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Abstract

We consider the Navier-Stokes-Vlasov-Poisson system of partial differen-
tial equations, describing the motion of a viscous incompressible fluid with
small solid charged particles therein. We prove the existence of a weak global
solution of the initial boundary value problem for this system.
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1 Introduction

The increasing interest in studying the motion of small solid particles in liquids and
gases is stimulated by numerous applications of these processes in a wide range of
engineering problems as well as by ecological needs. For example, we refer here to
the problem of transport of fine–dispersed suspensions by aerial or liquid flows, the
work of hydraulic or pneumatic transport devices, dust–collecting units, etc. The
mathematical modeling of the motion of such matter (suspensions) is considered in
a great number of papers (see, e.g., [18], [8] and the bibliography there). One of the
models often used in the simulation of such processes is the two phase flow model.
The main feature of this model is that the system of small solid particles is considered
as a continuous matter. Then, the motion of a liquid with particles suspended therein
is described as a motion of two inter-penetrating continuous phases — the carrying
liquid and the “liquid of particles”. However, this model is applicable only in the
case when the size and the specific density of the particles are identical or slightly
dispersed.

Another model – the Navier–Stokes–Liouville system – describe the motion of the
mixture of a liquid and small solid particles, taking into account the high dispersion
of their size. In the framework of this model the solid phase of the mixture is assumed
to be a system of spherical particles of high specific density described by the distri-
bution function of the particles depending on their coordinates, velocities and radii.
This model is based on the homogenized Navier-Stokes system of equations describ-
ing the perturbation of the liquid by the motion of solid particles (see [13], [14]). This
system involve the unknown distribution function of the particles f(x, v, r, t). The
distribution function satisfies the Liouville equation with account of Stokes forces.
Combining this equation and the perturbated Navier–Stokes system we obtain a
closed system of equations — the Navier–Stokes–Liouville system. The existence of
a global weak solution of the initial boundary value problem for this system as well
as the existence and uniqueness of a smooth solution in a small time interval was
proved in [2] and [3].

In the present paper we consider a similar model which describes the motion of small
solid charged particles with high dispersion of radii in a viscous incompressible and
non-conducting fluid. We assume that the charges of all particles are of the same
sign and proportional to their electric capacities. This means that the charge of
a particle of radius r′ is equal to q r′. In this case our model is described by the
following system of equations:

∂u

∂t
+ (u∇)u− ν∆u+ α

b∫
a

∫
R3

r(u(x, t)− v)f(x, v, r, t)dvdr −∇p = g, (1.1)

divu = 0, (1.2)

−∆ϕ = q

b∫
a

∫
R3

rf(x, v, r, t)dvdr, (1.3)
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∂f

∂t
+ (v∇)f + divv[G(u, v,∇ϕ, r)f ] = 0. (1.4)

G = βr−2[u(x, t)− v]− γr−2∇ϕ+ g. (1.5)

Here u = u(x, t) and p = p(x, t) are the velocity and the pressure of the liquid,
respectively; ϕ = ϕ(x, t) is the potential of the electric field, generated by the
charged particles; f(x, v, r, t) is a reduced distribution function associated to the real
distribution function of the particles fε(x, v, r, t) with respect to the space variable
x = (x1, x2, x3), the velocities v = (v1, v2, v3) and radii r′ = εr (0 < a ≤ r ≤ b <∞)
by the formula:

fε(x, v, r
′, t) =

1

ε
f(x, v,

r′

ε
, t).

Here ε is the mean radius of particles (small parameter); α, β and γ are constants
defined by:

α = 6πν; β =
9ρfν

2ρpε2
; γ =

3q

4πρpε2
;

ν is the kinematic viscosity of the liquid; ρf and ρp are the specific densities of the
liquid and the particles, respectively; g = g(x) is the gravity.

We consider system (1.1)–(1.5) in a bounded convex domain Ω ⊂ R3 with a smooth
boundary ∂Ω. We assume the following boundary conditions on ∂Ω:

u(x, t) = 0 on ST ≡ ∂Ω× [0, T ], (1.6)

ϕ(x, t) = 0 on ST , (1.7)

f(x, v, r, t)(v, n) ≥ 0 on ∂Ω× R3 × [a, b]× [0, T ], (1.8)

where n = n(x) is the outer normal vector to ∂Ω at the point x; ( · , · ) in (1.8)
denotes the scalar product in R3.

Condition (1.6) corresponds to the adhesion of the liquid to the fixed boundary ∂Ω.
Condition (1.7) means that the boundary is a perfectly conducting one. Finally,
condition (1.8) means that a particle, reaching the boundary ∂Ω sticks there and
comes to rest.

We complete system (1.1) – (1.5) by the following initial conditions:

u(x, 0) = u0(x) in Ω; (1.9)

f(x, v, r, 0) = f0(x, v, r) in Ω× R3 × [a, b]. (1.10)

Henceforth, we call system (1.1)–(1.5) the Navier–Stokes–Vlasov–Poisson system. It
is a combination of the Navier–Stokes and the Vlasov–Poisson systems. Existence
and uniqueness results for both of these systems were studied separately by many
authors and by various methods (see, e.g., [11] – [1]).

Our goal is to prove the existence of a global weak solution of problem (1.1) – (1.10).
The approach which is used in the present paper is a generalization of the methods
developed in [4], [5].
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The outline of the paper is the following. In Section 2 we introduce the notation
of the weak solution of problem (1.1)–(1.10) and formulate the main result. In
Section 3 we introduce a regularization of problem (1.1)–(1.10) and define a weak
solution (u, f, ϕ) for the regularized problem. Then, we construct finite–dimensional
approximations (un, fn, ϕn) of the solution. To this end we use the modification of
Galerkin’s method developed in [4]. Following [5], we use an explicit construction for
the solution of the Liouville equation (1.4). The compactness of the approximations
(un, fn, ϕn) is proved in Section 4. Finally, in Section 5 we pass to the limit as
n → ∞ in the integral identities which define the weak solution of the regularized
problem and obtain the corresponding identities for the weak solution of the original
problem.

2 Definition of the weak solution and formulation

of the main result

Let Ω be a bounded convex domain in R3 with a sufficient smooth boundary. We
introduce the following notation:

ΩT = Ω× [0, T ],

Q = Ω× R3 × [a, b], b > a > 0,

QT = Q× [0, T ],

R6 = R3 × R3,

R6
T = R6 × [0, T ];

L2(Ω) and L2(R6) are Hilbert spaces with the scalar products

(f, g)2,Ω =

∫
Ω

3∑
i=1

fi(x)gi(x)dx,

(F,G)2,R6 =

∫
R6

F (x, v, r)G(x, v, r)dxdv;

J(Ω) and J1(Ω) are the closures of divergent-free C∞(Ω̄) functions with compact

support in L2(Ω) and
◦
W 1

2 (Ω), respectively;

P0 is an extension operator from L2(Ω) to L2(R3) such that for any u ∈ L2(Ω),
P0u = u in Ω and P0u = 0 in R3 \ Ω;

S is a restriction operator from L2(R3) to L2(Ω) such that for any u ∈ L2(R3)
Su = χΩu, where χΩ is the characteristic function of Ω.

We assume that the initial functions u0(x) and f0(x, v, r) in (1.9), (1.10) satisfy the
following conditions

divu0 = 0, x ∈ Ω, u0(x) = 0, x ∈ ∂Ω,
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0 ≤ f0(x, v, r) ≤ A1 <∞, (x, v, r) ∈ Q, (2.1)∫
Q

f0(x, v, r)dxdvdr = A2 <∞,

∫
Q

v2f0(x, v, r)dxdvdr = A3 <∞.

We consider the vector function (u(x, t), ϕ(x, t), f(x, v, r, t)), where

u ∈ L∞(0, T ; J(Ω)) ∩ L2(0, T ; J1(Ω)), (2.2a)

u(x, t) is a continuous function in t in the weak topology of L2(Ω)

ϕ ∈ L2(0, T ;
◦
W 1

2 (Ω)) (2.2b)

f(x, v, r, t) = Sf̃(x, v, r, t), (2.2c)

where f̃ ∈ L∞(R6
T × [a, b]), f̃ ∈ L1(R6 × [a, b]) uniformly in t ∈ [0, T ] and f̃ is

continuous in t in the weak topology of L1(R6 × [a, b]) at t = 0.

Definition 1 The vector (u(x, t), ϕ(x, t), f(x, v, r, t)) is a weak solution of problem
(1.1) – (1.10) if the following integral identities hold

(u0, ζ(0))2,Ω +

T∫
0

{
(u, ζt + (u∇x)ζ)2,Ω − ν(u, ζ)J1(Ω) −

−α

 b∫
a

∫
r(u(x, t)− v)Sf̃dvdr, ζ


2,Ω

+ (g, ζ)2,Ω

}
dt = 0 (2.3)

T∫
0

(∇ϕ,∇Φ)2,Ω − q

 b∫
a

∫
rSf̃dvdr,Φ


2,Ω

 dt = 0 (2.4)

T∫
0

b∫
a

(f̃ ,Ψt + (v∇x)Ψ + (P0G∇v)Ψ)2,R6drdt+

b∫
a

(P0f0,Ψ(0))2,R6dr = 0 (2.5)

for any vector functions ζ and functions Φ and Ψ which satisfy the following condi-
tions

ζ ∈ L∞(0, T ; J(Ω)) ∩ L4(0, T ; J1(Ω)), ζt ∈ L2(ΩT ), ζ(x, t) = 0; (2.6a)

Φ ∈ L2(0, T ;W 1
2 (Ω)). (2.6b)

Ψ(x, v, r, t) is a function with compact support in R6
T × [a, b] on x and v,

∇xΨ ∈ L1(R6
T × [a, b]), ∇vΨ ∈ L∞(R6

T × [a, b]), (2.6c)

ΨT ∈ L1(R6
T × [a, b]), Ψ(x, v, r, T ) = 0.
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Remark 1 We introduced the operators P0 and S for the following reason: At first
we construct the solution of (1.4) on the whole domain R6

T × [a, b] and then restrict
it to the set QT . Moreover, the convexity of the domain Ω implies condition (1.8).

Theorem 1 Let g ∈ L∞(0, T ;C1(Ω)), u0 ∈ J(Ω) and f0(x, v, r) satisfies (2.1).

Then, there exists a weak solution of problem (1.1) – (1.10), such that

max
0≤t≤T

‖u‖2,Ω + max
0≤t≤T

∫
Q

v2fdxdvdr +

T∫
0

‖u(t)‖2
J1(Ω)dt+ max

0≤t≤T
‖∇ϕ(t)‖2

2,Ω <

< C

‖u0‖2,Ω +

∫
Q

(1 + v2)f0(x, v, r)dxdvdr + ‖g‖2
L∞(0,T ;C1(Ω))

 .
This Theorem is proved in the sections 3–5.

3 Approximation of the solution

3.1 Regularization of the problem and definition of the so-
lution

We consider the problem

∂u

∂t
+ (u∇x)u− ν∆u+ α

b∫
a

∫
rθR((u− v)2(u(x, t)− v)fdvdr −∇p = g, (3.1)

divu = 0, (3.2)

ε∆2ϕ−∆ϕ = q

b∫
a

∫
rf(x, v, r, t)dvdr, (3.3)

∂f

∂t
+ (v∇x)f + divv[GR,ε(u, v,∇ϕ, g)f ] = 0, (3.4)

GR,ε(u, v,∇ϕ, g) =
β

r2
θR((u− v)2)[u− v]− γ

r2
∇ϕ+ χε(x) · g. (3.5)

We complete this problem by the conditions (1.6) – (1.8) along with the following
one

∂ϕ

∂n
= 0, (x, t) ∈ ST . (3.6)

Here ε > 0 is a sufficiently small parameter; θR ∈ C∞(R), such that 0 ≤ θR(z) ≤ 1
if |z| ≤ R, θR(z) = 0 if |z| > 2R and θ′R ≤ 0 if z ≥ 0.
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We denote by Ωε a subdomain of Ω such that dist(∂Ωε, ∂Ω) = ε, and by χε ∈ C2
0(Ω)

a function such that χε(x) = 1 if x ∈ Ωε and χε = 0 if x ∈ ∂Ω and set gε(x, t) =
g(x, t)χε(x).

We consider the system (u(x, t), ϕ(x, t), f(x, v, r, t)) that satisfies conditions (2.2a),
(2.2c), (1.7), (3.6) with

ϕ ∈ L2(0, T ;
◦
W 2

2 (Ω)). (3.7)

We call the system (u(x, t), ϕ(x, t), f(x, v, r, t)) a weak solution of problem (3.1) –
(3.5), (1.6) – (1.8) if the following integral identities hold

T∫
0

{
(u, ζt + (u∇x)ζ)2,Ω − ν(u, ζ)J1(Ω) + (g, ζ)2,Ω −

− α

 b∫
a

∫
rθR((u− v)2)(u− v)Sf̃dvdr, ζ


2,Ω

}
dt+ (u0, ζ(0))2,Ω = 0, (3.8)

T∫
0

ε(∆ϕ,∆Φ)2,Ω + (∇ϕ,∇Φ)2,Ω −

q b∫
a

∫
rSf̃dvdr,Φ


2,Ω

 dt = 0, (3.9)

T∫
0

b∫
a

(f̃ ,Ψt + (v∇x)Ψ + P0GR,ε∇v)Ψ)2,R6drdt+

b∫
a

(P0f0,Ψ(0))2,R6dr = 0, (3.10)

for any vector function ζ, any function Ψ satisfying the conditions (2.6a), (2.6c) and

function Φ ∈ L2(0, T ;
◦
W 2

2 (Ω)).

3.2 Construction of approximations

To construct the approximations of the regularized problem we make use of the
following

Lemma 1 Suppose that the function f0(x, v, r) satisfies condition (2.1). Then, there
exists a sequence of non-negative functions fn

0 (x, v, r) defined in Q such that for any
fixed n ∈ N and r ∈ [a, b], fn

0 (x, v, r) is infinitely-differentiable in x, and in v,
fn

0 (x, v, r) has compact support in Ω×R3× [a, b] , fn
0 (x, v, r) is bounded sup

Q
fn

0 ≤ A1

and fn
0 (x, v, r) satisfies the inequalities∫

Q

fn
0 (x, v, r)dxdvdr ≤ A2,

∫
Q

v2fn
0 (x, v, r)dxdvdr ≤ A3 + 3A2.

Moreover, fn
0 → f0 in L2(Q) as n→∞.
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Proof. To construct the sequence {fn
0 } we smooth the function f0. Let ω(|ξ|),

ξ ∈ R3 be a non-negative function such that: ω ∈ C∞(R3); ω(|ξ|) = 0 if |ξ| ≥ 1 and∫
|ξ|≤1

ω(|ξ|)dξ = 1.

We define the sequence

fn
0 (x, v, r) = n6

∫
Ωn

∫
|v′|<n

ω(n|x− x′|ω(n|v − v′|)f0(x
′, v′, r)dx′dv′,

where Ωn ⊂ Ω and dist(∂Ωn, ∂Ω) = 1/n.

It is easy to see that the sequence fn
0 (x, v, r) satisfies all assertions of the lemma.

�

Now, we construct an approximation by the method, developed in [4], which is a
modification of Galerkin’s method. We are looking for the approximations of (3.1),
(3.2) in the form

un(x, t) =
n∑

l=1

Cnl(t)Ψ
l(x), (3.11)

where Cnl ∈ C1(0, T ) are unknown coefficients and Ψl(x) (l = 1, 2, . . . ) is the or-
thonormal basis in L2(Ω) consisting of the eigenfunctions of the problem

∆Ψl(x)−∇gl = µlΨ
l(x), divΨl(x) = 0, x ∈ Ω, Ψl(x) = 0, x ∈ ∂Ω.

The corresponding approximations ϕn(x, t), f̃n(x, v, r, t) for solutions of the equa-
tions (3.3) and (3.4) turn out as solutions of the following problem

ε∆2ϕn −∆ϕn = q

b∫
a

∫
rSf̃n(x, v, r, t)dvdr, (3.12)

ϕn(x, t) =
∂ϕn

∂n
= 0, (x, t) ∈ ST , (3.13)

∂f̃n

∂t
+ (v∇x)f̃

n + divv

{[
β

r2
θR((P0u

n − v)2)(P0u
n − v) −

− γ

r2
P0∇ϕn + P0gε

]
f̃n
}

= 0, (3.14)

f̃n|t=0 = P0f
n
0 , (3.15)

where the initial functions fn
0 are given in Lemma 1.
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We define functions Xn(x, v, r, t, τ) and V n(x, v, r, t, τ) as solutions of the following
system of equations

dXn

dτ
= V n,

dV n

dτ
=

β

r2
θR((P0u

n(Xn, τ)− V n)2)(P0u
n(Xn, τ)− V n)−

− γ

r2
P0∇ϕn(Xn, τ) + P0gε(X

n, τ),

Xn|τ=t = x, V n|τ=t = v, 0 ≤ τ ≤ t, t ∈ [0, T ].


(3.16)

The properties of the function Ψi (see [11]) imply

sup
ΩT

|∇un(x, t)| <∞, un|ST
= 0.

If for any t ∈ [0, T ] the function ϕn(x, t) belongs to C2(Ω) and the condition (3.13)
is valid, then the right-hand side of system (3.16) satisfies the Lipschitz condition
in Xn and V n. So, we obtain the local solvability of (3.16). For any τ ∈ [0, t] the
solutions Xn and V n are bounded (see Lemma 2). Thus, we are able to extend them
to τ = 0.

It is easy to verify that the solution of problem (3.14), (3.15) is given by the formula:

f̃n(x, v, r, t) = exp

{
β

r2

t∫
0

[
3θR((P0u

n(Xn, τ)− V n)2) +

+ 2θ′R((P0u
n(Xn, τ)− V n)2)(P0u

n(Xn, τ)− V n)2
]
dτ

}
×

× P0f
n
0 (Xn(x, v, r, t, 0), V n(x, v, r, t, 0), r). (3.17)

Lemma 2 If P0f0(x, v, r) has compact support with respect to x and v in R6, then
the solution of problem (3.14), (3.15) also has compact support for any t.

Proof. Suppose that suppP0f
n
0 ⊂ Ω × KR0(0) × [a, b], where KR0(0) = {v ∈ R3 :

|v| ≤ R0}. We show that for any x ∈ R3, r ∈ [a, b] t ∈ [0, T ] and any τ ∈ [0, T ], the
inequality

|v| > R0 +
β

a2
T
√

2R +
γ

a2
‖ϕn‖L2(0,T ;C2(Ω))

√
T + ‖g‖L∞(0,T ;C1(Ω))T = Rf̃n (3.18)
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implies inequality |V n| > R0. To this end, we consider the following system of
integral equations, equivalent to (3.16)

Xn(x, v, r, t, τ)− x =

∫ τ

t

V n(x, v, r, t, s)ds, (3.19)

V n(x, v, r, t, τ)− v =
β

r2

τ∫
t

[
θR((P0u

n(Xn, s)− v)2)(P0u
n(Xn, s)− V n)

]
ds−

− γ

r2

τ∫
t

P0∇ϕn(Xn, s)ds+

τ∫
t

P0gε(X
n, s)ds. (3.20)

From (3.20) and (3.18) we obtain

|V n(x, v, r, t, τ)| ≥ |v| − β

r2

∣∣∣∣∣∣
τ∫

t

θR((P0u
n(Xn, s)− v)2)(P0u

n(Xn, s)− V n)ds

∣∣∣∣∣∣−

− γ

r2

∣∣∣∣∣∣
τ∫

t

P0∇ϕn(Xn, s)ds

∣∣∣∣∣∣−
∣∣∣∣∣∣

τ∫
t

P0gε(X
n, s)ds

∣∣∣∣∣∣ > R0.

On the other hand, from (3.20) follows

sup
τ
|V n| ≤ |v|+ β

a2
T
√

2R +
γ

a2
‖ϕn‖L2(0,T ;C2(Ω))

√
T + ‖g‖L∞(0,T ;C1(Ω))T.

From this estimate and (3.19) we conclude

|Xn − x| ≤ T

(
|v|+ β

a2
T
√

2R +
γ

a2
‖ϕn‖L2(0,T ;C2(Ω))

√
T + ‖g‖L∞(0,T ;C1(Ω))T

)
.

Hence, (3.17) imply suppf̃n ⊂ Ω×KRf̃n (0) for any t ∈ [0, T ], r ∈ [a, b]. �

Now, we show that the convexity of Ω implies the following boundary condition on
the function fn(x, v, r, t) = Sf̃n(x, v, r, t):

fn(x, v, r, t)(v, n(x)) ≥ 0, x ∈ ∂Ω. (3.21)

Since the function fn(x, v, r, t) is non-negative, condition (3.21) is equivalent to the
following statement: If there exists a point x0 ∈ ∂Ω such that (v, n(x0)) < 0, then
fn(x0, v, r, t) = 0. Thus, the convexity of Ω implies that for τ < t the particle is out
of Ω and its motion is described by the equations (uniform linear motion):

dXn

dτ
= V n,

dV n

dτ
= − β

r2
θR((V n)2)V n,

Xn|τ=t = x, V n|τ=t = v, 0 ≤ τ ≤ t.
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Thus, the trajectory of the particle is a straight line if τ ∈ [0, t]. Therefore,
P0f0(X

n(x0, v, t, 0), V n(x0, v, t, 0), r) = 0 and, due to (3.17), the desired boundary
condition (3.21) holds.

To find the coefficients Cnl(t) in (3.11) we assume that identity (3.8) with respect to
un and f̃n holds for all vector functions ζ(x, t) = H(t)Ψj(x), j = 1, 2, . . . , n. Here
H ∈ C1(0, T ), H(T ) = 0. This assumption implies the following relations(

∂un

∂t
+ (un∇x)u

n + α

b∫
a

∫
rθR((un − v)2)(un − v)Sf̃ndvdr,Ψk

)
2,Ω

+

+ ν(un, ψk)J1(Ω) = (g,Ψk)2,Ω, k = 1, 2, . . . , n. (3.22)

It is possible to represent these relations as a system of differential functional equa-
tions

dCnk

dt
+

n∑
l,m=1

βk
lmCnl(t)Cnm(t) +

n∑
l=1

εk
l Cnl(t) +

+ α

 b∫
a

∫
rθR

( n∑
l=1

Cnl(t)Ψ
l − v

)2
( n∑

l=1

Cnl(t)Ψ
l − v

)
Sf̃ndvdr,Ψk


2,Ω

=

= gk, k = 1, 2, . . . , n, (3.23)

where

βk
lm = ((Ψl∇)Ψm,Ψk)2,Ω, εk

l = ν(Ψl,Ψk)J1(Ω), gk = (g,Ψk)2,Ω.

Expanding the initial function u0(x) into a series with respect to the basis Ψk(x)

u0(x) =
∞∑

k=1

CkΨ
k(x)

we obtain the initial conditions

Cnk(0) = Ck, k = 1, 2, . . . , n. (3.24)

3.3 A priori estimates of the approximations

Lemma 3 The following estimates hold uniformly in n

sup
R6

T×[a,b]

f̃n ≤ A, (3.25a)

b∫
a

∫
R6

f̃n(x, v, r, t)dxdvdr ≤
b∫

a

∫
R6

f0(x, v, r)dxdvdr, (3.25b)

11



max
0≤t≤T

‖un(t)‖2
2,Ω + max

0≤t≤T

b∫
a

∫
v2f̃ndxdvdr +

T∫
0

‖un(t)‖2
J1(Ω)dt+

+

T∫
0

b∫
a

∫
θR((P0u

n − v)2)(P0u
n − v)2f̃ndxdvdrdt+

+ ε max
0≤t≤T

‖∆ϕn(t)‖2
2,Ω + max

0≤t≤T
‖∇ϕn(t)‖2

2,Ω ≤ A. (3.25c)

The constant A depends only on u0, f0, g, α, β, ν, and T .

Proof. Using the boundedness of the functions fn
0 (x, v, r) and the definition of

θR(z), one obtains inequality (3.25a) from (3.17).

To prove (3.25b), we integrate equation (3.14) over the domain R6× [a, b]. Since f̃n

has compact support on (x, v) ∈ R6 we get

d

dt

b∫
a

∫
R6

f̃ndxdvdr = 0.

Hence, inequality (3.25b) is proved.

Multiplying the k-th equation of system (3.22) by Cnk(t) and adding over k from 1
to n we get

1

2

d

dt
‖un(t)‖2

2,Ω + ν‖un‖2
J1(Ω)+

+α

 b∫
a

∫
rθR((un − v)2)(un − v)Sf̃ndvdr, un


2,Ω

= (g, un)2,Ω.

Extending the vector functions un and g by zero to full R3, we have

1

2

d

dt
|P0u

n‖2
2,R3 + ν‖P0u

n‖2
J1(R3) +

+ α

 b∫
a

∫
rθR((P0u

n − v)2)(P0u
n − v)f̃ndvdr, P0u

n


2,R3

=

= (P0g, P0u
n)2,R3 . (3.26)

Multiplying (3.14) by v2r3 and integrating over R6 × [a, b] we get

d

dt

{ b∫
a

∫
r3v2f̃ndxdvdr − 2

b∫
a

∫ [
βrθR((P0u

n − v)2))(P0u
n − v, v)−

−γr(∇P0ϕ
n, v) + r3(v, P0gε)

]
f̃ndxdvdr

}
= 0.

12



Taking the sum of the previous equation multiplied by α
2β

and (3.26), we get

1

2

d

dt
‖P0u

n‖2
2,R3 + ν‖P0u

n‖2
J1(R3) + α

b∫
a

∫
rθR((P0u

n − v)2)(P0u
n − v)2f̃ndxdvdr +

+
α

2β

d

dt

b∫
a

∫
r3v2f̃ndxdvdr +

αγ

β

b∫
a

∫
r(∇P0ϕ

n, v)f̃ndxdvdr −

− α

β

b∫
a

∫
r3f̃n(v, P0gε)dxdvdr = (P0g, P0u

n)2,R3 . (3.27)

Differentiating (3.12) by t, multiplying it by ϕn(x, t) and integrating the result over
Ω, we obtain

ε

∫
Ω

∆2ϕn
t ϕ

ndx−
∫
Ω

∆ϕn
t ϕ

ndx = q

b∫
a

∫
Q

rϕn(x, t)S
∂f̃n(x, v, r, t)

∂t
dxdvdr.

Taking into account the boundary conditions (3.13), we get:

ε

2

d

dt

∫
Ω

(∆ϕn)2dx+
1

2

d

dt

∫
Ω

|∇ϕn|2dx = q

b∫
a

∫
Q

rϕn(x, t)S
∂f̃n

∂t
dxdvdr.

We extend the function ϕn(x, t) by zero outside of Ω. Then,

ε

2

d

dt

∫
R3

(∆P0ϕ
n)2dx+

1

2

d

dt

∫
R3

|∇P0ϕ
n|2dx = q

b∫
a

∫
Q

rP0ϕ
n(x, t)

∂f̃n

∂t
dxdvdr.

Due to (3.14), the right-hand side of this equation can be rewritten as follows:

ε
d

dt

∫
R3

(∆P0ϕ
n)2dx+

d

dt

∫
R3

|∇P0ϕ
n|2dx = q

b∫
a

∫
r(∇P0ϕ

n, v)f̃ndxdvdr.

We multiply this equation by αγ
βq

and plug it into (3.27), getting

1

2

d

dt
‖P0u

n‖2
2,R3 + ν‖P0u

n‖2
J1(R3) + α

b∫
a

∫
rθR((P0u

n − v)2)(P0u
n − v)2f̃ndxdvdr+

+
α

2β

d

dt

b∫
a

∫
r3v2f̃ndxdvdr +

εαγ

2βq

d

dt

∫
R3

(∆P0ϕ
n)2dx+

13



+
αγ

2βq

d

dt

∫
R3

|∇P0ϕ
n|2dx = (P0g, P0u

n)2,R3 +
α

β

b∫
a

∫
r3(v, P0gε)f̃

ndxdvdr.

Using firstly Cauchy’s inequality and afterwards Young’s inequality with p = q = 2
and δ > 0, we estimate the right-hand side:

1

2

d

dt
‖P0u

n‖2
2,R3 + ν‖P0u

n‖2
J1(R3) +

+ α

b∫
a

∫
rθR((P0u

n − v)2)(P0u
n − v)2f̃ndxdvdr +

+
α

2β

d

dt

b∫
a

∫
r3v2f̃ndxdvdr +

εαγ

2βq

d

dt

∫
R3

(∆P0ϕ
n)2dx+

+
αγ

2βq

d

dt

∫
R3

|∇P0ϕ
n|2dx ≤

≤ δ

2
‖P0u

n‖2
2,R3 +

1

2δ
‖g‖2

2,Ω +
δα

2β

b∫
a

∫
r3v2f̃ndxdvdr +

+
α

2δβ

b∫
a

∫
r3f̃n(P0gε)

2dxdvdr.
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Integrating this equation with respect to the time variables, we get

1

2
‖P0u

n(t)‖2
2,R3 + ν

t∫
0

‖P0u
n(τ)‖2

J1(R3)dτ +

+ α

t∫
0

b∫
a

∫
rθR((P0u

n − v)2)(P0u
n − v)2f̃ndxdvdrdτ +

+
α

2β

b∫
a

∫
r3v2f̃n(x, v, r, t)dxdvdr +

εαγ

2βq

∫
R3

(∆P0ϕ
n(x, t))2dx+

+
αγ

2βq

∫
R3

|∇P0ϕ
n(x, t)|2dx ≤

≤ 1

2
‖u0‖2

2,Ω +
δ

2

t∫
0

‖P0u
n(x, τ)‖2

2,R3dτ +
1

2δ

t∫
0

‖g‖2
2,Ωdτ +

+
δα

2β

t∫
0

b∫
a

∫
R6

r3v2f̃n(x, v, r, τ)dxdvdrdτ +

+
α

2δβ

t∫
0

b∫
a

∫
R6

r3f̃n(x, v, r, τ)(P0gε)
2dxdvdrdτ +

+
α

2β

b∫
a

∫
r3v2P0f

n
0 (x, v, r)dxdvdr +

+
εαγ

2βq

∫
R3

(∆P0ϕ
n(x, 0))2dx+

αγ

2βq

∫
R3

|∇P0ϕ
n(x, 0)|2dx =

=
8∑

i=1

Ii. (3.28)

defining 8 integrals. I5, I6 and I7 + I8 we estimate successively.

To estimate I7 + I8, we consider equation (3.12) for t = 0:

ε∆2ϕn(x, 0)−∆ϕn(x, 0) = q

b∫
a

∫
rfn

0 (x, v, r)dvdr. (3.29)

It follows from Lemma 1 that the right-hand side of (3.29) belongs to the space
Lp(Ω) with p ∈ (3

2
, 5

3
). In fact∫

Ω

 b∫
a

∫
rfn

0 (x, v, r)dvdr

p

dx ≤ bp
∫
Ω

 b∫
a

∫
1

(1 + v2)1/p
(1 + v2)1/pfn

0 (x, v, r)dvdr

p

dx.

15



From Hölder’s inequality, we conclude

∫
Ω

 b∫
a

∫
rfn

0 (x, v, r)dvdr

p

dx ≤ bp
∫
Ω

 b∫
a

∫
dvdr

(1 + v2)p/q

q/p

×

×

 b∫
a

∫
(1 + v2)[fn

0 (x, v, r)]pdvdr

 dx =

= bp

 b∫
a

∫
dvdr

(1 + v2)q/p

p/q

×

×
∫
Q

(1 + v2)[fn
0 (x, v, r)]pdxdvdr < C1.

The term

b∫
a

∫
dvdr

(1 + v2)p/q
is bounded for given p. Hence, C1 is a constant not

depending on n.

We multiply (3.29) by ϕn(x, 0) and integrate the resulting equation over Ω. We have

ε

∫
Ω

(∆ϕn(x, 0))2dx+

∫
Ω

|∇ϕn(x, 0)|2dx = q

∫
Ω

b∫
a

rfn
0 (x, v, r)ϕn(x, 0)dvdrdx.

From Hölder’s inequality, we get:

q

∫
Ω

b∫
a

∫
rfn

0 (x, v, r)ϕn(x, 0)dvdrdx ≤

∥∥∥∥∥∥
b∫

a

∫
rfn

0 (x, v, r)dvdr

∥∥∥∥∥∥
Lp(Ω)

‖ϕn(x, 0)‖Lq(Ω).

As it was shown above, the first term on the right-hand side of this inequality is
bounded uniformly in n. To estimate the second term we make use of the embedding
theorem and Friedrich’s inequality:

ε

∫
Ω

(∆ϕn(x, 0))2dx +

∫
Ω

|∇ϕn(x, 0)|2dx ≤ C
1/p
1 ‖ϕn(x, 0)‖Lq(Ω) ≤

≤ C2‖ϕn(x, 0)|W 1
2 (Ω) ≤ C3‖∇ϕn(x, 0)‖L2(Ω).

Thus, ‖∇ϕn(x, 0)‖2
L2(Ω) ≤ C3‖∇ϕn(x, 0)‖L2(Ω) or ‖∇ϕn(x, 0)‖L2(Ω) ≤ C3, and we

have
I7 + I8 ≤

αγ

2β
C2

3 ≡ Ĉ,

where Ĉ is a constant not depending on n.

According to Lemma 1, I6 is uniformly bounded in n by the constant C̃.
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It remains to estimate I5:

I5 ≡
α

2δβ

t∫
0

b∫
a

∫
R6

r3f̃n(x, v, r, t)(P0gε)
2dxdvdrdτ.

From (3.25b) and the definition of gε(x, t) we get

I5 ≤ C‖g‖2
L∞(0,T ;C1(Ω)).

Thus, from (3.28), for any t ∈ [0, T ], we conclude

1

2
‖P0u

n(t)‖2
2,R3 + ν

t∫
0

‖P0u
n(τ)‖2

J1(R3dτ +

+ α

t∫
0

b∫
a

∫
rθR((P0u

n − v)2)(P0u
n − v)2f̃ndxdvdrdτ +

+
α

2β

b∫
a

∫
r3v2f̃n(x, v, r, t)dxdvdr +

εαγ

βq

∫
R3

(∆P0ϕ
n(x, t))2dx+

+
αγ

βq

∫
R3

|∇P0ϕ
n(x, t)|2dx ≤

≤ 1

2
‖u0‖2

2,Ω +
δT

2
max
0≤t≤T

‖P0u
n(t)‖2

2,R3 +
T

2δ
‖g‖2

L∞(0,T ;C1(Ω)) +

+
αb3δT

2β
max
0≤t≤T

b∫
a

∫
v2f̃n(x, v, r, t)dxdvdr + C‖g‖2

L∞(0,T ;C1(Ω)) + Ĉ.
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Therefore,

1

2
max
0≤t≤T

‖P0u
n(t)‖2

2,R3 + ν

T∫
0

‖P0u
n‖2

J1(R3)dt+

+ αa

T∫
0

b∫
a

∫
θR((P0u

n − v)2)(P0u
n − v)2f̃ndxdvdrdt+

+
a3α

2β
max
0≤t≤T

b∫
a

∫
v2f̃n(x, v, r, t)dxdvdr +

+
εαγ

βq
max
0≤t≤T

∫
R3

(∆P0ϕ
n(x, t))2dx+

+
αγ

βq
max
0≤t≤T

∫
R3

|∇P0ϕ
n(x, t)|2dx ≤

≤ 1

2
‖u0‖2

2,Ω +
δT

2
max
0≤t≤T

‖P0u
n(t)‖2

2,R3 +
T

2δ
‖g‖2

L∞(0,T ;C1(Ω)) +

+
αb3δT

2β
max
0≤t≤T

b∫
a

∫
v2f̃n(x, v, r, t)dxdvdr +

+ C‖g‖2
L∞(0,T ;C1(Ω)) + Ĉ.

Choosing from this inequality the parameter δ in such a way that δT
2
< 1

4
and

αb3δT
2β

< αa3

4β
, we obtain finally (3.25c). Lemma 3 is proved. �

3.4 The existence of the approximations (un, ϕn, fn)

Lemma 4 For any n = 1, 2, . . . and any R > 0, ε > 0 there exists a unique solution
(un, ϕn, f̃n) of problem (3.11) – (3.15), (3.23), (3.24).

Proof. We denote by C(0, T ) the space of continuous vector functions e(t) =

(e1(t), . . . , en(t)). This space is equipped with a norm |e| = max
0≤t≤T

[
n∑

i=1

e2i (t)

]1/2

. We

take ϕ ∈ L2(0, T ;C2(Ω)) and denote by w = (e1(t), . . . , en(t), ϕ(x, t)) an element of

the space C(0, T )⊕L2(0, T ;C2(Ω)) with the norm |w| = |e|+

 T∫
0

‖ϕ(t)‖2
C2(Ω)dt

1/2

.

Here ‖ϕ‖C2(Ω) = max
x∈Ω

2∑
|α|=0

|Dαϕ(x)|, where α = (α1, α2, α3) is a nonnegative vector

of integers, |α| = α1 + α2 + α3 and Dα =
∂|α|

∂xα1
1 ∂x

α2
2 ∂x

α3
3

.
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Let K be a bounded closed convex set in C(0, T )⊕ L2(0, T ;C2(Ω)):

K = {w : |w| ≤ CR,ε, ei(0) = Ci, i = 1, 2, . . . , n;ϕ(x, t) =
∂ϕ(x, t)

∂n
= 0, (x, t) ∈ ST}.

The constant CR,ε will be specified later. Ci are the coefficients defined in (3.24).

Let w0 = (e01(t), e
0
2(t), . . . , e

0
n(t), ϕ0(x, t)) be an arbitrary element of K.

We set

q0(x, t) =
n∑

i=1

e0i Ψ
i,

and consider the problem

∂f̃

∂t
+ (v∇x)f̃ + divv

{[
β

r2
θR((P0q

0 − v)2)(P0q
0 − v) −

− γ

r2
∇(P0ϕ

0) + P0gε(x, t)
]
f̃
}

= 0,

f̃ |t=0 = P0f
n
0 (x, v, r).

Existence and uniqueness of the solution f̃ of this problem follows from the regular
properties of the functions q0, ϕ0 and gε. More precisely, q0 ∈ C(0, T ;C1(Ω)),
ϕ0 ∈ C2(Ω) ∩ C1

0(Ω), gε ∈ L∞(0, T ;C1(Ω)).

We are looking for a vector q1 =
n∑

i=1

e1i Ψ
i as a solution of the system of ordinary

differential equations(
∂q1

∂t
+ (q0∇)q1 + α

b∫
a

∫
rθR((q0 − v)2)(q0 − v)Sf̃dvdr,Ψk

)
2,Ω

+

+ ν(q1,Ψk)J1(Ω) = (g,Ψk)2,Ω, k = 1, 2, . . . , n, (3.30)

This system is a linearization of system (3.23) and can be rewritten as:

de1k
dt

+
n∑

j,l=1

βk
jle

0
je

1
l +

n∑
l=1

εk
l e

1
l =

= gk − α

 b∫
a

∫
rθR

( n∑
l=1

e0lψ
l − v

)2
 ×

×

(
n∑

l=1

e0l Ψ
l − v

)
Sf̃dvdr,Ψk

)
2,Ω

, k = 1, 2, . . . , n. (3.31)

The initial data are as follows:

w1
k(0) = Ck = (u0,Ψ

k)2,Ω, k = 1, 2, . . . , n. (3.32)
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The linear problem (3.31), (3.32) has a unique solution {e1k(t), k = 1, . . . , n}.
We are looking for ϕ1(x, t) as a solution of the problem

ε∆2ϕ1 −∆ϕ1 = q

b∫
a

∫
rSf̃(x, v, r, t)dvdr, (3.33)

ϕ1(x, t) =
∂ϕ1(x, t)

∂n
= 0, (x, t) ∈ ST . (3.34)

Similar to the case of equation (3.29), one can conclude that the right-hand side of
equation (3.33) belongs to the space Lp(Ω) with p ∈ (3

2
; 5

3
), uniformly on t ∈ [0, T ].

Thus, there exists a unique generalized solution of problem (3.33), (3.34) (see [9]),
satisfying the inequality:

‖ϕ1‖W 4
p (Ω) ≤ C max

0≤t≤T

∥∥∥∥∥∥q
b∫

a

∫
rSf̃(x, v, r, t)dvdr

∥∥∥∥∥∥
Lp(Ω)

≤ C1. (3.35)

Thus, the vector w1 = (q1, ϕ1) is the image of w0 ∈ K of some operator Λ:
K → C(0, T )⊕L2(0, T ;C2(Ω)). The fixed points of this operator together with the
corresponding functions f̃ give the solution of the problem (3.11) – (3.15), (3.23),
(3.24).

Now, we prove that the operator Λ maps the set K into itself. For this purpose we
have to prove |w1| ≤ CR,ε or

max
0≤t≤T

‖q1‖J(Ω) +

 T∫
0

‖ϕ1(t)‖2
C2(Ω)dt

1/2

≤ CR,ε. (3.36)

To this end, multiplying the k-th equation in (3.30) by e1k(t) and adding over k = 1, n,
we get

1

2

d

dt
‖q1‖2

2,Ω+ν‖q1‖2
J1(Ω) = (g, q1)2,Ω−α

 b∫
a

∫
rθR((q0 − v)2)(q0 − v)Sf̃dvdr, q1


2,Ω

.

To estimate the second term in the right hand side of this equation we make use of
inequality (3.35), the definition of θR(z) and the embedding of the space Ls(Ω) for
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s ∈ [2, 6] into J1(Ω). We have∣∣∣∣∣∣α
 b∫

a

∫
rθR((q0 − v)2)(q0 − v)Sf̃dvdr, q1


2,Ω

∣∣∣∣∣∣
≤ α

√
2Rb

∫
Ω

|q1(x, t)|
b∫

a

∫
Sf̃(x, v, r, t)dvdrdx ≤

≤ αb
√

2R


∫
Ω

 b∫
a

∫
Sf̃(x, v, r, t)dvdr

p

dx


1/p

∫
Ω

|q1(x, t)|sdx


1/s

≤

≤ Ĉ‖q1‖J1(Ω),

where p ∈ (3
2
, 5

3
), s ∈ (5

2
, 3), and 1

p
+ 1

s
= 1.

Similar to the case of equation (3.25c), one can obtain

1

4
max
0≤t≤T

‖q1(t)‖2
2,Ω +

ν

2
‖q1‖2

L2(0,T ;J1(Ω)) ≤ 1

2
‖u0‖2

2,Ω +

+C
[
T 3‖g‖2

L∞(0,T ;C1(Ω)) + Ĉ2T 2
]
≡ 1

4
[C

(1)
R,ε]

2.

Hence, it follows
max
0≤t≤T

‖q1(t)‖2,Ω ≤ C
(1)
R,ε.

An estimate for the second term in (3.36) follows from the embedding theorem
(see [9], [17]). In fact,

‖ϕ1(t)‖C2(Ω) ≤ C‖ϕ1(t)‖W 4
p (Ω) ≤ C

(2)
R.ε.

Thus,  T∫
0

‖ϕ1(t)‖2
C2(Ω)dt

1/2

≤
√
C

(2)
R,εT ,

and |w1| ≤ C
(1)
R,ε +

√
C

(2)
R,εT ≡ CR,ε.

Now, we show that the map Λ: K → K is compact. To this end we estimate the

derivative
dw1

dt
. Multiplying the k-th equation in (3.30) by

de1k
dt

and summarizing

over k = 1, n, we get:

‖q1
t ‖2

2,Ω + ((q0∇)q1, q1
t )2,Ω +

ν

2

d

dt
‖q1‖2

J1(Ω)+

+α

 b∫
a

∫
rθR((q0 − v)2)(q0 − v)Sf̃dvdr, q1

t


2,Ω

= (g, q1
t )2,Ω.
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Then, we obtain

‖q1
t ‖2

2,Ω +
ν

2

d

dt
‖q1‖2

J1(Ω) ≤

≤ ‖q1
t ‖2,Ω

[
‖q0‖C(Ω)‖q1‖J1(Ω) + ‖g‖L∞(0,T ;C1(Ω))(mesΩ)1/2 + C

]
,

where C ≡ αb
√

2RA(b−a)4
3
πR3

f̃
(mesΩ)1/2, A is the constant defined in (3.25a), and

Rf̃ is defined in Lemma 2.

Since the functions Ψk are smooth and ‖q0‖C(Ω) ≤ Cn, applying Young’s inequality
and integrating with respect to t we get:

T∫
0

‖q1
t ‖2

2,Ωdt ≤ Cn.

Thus, ‖e1‖2
W 1

2 (0,T )
≤ Cn. Therefore, the function e1(t) belongs to the space W 1

2 (0, T ),

which is compactly embedded in C(0, T ) [17].

To complete the proof of the compactness of the operator Λ we make use of the
following Lemma, proved in [12].

Lemma Let B0, B and B1 be Banach spaces such that B0 ⊂ B ⊂ B1. They are
reflexive and the embedding B0 in B1 is compact. Consider the Banach space

W =

{
v : v ∈ Lp0(0, T ;B0), v

′ =
dv

dt
∈ Lp1(0, T ;B1)

}
,

where 0 < T < +∞ is fixed and 1 < pi <∞, i = 0, 1.

The norm in the space W is defined by

‖v‖Lp0 (0,T ;B0) + ‖v′‖Lp1 (0,T ;B1).

Then, the embedding of W in Lp0(0, T ;B0) is compact.

This lemma implies that the Banach space

W = {ϕ(x, t) : ϕ(x, t) ∈ L2(0, T ;W 4
p (Ω)), ϕ′t ∈ L2(0, T ;L2(Ω))},

with norm ‖ϕ‖L2(0,T ;W 4
p (Ω))+‖ϕ′t‖L2(0,T ;L2(Ω)) is compactly embedded in L2(0, T ;C2(Ω)).

Therefore, it remains to prove that
∂ϕ1

∂t
∈ L2(0, T ;L2(Ω)).

Differentiating equations (3.33) and (3.34) with respect to t, we obtain the following
problem for ϕ1

t :

ε∆2ϕ1
t −∆ϕ1

t = q

b∫
a

∫
rS
∂f̃(x, v, r, t)

∂t
dvdr, (x, t) ∈ ΩT , (3.37)

ϕ1
t =

∂ϕ1
t

∂n
= 0, (x, t) ∈ ST . (3.38)
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From equation (3.14) for the function f̃ we have

q

b∫
a

∫
rS
∂f̃(x, v, r, t)

∂t
dvdr = −q

b∫
a

∫
r(v∇x)Sf̃dvdr−

−q
b∫

a

∫
rdivv

{[
β

r2
θR((q0 − v)2)(q0 − v)− γ

r2
∇ϕ0 + gε(x, t)

]
Sf̃

}
dvdr, x ∈ ΩT .

Since the second term on the right hand side of this equation equals zero, equation
(3.37) has the form

ε∆2ϕ1
t −∆ϕ1

t = −q
b∫

a

∫
r(v∇x)Sf̃dvdr. (3.39)

Multiplying (3.39) by ϕ1
t and integrating over Ω, we get:

ε

∫
Ω

(∆ϕ1
t )

2dx+

∫
Ω

|∇ϕ1
t |2dx = −q

∫
Ω

b∫
a

∫
r(v∇x)Sf̃ϕ

1
tdvdrdx.

Taking into account the conditions (3.38), we obtain the following equation

ε

∫
Ω

(∆ϕ1
t )

2dx+

∫
Ω

|∇ϕ1
t |2dx = q

∫
Ω

b∫
a

∫
r(v,∇ϕ1

t )Sf̃dvdrdx.

The right hand side of the last equation we estimate as follows

q

∫
Ω

b∫
a

∫
r(v,∇ϕ1

t )Sf̃dvdrdx = q

∫
Ω

b∫
a

∫
r(

√
Sf̃v,

√
Sf̃∇ϕ1

t )dvdrdx ≤

≤ qb


∫
Ω

b∫
a

∫
v2Sf̃dvdrdx


1/2

∫
Ω

b∫
a

∫
Sf̃ |∇ϕ1

t |2dvdrdx


1/2

≤

≤ qb
√
A


∫
Ω

|∇ϕ1
t |2

b∫
a

∫
Sf̃dvdrdx


1/2

≤

≤ qb
√
A

(
A(b− a)

4

3
πR3

f̃

)1/2


∫
Ω

|∇ϕ1
t |2dx


1/2

=

= C̄R,ε


∫
Ω

|∇ϕ1
t |2dx


1/2

≤ 1

2

∫
Ω

|∇ϕ1
t |2dx+

1

2
C̄2

R,ε.
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Then

ε

∫
Ω

(∆ϕ1
t )

2dx+

∫
Ω

|∇ϕ1
t |2dx ≤

1

2

∫
Ω

|∇ϕ1
t |2dx+

1

2
C̄2

R,ε,

and, therefore

max
0≤t≤T

∫
Ω

|∇ϕ1
t |2dx ≤ C̄2

R,ε.

Taking into account (3.38), we get ϕ1
t ∈ L2(0, T ;W 1

2 (Ω)). Thus, it is proved that
the image Λ[K] of the set K, is a compact set in C(0, T ) ⊕ L2(0, T ;C2(Ω)). The
continuity of the operator Λ follows from: the continuous dependence of the solutions
of (3.31) on the initial data, the coefficients and the right hand sides; the continuous
dependence of the solution of (3.14) on the coefficients that follows from (3.16) and
(3.17); the a priori estimate of the right hand side of (3.12) and the embedding
theorem of W 4

p (Ω)) (p ∈ (3
2
; 5

3
)) in C2(Ω)).

From Schauder’s theorem follows that the operator Λ has a fixed point in K. We
denote it by w = (e1(t), . . . , en(t), ϕn(x, t)).

The proof of the uniqueness of the solution of (3.11) – (3.15), (3.23), (3.24) is carried
out in a standard way, considering the equation for the difference of two assumed
solutions of this problem. Proving an estimates, similar to (3.25b) and (3.25c) we
can conclude that the difference is equal to zero. Lemma 4 is proved completely. �

The mentioned procedure, along with formulae (3.11), (3.16) and (3.17) defines the
finite approximations (un, ϕn, fn) for the solutions of the regularized problem.

4 Compactness of the approximations (un, ϕn, fn)

Due to the a priori estimates (3.25a), (3.25c) one can extract subsequences {un},
{ϕn}, and {f̃n}, such that

un → u ∗-weakly in L∞(0, T ; J(Ω)) and weakly in L2(0, T ; J1(Ω));

f̃n → f̃ ∗-weakly in L∞(R6
T × [a, b]);

ϕn → ϕ ∗-weakly in L∞(0, T ;W 1
2 (Ω)).

Lemma 5 There exists a subsequence {f̃n} that converges uniformly with respect
to t ∈ [0, T ] in the weak topology of L2(R6 × [a, b]).

Proof. We denote by {gi(x, v, r)} an orthonormal total sequence of smooth func-
tions in L2(R6 × [a, b]) and consider the sequence

αni(t) =

b∫
a

∫
R6

f̃n(x, v, r, t)gi(x, v, r)dxdvdr, i = 1, 2, . . .
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Due to the estimates (3.25a) and (3.25b) this sequence is bounded for any fixed i,
uniformly in n. Moreover, it follows from (3.14), (3.25a) and (3.25b) that∣∣∣∣dαni(t)

dt

∣∣∣∣ =

∣∣∣∣∣∣
b∫

a

∫
R6

gi(x, v, r)
∂f̃n

∂t
dxdvdr

∣∣∣∣∣∣ =

=

∣∣∣∣
b∫

a

∫
R6

gi(x, v, r)

[
(v∇x)f̃

n + divv

{[
β

r2
θR((P0u

n − v)2)(P0u
n − v)−

− γ

r2
P0∇ϕn + P0gε(x, t)

]
f̃n

}
dxdvdr

∣∣∣∣ =

=

∣∣∣∣
b∫

a

∫
R6

{
f̃n(v∇x)gi +

β

r2

([
θR((P0u

n − v)2)(P0u
n − v)f̃n

]
∇v

)
gi−

− γ

r2

(
[P0∇ϕnf̃n]∇v

)
gi(x, v, r) +

(
[P0gε(x, t)f̃

n]∇v

)
gi(x, v, r)

}
dxdvdr

∣∣∣∣ ≤
≤ ACi +

β

a2

( b∫
a

∫
R6

|P0u
n|f̃n|∇vgi|dxdvdr +

b∫
a

∫
R6

f̃n|v||∇vgi|dxdvdr
)

+

+
γ

a2

b∫
a

∫
R6

(|P0∇ϕn|+ |P0gε|) f̃n|∇vgi|dxdvdr ≤

≤ ACi +
β

a2

 b∫
a

∫
R6

(f̃n)2dxdvdr

1/2 b∫
a

∫
R6

|P0u
n|2|∇vgi|2dxdvdr

1/2

+ ACi+

+
γ

a2

 b∫
a

∫
R6

(f̃n)2dxdvdr

1/2 b∫
a

∫
R6

|P0∇ϕn|2|∇vgi|2dxdvdr

1/2

+

+
γ

a2
CiA‖g‖L∞(0,T ;C1(Ω)) ≤

≤ C̃i (1 + ‖un‖2,Ω + ‖∇ϕn‖2,Ω) .

This estimate, along with (3.25c) implies that the sequence {αni(t)} is equicontinu-
ous for any i. So, one can extract a subsequence that converges uniformly in t for any
fixed interval (0, T ] and for any i. We keep the same notation for this subsequence.

Let b(x, v, r) be an arbitrary function from L2(R6 × [a, b]) and βi its Fourier coeffi-
cients with respect to {gi(x, v, r)}. Then, we have

sup
0≤t≤T

∣∣∣∣∣∣
b∫

a

∫
R6

b(x, v, r)[f̃n(x, v, r, t)− f̃m(x, v, r, t)]dxdvdr

∣∣∣∣∣∣ =
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= sup
0≤t≤T

∣∣∣∣∣∣
b∫

a

∫
R6

{(
b(x, v, r)−

N∑
i=1

βigi(x, v, r)

)
[f̃n − f̃m]+

+
N∑

i=1

βigi(x, v, r)[f̃
n − f̃m]

}
dxdvdr

∣∣∣∣∣ ≤
≤ sup

0≤t≤T

∣∣∣∣∣∣
N∑

i=1

βi

 b∫
a

∫
R6

gi(x, v, r)f̃
ndxdvdr −

b∫
a

∫
R6

gi(x, v, r)f̃
mdxdvdr

∣∣∣∣∣∣+
+ sup

0≤t≤T


b∫

a

∫
R6

∣∣∣∣∣b(x, v, r)−
N∑

i=1

βigi(x, v, r)

∣∣∣∣∣
2

dxdvdr


1/2

×

×


 b∫

a

∫
R6

(f̃n)2dxdvdr

1/2

+

 b∫
a

∫
R6

(f̃m)2dxdvdr

1/2
 ≤

≤ sup
0≤t≤T

∣∣∣∣∣
N∑

i=1

βi(αin(t)− αim(t))

∣∣∣∣∣+2A


b∫

a

∫
R6

∣∣∣∣∣b(x, v, r)−
N∑

i=1

βigi(x, v, r)

∣∣∣∣∣
2

dxdvdr


1
2

.

For sufficiently large N , n and m, the right hand side of this inequality is arbitrarily
small. This proves the lemma. �

Lemma 6 The limit function f̃(x, v, r, t) satisfies the following conditions:

f̃(x, v, r, t) ≥ 0 almost everywhere in R6
T × [a, b]; (4.1)

b∫
a

∫
R6

f̃(x, v, r, t)dxdvdr =

∫
Q

f0(x, v, r)dxdvdr; (4.2)

sup
0<t<T

b∫
a

∫
R6

v2f̃(x, v, r, t)dxdvdr <∞. (4.3)

Proof. We denote by B an arbitrary measurable set in R6× [a, b] with mesB <∞.
According to Lemma 5, we have∫

B

f̃(x, v, r, t)dxdvdr = lim
n→∞

∫
B

f̃n(x, v, r, t)dxdvdr.

Due to (3.17), f̃n(x, v, r, t) ≥ 0. Thus, (4.1) is proved.
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From inequality (3.25c) and the boundedness of the support of f̃n(x, v, r, t) follows

b∫
a

∫
R6

(1 + x2)δ/2f̃n(x, v, r, t)dxdvdr ≤ δAt+ Â, (4.4)

where, Â is a constant depending only on f0; A is the constant defined in Lemma
3, and δ ∈ (0, 1) is arbitrary.

In fact, from equation (3.14), we have:∣∣∣∣∣∣ ddt
b∫

a

∫
R6

(1 + x2)δ/2f̃n(x, v, r, t)dxdvdr

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫

a

∫
R6

(1 + x2)δ/2(v∇x)f̃
ndxdvdr

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣δ
b∫

a

∫
R6

(v, x)(1 + x2)
δ
2
−1f̃ndxdvdr

∣∣∣∣∣∣ ≤ δ

b∫
a

∫
R6

(1 + v2)f̃ndxdvdr ≤ δA.

(4.4) immediately follows from this inequality.

Now, we prove the following statement: For any ε1 > 0 there exists R1(ε1) < ∞,
such that, for any n and t ∈ [0, T ], the following inequality holds:

b∫
a

∫
R3

∫
|x|>R1(ε1)

f̃n(x, v, r, t)dxdvdr +

b∫
a

∫
|v|>R1(ε1)

∫
R3

f̃n(x, v, r, t)dxdvdr < ε1. (4.5)

In fact, we have

b∫
a

∫
R3

∫
|x|>R

f̃ndxdvdr +

b∫
a

∫
|v|>R

∫
R3

f̃ndxdvdr ≤

≤ 1

(1 +R2)δ/2

b∫
a

∫
R6

(1 + x2)δ/2f̃ndxdvdr +
1

1 +R2

b∫
a

∫
R6

(1 + v2)f̃ndxdvdr ≤

≤ δAT + A1

(1 +R2)δ/2
+

A

1 +R2
.

It follows from (4.5) and non-negativity of f̃(x, v, r, t) that

b∫
a

∫
R6

f̃(x, v, r, t)dxdvdr = lim
R→∞

lim
n→∞

b∫
a

∫
|v|<R

∫
|x|<R

f̃ndxdvdr =

= lim
n→∞

b∫
a

∫
R6

f̃n(x, v, r, t)dxdvdr = lim
n→∞

b∫
a

∫
R6

f̃n(x, v, r, 0)dxdvdr =
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= lim
n→∞

b∫
a

∫
R6

P0f
n
0 (x, v, r)dxdvdr = lim

n→∞

∫
Q

fn
0 (x, v, r)dxdvdr =

=

∫
Q

f0(x, v, r)dxdvdr.

Hence, (4.2) is proved.

It remains to prove (4.3). Let bR(x, v) be a function of x and v in the space R6, such
that |bR(x, v)| ≤ 1 and bR(x, v) = 0 if |x| ≥ R and |v| ≥ R, where R is a positive
parameter.

Thus
b∫

a

∫
R6

v2bR(x, v)f̃(x, v, r, t)dxdvdr =

=

b∫
a

∫
R6

v2bR(x, v)(f̃ − f̃n)dxdvdr +

b∫
a

∫
R6

v2bR(x, v)f̃ndxdvdr.

According to Lemma 5, the first term on the right hand side tends to zero as n→∞
for any fixed R. From the definition of the function bR(x, v) and (3.25c) it follows
that the second term is bounded uniformly in n and R by the constant A defined in
Lemma 3. Lemma 6 is proved. �

Lemma 7 The sequence {f̃n} converges in the weak topology of L1(R6× [a, b]) uni-
formly in t ∈ [0, T ].

Proof. Let g(x, v, r) ∈ L∞(R6 × [a, b]). Then, we have:∣∣∣∣∣∣
b∫

a

∫
R6

g(x, v, r)[f̃n(x, v, r, t)− f̃m(x, v, r, t)]dxdvdr

∣∣∣∣∣∣ ≤ (4.6)

≤

∣∣∣∣∣∣∣
b∫

a

∫
|v|≤R1

∫
|x|≤R1

g(x, v, r)[f̃n(x, v, r, t)− f̃m(x, v, r, t)]dxdvdr

∣∣∣∣∣∣∣+

+

 b∫
a

∫ ∫
|x|>R1

(f̃n + f̃m)dxdvdr +

b∫
a

∫
|v|>R1

∫
(f̃n + f̃m)dxdvdr

 ‖g‖L∞(R6×[a,b]).

Due to inequality (4.5) and the choice of R1 the second term in the right hand side of
(4.6) is sufficiently small, uniformly in n, m and t. According to Lemma 5, the first
term on the right hand side of (4.6) is smaller then any ε1 > 0 for any fixed R1 and
n,m > N(ε1). Thus, the sequence {f̃n} is weakly fundamental in L1(R6 × [a, b]),
uniformly in t. Therefore, it is weakly convergent in L1(R6 × [a, b]), uniformly in t.

28



Corollary 1 The limit function f̃(x, v, r, t) is continuous in t ∈ [0, T ] in the weak
topology of L1(R6 × [a, b]).

Lemma 8 The vector function u(x, t) is weakly continuous in t in the norm of
L2(Ω).

Proof. First, we show that for any fixed k and n ≥ k, the functions Cnk(t) in (3.11)
represent a uniformly bounded and equicontinuous set of functions on the interval
[0, T ].

The uniform boundedness of Cnk(t) follows from the a priori estimate (3.25c). Since
Cnk(t) = (un(t),Ψk)2,Ω, the equicontinuity follows from (3.22). Indeed, integrating
(3.22) with respect to τ from t to t + ∆t, estimating the right hand side and using
Cauchy’s inequality, we have

|Cnk(t+ ∆t)− Cnk(t)| ≤ ν

t+∆t∫
t

‖un(τ)‖J1(Ω)‖Ψk‖J1(Ω)dτ +

t+∆t∫
t

‖g(τ)‖2,Ωdτ+

+ max
x∈Ω

|Ψk(x)|
t+∆t∫
t

‖un(τ)‖2,Ω‖un(τ)‖J1(Ω)dτ+

+αb

t+∆t∫
t

∫
Ω

b∫
a

∫
θR((un(x, τ)− v)2)|un(x, τ)− v||Ψk(x)|Sf̃n(x, v, r, τ)dvdrdxdτ ≤

≤ ν‖Ψk‖J1(Ω)‖un‖L2(0,T ;J1(Ω)

√
∆t+max

x∈Ω
|Ψk(x)|‖un‖L∞(0,T ;J(Ω))

√
∆t‖un‖L2(0,T ;J1(Ω))+

+

t+∆t∫
t

‖g(τ)‖2,Ωdτ + αbmax
x∈Ω

|Ψk(x)|


t+∆t∫
t

∫
Ω

b∫
a

∫
Sf̃n(x, v, r, τ)dvdrdxdτ


1/2

×

×


T∫

0

∫
Ω

b∫
a

∫
θR((un(x, τ)− v)2)|un(x, τ)− v|2Sf̃n(x, v, r, τ)dvdrdxdτ


1/2

.

From (3.25b), (3.25c) and the properties of the functions Ψk(x), we get:

|Cnk(t+ ∆t)− Cnk(t)| ≤ A(k)

√∆t+

t+∆t∫
t

‖g(τ)‖2,Ωdτ

 .

It is clear that for any fixed k and n ≥ k the right hand side of this inequality
tends to zero, uniformly in t, as ∆t→ 0. By the usual diagonal process we extract
a subsequence nl. For any fixed k, the functions Cnlk(t) converge uniformly to
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a continuous function Ck(t), as l → ∞. For this subsequence we keep the same
notation Cnk(t).

Now, we prove that the sequence of functions un(x, t) converges in the weak topology
of L2(ω), uniformly with respect to t ∈ [0, T ].

We denote by g(x) an arbitrary vector function from L2(Ω) and by gk the Fourier
coefficients of this function with respect to the system {Ψk(x)}. Then,

sup
[0,T ]

∣∣∣∣∣∣
∫
Ω

(un(x, t)− um(x, t), g(x))dx

∣∣∣∣∣∣ =

= sup
[0,T ]

∣∣∣∣∣∣
∫
Ω

[(
g(x)−

N∑
k=1

gkψ
k(x), un(x, t)− um(x, t)

)
+

+
N∑

k=1

gk(ψ
k(x), un(x, t)− um(x, t))

]
dx

∣∣∣∣∣ ≤
≤ sup

[0,T ]


∫
Ω

∣∣∣∣∣g(x)−
N∑

k=1

gkΨ
k(x)

∣∣∣∣∣
2

dx


1/2

×

×


∫

Ω

|un(x, t)|2dx

1/2

+

∫
Ω

|um(x, t)|2dx

1/2
+

+ sup
[0,T ]

∣∣∣∣∣
N∑

k=1

gk(Cnk(t)− Cmk(t))

∣∣∣∣∣ ≤
≤
(
‖un‖L∞(0,T ;J(Ω)) + ‖um‖L∞(0,T ;J(Ω))

)
∫
Ω

∣∣∣∣∣g(x)−
N∑

k=1

gkΨ
k(x)

∣∣∣∣∣
2

dx


1/2

+

+ sup
[0,T ]

∣∣∣∣∣
N∑

k=1

gk(Cnk(t)− Cmk(t))

∣∣∣∣∣ .
The right hand side of this inequality is arbitrarily small, if we choose at first a
sufficiently large N and afterwards some sufficiently large n and m.

It follows from the convergence of the sequence {un(x, t)} to the function u(x, t)
that this limit is continuous in t in the weak topology of L2(Ω).

Lemma 9 Galerkin’s approximations {un} satisfy the following inequality:

T−ρ∫
0

‖un(t+ ρ)− un(t)|22,Ωdt < Cρ1/2,
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where ρ is an arbitrary constant 0 < ρ < T and C is a constant not depending on n
and ρ.

Proof. It follows from (3.22) for fixed ρ (0 < ρ < T ), t (0 ≤ t ≤ T − ρ) and
τ ∈ [t, t+ ρ] that∂un

∂τ
+ (un∇x)u

n + α

b∫
a

∫
rθR((un − v)2)(un − v)Sf̃ndvdr,Φ


2,Ω

+ (4.7)

+ν(un,Φ)J1(Ω) = (g,Φ)2,Ω,

where Φ is an arbitrary function from J1(Ω) such that Φ =
∑n

k=1 dkΨ
k with constant

dk. We set Φ = un(x, t + ρ) − un(x, t). Integrating (4.7) with respect to τ in the
interval [t, t+ ρ], we get

‖un(t+ ρ)− un(t)‖2
2,Ω =

t+ρ∫
t

{
(un(τ), (un(τ)∇)[un(t+ ρ)− un(t)])2,Ω−

−ν(un(τ), un(t+ ρ)− un(t))J1(Ω) + (g(τ), un(t+ ρ)− un(t))2,Ω−

−α

 b∫
a

∫
rθR((un(τ)− v)2)(un(τ)− v)Sf̃n(v, a, τ)dvdr, un(t+ ρ)− un(t)


2,Ω

}
dτ.

Therefore,

‖un(t+ ρ)− un(t)‖2
2,Ω ≤

t+ρ∫
t

∫
Ω

{
(|un(x, τ)|2 + ν|Dun(x, τ)|)×

× (|Dun(x, t+ ρ)|+ |Dun(x, t)|) +

+ |g(x, τ)(|un(x, t+ ρ)|+ un(x, t)|) +

+ α

b∫
a

∫
Sf̃n(x, v, r, τ)θR((un(x, τ)− v)2)×

× |un(x, τ)− v| ×

× (|un(x, t+ ρ)|+ |un(x, t)|)dvdr
}
dxdτ =

=
8∑

k=1

Ik(t), (4.8)

where

|Dun| =

(
3∑

i,j=1

(
∂un

i

∂xj

)2
)1/2

.
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The terms Ik are defined further in the text.

Integrating inequality (4.8) with respect to t in the interval [0, T −ρ] and estimating
the terms Ik(t), (k = 1, 2, . . . , 8) on the right hand side, we show that

T−ρ∫
0

Ik(t)dt ≤ ηkρ
1/2, k = 1, 2, . . . , 8, (4.9)

where ηk are constants not depending on n and ρ. For

I1(t) ≡
t+ρ∫
t

∫
Ω

|un(x, τ)|2|Dun(x, t+ ρ)|dxdτ,

using Cauchy’s inequality and the embedding theorem of J1(Ω) in L4(Ω), we get

T−ρ∫
0

I1(t)dt ≤
T−ρ∫
0

t+ρ∫
t


∫
Ω

|un(x, τ)|4dx


1/2

∫
Ω

|Dun(x, t+ ρ)|2dx


1/2

dτdt ≤

≤ C

T−ρ∫
0

t+ρ∫
t

‖un(τ)‖2
J1(Ω)‖un(t+ ρ)‖J1(Ω)dτdt. (4.10)

where C denotes the constant coming from the embedding theorem.

We change the order of integration supposing that un(x, t) = 0 for t > T and t < 0.
It follows

T−ρ∫
0

I1(t)dt ≤ C

T∫
0

‖un(τ)‖2
J1(Ω)

τ∫
τ−ρ

‖un(t+ ρ)‖J1(Ω)dtdτ.

We estimate the inner integral in t by Cauchy’s inequality. Changing the interval
of integration from [τ − ρ, τ ] to [0, T ], we obtain that the right hand side of (4.10),
due to estimate (3.25c), is not grater then

C
√
ρ

 T∫
0

‖un(t)‖2
J1(Ω)dt

3/2

≡ η1
√
ρ.

In the same way, one can obtain the estimate for

I2(t) ≡
t+ρ∫
t

∫
Ω

|un(x, τ)|2|Dun(x, t)|dxdτ.

Now, we consider

I3 + I4 ≡ ν

t+ρ∫
t

∫
Ω

|Dun(x, τ)|(|Dun(x, t+ ρ)|+ |Dun(x, t)|)dxdτ.
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Cauchy’s inequality and estimate (3.25c) imply

T−ρ∫
0

I3(t)dt ≤ ν

T−ρ∫
0

t+ρ∫
t

‖un(τ)‖J1(Ω)‖un(t+ ρ)‖J1(Ω)dτdt ≤

≤ ν

T−ρ∫
0

‖un(t+ ρ)‖J1(Ω)

ρ
t+ρ∫
t

‖un(τ)‖2
J1(Ω)dτ


1/2

dt ≤

≤ ν

ρ
T∫

0

‖un(τ)‖2
J1(Ω)dτ


1/2 T∫

0

‖un(t)‖J1(Ω)dt ≤

≤ ν(Aρ)1/2

T T∫
0

‖un(t)‖2
J1(Ω)dt

1/2

≤ νATρ1/2 ≤ η3
√
ρ.

A similar bound can be easily proved for I4.

Now, we consider the terms I5 and I6 from (4.8)

I5 + I6 ≡
t+ρ∫
t

∫
Ω

|g(x, τ)|(|un(x, t+ ρ)|+ |un(x, t)|)dxdτ.

From Cauchy’s inequality, we have

Ik(t) ≤ max
0≤t≤T

‖un(t)‖J(Ω)

t+ρ∫
t

‖g(τ‖2,Ωdτ, k = 5, 6.

Changing the order of integration, we obtain:

T−ρ∫
0

t+ρ∫
t

‖g(τ)‖2,Ωdτdt ≤ ρ

T∫
0

‖g(τ)‖2,Ωdt.

From this inequality we obtain (4.9) for I5 and I6.

Now, we consider the last two terms in (4.8), i.e., I7 and I8. We have

I7(t) ≡ α

t+ρ∫
t

∫
Ω

b∫
a

∫
Sf̃n(x, v, r, τ)θR((un(x, τ)−v)2)|un(x, τ)−v||un(x, t+ρ)|dvdrdxdτ.

Using Cauchy’s inequality, we get

I7(t) ≤ α

t+ρ∫
t

∫
Ω

|un(x, t+ ρ)|


b∫

a

∫
Sf̃n(x, v, r, τ)dvdr


1/2

×
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×


b∫

a

∫
Sf̃n(x, v, r, τ)θR((un(x, τ)− v)2)|un(x, τ)− v|2dvdr


1/2

dxdτ.

To estimate the integral over Ω we make use of Hölder’s inequality.

I7(t) ≤ α

t+ρ∫
t


∫
Ω

|un(x, t+ ρ)|6dx


1/6

∫
Ω

 b∫
a

∫
Sf̃n(x, v, r, τ)dvdr

3/2

dx


1/3

×

×


∫
Ω

b∫
a

∫
Sf̃n(x, v, r, τ)θR((un(x, τ)− v)2)|un(x, τ)− v|2dvdrdx


1/2

dτ. (4.11)

Considering the second term on the right hand side of (4.11)

Ĩ7(τ) ≡


∫
Ω

 b∫
a

∫
Sf̃n(x, v, r, τ)dvdr

3/2

dx


1/3

,

it is easy to see that

Ĩ7(τ) ≤
∫
Ω

 b∫
a

∫
(1 + v2)[Sf̃n(x, v, r, τ)]3/2dvdr

 b∫
a

∫
dvdr

(1 + v2)2

1/2

dx ≤

≤ C1

∫
Ω

b∫
a

∫
(1 + v2)Sf̃n(x, v, r, τ)dvdrdx ≤ C2.

Here, we use the a priori estimates (3.25a) and (3.25c) and the bound

b∫
a

∫
dvdr

(1 + v2)2
<∞.

Thus, from (4.11) follows

I7(t) ≤ C3

t+ρ∫
t


∫
Ω

|un(x, t+ ρ)|6dx


1/6

×

×


∫
Ω

b∫
a

∫
Sf̃n(x, v, r, τ)θR((un(x, τ)− v)2)|unx, τ)− v|2dvdrdx


1/2

dτ.
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Changing the order of integration and using Cauchy’s inequality, we get

T−ρ∫
0

I7(t)dt ≤ C3ρ

 T∫
0


∫
Ω

|un(x, t)|6dx


1/3

dt


1/2

×

×


T∫

0

∫
Q

Sf̃n(x, v, r, t)θR((un(x, t)− v)2)(un(x, t)− v)2dvdrdxdt


1/2

.

Due to (3.25c) and the embedding of J1(Ω) in L6(Ω), we have

T−ρ∫
0

I7(t)dt ≤ η7ρ.

The term I8(t) can be estimated in a similar way.

Thus, we proved inequality (4.9) and consequently Lemma 9. �

From Lemma 9 and estimates (3.25a) - (3.25c) we obtain that the sequence {un} is
compact in L2(ΩT ).

5 The limit n→∞

Using the lemmas 3, 5 – 9 and assuming that R = n, ε = 1
n
, we pass to the limit as

n→∞ in the integral identities (3.8) – (3.10) .

5.1 The identity (2.3)

We multiply (3.22) by Hi(t) and summarize over j. Then, integrating by parts, we
obtain (3.8) for un and f̃n, where the test functions ζ are defined by

ζ(x, t) =
n∑

j=1

Hj(t)Ψ
j(x), Hj(t) ∈ C1(0, T ) Hi(T ) = 0. (5.1)

Now, we show that the limits of the subsequences {un} and {f̃n} satisfy (2.3). First,
we prove that

lim
n→∞

(un, (un∇x)ζ)2,ΩT
= (u, (u∇x)ζ)2,ΩT

.

To this end, we use the formula

(un, (un∇x)ζ)2,ΩT
−(u, (u∇x)ζ)2,ΩT

= (un−u, (u∇x)ζ)2,ΩT
+(un, ((un−u)∇x)ζ)2,ΩT

.

Due to the strong convergence of un to u in L2(ΩT ) and the uniform boundedness of
the norm of un in L2(ΩT ) and (2.6a), the right hand side of the last equation tends

35



to zero as n→∞. (Notice that the set of functions ζ from (5.1) is dense in the set
of functions satisfying (2.6a) ).

Now, we pass to the limit as n→∞ in the term of (3.8) containing f̃n. Notice that
for any ε > 0, there exists R1(ε) > 0 that

I ≡
∫

QT∩{v:|v|≥R1}

rθn((un − v)2)Sf̃n(x, v, r, t)|un − v||ζ(x, t)|dxdvdrdt < ε, (5.2)

uniformly on n. Taking into account that ζ ∈ L4(0, T ; J1(Ω)) and the results of
Lemma 3 we obtain, similar to the proof of the bound for I7 in Lemma 9,

I ≤
√
A


b∫

a

∫
|v|≥R1

dvda

(1 + v2)2


1/6

.

Inequality (5.2) immediately follows from this estimate.

Now, we prove that for any R1 > 0,

lim
n→∞

∫
QT∩{v:|v|≤R1}

rθn((un − v)2)Sf̃n(x, v, r, t)(un − v, ζ)dxdvdrdt = (5.3)

=

∫
QT∩{v:|v|≤R1}

rSf̃(x, v, r, t)(u(x, t)− v, ζ(x, t))dxdvdrdt.

To this end, we consider the integrals

4∑
j=1

Ij ≡
∫

QT∩{v:|v|≤R1}

{
rS(f̃n − f̃)(u− v, ζ) +

+ rSf̃n[θn((un − v)2)− θn((u− v)2)](un − v, ζ) +

+ rSf̃n[θn((u− v)2)− 1](un − v, ζ) + rSf̃n(un − u, ζ)

}
dxdvdrdt (5.4)

Since f̃n → f̃ converges ∗-weakly in L∞(R6
T × [a, b]) and (u − v, ζ) ∈ L1(QT ∩ {v :

|v| ≤ R1|}, I1 tends to zero as n→∞. Indeed, we have

∫
QT∩{v:|v|≤R1}

|u− v||ζ(x, t)|dxdvdrdt ≤ (b− a)

[ T∫
0

∫
|v|≤R1

∫
Ω

|u(x, t)||ζ(x, t)|dxdvdt+

+

T∫
0

∫
|v|≤R1

∫
Ω

|v||ζ(x, t)|dxdvdrdt ≤ 4

3
πR3

1


T∫

0

∫
Ω

|u|2dxdt


1
2


T∫
0

∫
Ω

|ζ(x, t)|2dxdt


1
2

+
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+
4

3
πR4

1

T∫
0

∫
Ω

|ζ(x, t)|dxdt ≤ C‖ζ‖L∞(0,T ;J(Ω))(1 + ‖u‖L∞(0,T ;J(Ω))).

Estimating the integral I2 in (5.4), we show firstly that

lim
n→∞

T∫
0

∫
|v|≤R1

∫
Ω

|θn((un − v)2)− θn((u− v)2)|3dxdvdt = 0. (5.5)

Since

|θn((un − v)2)− θn((u− v)2)| ≤ C|(un − v)2 − (u− v)2| ≤
≤ C(|un − u||un|+ |u||un − u|+ 2|v||un − u|),

it follows
T∫

0

∫
|v|≤R1

∫
Ω

|θn((un − v)2)− θn((u− v)2)|dxdvdt ≤

≤ Ĉ‖un − u‖2,QT

(
‖un‖L∞(0,T ;J(Ω)) + ‖u‖L∞(0,T ;J(Ω)) + 1

)
.

Due to the convergence of un to u in L2(QT ) as n→∞ and

|θn((un − v)2)− θn((u− v)2)| ≤ 2,

this inequality implies (5.5).

For

I2 ≡
∫

QT∩{v:|v|≤R1}

rSf̃n[θn((un − v)2)− θn((u− v)2)](un − v, ζ)dxdvdrdt

follows from (3.25a)

|I2| ≤ A(b− a)

T∫
0

∫
|v|≤R1

∫
Ω

|un − v||θn((u− v)2)− θn((un − v)2)||ζ|dxdvdt.
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Using Hölder’s inequality, we get

|I2| ≤ A(b− a)

T∫
0



∫

|v|≤R1

∫
Ω

|un − v|2dxdv


1/2

×

×


∫

|v|≤R1

∫
Ω

|θn((un − v)2)− θn((u− v)2)|3dxdv


1/3

×

×


∫

|v|≤R1

∫
Ω

|ζ(x, t)|6dxdv


1/6
 dt ≤

≤ Ã(1 + ‖un‖L∞(0,T ;J(Ω)))×

×
T∫

0


∫

|v|≤R1

∫
Ω

|θn((un − v)2)− θn((u− v)2)|3dxdv


1/3

×

×


∫

|v|≤R1

∫
Ω

|ζ(x, t)|6dxdv


1/6

dt.

Using Hölder’s inequality once again, we get

|I2| ≤ Â


T∫

0

∫
|v|≤R1

∫
Ω

|θn((un − v)2)− θn((u− v)2)|3dxdvdt


1/3

×

×


T∫

0

 ∫
|v|≤R1

∫
Ω

|ζ(x, t)|6dxdv


1/4

dt


2/3

.

Using (5.5) and the embedding of J1(Ω) in L6(Ω), we get

lim
n→∞

I2 = 0.

Now, we consider

I3 ≡
∫

QT∩{v:|v|≤R1}

rSf̃ [θn((u− v)2)− 1](un − v, ζ)dxdvdrdt.

We divide domain ΩT in two parts:

Ω1
T = {(x, t) ∈ ΩT : |u(x, t)| ≤ B}, Ω2

T = ΩT \ Ω1
T ,
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where B is a positive constant.

Since u(x, t) ∈ L2(ΩT ), for any δ > 0 there exists such B that mesΩ2
T < δ. Hence,

|I3| ≤ A

( b∫
a

∫
|v|≤R1

∫
Ω1

T

|θn((u− v)2)− 1||(un − v, ζ)|dxdvdrdt+

+

b∫
a

∫
|v|≤R1

∫
Ω2

T

|θn((u− v)2)− 1||(un − v, ζ)|dxdvdrdt
)
.

The argument of the function θn is bounded on the set Ω1
T × {v : |v| ≤ R1}. The

sequence {θn} uniformly converges to 1 as n → ∞ on any compact set. Therefore,
since (un − v, ζ) ∈ L1(QT ∩ {v : |v| ≤ R1}), for sufficiently large n, the integral over
Ω1

T ×{v : |v| ≤ R1× [a, b]} is arbitrary small. The second integral is arbitrary small,
due to the choice of δ.

Now, we consider the last term in (5.4),

I4 ≡
∫

QT∩{v:|v|≤R1}

rSf̃n(un − u, ζ)dxdvdrdt.

For this integral we have

|I4| ≤ A
4

3
πR3

1

T∫
0

∫
Ω

|un − u||ζ|dxdt ≤

≤ A
4

3
πR3

1


∫
ΩT

|un − u|2dxdt


1/2

T∫
0

∫
Ω

|ζ|2dxdt


1/2

≤

≤ Ã‖un − u‖2,ΩT
‖ζ‖L∞(0,T ;J(Ω)).

Thus, lim
n→∞

I4 = 0 and (5.3) is proved.

From (5.2) and (5.3) follows∫
QT

rSf̃ |u(x, t)− v|ζ(x, t)dxdvdrdt <∞.

This estimate along with (5.2), (5.3), allows us to pass to the limit as n→∞ in the
fourth terms of (3.8). The remaining terms in (3.8) are linear with respect to the
un and we pass to the limit without any difficulties. Identity (2.3) is proved.

5.2 The identity (2.4)

Multiplying equation (3.12) by Φ(x, t) and integrating by parts we obtain the iden-
tity (3.10) for ϕn and f̃n with ε = 1

n
.
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The first term in (3.9) tends to zero as n→∞. Indeed,∣∣∣∣∣∣ 1n
T∫

0

(∆ϕn,∆Φ)2,Ωdt

∣∣∣∣∣∣ ≤ 1√
n

T∫
0

1√
n
‖∆ϕn‖2,Ω‖∆Φ‖2,Ωdt ≤

1√
n

√
A

T∫
0

‖∆Φ‖2,Ωdt,

where A is the constant defined in (3.25c).

It was shown in the beginning of Section 4 that from the sequence {ϕn} one can ex-
tract a subsequence, converging ∗-weakly in L∞(0, T ;W 1

2 (Ω)). Taking into account
the properties of the functions Φ(x, t), we can pass to the limit as n → ∞ in the
second term of (3.9).

Lemma 7 and Lebesgue’s theorem allow us to pass to the limit as n → ∞ in

the third term of (3.9) for functions Φ(x, t) ∈ L∞(0, T ;
◦
W 2

2 (Ω)) being dense in

L2(0, T ;
◦
W 1

2 (Ω)). Thus, identity (2.4) is proved.

5.3 The identity (2.5)

Setting R = n and ε = 1
n

and taking into account (3.5) we get from identity (3.10)

for the approximations f̃n(x, v, r, t)

T∫
0

b∫
a

(
f̃n,Ψt + (v∇x)Ψ + (gn(x, t)∇v)Ψ

)
2,R6

drdt+

b∫
a

(P0f
n
0 ,Ψ(0))2,R6dr+ (5.6)

+β

T∫
0

b∫
a

1

r2

(
f̃nN, (P0θn((un − v)2)[un(x, t)− v]∇v)Ψ

)
2,R6

drdt−

−γ
T∫

0

b∫
a

1

r2

(
f̃n, (P0∇xϕ

n(x, t)∇v)Ψ
)

2,R6
drdt = 0,

where Ψ(x, v, r, t) is an arbitrary function satisfying the conditions (2.6c).

Due to the ∗-weak convergence of the sequence fn(x, v, r, t) in L∞(R6
T × [a, b]) (see

Lemma 3) and the properties of the functions gn(x, t) and Ψ(x, v, r, t) we can pass
to the limit as n → ∞ in the first integral of (5.6). According to Lemma 1 and
the properties of the functions fn

0 (x, v, r) we can pass to the limit as n → ∞ in
the second integral of (5.6). In the third integral of (5.6) we pass to the limit in
an analogous manner as we did in the term containing f̃n in identity (3.8) (see Sec.
4.1).

Considering the fourth integral in (5.6), we denote by Gn(x, y) Green’s function of
problem (3.12), (3.13) with ε = 1

n
and by G(x, y) Green’s function of problem (1.3),
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(1.7). We introduce the following notations

Fn(x, t) = q

b∫
a

∫
rf̃n(x, v, r, t)dvdr,

F (x, t) = q

b∫
a

∫
rf̃(x, v, r, t)dvdr,

ϕn(x, t) =

∫
Ω

Gn(x, y)Fn(y, t)dy, (5.7)

ϕ(x, t) =

∫
Ω

G(x, y)F (y, t)dy,

ϕ̃n(x, t) =

∫
Ω

G(x, y)Fn(y, t)dy, (5.8)

where f̃(x, v, r, t) is the ∗-weak limit of the sequence {f̃n(x, v, r, t)} in L∞(R6
T×[a, b]).

The functions Fn(x, t) belong to Lp(Ω) (p ∈ (3
2
; 5

3
)) uniformly on n and t ∈ [0, T ]

(see Lemma 4). According to Lemma 7, the sequence {Fn(x, t)} to F (x, t) converges
in the weak topology of L1(Ω), uniformly in t ∈ [0, T ]. Thus, F (x, t) ∈ Lp(Ω)
(p ∈ (3

2
; 5

3
)).

The operator with integral kernel ∇G(x, t) acting from L1(Ω) to L1(Ω) is completely
continuous (see [18]). Therefore, the sequence {∇ϕ̃n(x, t)} converges to ∇ϕ(x, t) in
L1(Ω) for any t ∈ [0, T ]. From Lebesgue’s theorem the strong convergence in L1(ΩT )
follows. It is evident that the functions ϕn(x, t) and ϕ(x, t) are the solutions of the
problems (3.12), (3.13) and (1.3), (1.7) correspondingly.

Thus, we can rewrite the fourth integral in (5.6) in the form

γ

T∫
0

b∫
a

1

r2

(
f̃n, (P0∇xϕ

n(x, t)∇v)Ψ
)

2,R6
drdt =

= γ

T∫
0

b∫
a

∫
Ω

∫
1

r2
Sf̃n(x, v, r, t)(∇xϕ(x, t)∇v)Ψ(x, v, r, t)dvdxdrdt+

+γ

T∫
0

b∫
a

∫
Ω

∫
1

r2
Sf̃n(x, v, r, t) ([∇xϕ̃

n(x, t)−∇xϕ(x, t)]∇v) Ψdvdxdrdt+

+γ

T∫
0

b∫
a

∫
Ω

∫
1

r2
Sf̃n(x, v, r, t) ([∇xϕ

n(x, t)−∇xϕ̃
n(x, t)]∇v) Ψdvdxdrdt =

= I
(n)
1 + I

(n)
2 + I

(n)
3 .
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Since Ψ(x, v, r, t) satisfies conditions (2.6c) and ∇xϕ(x, t) ∈ L1(ΩT ), from the ∗-
weak convergence of the sequence {f̃n(x, v, r, t)} to f̃(x, v, r, t) in L∞(R6

T × [a, b])
follows

lim
n→∞

I
(n)
1 =

T∫
0

b∫
a

γ

r2

(
f̃ , (P0∇xϕ(x, t)∇v)Ψ

)
2,R6

drdt.

Using the convergence of sequence {∇xϕ̃(x, t)} to ∇xϕ(x, t) in L1(ΩT ) and the uni-
form boundedness of the approximations f̃n(x, v, r, t) (see (3.25a)), we get

lim
n→∞

I
(n)
2 = 0.

Considering I
(n)
3 , we take into account (3.25a) and obtain

|I(n)
3 | ≤ γ

a2

T∫
0

b∫
a

∫
Ω

∫
Ω

∫
Sf̃n(x, v, r, t)|∇xGn(x, y)−∇xG(x, y)| ×

× |Fn(y, t)||∇vΨ(x, v, r, t)|dvdxdydrdt ≤

≤ C

T∫
0

∫
Ω

∫
Ω

|∇xGn(x, y)−∇xG(x, y)||Fn(y, t)|dxdydt ≤

≤ C

T∫
0


∫
Ω

∫
Ω

|∇xGn(x, y)−∇xG(x, y)|dx

β

dy


1
β
∫
Ω

|Fn(y, t)|pdy


1
p

dt,

where p−1 + β−1 = 1, 3
2
< p < 5

3
, 5

2
< β < 3.

To estimate In
3 we use the following equality

lim
n→∞

∫
Ω

∫
Ω

|∇xGn(x, y)−∇xG(x, y)|dx

β

dy = 0, (5.9)

where 0 < β ≤ 3. This equality can be proved by the method of Lyusternic-Vischik
(see [19]) with the help of the explicit form of the fundamental solutions of the
corresponding equations (see [9]).

Since the functions Fn(y, t) lie in Lp(Ω) (p ∈ (3
2
, 5

3
)) uniformly in n and t ∈ [0, T ],

due to (5.9), we get

lim
n→∞

I
(n)
3 = 0.

Thus, equality (2.5) is proved and the proof of the Theorem is complete.
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