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Abstract. Periodic arrays are structures consisting of geometrically identical subdomains, usually
called periodic cells. In this paper, by taking the Helmholtz equation as a model, we consider
the defnition and evaluation of the exact boundary mappings for general one-dimensional semi-
infnite periodic arrays for any real wavenumber. The well-posedness of the Helmholtz equation is
established via the limiting absorption principle.

An algorithm based on the doubling procedure and extrapolation technique is proposed to derive
the exact Sommerfeld-to-Sommerfeld boundary mapping. The advantages of this algorithm are the
robustness and simplicity of implementation. But it also suffers from the high computational cost
and the resonance wave numbers.

To overcome these shortcomings, we propose another algorithm based on a conjecture about the
asymptotic behaviour of limiting absorption principle solutions. The price we have to pay is the
resolution of two generalized eigenvalue problems, but still the overall computational cost is si-
gnificantly reduced. Numerical evidences show that this algorithm presents theoretically the same
results as the first algorithm. Moreover, some quantitative comparisons between these two algo-
rithms are given.

1. Introduction. These days periodic array problems arise frequently in many up-to-date applica-
tion areas like photonic crystals (PC) [26], [30], [35], semiconductor nanostructures (e.g. quantum
dots and nanocrystals), semiconductor superlattices [4], [50], meta materials [42] or Bragg gratings
of surface plasmon polariton (SPP) waveguides [19], [43].

The most interesting property of periodic arrays, especially in optical applications in nano- and
micro-technology, is the capability of selecting waves in a range of frequencies that are allowed
to pass or blocked through the media. Waves in periodic arrays only exist when their frequency
lies inside some allowed continuous bands separated by forbidden gaps. This fact corresponds
mathematically to the dispersion diagram of suitable differential operator having so-called pass
bands and stop bands. Since the governing wave equation is either of periodic variable coefficient,
or defined on a domain consisting of periodic subregions, theoretical analysis is very limited, and
numerical simulation is a fundamental tool for the design, analysis and finally optimization of the
periodic arrays.

In many cases some defect cells are artificially introduced into a perfect periodic array for some
additional interesting property. For example, if the defect cells are properly designed, some defect
modes [41] can exist for certain frequencies in the band gaps. This phenomena has many important
applications, e.g. in light emitting devices (LEDs) and photonic circuits [34].
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2 Boundary mappings for semi-infinite periodic arrays

In general, efficient numerical simulations are necessary for the design, analysis
and finally optimization of the waveguiding periodic structures. However, in many
cases these wave propagation problems are modeled by partial differential equations
(PDEs) on very large domains, e.g. the wanted frequencies of these defect modes are
the eigenvalues of a PDE eigenvalue problem posed on an unbounded domain [17].

For solving these PDEs numerically, a common practice is to confine the real
computational domain by introducing artificial boundaries to enclose a small neigh-
bourhood of the region with physical interest. Note that even in the case of a bounded
domain of a periodic media it is common practice for a numerical simulation with high
accuracy to reduce the original spatial domain to some smaller region of interest by
introducing artificial boundaries in order to resolve the very fine periodic structures
accurately. This is especially beneficial if these generated exterior domains consist of
a huge number of periodicity cells.

For solving these PDEs numerically, a common practice is to confine the real
computational domain by introducing artificial boundaries to enclose a small neigh-
borhood of the region with physical interest. Note that even in the case of a bounded
domain of a periodic media it is common practice for a numerical simulation with high
accuracy to reduce the original spatial domain to some smaller region of interest by
introducing artificial boundaries in order to resolve the very fine periodic structures
accurately. This is especially beneficial if these generated exterior domains consist of
a huge number of periodicity cells.

The ideal boundary conditions at the artificial boundaries should not only lead
to well–posed problems, but also mimic the perfect absorption of waves leaving the
computational domain through the artificial boundaries. Moreover, these boundary
conditions should allow for an easy implementation. These boundary conditions are
usually called artificial (or transparent, non–reflecting, absorbing in the same spirit) in
the literature. Basic requirements for artificial boundary conditions (ABCs) are well–
posedness and easy (relatively) implementation. Furthermore, a fast, efficient and
accurate evaluation of the Dirichlet-to-Robin (DtR) mapping is essential. We refer
the interested reader to a couple of review papers [2, 15, 18, 47] on this fundamental
research topic.

Let us remark that ABCs for linear PDEs have been a hot research issue for many
years and many developments have been made on the designing and implementing of
various ABCs, also for multi–dimensional and nonlinear problems [2]. However, the
question of exact ABCs for periodic structure problems is not fully settled yet and
is a very current research topic, cf. the recent papers [11], [13], [14], [27], [38], [40],
[45], [46], [52], [53], [54]. For a comprehensive review on the theory of waves in locally
periodic media including a survey on physical applications we refer the interested
reader to [16].

2. A model problem. We consider a closed waveguide consisting of an infinite
number of identical cells, see Fig. 2.1. There Cj denotes the j-th periodic cell, and
Γj the j-th cell boundary. The governing wave equation is the Helmholtz equation

∆u+k2n2u=0, (x,y)∈Ω=∪+∞
j=1Cj , (2.1)

where k is the reference wave number, and n=n(x,y) is the refraction index function.
On each cell boundary Γj we define two Sommerfeld data associated with the function
u as

fj(u)=(∂x + ik)u|Γj
, gj(u)=(∂x− ik)u|Γj

, (2.2)



M. Ehrhardt, J. Sun and C. Zheng 3

where i denotes the imaginary unit. To clarify the physical meaning of these two data,
let us first return to the one-dimensional constant coefficient Helmholtz equation

uxx +k2u=0.

Two linearly independent solutions are e±ikx. As a common convention, eikx rep-
resents a wave traveling to the right, and e−ikx to the left. An easy computation
yields

(∂x + ik)eikx =2ikeikx, (∂x− ik)eikx =0,

and

(∂x + ik)e−ikx =0, (∂x− ik)e−ikx =−2ike−ikx.

These expressions above imply that the operator ∂x + ik eliminates the left-going
wave while the operator ∂x− ik eliminates the right-going wave. Thus, the functions
fj and gj in (2.2) contain some information about the right-going and left-going
waves respectively. They are further referred to as incoming or outgoing relying on
the location of Γj with respect to (w.r.t.) the concerned part of the domain. For
example, w.r.t. Cj , fj is incoming and gj is outgoing, but w.r.t. Cj−1, fj is outgoing
and gj is incoming.

The boundary conditions on the top, bottom and interior (if existing) bound-
aries could be either Neumann or Dirichlet, or any combination, but they need to
be consistent with the geometry periodicity. Moreover, these boundary conditions
should guarantee the well–posedness of the Helmholtz equation (2.1) on the union of
any finite number of periodic cells, say ∪N−1

j=0 Cj , if the incoming Sommerfeld data are
prescribed on its left and right boundaries, say Γ0 and ΓN .

We remark that these restrictions are in fact very mild thanks to the Holmgren
uniqueness theorem [23, Section 5.3]. In the sequel, if not specified otherwise, we as-
sume homogeneous Neumann boundary conditions at the top and bottom boundaries.
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1
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Fig. 2.1. Schematic view of a semi-infinite periodic array. Cj denotes the j-th periodic cell.
Γj is the left cell boundary of Cj and the right cell boundary of Cj−1 (for j≥1).

Three different periodic arrays (PA) will be considered in this paper, and we will
refer to them as PA-One, PA-Two and PA-Three. All of them consist of periodic cells
with size of 1×1. More details are listed in the following list:

• PA-One. Homogeneous waveguide. n=1.
• PA-Two. A hold of size 0.5×0.5 is located in the center of every periodic

cell. Zero Dirichlet boundary condition is applied at the hole boundary. n=1.
• PA-Three. Rectangular waveguide. n(x,y)=1+0.5cos(2πx)sin(2πy).

To explore the wave property in a periodic array, it is usually helpful to consider
the dispersion diagram of the characteristic equation −∆u=En2u, restricted to a



4 Boundary mappings for semi-infinite periodic arrays

single periodic cell, say C0. The boundary conditions at the left and right boundaries
are pseudoperiodic, namely,

u|Γ1
=eiθu|Γ0

, ux|Γ1
=eiθux|Γ0

,

where the parameter θ is valued in [0,2π). For each θ, there exists a sequence of
real eigenvalues E, usually called energies. All energies E w.r.t. θ then compose the
dispersion diagram. The dispersion relation for PA-One, the homogeneous waveguide,
can be obtained analytically as

Ejm = j2π2 +(θ+2πm)2.

This multi-valued function is plotted in Fig. 2.2. For PA-Two and PA-Three, no
analytical expressions of dispersion relation are available, and a spatial discretization
method has to be employed. We use the eighth-order FEM method with mesh sizes
∆x=∆y =0.125 for all the numerical tests reported in this paper.

The dispersion diagrams for PA-Two and PA-Three are shown in Figs. 2.3-2.4.
A significant phenomena could be observed that unlike the homogeneous waveguide,
there are some bands of energy values in the dispersion diagrams of PA-Two and
PA-Three that could not be reached for any parameter θ.

Physically, waves with energy (here k2) in these bands could not propagate in
the medium. Right in this context, they are usually referred to as stop bands in the
literature. In fact, it is exactly this remarkable property which makes the periodic
structures extremely useful, for example, they could be elaborately designed to act as
some kind of frequency selecting modules in the microwave and optical engineering.
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Fig. 2.2. Dispersion diagram of PA-One, an homogeneous waveguide.

This work is aimed at developing an efficient method for deriving an exact bound-
ary mapping of semi–infinite periodic arrays for any real wavenumber k.
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Fig. 2.3. Dispersion diagram of PA-Two. The first two stop bands are (0,23.61±0.01) and
(29.85±0.01,47.10±0.01).
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Fig. 2.4. Dispersion diagram of PA-Three.The first two stop bands are (11.20±0.01,19.29±0.01)
and (37.08±0.01,39.58±0.01).

3. The limiting absorption principle. The first problem we are facing is how
to guarantee the well-posedness of the Helmholtz equation (2.1), which naturally arises
due to the absence of a radiation-like condition at infinity. Although the constant
coefficient case with separable geometries is well solved, this problem is not trivial at
all and largely remains open for the variable coefficient Helmholtz equation.
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There are at least three methods of possibly deriving a unique solution of the
Helmholtz equation in unbounded domains: asymptotic radiation condition, limiting
absorption principle and limiting amplitude principle [49]. In this paper we employ
the limiting absorption principle (LABP). The LABP is said to hold at k >0 if and
only if for any f0(u)∈L2(Γ0) (take f0(u) as a unity), the solution uǫ ∈H1(Ω) of the
following damped Helmholtz equation

∆uǫ +(k2 + iǫ)n2uǫ =0 (3.1)

with the boundary condition

f0(u
ǫ)=f0(u),

converges to a unique solution u∈H1
loc(Ω) of the Helmholtz equation (2.1), and the

outgoing Sommerfeld datum g0(u
ǫ)=Aǫ

inff0(u
ǫ) also converges to the unique function

g0(u). This makes it possible to define a Sommerfeld-to-Sommerfeld (StS) mapping
Ainf as the limit of Aǫ

inf , which maps f0(u) to g0(u), namely,

g0(u)=Ainff0(u).

Let us start considering PA-One first. In this case the separation of variables
method is available. We set

uǫ =

+∞
∑

n=0

uǫ,ncos(nπy)

and

f0(u)=
+∞
∑

n=0

f0(u
n)cos(nπy), g0(u

ǫ)=
+∞
∑

n=0

g0(u
ǫ,n)cos(nπy).

Then (3.1) is transformed into a sequence of ODE problems:

uǫ,n
xx +(k2 + iǫ−n2π2)uǫ,n

xx =0, f0(u
ǫ,n)=f0(u

n), ∀n=0,1,... .

The bounded solutions of the above problems are

uǫ,n =
f0(u

n)

i
√

k2 + iǫ−n2π2 + ik
ei

√
k2+iǫ−n2π2x.

Hence, we have

g0(u
ǫ,n)=

i
√

k2 + iǫ−n2π2− ik

i
√

k2 + iǫ−n2π2 + ik
f0(u

n),

and

g0(u
n)

def
= lim

ǫ→0
g0(u

ǫ,n)=
i
√

k2−n2π2− ik

i
√

k2−n2π2 + ik
f0(u

n). (3.2)

Besides, it is straightforward to verify that

g0(u
ǫ,n)=g0(u

n)+















2
√

iǫf0(u
n)

k
+O(ǫ), k =nπ,

ikǫf0(u
n)

(
√

k2−n2π2 +k)2
√

k2−n2π2
+O(ǫ2), k 6=nπ.

(3.3)
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The expression (3.3) states that the convergence rate of g0(u
ǫ) to

g0(u)=

+∞
∑

n=0

g0(u
n)cos(nπy)

is of first order with respect to ǫ if k is unequal to any nπ with n≥0. If k is equal
to some n0π, which implies the resonance of the n0-th mode in the y-direction, the
convergence rate would degenerate to half order. But the LABP holds independent
of the wavenumber k.

Based on the above analysis, we conjecture that, under some mild restrictions on
the geometry and the refraction index function, the LABP holds for every k >0 for
more general semi-infinite periodic arrays. Some numerical evidences will be reported
in the end of this section.

The LABP itself suggests a method for deriving the exact StS mapping on the
left boundary Γ0: first compute the exact StS mapping of the problem (3.1) for a
given ǫ, denoted by Aǫ

inf , and then let ǫ tend to zero. In [10] the authors proposed a
fast evaluation method for the exact StS mapping of the damped Helmholtz equation
(3.1). The basic idea is as follows. For any N >0, the damped Helmholtz equation
(3.1) is well-posed on the domain ∪N−1

j=0 Cj , with the incoming Sommerfeld data f ǫ
0

and gǫ
N prescribed at the boundaries Γ0 and ΓN . Thus there are four linear scattering

operators Aǫ
N , Bǫ

N , Cǫ
N and Dǫ

N satisfying

gǫ
0 =Aǫ

Nf ǫ
0 +Bǫ

Ngǫ
N , f ǫ

N =Cǫ
Nf ǫ

0 +Dǫ
Ngǫ

N .

Since gǫ
N goes to zero exponentially fast as N tends to infinity, it is reasonable to

expect that Aǫ
N converges and the limit is just the exact StS mapping Aǫ

inf . To make
this paper self-contained, we explain in the appendix the fast doubling procedure [10]
for deriving these scattering operators. This scheme needs only O(log2N) operations.

In Fig. 3.1 we plot the relative errors of the scattering operators Aǫ
N compared

to the reference operator Aǫ
ref , which is obtained by using the doubling technique 20

times, i.e., N =220. Since FEM is used, the scattering operators are approximated
by matrices of rank 65×65. We could see that the doubling technique really leads to
an efficient algorithm. Also notice that when k2 lies in the stop bands, for example
k2 =23,31, AN itself converges as N goes to infinity. This implies that when k2 is
in the stop bands, we could derive the StS mapping directly without considering the
LABP.

Next we explain how to let ǫ tend to zero. In light of the expression (3.3), if
the resonance does not occur, the exact StS mapping Ainf is expected to bear an
asymptotic expansion like

Aǫ
inf =Ainf +ǫA(1)

inf +ǫ2A(2)
inf + ··· . (3.4)

Thus in most cases, the convergence rate of the LABP is of first order. This ob-
servation is supported by the numerical evidences shown in Fig. 3.2. Note that the
convergence rate could be improved by standard extrapolation techniques. In Fig. 3.3
we show the errors of the StS operators extrapolated once to the reference operator,
which is obtained by using extrapolations twice and setting a small damping parame-
ter ǫ0 =0.00125. We could see that the accuracy is greatly improved, and second order
rate can be clearly observed. We should also notice that if k is close to a resonance
wave number, for example k2 =23.61, 47.1, the asymptotic convergence rate could
only manifest for sufficiently small damping parameters.
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4. Asymptotic behavior of an LABP solution. The last section showed
that if k is not a resonance wave number, the extrapolation technique could yield very
accurate solution. Obviously this algorithm needs to evaluate the scattering operators
for a sequence of ǫ, and this turns out to be computationally quite expensive. Besides,
though the chance of k being a resonance wave number is very rare, if k is close to
a resonance wave number, the extrapolation method could not present very accurate
result. In this section we will develop a new method by directly using the scattering
operators for the undamped Helmholtz equation.

Recall from the last section that when k2 lies in the stop bands, the exact StS
mapping could be computed by the doubling technique without using the LABP. This
is due to the fact that the solution lies in L2(Ω), and thus it decays exponentially
fast at infinity. If k2 lies in the pass bands (complementary energy intervals of stop
bands), in general an LABP solution cannot be expected to decay. Our basic idea
is to separate those traveling (not-decaying) waves and evanescent (decaying) waves,
and handle them by different means.

First let us introduce some notations. Suppose u and v are two solutions of the
Helmholtz equation (2.1). Define the co-related energy flux of u and v as

E(u,v)=−2ik
[

(ux,v)Γj
−(u,vx)Γj

]

=(f(u),f(v))Γj
−(g(u),g(v))Γj

.

Besides, the energy flux of u is defined as E(u,u), which is also equal to

E(u,u)=4k Im

∫

Γj

uxūdy.

We should remark that the co-related energy flux does not rely on the choice of Γj .
Moreover, E(·,·) defines a sesquilinear form.

A nontrivial solution u of the Helmholtz equation (2.1) or (3.1) is regarded as
a Bloch wave associated with the Floquet multiplier α∈C if it satisfies the following
two conditions

u|Γi+1
=αu|Γi

, ux|Γi+1
=αux|Γi

, ∀i=0,1,... .

We denote by F the set of all Floquet factors. A Bloch wave is referred to as evanescent,
traveling, or anti-evanescent if the associated Floquet multiplier α satisfies |α|<1,
|α|=1, or |α|>1. If |α|=1, we refer to α as a unitary Floquet multiplier. The set of
unitary Floquet multipliers is denoted by UF. Note that the Floquet factor cannot be
zero due to the mentioned Holmgren uniqueness theorem. For any α∈F, all associated
Bloch waves together with zero function form a linear space. This space, denoted by
Eα, is called an (α-periodic) eigenfunction space. Here we list a couple of propositions
about the Floquet theory from [29].
Proposition 4.1. If α∈F, then 1/α∈F either.

Proposition 4.2. UF is a finite set. For any α∈UF, Nα =dimEα <+∞.

Proposition 4.3. Given two Floquet multipliers αj and αk, and two functions ϕj ∈
Eαj

and ϕk ∈Eαk
. If αjα

∗
k 6=1, then E(ϕi,ϕj)=0.

Proposition 4.4. If u is an LABP solution, then the energy flux of u is nonnegative.

Obviously, an LABP solution u cannot include the anti-evanescent Bloch waves,
thus asymptotically, u is a combination of traveling Bloch waves. It is known that
not every traveling Bloch wave is an LABP solution. We need to pick out those
compatible with the LABP. To get some insight, let us consider the homogeneous
waveguide problem.
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Suppose k =π. Then the traveling Bloch wave space is given by

Span{e−iπx,eiπx,cos(πy)}.

If the x-period L is set as a non-integer positive number, then we get three unitary
Floquet multipliers: e−iπL associated with Span{e−iπx}, eiπL with Span{eiπx} and,
1 with Span{cos(πy)}. Since

E(e−iπx,e−iπx)=4π Im

∫ 1

0

(−iπe−iπx)eiπxdy
∣

∣

∣

x=0
=−4π2,

and an LABP solution has a nonnegative energy flux, e−iπx is thus not admissible.
Comparatively, we have

E(eiπx,eiπx)=4π Im

∫ 1

0

(iπeiπx)e−iπxdy
∣

∣

∣

x=0
=4π2,

and

E(cos(πy),cos(πy))=4π Im

∫ 1

0

(0)eiπxdy
∣

∣

∣

x=0
=0.

The problem appears when L is taken as an integer. For example, let us take L=1.
In this case there are two unitary Floquet multipliers 1 and −1, namely,

α1 =−1←→Eα1
=Span{e−iπx, eiπx},

α2 = 1←→Eα2
=Span{cos(πy)}.

Eα2
represents a resonance space, and two-dimensional space Eα1

contains both the
left-going and right-going traveling waves. The problem is how to classify these two
kind of waves. One may say the energy principle could still work, since obviously the
Bloch wave eiπx is outgoing, and e−iπx is incoming. But the question is that Eα1

may
have different basis representation, for example,

Eα1
=Span{e−iπx +2eiπx, e−iπx +3eiπx}=Span{eiπx +2e−iπx, eiπx +3e−iπx}.

For the first representation, both basis functions are right-going, and for the second,
both are left-going. However, generally we could not distinguish an LABP outgoing
traveling wave only through its energy flux.

The above problem becomes even more severe if we take L=2. In this case there
exists only one unitary Floquet multiplier

α=1←→Eα =Span{e−iπx, eiπx,cos(πy)}.

It is not hard to find different basis representations for Eα, which have completely
different signs of energy flux. As a conclusion, if α is a unitary Floquet multiplier
and the associated eigenfunction space Eα is multi-dimensional, we have to resort to
other criterion to determine the LABP right-going Bloch waves.

Let us remark here that for a three-dimensional waveguide problem, the chance
for Eα being multi-dimensional is absolutely not rare, though it seems true for two-
dimensional waveguide problems.
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Suppose α∈UF, and {ϕj}Nα

j=1 constitute a set of basis functions of Eα, orthonor-

mal w.r.t. the n2-weighted inner product (·,·)n2 defined as

(ϕj ,ϕk)n2 =

∫

C0

n2ϕjϕ̄k dy.

We define the energy flux matrix M =(mjk) as

mjk =E(ϕj ,ϕk), ∀j,k =1,2,··· ,Nα.

It is easy to verify that M is a Hermitian matrix, which implies the existence of a
unitary matrix U , such that

U⊤MŪ =Λ=diag(λ1,λ2,... ,λNα
),

where λj are real eigenvalues of M ordered by

λ1≥λ2≥···≥λm1
>0=λm1+1 = ···=λm2

=0>λm2+1≥···≥λNα
.

We introduce a new set of basis function {ψj}Nα

j=1 as

(ψ1,... ,ψNα
)=(ϕ1,... ,ϕNα

)U,

which will be referred to as a canonical set of basis functions of Eα. Now we could
separate Eα into three parts, i.e.,

Eα =Rα⊕Sα⊕Lα,

with

Rα =Span{ψ1,··· ,ψm1
}, Sα =Span{ψm1+1,··· ,ψm2

},

Lα =Span{ψm2+1,··· ,ψNα
}.

Proposition 4.5. For any α∈Eα, {λj}Nα

j=1 are invariant quantities, and R, S and L

are invariant subspaces of Eα. Besides, for any ϕ1∈Rα, ϕ2∈Sα, ϕ3∈Lα, we have

E(ϕ1,ϕ1)>0, E(ϕ2,ϕ2)=0, E(ϕ3,ϕ3)<0.

For the homogeneous waveguide problem, it is straightforward to verify that Rα is
the admissible LABP Bloch wave space with positive energy flux. Sα is the resonance
wave space, which is also admissible to the LABP. Note that if Sα is excluded from the
asymptotic solution space, the Helmholtz equation would loose solvability for some
incoming Sommerfeld data f0.

Based on these facts, for a general semi-infinite periodic array, we make the fol-
lowing conjecture.
Conjecture 4.6. Suppose α1,... ,αM are all unitary Floquet multipliers, and

ϕ
αj

1 ,... ,ϕ
αj

Nαj
constitute a set of orthonormal basis functions of Rαj

⊕Sαj
. Then

asymptotically, any LABP solution u lies in the space

Span{ϕαj

k |j =1,... ,M,k =1,... ,Nαj
}. (4.1)

Although we have no proof of this conjecture yet, its validity is strongly supported
by the numerical tests given in the next section. Let us remark here that according to

Proposition 4.3, {ϕαj

k }M,Nαj

j=1,k=1 in fact constitute a set of basis functions of the LABP
right-going Bloch wave space.
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5. Evaluation of the exact StS mapping. Based on Conjecture 4.6, we
know when N is large, asymptotically,

fN (u)≈
M
∑

j=1

Nαj
∑

k=1

tjkf0(ϕ
αj

k ), gN (u)≈
M
∑

j=1

Nαj
∑

k=1

tjkg0(ϕ
αj

k ).

Or in an abbreviated vector form,

fN (u)≈FT, gN (u)≈GT, (5.1)

where

F =(F1,··· ,FM ), G=(G1,··· ,GM ), T =(T1,··· ,TM )⊤

with

Fj =(f0(ϕ
αj

1 ),··· ,f0(ϕ
αj

Nαj
)), Gj =(g0(ϕ

αj

1 ),··· ,g0(ϕ
αj

Nαj
)), Tj =(t

αj

1 ,··· ,tαj

Nαj
), (5.2)

Recall that

g0(u)=ANf0(u)+BNgN (u), fN (u)=CNf0(u)+DNgN (u).

Using (5.1) T could be derived by the least square method as

T ≈ (F −DNG)−1CNf0(u). (5.3)

Here, −1 denotes the pseudo-inverse operator. We then have

g0(u)=ANf0(u)+BNgN (u)≈ (AN +BNG(F −DNG)−1CN )f0(u),

which means that by putting

ÃN =AN +BNG(F −DNG)−1CN ,

the limit of ÃN would give the exact StS mapping Ainf on the left boundary Γ0.
The key step to implement the above algorithm is to derive a canonical set of

basis functions for all unitary Floquet multipliers. Or more explicitly, we need to
compute the functions Fj and Gj defined in (5.2). This objective can be achieved by
several steps:

1. Solve the generalized eigenvalue problem
(

−A1 I
−C1 0

)(

f0

g0

)

=α

(

0 B1

−I D1

)(

f0

g0

)

to obtain all (different) unitary Floquet multipliers {αj}M
j=1 and their associ-

ated generalized eigenfunctions (f
αj

0,k,g
αj

0,k), k =1,··· ,Nαj
.

2. If Eαj
is one-dimensional, i.e., Nαj

=1, compute the energy flux of the eigen-

function ϕj
1 associated with the Sommerfeld data (f

αj

0,1,g
αj

0,1) by

E(ϕj
1,ϕ

j
1)=(f

αj

0,1,f
αj

0,1)Γ0
−(g

αj

0,1,g
αj

0,1)Γ0
.

If and only if E(ϕj
1,ϕ

j
1)≥0, then ϕj

1 is an admissible LABP traveling Bloch
wave, i.e., Fj =(f

αj

0,1), Gj =(g
αj

0,1). Otherwise, Fj =Gj =∅.
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3. If Eαj
is multi-dimensional, i.e., Nαj

>1, derive a set of orthonormal eigen-

functions {ϕαj

k }Nαj

k=1 of the following problem

∆u+k2n2u=0,

u|Γ1
=αju|Γ0

, ux|Γ1
=αjux|Γ0

.

Compute the associated Sommerfeld data {f0(ϕ
αj

k )} and {g0(ϕ
αj

k )}. Compute
the energy matrix M =(mkl) with

mkl =(f0(ϕ
αj

k ),f0(ϕ
αj

l ))Γ0
−(g0(ϕ

αj

k ),g0(ϕ
αj

l ))Γ0
, ∀k,l=1,··· ,Nαj

.

Find a unitary matrix U =(ulk) to diagonalize M , such that

U⊤MŪ =Λ=diag(λ1,λ2,... ,λNαj
),

where λj are real eigenvalues of M ordered by

λ1≥λ2≥···≥λm1
>0=λm1+1 = ···=λm2

=0>λm2+1≥···≥λNαj
.

Set Fj =(F 1
j ,··· ,Fm2

j ) and Gj =(G1
j ,··· ,Gm2

j ) with

F k
j =

Nαj
∑

l=1

f0(ϕ
αj

l )ulk, Gk
j =

Nαj
∑

l=1

g0(ϕ
αj

l )ulk, ∀k =1,··· ,m2.

4. Finally, set F =(F1,··· ,FN ) and G=(G1,··· ,GN ).

In the following we will report our numerical tests. For simplicity, we refer to the
StS mapping derived with the LABP as LABP-StS, and the StS mapping based on the
asymptotic expansion of the traveling Bloch waves as ASYM-StS. First we consider
the PA-One. In this case the analytical StS mapping is available. For the n-th mode
in the y-direction, the exact StS mapping is given as in (3.2). The computed StS
mapping, no matter which method is employed, is diagonalizable. In Table 5.1 we
list the errors of ASYM-StS. We see generally the asymptotic method presents very
accurate results except on the resonance wave number. For example, if k =π, the first
y-mode is resonant.

n=0 n=1 n=2 n=3 n=4
k =π 1.50(-9) 7.58(-6) 2.13(-12) 5.44(-13) 2.28(-13)
k = 5π

4 4.60(-9) 1.78(-9) 3.52(-12) 8.74(-13) 3.24(-13)

k =
√

2π 7.02(-12) 1.07(-9) 1.31(-11) 2.80(-12) 1.00(-12)

k =
√

3π 5.91(-13) 9.44(-13) 3.23(-12) 5.40(-13) 2.10(-13)

Table 5.1. Errors of Direct computation.

In Table 5.2 we list the errors of the LABP-StS. They are derived with two times
of extrapolation. We see that except at the resonance wave numbers, this method
presents the results at least of the same quality of those derived by the asymptotic
method. But when resonance occurs, the extrapolation technique is only of little use.
In order to obtain high accuracy, one has to make the damping parameter very small,
but this probably implies a numerical stability problem.
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For the other two periodic structures PA-Two and PA-Three, no analytical expres-
sion is available on the exact StS mapping. We compare the numerical solutions by
two different methods. From Table 5.3-5.4, we could conclude in principle these two
methods bring the same results. When k is away from the resonance wave number,
these two methods present the results of same quality. But their difference becomes
big when k approaches the resonance wave number. Considering the results for the
homogeneous waveguide problem, we thus believe at the resonance wave numbers, the
asymptotic method presents better solution.

n=0 n=1 n=2 n=3 n=4
k =π 5.03(-9) 5.68(-3) 2.26(-12) 7.51(-13) 2.39(-13)
k = 5π

4 3.53(-12) 7.30(-12) 3.43(-12) 8.22(-13) 2.74(-13)

k =
√

2π 6.91(-12) 1.52(-8) 1.26(-11) 2.99(-12) 1.06(-12)

k =
√

3π 1.07(-12) 1.49(-12) 3.40(-12) 5.82(-13) 2.37(-13)

Table 5.2. ǫ=0.00125. Extrapolation.

k2 =25 k2 =50 k2 =23.61 k2 =47.1
Relative error 1.31(-12) 3.26(-12) 3.89(-8) 6.76(-5)

Table 5.3. ǫ=0.00125. Comparison. PA-Two

k2 =5 k2 =25 k2 =11.20 k2 =19.29
Relative error 9.58(-13) 9.26(-13) 7.16(-9) 6.23(-10)

Table 5.4. ǫ=0.00125. Comparison. PA-Three.

Conclusion. We have considered the Helmholtz equation in the semi-infinite pe-
riodic array in this paper. Since no radiation-like boundary condition is specified at
infinity, the Helmholtz equation is in general not well-posed. To solve this problem
we employed the limiting absorption principle. We have proposed a new algorithm
which combines the doubling procedure and the extrapolation technique to obtain
high-accuracy approximation to the exact StS mappings. Considering the computa-
tional complexity, we present another method which uses the asymptotic behavior of
a limiting absorption principle solution. Though we could not prove, the validity of
this method is strongly supported by our numerical evidences.

We believe these two methods could be extended to more complicated wave-like
equations, such as Maxwell’s equations and elastic wave equations. Besides, we have
left the relevant theoretical problems open in this paper. Hopefully we could make
some progress on these issues in the near future.
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Appendix—The doubling procedure. On the vertical boundary segments Γi

we define two Robin data as

fi =(∂x + ik)u|Γi
, gi =(∂x− ik)u|Γi

. (5.4)

For any given boundary data fi and gi+k, i≥0, k≥1, the Helmholtz equation (2.1)
is uniquely solvable on ∪i+k−1

l=i Cl, cf. [10, Lemma A]. Due to the assumption on the
boundary conditions, there exists four linear operators Ak, Bk, Ck and Dk satisfying

gi =Akfi +Bkgi+k, fi+k =Ckfi +Dkgi+k. (5.5)

From the numerical point of view, these operators can be derived by an appropriate
spatial discretization in the domain ∪j−1

k=0Ck. But if k is large, a vast number of un-
knowns would get involved, which leads to a high computational effort. As revealed in
[10], these operators can be obtained very efficiently with a smart doubling procedure.

The essential idea of this doubling procedure is based on the following recursive
relations. Suppose for k∈{m,n}, the operators Ak, Bk, Ck and Dk have already been
obtained. By (5.5) we have

gi =Am(Cnfi−n +Dngi)+Bmgi+m,

fi =Cnfi−n +Dn(Amfi +Bmgi+m).

It is easy to prove that I−AmDn and I−DnAm (I denotes the identity operator)
are invertible, cf. [10, Lemma B]. Thus then,

gi =A∗
n,mfi−n +B∗

n,mgi+m, fi =C∗
n,mfi−n +D∗

n,mgi+m, (5.6)

where

A∗
n,m =(I−AmDn)−1AmCn, B∗

n,m =(I−AmDn)−1Bm,

C∗
n,m =(I−DnAm)−1Cn, D∗

n,m =(I−DnAm)−1DnBm.

Substituting expressions (5.6) into (5.5) gives

gi−n =Anfi−n +Bn(A∗
n,mfi−n +B∗

n,mgi+m),

fi+m =Cm(C∗
n,mfi−n +D∗

n,mgi+m)+Dmgi+m,

which imply

Am+n =An +BnA∗
n,m, Bm+n =BnB∗

n,m,

Cm+n =CmC∗
n,m, Dm+n =Dm +CmD∗

n,m.
(5.7)

Hence, for any fixed cell number N , the operators AN , BN , CN , and DN can be
obtained by the following steps:

1. Derive A1, B1, C1, and D1 by the cell analysis. If N =1, it is done;
2. Write N into binary form (jL ···j0)2, with L=[log2N ] and jL =1;
3. Use the relations (5.7) L times by setting m=n=2k−1 to get A2k , B2k , C2k ,

and D2k for k =1,... ,L;
4. For l=L−1,... ,0, if jl 6=0, then use (5.7) by setting m=(jL ···jl+10···0)2 and

n=2l to obtain A(jL···jl0···0)2 , B(jL···jl0···0)2 , C(jL···jl0···0)2 and D(jL···jl0···0)2 .
The above procedure uses (5.7) at most 2[log2N ] times, and only J =[log2N ] times
if N =2J .
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