance which is investigated in

Lemma 4.2.
Section 4.3 is devoted to the rather involved proof of Theorem 2.9. We start by giving

some preparatory results. Proposition 4.7 estimates the probability of remaining in a

smaller strip S in a similar way as Proposition 3.9. We then show in Lemma 4.8 that the

paths are likely to leave D as well, unless the solution of a suitably chosen linear SDE

returns to zero. The probability of such a return to zero is studied in Lemma 4.9. Finally,

Theorem 2.9 is proved, the proof being based on an iterative scheme.

The last subsection analyses the motion after �D. Here, the main di�culty is to con-

trol the behaviour of the deterministic solutions, which are shown to approach x
?(t), cf.

Proposition 4.11. We then prove that the paths of the random process are likely to stay in

a neighbourhood of the deterministic solutions. The proof is similar to the corresponding

proof in Section 3.1.

4.2 The behaviour for t 6
p

"

We �rst consider the linear equation

dx0t =
1

"
a(t)x0t dt+

�p
"
dWt (4.15)

with initial condition x
0
t0

= x0 at time t0 2 [�T; 0). Let

v(t; t0) =
�
2

"

Z
t

t0

e2�(t;s)=" ds: (4.16)

denote the variance of x0t . As before, we now introduce a function �(t) which will allow us

to de�ne a strip that the process xt is unlikely to leave before time
p
", see Corollary 4.5

below. Let

�(t) =
1

2ja(t0)j
e2�(t;t0)="+

1

"

Z
t

t0

e2�(t;s)=" ds: (4.17)

The following lemma describes the behaviour of �(t).

Lemma 4.2. Assuming " 6 4a(t0)
2 ^ (t0=2)

2, there exist constants c� = c�(a+; a�) such

that

c�

jtj 6 �(t) 6
c+

jtj for t0 6 t 6 �
p
"

c�p
"
6 �(t) 6

c+p
"

for �
p
" 6 t 6

p
" (4.18)

c�p
"
e2�(t)=" 6 �(t) 6

c+p
"
e2�(t)=" for

p
" 6 t 6 T .

If, moreover, a0(t) > 0 on [t0; t], then �(t) is increasing on [t0; t].
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Proof: The upper bounds are easy to obtain. For t0 6 t 6 �
p
" we have, using t2� s2 6

2t(t� s),

�(t) 6
1

"

Z t

t0

ea�(t
2
�s2)=" ds+

1

2ja(t0)j
6

1

jtj

h 1

2a
�

+
1

2a+

i
: (4.19)

For �
p
" 6 t 6 0, the hypothesis " 6 4a(t0)

2 implies

�(t) 6
1

"
e�a�

Z 0

t0

e�a�s
2=" ds+

1

2ja(t0)j
6

1
p
"

h
e�a�

Z 0

�1

e�a
�

u2 du+ 1
i
: (4.20)

For 0 6 t 6
p
", a similar estimate is obtained by splitting the integrals for s 6 0 and

s > 0. For t >
p
", we have

e�2�(t)=" �(t) 6
1
p
"

hZ 0

�1

e�a
�

u2 du+

Z
1

0

e�a+u
2

du+ 1
i
: (4.21)

To obtain the lower bound, we �rst consider the interval t0 6 t 6 1
2
t0, where we use the

estimate t2 � s2 > 2t0(t� s), valid for all s 2 [t0; t], which yields

�(t) >
1

"

Z t

t0

e�2a+jt0j(t�s)=" ds+
e�2a+jt0j(t�t0)="

2a+jt0j
>

1

2a+jtj
: (4.22)

For 1
2
t0 6 t 6 �

p
", we have t2 � s2 > 3t(t� s) for all s 2 [2t; t], and thus

�(t) >
1

"

Z t

2t

e�3a+jtj(t�s)=" ds >
1� e�3a+

3a+jtj
; (4.23)

where we used the relation t0 6 �2
p
" in the last step. By the same relation, we obtain

�(t) >
1
p
"

Z
�1

�2

e�a+u
2

du for �
p
" 6 t 6

p
", (4.24)

e�2�(t)=" �(t) >
1
p
"

Z 1

0

e�a+u
2

du for t >
p
". (4.25)

Finally, assume that a0(t) > 0 for all t, and recall that �(t) is the solution of the initial

value problem
d�

dt
=

2a(t)

"
� +

1

"
; �(t0) =

1

2ja(t0)j
: (4.26)

Since �(t) > 0, � 0 > 0 for all positive t. For negative t, � 0 is positive whenever the function

V (t) = �(t) + 1=2a(t) is negative. We have V (t0) = 0 and

dV

dt
=

2a(t)

"
V �

a0(t)

2a(t)2
: (4.27)

Since V 0 < 0 whenever V = 0, V can never become positive. This implies � 0 > 0.

The following proposition shows that the solution x0t of the linearized equation (4.15)

is likely to track the solution of the corresponding deterministic equation.
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Proposition 4.3. Assume that �T 6 t0 < t 6
p
". For su�ciently small ",

P
t0;x0

n
sup

t06s6t

jx0s � x0 e
�(s;t0)="jp

�(s)
> h

o
6 C(t; ") exp

n
�
1

2

h2

�2

�
1� r(")

�o
; (4.28)

where

C(t; ") =
j�(t; t0)j

"2
+

a+ + 4
p
"+ 4

"
(4.29)

and where r(") = O(") for t0 6 t 6 �
p
", and r(") = O(

p
") for �

p
" 6 t 6

p
".

Proof: Let t0 = u0 < � � � < uK = t be a partition of the interval [t0; t]. By Lemma 3.2,

the probability in (4.28) is bounded by 2
PK

k=1 Pk, where

Pk = exp

n
�
1

2

h2

�2
1

�(uk)
inf

uk�16u6uk
�(u) e2�(uk ;u)="

o
: (4.30)

If t 6 �
p
", we de�ne the partition by

K =

�
��(t; t0)

2"2

�
; ��(uk; t0) = 2"2k for k = 0; : : : ;K � 1: (4.31)

Estimating Pk as in the proof of Proposition 3.3, we obtain

Pk 6 exp

n
�
1

2

h2

�2

�
1�

2"

a
�

c
�

�
e
�4"

o
: (4.32)

Therefore, (4.28) holds with C(t; ") = j�(t; t0)j="2 + 2.

For �
p
" 6 t 6

p
", we de�ne the partition separately in two di�erent regions. Let

K0 =

�
��(�

p
"; t0)

2"2

�
; K = K0 +

�
t+

p
"

"

�
: (4.33)

The partition times are de�ned via

��(uk; t0) = 2"2k for 0 6 k 6 K0 � 1

uk = �
p
"+ "(k �K0) for K0 6 k 6 K � 1: (4.34)

In the �rst case, we immediately obtain the bound (4.32). In the second case, estimating

Pk in the usual way shows that

Pk 6 exp

n
�
1

2

h2

�2

�
1�

p
"

c
�

[1 + 2a+c+]
�
e
�a+"

o
: (4.35)

Finally, let us note that, for �
p
" 6 t 6

p
",

2K 6
j�(�

p
"; t0)j

"2
+

2

"
(t+

p
") + 4 6

j�(t; t0)j
"2

+
a+

"
+

4
p
"
+ 4; (4.36)

which concludes the proof of the proposition.
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Let us now compare solutions of the two SDEs

dx0t =
1

"
a(t)x0t dt+

�
p
"
dWt x

0
t0

= x0 (4.37)

dxt =
1

"
f(xt; t) dt+

�
p
"
dWt xt0 = x0; (4.38)

where t0 2 [�T; 0). We de�ne the events


0
t (h) =

n
! :

��x0s(!)� x0 e
�(s;t0)="

�� 6 h

p
�(s) 8s 2 [t0; t]

o
(4.39)


t(h) =
n
! :

��xs(!)� x0 e
�(s;t0)="

�� 6 h

p
�(s) 8s 2 [t0; t]

o
: (4.40)

Proposition 4.3 gives us an upper bound on the probability of the complement of 
0
t (h).

We now give relations between these events.

Proposition 4.4. Let t 2 [t0;
p
" ] and jx0j 6 h="

1=4, where we assume h
2
< "= for

 = M(1 + 2
p
c+)

3
c+=

p
c
�

and h
2 6 d

2
p
"=(1 + 2

p
c+)

2. Then


t(h)
a:s:
� 
0

t

�h
1 + 

h
2

"

i
h

�
(4.41)


0
t (h)

a:s:
� 
t

�h
1 + 

h
2

"

i
h

�
: (4.42)

Proof: Assume �rst that ! 2 
0
t (h) and let Æ = h

2
=". Then we have Æ < 1 by assump-

tion. By (4.3), the di�erence zs = xs � x
0
s satis�es

zs =
1

"

Z s

t0

e�(s;u)=" b(xu; u) du: (4.43)

We consider the �rst exit time

� = inf
�
s 2 [t0; t] : jzsj > Æh

p
�(s)

	
2 [t0; t] [ f1g: (4.44)

For all ! in the set

A = 
0
t (h) \

�
! : �(!) <1

	
; (4.45)

and s 2 [t0; �(!)], we have by the hypotheses on h and x0 together with Lemma 4.2

jxs(!)j 6 jx0j+ h

p
�(s) 6

�
1 + (1 + Æ)

p
c+

� h

"1=4
6 d: (4.46)

Therefore, (4.4) yields

jzsj 6M

h�
1 + (1 + Æ)

p
c+

� h

"1=4

i3 1

"

Z s

t0

e�(s;u)=" du: (4.47)

The integral is bounded by 2�2"(s), which can be estimated by Lemma 4.2 once again.

Thereby, we obtain

jzsj 6M
�
1 + (1 + Æ)

p
c+

�3 c+p
c
�

h
2

"
h

p
�(s) < Æh

p
�(s); (4.48)

which leads to a contradiction for s = �(!). We conclude that P(A) = 0, and thus

�(!) = 1 for P-almost all ! 2 
0
t (h). This shows that jzs(!)j < Æh

p
�(s) and thus

jxs(!)�x0 e
�(s;t0)="j < (1+Æ)h

p
�(s) for all these ! and all s 2 [t0; t], which proves (4.42).

The proof of the inclusion (4.41) is straightforward, using the same estimates.
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The two preceding propositions immediately imply the main result on the behaviour

of the solution of the nonlinear equation (4.38) for t 6
p
", i.e., Theorem 2.8, which we

restate here with an arbitrary initial time t0 2 [�T;
p
" ].

Corollary 4.5. Assume that �T 6 t0 < t 6
p
". Then there exists an h0 > 0 such that

for all h 6 h0
p
" and all initial conditions x0 with jx0j 6 h="1=4, the following estimate

holds:

P
t0;x0

n
sup

t06s6t

jxs � x0 e
�(s;t0)="jp

�(s)
> h

o
6 C(t; ") exp

n
�
1

2

h2

�2

�
1� r(")�O(h2=")

�o
; (4.49)

where C(t; ") and r(") are given in Proposition 4.3.

4.3 Escape from the origin

We now consider the SDE (4.1), written in the form

dxt =
1

"

�
a(t)xt + b(xt; t)

�
dt+

�
p
"
dWt; (4.50)

for t > t0 >
p
", where we assume that jxt0 j 6 ~x(t0). Our aim is to estimate the �rst exit

time �D of xt from D de�ned in (4.12). We recall that a(t) + 1
xb(x; t) > �a(t) in D, see

(4.13). Moreover, we have a�t 6 a(t) 6 a+t, 0 6 a0(t) 6 a1, and jb(x; t)j 6M jxj3 in D.
We �rst state a result allowing to estimate the variance of the linearization of (4.50).

Lemma 4.6. Let a(t) be any continuously di�erentiable, strictly positive, increasing func-

tion, and set �(t; s) =
R t
s a(u) du. Then the integral

v(t; s) =
�2

"

Z t

s
e2�(t;u)=" du (4.51)

satis�es the inequalities

�2

2a(t)

�
e2�(t;s)="�1

�
6 v(t; s) 6

�2

2a(s)
e2�(t;s)=" : (4.52)

Proof: Using integration by parts, we have

e�2�(t;s)=" v(t; s) = �2
h 1

2a(s)
�

1

2a(t)
e�2�(t;s)="�

Z t

s

a0(u)

2a(u)2
e�2�(u;s)=" du

i
: (4.53)

The upper bound follows immediately, and the lower bound is obtained by bounding the

exponential in the last integral by 1.

Our �rst step towards estimating �D is to estimate the �rst exit time �S from a smaller

strip S, de�ned as

S =

�
(x; t) :

p
" 6 t 6 T; jxj <

hp
a(s)

�
; (4.54)

where we will choose

h = 2�
p
jlog �j: (4.55)
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Proposition 4.7. Let t0 >
p
" and jx0j 6 h=

p
a(t0). Then, for any � > 0, we have

P
t0;x0

�
�S > t

	
6

�h
�

��
exp

�
�

�

1 + �

�(t; t0)

"

h
1�O

� 1

� log(h=�)

�i�
(4.56)

under the condition �
h

�

�3+�
O
�
log

h

�

�
6

t20
�2

: (4.57)

Proof:

1. ForK 2 N , we introduce a partition t0 = u0 < � � � < uK = t of the interval [t0; t], which

will be chosen later, and for each k, we de�ne a linear approximation (x
(k)
t )t2[uk;uk+1]

by

dx
(k)
t =

1

"
a(t)x

(k)
t dt+

�
p
"
dW

(k)
t x(k)uk

= xuk ; (4.58)

where W
(k)
t = Wt �Wuk . Assume that jxsj

p
a(s) 6 h for all s 2 [uk; uk+1]. Then by

Lemma 4.6

jxs � x(k)s j 6
1

"

Z s

uk

jb(xu; u)j e�(s;u)=" du

6M
h3

a(uk)3=2
1

a(uk)
e�(uk+1;uk)=" 6

hp
a(s)

(4.59)

for s 2 [uk; uk+1], provided the partition is chosen in such a way that for all k

h2 6
a2�

M

s
a(uk)

a(uk+1)
e��(uk+1;uk)=" t20: (4.60)

2. If jxuk j
p
a(uk) 6 h, then we have

P
uk;xuk

n
sup

uk6s6uk+1

jxsj
p
a(s) 6 h

o
6 P

uk;xuk

n
jx(k)uk+1

j
p
a(uk+1) 6 2h

o

6
4hq

2�v
(k)
uk+1a(uk+1)

; (4.61)

where the variance

v(k)uk+1
=

�2

"

Z uk+1

uk

e2�(uk+1;s)=" ds (4.62)

can be estimated by Lemma 4.6. We thus have by the Markov property

P = P
t0;x0

n
sup

t06s6t

jxsj
p
a(s) 6 h

o
6

K�1Y
k=0

�
4

p
2�

hq
v
(k)
uk+1a(uk+1)

^ 1

�
: (4.63)

3. We now choose the uk in such a way that v
(k)
uk+1a(uk+1) is approximately constant.

Given � > 0, let

` =
8

�
h2
�
h2

�2

��
(4.64)
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(Observe that ` > 8h2=� > �2=2.) Choosing K as the smallest integer satisfying

K >
2�(t; t0)

" log(2`=�2)
; (4.65)

we de�ne the partition by the relations

�(uk+1; uk) =
"

2
log

2`

�2
; for k 2 f0; : : : ;K � 2g, (4.66)

0 < �(uK ; uK�1) 6
"

2
log

2`

�2
: (4.67)

Then we have

P 6

�
4p
�

h

�

1p
2`=�2 � 1

�K�1

6

�h
�

��
exp

�
��(t; t0)

"

log
��

h2

�2

�� � �
16

�2

h2

�
log

�
16
�

�
h2

�2

�1+� � 1
�
�
; (4.68)

which proves (4.56).

4. It remains to show that condition (4.60) is satis�ed. Since

a(uk+1)

a(uk)
6 1 +

a1

a(uk)
(uk+1 � uk) 6 1 +

a1"

2a2
�

t20
log

�
16

�

�h2
�2

�1+��
; (4.69)

the condition reduces to

�h
�

�3+��
1 +

a1

4a2
�

"

t20
log

h16
�

�h2
�2

�1+�i�
6

a2
�

M

p
�

4

t20
�2

; (4.70)

which is satis�ed whenever condition (4.57) is satis�ed.

We want to choose � in such a way that Pt0;x0f�
S
> tg 6 (h=�)� e���(t;t0)=" holds

with the same � as in (4.13). We opt for � = 2, because this choice guarantees the

above estimate for all possible � without choosing a �-dependent �. For h = 2�
p
jlog �j,

Condition (4.57) becomes a consequence of the following slightly stronger condition

�jlog �j3=2 = O(
p
"); (4.71)

which we will assume to be satis�ed from now on for the rest of this subsection.

The second step is to control the probability that xt returns to zero after it has left the
strip S. To do so, we will compare solutions of (4.50) with those of the linear equation

dx0t =
1

"
a0(t)x

0
t dt+

�p
"
dWt; (4.72)

where a0(t) = �a(t) satis�es a0(t) 6 f(x; t)=x in D. The following lemma shows that this

choice of a0(s) implies that jxsj > jx0sj holds as long as xs does not return to zero (Fig. 3).

This implies that if x0s does not return to zero before time t, then xs is likely to leave D
before time t without returning to zero.

Lemma 4.8. Let t0 >
p
" and assume that 0 < x0 < ~x(t0). We de�ne

D+(t) =
�
(x; s) :

p
" 6 s 6 t and 0 < x < ~x(s)

	
(4.73)
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p
" �S �

0
t

xt

x
0

t

x
D

S

Figure 3. Assume the path xt exits the region S at time �S , say by passing through the

upper boundary of S. We introduce a process x0
t
, starting on the same boundary at time

�S , which obeys the linear SDE (4.72). Let �0 be the time of �rst return to zero of x0
t
.

Then xt lies above x
0

t
for �S < t 6 �

0. In case xt also becomes negative, the two processes

may cross each other. The probability of x0
t
ever returning to zero is bounded by �

4�. If

x
0

t
does not return to zero, xt is likely to leave D.

and denote by �D+ the �rst exit time of xs from D+(t). Let �
0
be the time of �rst return

to zero of x
0
s in [t0; t], where we set �

0 = 1 if x
0
s > 0 for all t 2 [t0; t]. Then xs > x

0
s for

all s 6 �D+ ^ t and

P
t0 ;x0

n
0 < xs < ~x(s) 8s 2 [t0; t]; �

0 =1
o
6 P

t0;x0

n
0 < x

0
s < ~x(s) 8s 2 [t0; t]

o

6
~x(t)

p
a0(t)p
��

e���(t;t0)="p
1� e�2��(t;t0)="

:

(4.74)

Proof:

1. Let g(x; s) = f(x; s)� a0(s)x. By assumption, g(x; s) is non-negative for (x; s) 2 D+.

The di�erence zs = xs � x
0
s satis�es the equation

zs = zt0 +
1

"

Z
s

t0

�
g(xu; u) + a0(u)zu

�
du (4.75)

with zt0 = 0. Since g(xs; s) > 0 for t0 6 s 6 �D+ ^ t,

zs > zt0 +
1

"

Z
s

0

a0(u)zu du; (4.76)

follows for all such s and, therefore, Gronwall's lemma yields

zs > zt0 e
��(s;t0)=" = 0 for all s 2 [t0; �D+ ^ t]: (4.77)

This shows xs > x
0
s for those s. Now assume �D+ = 1 and �

0 = 1. Then, (4.77)
implies that 0 < x

0
s 6 xs < ~x(s) for all s 6 t, which shows the �rst inequality in (4.74).
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2. x
0
s being distributed according to a normal law, we have

P
t0;x0

�
0 < x

0
s
< �x(s) 8s 2 [t0; t]

	
6 P

t0 ;x0
�
0 < x

0
t
< ~x(t)

	

6
~x(t)p

2�v0(t; t0)
;

(4.78)

where the variance v0(t; t0) can be estimated by Lemma 4.6. This proves the second

inequality in (4.74).

The previous lemma is useful only if we can control the probability that the solution x
0
t

of the linearized equation returns to zero. The following result estimates this probability

and its density.

Lemma 4.9. Let t0 >
p
" and assume that x0t0 = � > �=

p
a0(t0). Denote by �

0 the time

of the �rst return of x0t to zero. Then we have

P
t0;�f�0 < tg 6 P

t0;�f�0 <1g 6 e�a0(t0)�
2=�2 (4.79)

d

dt
P
t0;�f�0 < tg 6 2p

�

p
a0(t0)

�

�
e�a0(t0)�

2=�2
1

"

p
a0(t)a0(t0)

e�2��(t;t0)="p
1� e�2��(t;t0)="

: (4.80)

Proof:

1. Since by symmetry, P�
0
;0fx0t > 0g = 1

2
on f�0 < tg, we have by the strong Markov

property

P
t0;�fx0t > 0j�0 < tg = 1

2
: (4.81)

We now observe that

P
t0;�fx0t > 0g = P

t0;�fx0t > 0; �0 > tg+ P
t0;�fx0t > 0; �0 < tg

= P
t0;�f�0 > tg+ P

t0;�fx0t > 0j�0 < tgPt0;�f�0 < tg
= 1� P

t0;�f�0 < tg+ 1
2
P
t0;�f�0 < tg

= 1� 1
2
P
t0 ;�f�0 < tg;

(4.82)

which implies

P
t0;�f�0 < tg = 2

�
1� P

t0;�fx0t > 0g� = 2Pt0;�fx0t < 0g: (4.83)

2. Next, we use that x0t is a Gaussian random variable with mean � e��(t;t0)=" and variance

v0(t; t0) =
�
2

"

Z
t

t0

e2��(t;s)=" ds: (4.84)

By Lemma 4.6,

� =
�
2 e2��(t;t0)="

2v0(t; t0)
> a0(t0)

�
2

�2
; (4.85)

and we thus have

P
t0;�fx0t < 0g = 1p

2�v0(t; t0)

Z 0

�1
exp

n
�(x� � e��(t;t0)=")2

2v0(t; t0)

o
dx

=
1p
2�

Z � � e��(t;t0)="p
v0(t;t0)

�1
e�y

2=2 dy 6
1

2
e��; (4.86)

which proves (4.79), using (4.83) and (4.85).
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3. In order to compute the derivative of Pt0;�fx0t < 0g, we �rst note that
d

dt
v0(t; t0) =

�
2

"
+

2a0(t)

"
v0(t; t0): (4.87)

Di�erentiating the second line of (4.86), we get

d

dt
P
t0;�fx0t < 0g = 1p

2�
exp

�
��

2 e2��(t;t0)="

2v0(t; t0)

�
d

dt

�
�� e��(t;t0)="p

v0(t; t0)

�

=
1p
2�

e��
�

2

�
2

"

e��(t;t0)="

v0(t; t0)3=2

=
1p
2�

1

�

�
2

"

e���(t;t0)="p
v0(t; t0)

� e�� (4.88)

6
1p
2�

p
a0(t0)

�

�
e�a0(t0)�

2=�2 1

"

p
2a0(t)a0(t0)

e�2��(t;t0)="p
1� e�2��(t;t0)="

;

where we have used the facts that � > a0(t0)�
2
=�

2
> 1 and that �e�� is decreasing

for � > 1. Now, (4.80) follows from (4.83).

Assume for the moment that x0t starts �on the border� of S, i.e. in �(t0) = h=
p
a(t0) =p

�h=
p
a0(t0). Then, by our choice h = 2�

pjlog �j, Estimate (4.79) shows that the

probability for x0t to return to zero cannot exceed e�a0(t0)�
2=�2 = �

4�.

We are now ready to prove the main estimate on the �rst exit time �D, which is the

most important of our results. Since the proof is rather involved, we restate Theorem 2.9

here for convenience.

Proposition 4.10 (Theorem 2.9). Let t0 >
p
" and jx0j 6 ~x(t0). Then

P
t0;x0

�
�D > t

	
6 C0 ~x(t)

p
a(t)

jlog �j
�

�
1 +

�(t; t0)

"

�
e���(t;t0)="p

1� e�2��(t;t0)="
; (4.89)

where C0 > 0 is a (numerical) constant.

The strategy of the proof can be summarized as follows. The paths are likely to leave

S after a short time. Then there are two possibilities. Either the solution x
0
t of the linear

equation (4.72) does not return to zero, and Lemma 4.8 shows that xt is likely to leave D as

well. Or x0t does return to zero. Using the (strong) Markov property and integrating over

the distribution of the time of such a (�rst) return to zero, we obtain an integral equation

for an upper bound on the probability of remaining in D. Finally, this integral equation is

solved by iterations.

Proof of Proposition 4.10.

1. We �rst introduce some notations. Let

�t(s; x) = P
s;x
�
�D > t

	
= P

s;x
n

sup
s6u6t

jxuj
~x(u)

< 1
o
; (4.90)

and de�ne �(t) = h=
p
a(t). We may assume that �(t) 6 ~x(t) for all t (otherwise we

replace ~x by its maximum with �). For t > s >
p
" we de�ne the quantities

qt(s) = sup
jxj6�(s)

�t(s; x); (4.91)

Qt(s) = sup
�(s)6jxj6~x(s)

�t(s; x): (4.92)
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2. Let us �rst consider the case jxj 6 �(s). Recall that S = f(x; t) : jxj < �(t)g. By

Proposition 4.7 and the strong Markov property, we have the estimate

�t(s; x) = P
s;x
�
�S > t

	
+ P

s;x
n
�S < t; sup

�S6u6t

jxuj
~x(u)

< 1
o

6

�
h

�

�
2

e���(t;s)="+E s;x
n
1f�S<tgP

�S ;x�S

n
sup

�S6u6t

jxuj
~x(u)

< 1
oo

6

�
h

�

�2

e���(t;s)="+E s;x
�
1[s;t)(�S)Qt(�S)

	
: (4.93)

The second term can be estimated by integration by parts, see Lemma A.2. Let

Qt(u) be any upper bound on Qt(u) satisfying the hypotheses on g in that lemma.

Since Qt(u) 6 Qt(t) = 1, we may assume that Qt(t) = 1. Application of (A.7) with

G(u) = 1� (h=�)2 e���(u;s)=" shows that the second term in (4.93) is bounded by

�
h

�

�2

e���(t;s)="+�
�
h

�

�2
Z t

s

Qt(u)
a(u)

"
e���(u;s)=" du: (4.94)

We have thus obtained the inequality

qt(s) 6 2
�
h

�

�2

e���(t;s)="+�
�
h

�

�2
Z t

s

Qt(u)
a(u)

"
e���(u;s)=" du: (4.95)

3. Consider now the case jxj 2 [�(s); ~x(s)]. Since x 7! f(x; t) is an odd function, �t(s; x) =
�t(s;�x) follows. Hence we may assume that x > 0. We consider the linear SDE (4.72)

with initial condition x0s = x, and denote by �0 the time of the �rst return of x0t to

zero. Then we have

�t(s; x) = P
s;x
n
�
0
> t; sup

s6u6t

jxuj
~x(u)

< 1
o
+ P

s;x
n
�
0
< t; sup

s6u6t

jxuj
~x(u)

< 1
o
; (4.96)

and Lemma 4.8 yields

P
s;x
n
�
0
> t; sup

s6u6t

jxuj
~x(u)

< 1
o
6

~x(t)
p
�a(t)p
��

e���(t;s)="p
1� e�2��(t;s)="

: (4.97)

The second term in (4.96) can be estimated using the density of the random variable

�
0, for which Lemma 4.9 gives the bound

 �0(u) =
d

du
P
s;x
�
�
0
< u

	
6

2�3=2p
�

h

�
e��h

2=�2 a(u)

"

e�2��(u;s)="p
1� e�2��(u;s)="

: (4.98)

We obtain

P
s;x
n
�
0
< t; sup

s6u6t

jxuj
~x(u)

< 1
o
6 E

s;x
n
1f�0<tgP

�0;x
�
0

n
sup

�06u6t

jxuj
~x(u)

< 1
oo

=

Z t

s

 �0(u)�t(u; xu) du

6

Z t

s

 �0(u)
�
qt(u) +Qt(u)

�
du: (4.99)
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4. Before inserting the estimate (4.95) for qt(u), we shall introduce some notations and

provide bounds for certain integrals needed in the sequel. Let

g(t; s) =
e���(t;s)="

p
1� e�2��(t;s)="

(4.100)

and � = e���(t;s)=". Then

Z t

s

a(u)

"
e���(u;s)=" g(u; s) du 6

Z t

s

a(u)

"
g(u; s) du 6

�

2�
6

2

�
(4.101)

Z t

s

a(u)

"
e���(u;s)=" g(t; u)g(u; s) du =

�

2�

Z 1

0

dxp
x(1� x)

=
�

2�
� <

2

�
� (4.102)

Z t

s

a(u)

"
e���(u;s)=" g(t; u) du 6

�

�

Z p1��2

0

1

1� x2
dx =

�

�

1

2
log

1 +
p
1� �2

1�
p
1� �2

6
�

�
log

2

�
6

h1
�
+
�(t; s)

"

i
e���(t;s)="; (4.103)

where we used the changes of variables e�2��(u;s)=" = x(1 � �
2) + �

2 in (4.102) and

x
2 = 1� e�2��(t;u)=" in (4.103).

5. Now we are ready to return to our estimate on
R t

s
 �0(u)qt(u) du, compare (4.99).

Inserting the bound (4.95) on qt(u) yields two summands, the �rst one being

2
�
h

�

�2
Z t

s

 �0(u) e
���(t;u)=" du

6
4�3=2
p
�

�
h

�

�3
e��h

2=�2
Z t

s

a(u)

"

e�2��(u;s)="p
1� e�2��(u;s)="

e���(t;u)=" du

6 2
p
��

�
h

�

�3
e��h

2=�2 e���(t;s)="; (4.104)

where we used (4.101) to bound the integral. The second summand is

�

�
h

�

�2
Z t

s

 �0(u)

Z t

u

Qt(v)
a(v)

"
e���(v;u)=" dv du

6 �
p
��

�
h

�

�3
e��h

2=�2
Z t

s

Qt(v)
a(v)

"
e���(v;s)=" dv; (4.105)

where we used (4.101) again.

We can now collect terms. Introducing the abbreviations

C = max
n ~x(t)

p
�a(t)

p
��

; 1
o

and c =
p
��

�
h

�

�3
e��h

2=�2
; (4.106)

the previous inequalities imply that

Qt(s) 6 Cg(t; s) + c e���(t;s)="+c

Z t

s

Qt(u)
a(u)

"
e���(u;s)="

�
1 + g(u; s)

�
du: (4.107)
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6. We will now iterate the bounds on Qt(s). This will show the existence of two series

fangn>1 and fbngn>1 such that

Qt(s) 6 Cg(t; s) + an e
���(t;s)="+bn 8n: (4.108)

To do so, we need to assume that

c
��(T; t0)

"
+

2

�

�
=
p
��

��(T; t0)
"

+
2

�

��h
�

�3
e��h

2=�2
6

1

2
: (4.109)

By our choice (4.55) of h, this condition reduces to

�2�jlog �j3=4 = O(
p
"); (4.110)

which is satis�ed for small enough " by our assumption (4.71) on �, provided � > 1=2.

Using the trivial bound Qt(u) = 1 in (4.107), we �nd that (4.108) holds with a1 = c

and b1 = 3c=�. Inserting (4.108) into (4.107) again, we get

Qt(s) 6 Cg(t; s) + c e���(t;s)="

+ c

Z t

s

h
Cg(t; u) + an e

���(t;u)="+bn

ia(u)
"

e���(u;s)="
�
1 + g(u; s)

�
du

6 Cg(t; s) + c

�
1 + C

��(t; s)
"

+
3

�

�
+ an

��(t; s)
"

+
2

�

��
e���(t;s)="+

3c

�
bn:

By induction, we �nd

an+1 = c
h
1 + C

��(t; s)
"

+
3

�

�i n�1X
j=0

h
c
��(t; s)

"
+

2

�

�ij
+ c

h
c
��(t; s)

"
+

2

�

�in

6

h
1 + C

��(t; s)
"

+
3

�

�i c

1� c
��(t;s)

"
+ 2

�

� (4.111)

bn+1 =
�3c
�

�n+1
(4.112)

as a possible choice, where we have used the fact that c(�(t; s)=" + 2=�) 6 1
2
by the

hypothesis (4.109). Taking the limit n!1, and using c 6 �
4
6

1
4
, we obtain

Qt(s) 6 Cg(t; s) +
1

2

�
1 + 3C

�
e���(t;s)=" 6 3Cg(t; s): (4.113)

In order to obtain also a bound on qt(s), we insert the above bound on Qt(s) into

(4.95), which yields

qt(s) 6 2
�h
�

�2
e���(t;s)="+3�C

�h
�

�2 Z t

s

a(u)

"
e���(u;s)=" g(t; u) du

6

h
2 + 3�C

� 1
�
+

�(t; s)

"

�i�h
�

�2
e���(t;s)=" (4.114)

by (4.103). This proves the proposition, and therefore Theorem 2.9, by taking the sum

of the above estimates on qt(s) and Qt(s).
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4.4 Approach to x
?(t)

We �nally turn to the behaviour after the time � = �D >
p
", when xt leaves the set D.

By symmetry, we can restrict the analysis to the case x� = ~x(�). Our aim is to prove that

with high probability, xt soon reaches a neighbourhood of x?(t).

We start by analysing the solution x
det;�
t of the deterministic equation

"
dx

dt
= f(x; t) (4.115)

with initial condition x
det;�
� = ~x(�).

Proposition 4.11. For su�ciently small " and T ,

~x(t) 6 x
det;�
t 6 x

?(t) (4.116)

0 6 x
?(t)� x

det;�
t 6 C

�
"

t3=2
+

�
x
?(�)� ~x(�)

�
e���(t;�)="

�
(4.117)

0 6 x
det;

p
"

t � x
det;�
t 6

�
x
det;

p
"

� � ~x(�)
�
e���(t;�)=" (4.118)

for all t 2 [�; T ] and all � 2 [
p
"; T ], where C > 0 is a constant depending only on f .

Proof:

1. Whenever x
det;�
t = x

?(t), we have

"
d

dt

�
x
?(t)� x

det;�
t

�
= "

dx?(t)

dt
� f(x?(t); t) = "

dx?(t)

dt
> 0; (4.119)

which shows that x
det;�
t can never become larger than x

?(t). Similarly, whenever

x
det;�
t = ~x(t), we get

"
d

dt

�
x
det;�
t � ~x(t)

�
= f(~x(t); t)� "

d~x(t)

dt

=
p
� (1� �)t3=2

�
1 + OT (1)

�
� "

p
�

2
p
t

�
1 + OT (1)

�
> 0

(4.120)

provided � <
1
2
[1 � OT (1)], which shows that x

det;�
t can never become smaller than

~x(t). This completes the proof of (4.116).

2. We now introduce the di�erence y
det;�
t = x

?(t) � x
det;�
t . Using Taylor's formula, one

immediately obtains that y
det;�
t satis�es the ODE

"
dy

dt
= a

?(t)y + b
?(y; t) + "x

?0(t) (4.121)

where

a
?(t) 6 �a?0t

0 6 b
?(y; t) 6M

?
p
t y

2

x
?0(t) 6

K
?

p
t
;

(4.122)
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with a
?
0 = 2[1 + OT (1)], M

? = 3[1 + OT (1)] and K
? = 1

2
[1 + OT (1)]. We �rst consider

the particular solution by
det
t of (4.121) starting at time 4

p
" in by

det
4
p
"
= 0. By (4.119),

we know that by
det
t > 0 for all t > 4

p
". We will use the fact that

Z
t

�

1
p
s
e�a

?

0
(t2�s2)=4" ds 6

Z
t

�

1
p
s
e�a

?

0
t(t�s)=4" ds

6
4"

a?0t
3=2

Z
�

0

e�up
1� u=�

du < c0
"

t3=2
;

(4.123)

where c0 = 8=a?0. We have used the transformation s = t � 4"u=(a?0t), introduced

� = a
?
0t

2
=4" and bounded the last integral by 2. We now introduce the �rst exit time

�̂ = infft > 4
p
" : bydet

t > c0"t
�3=2g. For 4

p
" 6 t 6 �̂ , we have

a
?(t)y + b

?(y; t) 6
�
�a?0 t+M

?
p
t c0

"

t3=2

�
y 6 �a?0

�
1�

c0M
?

16a?0

�
ty: (4.124)

Since M
?
=(a?0)

2 = 3
4
[1 + O(1)], the term in brackets can be assumed to be larger than

1
2
. Hence (4.121) shows that

"
dbydet

dt
6 �

a
?
0

2
tbydet + "

K
?

p
t
; (4.125)

which implies

bydet
t 6 K

?

Z
t

�

e�a
?

0
(t2�s2)=4"
p
s

ds < K
?
c0

"

t3=2
: (4.126)

Since K
? = 1

2
[1 + O(1)], we obtain bydet

t < c0"t
�3=2

, and thus �̂ =1. This shows

0 6 bydet
t 6 K

?
c0

"

t3=2
for 4

p
" 6 t 6 T . (4.127)

3. Let � >
p
" and 0 6 y1 < y2 6 x

?(�)� ~x(�) be given. Let y
(1)
t and y

(2)
t be solutions of

(4.121) with initial conditions y
(1)
� = y1 and y

(2)
� = y2, respectively. Then there exists

a � 2 [0; 1] such that the di�erence zt = y
(2)
t � y

(1)
t satis�es

"
dz

dt
= �@xf(x?(t)� y

(1)
t � �z; t) 6 ��a(t)z; (4.128)

where we have used (4.116) and (4.14). It follows that

0 6 y
(2)
t � y

(1)
t 6 (y2 � y1) e

���(t;�)="
; (4.129)

which proves (4.118) in particular. If � > 4
p
", we can use the relation x

?(t)�x
det;�
t =bydet

t + (y
det;�
t � bydet

t ) to show that

x
?(t)� x

det;�
t 6 K

?
c0

"

t3=2
+
�
x
?(�)� ~x(�)

�
e���(t;�)="; (4.130)

which proves (4.117) for � > 4
p
". Finally, if

p
" 6 � 6 4

p
", we can use the fact

that x
?(t) � x

det;�
t 6 x

?(t) � x
det;4

p
"

t to prove that (4.117) holds for some constant

C > 0.
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Let us now consider the process yt = y
�
t = xt � x

det;�
t , starting at time � in y� = 0,

which describes the deviation due to noise from the deterministic solution x
det;�
t . It satis�es

the SDE

dyt =
1

"

�
a
� (t)y + b

� (yt; t)
�
dt+

�
p
"
dWt; (4.131)

where we have introduced

a
� (t) = @xf(x

det;�
t ; t)

b
� (y; t) = f(x

det;�
t + y; t)� f(x

det;�
t )� a

� (t)y:
(4.132)

The following bounds are direct consequences of Taylor's formula and Proposition 4.11:

a
?(t) 6 a

� (t) 6 ~a(t) (4.133)

a
� (t) = a

?(t) +O
�
"

t

�
+O(t e���(t;�)=") (4.134)

(a� )0(t) = O
�
1 +

t
2

"
e���(t;�)="

�
(4.135)

jb� (y; t)j 6 3My
2
�
x
?(t) + jyj

�
; valid for x?(t) + jyj 6 d: (4.136)

For comparison, we will also consider the linear SDE

dy0t =
1

"
a
� (t)y0t dt+

�
p
"
dWt: (4.137)

Let �� (t; s) =
R t

s
a
� (u) du and denote by

v
� (t) =

�
2

"

Z t

�

e2�
� (t;s)=" ds (4.138)

the variance of y0t . Again we introduce and investigate a function

�
� (t) =

1

2j~a(�)j
e2�

� (t;�)="+
1

"

Z t

�

e2�
� (t;s)=" ds: (4.139)

Lemma 4.12. The function �
� (t) satis�es the following relations for � 6 t 6 T :

�
� (t) =

1

2j~a(t)j
+O

�
"

t3

�
+O

�1
t
e���(t;�)="

�
(4.140)

1

2ja?(t)j
6 �

� (t) 6
1

2j~a(�)j
(4.141)

(�� )0(t) 6
1

"
: (4.142)

Proof:

1. By integration by parts, we �nd

�
� (t) =

1

2j~a(t)j
�

1

2

Z t

�

(a� )0(s)

a� (s)2
e2�

� (t;s)=" ds: (4.143)
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The relation ja� (s)j > j~a(s)j > �ja(s)j together with (4.135) yields

����
Z

t

�

(a� )0(s)

a� (s)2
e2�

� (t;s)=" ds

���� 6 const

Z
t

�

� 1

s2
+

1

"
e���(s;�)="

�
e�2��(t;s)=" ds: (4.144)

The second term in brackets gives a contribution of order 1
t
e���(t;�)=". In order to

estimate the contribution of the �rst term, we perform the change of variables u =
�(t2 � s

2)=2", thereby obtaining

Z
t

�

1

s2
e��(t2�s

2)=2" ds =
"

�t3

Z
���0

0

e�u

(1� u=�)3=2
du 6

"

�t3

h
23=2 + 2

�
3=2 e��=2

p
�0

i
;

(4.145)

where � = �t
2
=2" and �0 = ��

2
=2". The last inequality is obtained by splitting the

integral at �=2. Using the fact that t3 e��t
2
=4" 6 (6"=�)3=2 e�3=2 for all t > 0, we reach

the conclusion that this integral is bounded by a constant times "=t3, which completes

the proof of (4.140).

2. We now use the fact that �� (t) solves the ODE

d��

dt
=

1

"

�
2a� (t)�� + 1

�
; �

� (�) =
1

2j~a(�)j : (4.146)

Then, (4.142) is an immediate consequence of this relation, and (4.141) is obtained

from the fact that
d�� (t)

dt
=

1

"

�
�ja

� (t)j
j~a(�)j + 1

�
6 0; (4.147)

whenever �� (t) = 1=2j~a(�)j, and

d

dt

�
�
� (t)� 1

2ja?(t)j
�
=

1

"

�
�ja

� (t)j
ja?(t)j + 1

�
� a

?0(t)

2a?(t)2
> 0; (4.148)

whenever �
� (t) = 1=2ja?(�)j. Here we used (4.133) and the monotonicity of ~a(t) for

small t.

We note that Lemma 4.12 and the bounds (4.133) on a
� imply the existence of constants

c+ > c� > 0, depending only on f and T , such that

c�

t
6 �

� (t) 6
c+

t
8t 2 [�; T ]: (4.149)

We can now easily prove that y
0
t remains in a strip of width h

p
�� with high probability,

in much the same way as in Proposition 3.3.

Proposition 4.13. For su�ciently small T and ", and all t 2 [�; T ],

P
�;0
n

sup
�6s6t

jy0s jp
�� (s)

> h

o
6 C

� (t; ") exp
n
�1

2

h
2

�2

�
1� r(")

�o
; (4.150)

where r(") = O(") and

C
� (t; ") =

j�� (t; �)j
"2

+ 2: (4.151)
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Proof: Let K = dj�� (t; �)j=2"2e and de�ne a partition � = u0 < � � � < uK = t of [�; t] by

j�� (uk; �)j = 2"2k; k = 1; : : : ;K � 1: (4.152)

Since a� (s) 6 ~a(s) 6 ��s=2, we obtain uk � uk�1 6 4"2=(�uk�1) for all k. Now we can

proceed as in the proof of Proposition 3.3.

We can now compare the solutions of the linear and the nonlinear equation. To do so,

we de�ne the events


t(h) =
�
! : jy�s j < h

p
�� (s) 8s 2 [�; t]

	
(4.153)


0
t
(h) =

�
! : jy0

s
j < h

p
�� (s) 8s 2 [�; t]

	
: (4.154)

The following proposition shows that y�t and y0t di�er only slightly.

Proposition 4.14. Let  = 1 _ 48M(2 +
p
c+)c

2
+=
p
c
�

and assume h < �= as well as

h 6 [d� x?(t)]
p
�=(2

p
c+). Then


t(h)
a:s:� 
0

t

�h
1 + 

h

�

i
h
�

(4.155)


0
t (h)

a:s:� 
t

�h
1 + 

h

�

i
h
�
: (4.156)

Proof: Assume �rst that ! 2 
0
t (h). We introduce the di�erence zs = y�s � y0s , set

Æ = h=� < 1, and de�ne the �rst exit time

�̂ = inf
�
s 2 [�; t] : jzsj > Æh

p
�� (s)

	 2 [�; t] [ f1g: (4.157)

On A = 
0
t (h) \ f�̂ <1g, we get by the estimate (4.136) on b� , Lemma 4.12 and (4.149)

jzsj 6 1

"

Z
t

�

e�
� (s;u)="jb� (yu; u)jdu

6 6M(1 + Æ)2
�
2c+

h

�
+ (1 + Æ)c

3=2
+

h2

�2

� c+p
c
�

h
p
�� (s) < Æh

p
�� (s); (4.158)

for all s 2 [�; �̂ ], which leads to a contradiction for s = �̂ . We conclude that P(A) = 0 and

thus jzsj 6 h2
p
�� (s)=� for all s in [�; t], which proves (4.156). The inclusion (4.155) is a

straightforward consequence of the same estimates.

Now, the following corollary is a direct consequence of the two preceding propositions.

Corollary 4.15. There exists h0 such that if h < h0� , then

P
�;~x(�)

�
sup
�6s6t

jxs � x
det;�
s jp

�� (s)
> h

�
6 C� (t; ") exp

n
�1

2

h2

�2

h
1�O(")�O

�h
�

�io
; (4.159)

where C� (t; ") is given by (4.151).
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Appendix

The appendix provides two lemmas needed in Sections 3 and 4. The �rst one uses expo-

nential martingales to deduce an exponential bound on the probability that a stochastic

integral exceeds a given value.

Lemma A.1. Let '(u) be a Borel-measurable deterministic function such that

�(t) =

Z t

0

'(u)2 du (A.1)

exists. Then

P

n
sup
06s6t

Z s

0

'(u) dWu > Æ

o
6 exp

�
�

Æ
2

2�(t)

�
(A.2)

Proof: Let P denote the left-hand side of (A.2). For any  > 0, we have

P = P

n
sup
06s6t

exp
n


Z s

0

'(u) dWu

o
> eÆ

o
6 P

n
sup
06s6t

Ms > eÆ�

2

2
�(t)

o
; (A.3)

where

Ms = exp
nZ s

0

'(u) dWu �
1
2

Z s

0


2
'(u)2 du

o
(A.4)

is an (exponential) martingale, satisfying EfMtg = EfM0g = 1, which implies by Doob's

submartingale inequality, that

P

n
sup
06s6t

Ms > �

o
6

1

�
E
�
Mt

	
=

1

�
: (A.5)

This gives us

P 6 e�Æ+ 
2

2
�(t)

; (A.6)

and we obtain the result by optimizing (A.6) over .

The following lemma allows to estimate expectation values by integration by parts.

Lemma A.2. Let � > s0 be a random variable satisfying F� (s) = Pf� < sg > G(s) for

some continuously di�erentiable function G. Then

E
�
1[s0;t)(�)g(�)

	
6 g(t)

�
F� (t)�G(t)

�
+

Z t

s0

g(s)G0(s) ds (A.7)

holds for all t > s0 and all functions 0 6 g 6 1 satisfying the two conditions

� there exists an s1 2 (s0;1] such that g is continuously di�erentiable and increasing on

(s0; s1);
� g(s) = 1 for all s > s1.

Proof: First note that for all t 6 s1,Z t

s0

g
0(s)Pf� > sgds = E

nZ t^�

s0

g
0(s) ds

o

= Efg(t ^ �)g � g(s0)

= Ef1[s0 ;t)(�)g(�)g + g(t)Pf� > tg � g(s0) (A.8)
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which implies, by integration by parts,

Ef1[s0 ;t)(�)g(�)g =

Z
t

s0

g
0(s)

�
1� F� (s)

�
ds� g(t)

�
1� F� (t)

�
+ g(s0)

6

Z
t

s0

g(s)G0(s) ds+ g(t)
�
F� (t)�G(t)

�
; (A.9)

where we have used F� (s) > G(s) and G(s0) 6 F (s0) = 0. This proves the assertion in

the case t 6 s1. In the case t > s1, we have

Ef1[s0 ;t)(�)g(�)g = Ef1[s0 ;s1)(�)g(�)g + Pf� 2 [s1; t)g

6

Z
s1

s0

g(s)G0(s) ds+ g(s1)
�
F� (s1)�G(s1)

�
+

�
F� (t)� F� (s1)

�

=

Z
t

s0

g(s)G0(s) ds�
�
G(t)�G(s1)

�
+

�
F� (t)�G(s1)

�
; (A.10)

where we have used that g(s) = 1 holds for all s 2 [s1; t]. This proves the assertion for

t > s1.
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