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Abstract

We analyze and compare the efficiency and accuracy of two simulation methods
for homogeneous random fields with multiscale resolution. We consider in particular
the Fourier-wavelet method and three variants of the Randomization method: (A)
without any stratified sampling of wavenumber space, (B) with stratified sampling
of wavenumbers with equal energy subdivision, (C) stratified sampling with a log-
arithmically uniform subdivision. We focus on fractal Gaussian random fields with
Kolmogorov-type spectra. As noted in previous work by [3, 6], variants (A) and (B)
of the Randomization method are only able to generate a self-similar structure func-
tion over three to four decades with reasonable computational effort. By contrast,
variant (C), suggested by [34, 22], along with the Fourier-wavelet method developed
by [6], is able to reproduce accurate self-similar scaling of the structure function over
a number of decades increasing linearly with computational effort (for our examples
we will show that nine decades can be reproduced). We provide some conceptual
and numerical comparison of the various cost contributions to each random field
simulation method (overhead, cost per realization, cost per evaluation).

When evaluating ensemble averaged quantities like the correlation and structure
functions, as well as some multi-point statistical characteristics, the Randomization
method can provide good accuracy with considerably less cost than the Fourier-
wavelet method. The Fourier-wavelet method, however, has better ergodic proper-
ties, and hence becomes more efficient for the computation of spatial (rather than
ensemble) averages which may be important in simulating the solutions to partial
differential equations with random field coefficients.

1 Introduction

Random functions (generally referred to as random fields) provide a useful mathematical

framework for representing disordered heterogeneous media in theoretical and computa-

tional studies. One example is in turbulent transport, where the velocity field representing

the turbulent flow is modeled as a random field v(x,t) with statistics encoding impor-

tant empirical features, and the temporal dynamics of the position X(¢) and velocity
dx

V(t) = % of immersed particles is then governed by equations involving this random

field such as
mdV(t) = — W(V(t) ~v(X(2), t)) dt + /2ks Ty dW (), (1.1)

where m is particle mass, 7 is its friction coefficient, kg is Boltzmann’s constant, T is
the absolute temperature, and W (¢) is a random Wiener process representing molecular
collisions. Another example is in transport through porous media, such as groundwater
aquifers, in which the hydraulic conductivity K(x) is modeled as random field reflecting



the empirical variability of the porous medium. The Darcy flow rate q(x) in response to
pressure applied at the boundary is governed by the Darcy equation

alx) = —K(x)grad ¢(x), (1.2)
divg = 0,

in which the random hydraulic conductivity function appears as a coefficient, and the
applied pressure is represented in the boundary conditions for the internal pressure head
¢. Our concern is with the computational simulation of random fields for applications
such as these.

Interesting insights into the dynamics of transport in disordered media can be achieved
already through relatively simple random models for the velocity field, such a finite super-
position of Fourier modes, with each amplitude independently evolving according to an
Ornstein-Uhlenbeck process [4, 37]. Here efficient and accurate numerical simulations of
the flow can be achieved through application of the well-developed literature on simulat-
ing stochastic ordinary differential equations [18]. We will focus instead on the question
of simulating random fields which involve challenging multiscale structures such as those
relevant to porous media and turbulent flow simulations. Many questions remain open for
the case of Gaussian multiscale random fields, so we confine our attention to this class.

We shall consider general real-valued Gaussian homogenous random fields u(x) defined
on multi-dimensional Euclidean space R?. (The extension to the vector-valued case is
discussed in Appendices A and B.) Most of our main points can be made in the context
of real-valued scalar random fields on the real line, and our numerical examples are all
done within this simpler context, but we simply wish to indicate how some issues such as
cost considerations extend to multiple dimensions.

Under quite general conditions, a real-valued Gaussian homogenous random field u(x)
can be represented through a stochastic Fourier integral [29]

u(x) = /R TR (1) W (dk) (1.3)

where W(dk) is a complex-valued white noise random measure on R?, with W(B) =

W (=B), (W(B)) = 0, and (W(B)W(B")) = u(B N B') for Lebesgue measure p and all
Lebesgue-measurable sets B, B'. The spectral density E(k) is a nonnegative even function
representing the strength (energy) of the random field associated to the wavenumber k,
meaning the length scale 1/|k| and direction k/|k]|.

Multiscale random fields will have a multiscale spectral density, meaning that E(k) will
have substantial contributions over a wide range of wavenumbers kn.;, < k| < kmas,
with Kmaz/kmin > 1. This poses a challenge for efficient simulation.

Several approaches are based on various discretizations of (1.3) which give rise to finite
sums of functions with independent Gaussian random coefficients. A Riemann sum dis-
cretization of the stochastic integral is easy to implement [36, 39, 40, 30, 14], and follow-
ing [7, 17, 25], we shall refer to it as the standard Fourier method. As documented in [7],
this method can suffer from false periodicity artifacts of the discretization, particularly if
the wavenumbers are chosen with uniform spacing.

An alternative randomization method has been developed which evaluates the stochastic
integral (1.3) through a finite set of randomly chosen wavenumbers generated by Monte
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Carlo methods [19, 28, 35]. Yet another method designed for multiscale random field
simulation is the Fourier-wavelet method [6], which arises from a wavelet decomposition of
the white noise measure in (1.3). We stress that neither of these methods require that the
multiscale structure be self-similar, though they are well-suited for this special case. The
Fourier-wavelet and Randomization methods have been previously studied and compared,
particularly in the context of (massless) turbulent diffusion problems [3, 6], with the
general conclusion that the Randomization method performs well for simulating random
fields with a self-similar multiscale scaling structure extending over a small number of
decades, while the Fourier-wavelet method becomes more efficient for random fields with
a large number of decades of self-similar scaling. The methods also have some theoretical
differences. The Randomization Method reproduces the correlation function (or structure
function) with only sampling error and no bias, while the Fourier-wavelet method incurs
some bias from truncation of the sums in the associated random field representation. On
the other hand, the Fourier-wavelet method simulates a truly Gaussian random field, while
the statistics of quantities involving two or more evaluation points are generally simulated
as non-Gaussian by the Randomization Method. However, as more wavenumbers are
included in the random field representation, central limit theorem arguments indicate
that the statistics simulated by the Randomization Method should approach Gaussian
values [20]. In particular, the simulations of fractal random fields in [6] indicate that the
kurtosis (normalized fourth order moment) of spatial increments in the random field was
close to its Gaussian value of 3 over a range of scales which was one or two decades fewer
than the range over which the second order moments were accurately simulated.

In the comparisons [3, 6], a particular version of the Randomization method was used;
namely, the random wavenumbers were chosen according to a subdivision of wavenumber
space into sampling bins of equal energy. In the studies [34, 22|, a logarithmically stratified
subdivision of wavenumber space was found to be significantly more efficient in represent-
ing self-similar power-law spectra such as those corresponding to Kolmogorov turbulence.
This implementation of the Randomization method [22], a similar implementation of the
standard Fourier method with wavenumber discretized uniformly and deterministically in
logarithmic space [38], and a multiscale wavelet method [10] have all been employed to
simulate dispersion of pair particles in isotropic Gaussian frozen pseudoturbulence with
a Kolmogorov spectrum extending over several decades, in some cases with a constant
mean sweep. Of particular interest in these works is whether the classical Richardson’s
cubic law can be observed in numerically generated pseudoturbulence [22, 38, 10].

We investigate the efficiency and accuracy of the Fourier-wavelet and Randomization
methods, including alternative strategies for stratified sampling, along the following di-
rections:

e The previous studies of which we are aware [3, 6] focus on the cost of simulating
the value of the random field at a particular point z on demand, as is appropriate
in the turbulent diffusion problem (1.1). By contrast, the solution of the porous
medium problem requires the generation of the random field over the whole com-
putational domain at once. We study the computational cost and accuracy of the
Randomization and Fourier-wavelet methods for the construction and evaluation of
a random field over a whole finite difference grid. Both the overhead cost and the
cost of simulating each new realization of the random field is considered.



e We study finer statistical features of the random field beyond the second order
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S(r) = ((w(z + ) —u(2))’)
and the kurtosis. In particular, with the logarithmically stratified sampling strategy
for the Randomization Method, the random field is approximately represented with
a considerably smaller number of random variables than the Fourier-wavelet method.
We examine what types of statistics of the random field are still well represented by

structure function

this compressed representation.

e We study the ergodicity properties of the simulation methods, which we expect
to be important in the accurate simulation of statistics of the solutions of partial
differential equations with random field coefficients such as the Darcy equation (1.2).

We begin in Section 2 by identifying some physical and numerical parameters which
will play a key role in the development of the simulation algorithms and in quantifying
their costs. We then present a brief but self-contained description of the Randomization
Method (Section 3) and the Fourier-wavelet Method (Section 4), framing the discussion
primarily in terms of one-dimensional random functions for notational simplicity. Some
details of the extensions of the random field simulation algorithms to multiple dimensions
can be found in Appendix A. We begin our examination of the numerical methods with a
theoretical discussion in Section 5 of how their costs should scale with respect to various
physical and numerical implementation parameters. We then revisit the question studied
in [3], [9] concerning the comparative ability of the methods to generate random fields
with self-similar fractal scaling of the second order structure functions over a large number
of decades. Our contribution here is to consider variations of the Randomization Method
which significantly improve its performance. We then turn to comparisons of the ergodic
properties (Section 6) and the quality of the multi-point statistics of the random fields
(Section 7) simulated by the Randomization Method and Fourier-wavelet Method. Our
findings are summarized in Section 8.

2 General Simulation Framework

To discuss the implementation and the costs of the simulation methods, we first delimit
the questions to be asked about the random field u(x) to be simulated. We suppose here
that u(x) is a well-defined scalar-valued homogenous, Gaussian random field with given
spectral density E(k) (which is just the Fourier transform of the correlation function; see
Appendix A). We quantify first in Subsection 2.1 some fundamental length scales of the
random field which play a key role in choosing simulation parameters, then discuss in
Subsection 2.2 some further length scales determined by the context of the problem or
the choice of numerical implementation.



2.1 Length Scales of the Random Field

One of the most fundamental quantitative properties of a random field is its correlation
length, which we define as:

_ —1supkeRdE(k) v
C= (0 Toa) 0

where V; = 27rd/2/(df‘(d/2)) is the volume of the unit ball in d dimensions (V; = 2, V, =,
V3 = 47 /3). The usual definition [27] has simply E(0) in the numerator, but our definition
generalizes meaningfully to random fields with the spectral density vanishing at the origin.
Indeed E(0) is the integral of the trace of the correlation function, which under many
conditions gives the product of the random field variance and the correlation volume.
The denominator precisely cancels out the random field variance (u?), and the remaining
operations convert the correlation volume to a correlation length. If however the random
field has oscillations, the integral of the correlation function may underrepresent the actual
correlation volume (including the extent of negative correlations). This is why we have
simply modified the definition to involve the value of the spectral density at its peak
wavenumber; it coincides of course with the standard convention in the case of random
fields with spectral density peaked at the origin (as is often the case in the absence of
strong negative correlations in the random field).

We similarly define a smoothness microscale for the random field:

/d
—15UPker |k|2E(k) '
s — , 2.2
‘ (VZ[ Jra [k[?E(k) dk (22)

which is really an analogous correlation length for the random field gradient Vu. The
two length scales /. and 4, generalize the notion of integral length scale and Kolmogorov
dissipation length scale in turbulent spectra to general homogenous random fields. The
correlation length can be thought of as the largest length scale on which the random
field u(x) exhibits a nontrivial correlation structure. That is, for |x — x| > £, the
values of u(x) and u(x’) are independent to a good approximation. The smoothness
microscale, conversely, describes the smallest length scale on which the random field has
nontrivial correlation structure. On smaller scales, the random field appears smooth.
More precisely, for |x — x'| € £,, the random field over the line segment connecting x
and x’ can be well approximated by a linear interpolation between u(x) and u(x’) (with
relative error o (|x — x'|/£5)?).

We will contemplate only random fields with spectral density behaving well enough at
small and large wavenumbers to be integrable, so that the correlation length £ in (2.1) is
well-defined as a finite nonzero value. We admit random fields for which the integral in the
denominator of (2.2) converges or diverges; in the latter case, we define £, = 0. Idealized
fractal random fields [26, 11], such as those associated with the Kolmogorov inertial range
theory of turbulence E(k) o« |k|™%? can be placed within the present framework if we
agree from the outset that the fractal scaling is smoothed out at a pre-defined large
length scale. This will be appropriate for any physical application, and even from a
purely mathematical point of view, we can think of this length scale cutoff as defining a
concrete goal for the simulation of a fractal random field with finite effort. Any numerical
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simulation or physical application will also necessarily have a positive lower limit on the
length scale of fractal scaling, but we do not need to enforce this within our mathematical
framework.

For some random fields, the smoothness length scale is comparable to the correlation
length. This is true in particular if the random field depends only on one physical length
scale. For such “single-scale” Gaussian homogenous random fields, a wide variety of
simulation techniques beyond the Fourier-wavelet and Randomization methods may well
be adequate [30]. Our concern is with simulating multiscale random fields, meaning that
£, < L. One situation where this can arise is in two-scale random fields (such as those
contemplated in homogenization theory [5], where E(k) is peaked near widely separated
wavenumbers |k| ~ £;1 and |k| ~ £;! but rapidly decaying away from these values. In
this case, the random field could be simply simulated by expressing it as the superposition
of two independent single-scale random fields, one varying on the large scale, and one on
the small scale. But in applications such as turbulence and porous media flow, and in any
context involving fractal random models, the spectral density has nontrivial contributions
over a great range of wavenumbers within the wide interval £;! <« |k| « £;!, and the
random field is not well-approximated by a superposition of a few single-scale random
fields. It is in these situations that the power of the Fourier-wavelet and Randomization
methods is indicated.

2.2 Length Scales Introduced in Computation

In some applications, such as the simulation of a particle moving through a prescribed
turbulent field (1.1), one may wish to be able to evaluate the random field u(x) at an
arbitrary point on demand (not known in advance of the generation of the random field).
Both the Randomization method and Fourier-wavelet method are able to do this in an
efficient way, as shown in previous works [35], [9].

In other applications, such as in the simulation of the flow through a porous medium [16,
33], we may instead require the random field to be simulated over an entire pre-defined
region. For this to require finite computational work, we must agree upon a domain length
scale L and a sampling length scale A. The domain length scale describes the linear extent
of the region over which the random field is evaluated, and A denotes the distance between
points at which the random field is calculated. In the simplest case (which is sufficient
for our illustrative purposes), the random field is to be simulated on a Cartesian grid
with linear extent L in each direction, with grid spacing h. We stress however that
both the Randomization Method and the Fourier-wavelet Method are perfectly capable
of generating random field samples over an irregularly arranged collection of points.

Finally, for any application, the ideal random field to be simulated has nontrivial structure
on length scales ranging from £, to .. A numerical multiscale representation of this
random field will be associated with certain finite minimum and maximum length scales
Lnin and £p,.,, outside of which the method cannot be expected to accurately represent
the structure of the ideal random field. The length scales £.,.x and Z.;, can be related
to more fundamental parameters of the Monte Carlo simulation methods, as we describe
in subsequent sections. Generally speaking, £,,.x should be chosen to be at least as large
as the correlation length £. (but need not be as large as the domain length L). On the



other hand, £y, is either set equal or somewhat smaller than min(h,4;) or at a larger
value determined by computational cost constraints. In the latter case, the numerically
simulated random field can only be expected to be an accurate representation of the
desired random field when viewed on length scales larger than Z.;,.

3 Randomization methods

In the main text, we will present the numerical algorithms for the case of a real-valued
homogenous Gaussian scalar random field u(z) defined on the one-dimensional real line.
The generalization to the multi-dimensional case is given in Appendices A and B.

The simplest form of the Randomization method, which we shall refer to as
variant A, reads [35]

u®(2) = Z [fj cos(2m k; z) + n; sin(2w k; a:)] ) (3.1)

\/_
where ¢, 15,7 =1,...,n0 are mutually independent standard Gaussian random variables
(mean zero and unlt variance), and o? = [ E(k)dk = 2 fooo E(k)dk. The wave numbers
kj, 7 =1,...,n0 are chosen as 1ndependent random variables in [0, 00) according to the

probability density function (pdf) p(k) = 2E(k)/c?, and are also independent of the ¢;
and 7;. This variant A of the Randomization Method may be thought of as the most
straightforward way to approximate the Fourier stochastic integral (1.3) through a Monte
Carlo integration approach, using the complex conjugacy between the simulated random
variables associated to wavenumbers +k.

While the Randomization Method always produces random field approximations with
the correct mean and correlation function when averaged over a theoretically complete
ensemble of realizations, the practical concern is how well one or a finite number of
samples of the simulated random field replicate the statistics of the true random field
which is to be simulated. The randomization of the choice of wavenumbers creates some
additional variability in the simulated random field (such as realizations where, say, the
low wavenumbers happen to be undersampled). A common practice in improving Monte
Carlo calculations is the employment of “variance reduction” techniques which constrain
the random choices somewhat to mitigate the problem of generating an artifically large
number of strongly deviant samples. An extreme remedy would be to prescribe the
wavenumbers deterministically, as in the standard Fourier method discussed in Section 1,
but this has its own artifacts [7].

A compromise which seeks to avoid the problems of both purely deterministic and purely
random choices of random wavenumbers is to partition wavenumber space into bins, and a
prescribed number of wavenumbers are chosen at random locations within each bin. This
Monte Carlo variance reduction technique is an example of “stratified sampling” [32]. It
ensures a certain coverage of wavenumber space, but still takes advantage of Monte Carlo
integration techniques.

The mathematical framework for stratified sampling in the Randomization Method is
given as follows. We take A as the total space from which the wavenumbers are to



be sampled (it can in general be chosen as A = [0,00) but can also be chosen as the
possibly smaller support of the spectrum E on the nonnegative real axis. We then choose
a partition of A into a union of smaller non-overlapping intervals A = U7_; A;. Within
each interval A;, we sample ng independent random wavenumbers k;, [ = 1,...,n
according to the probability distribution function

PR for k€ A,
0 for k & A;,

.

where

The simulation formula then reads

Z

The amplitudes &1, nj1, 7=1,...,n; 1 =1,...,n9 are again standard Gaussian random
variables which are mutually independent and independent of the choice of wavenumbers
kji. One natural choice of stratified sampling for variance reduction is to choose a number

Z [fjl cos(2m ki ) + ny sin(27 kjy a:)] ) (3.2)

of sampling bins n and then choose the sampling intervals A, so that each of them contains
an equal amount of “energy” (integral of the spectral density): sz- = % for 1 <3 <n.
We refer to this stratified sampling strategy as variant B of the Randomization Method.

We will also explore an alternative stratified sampling strategy in which the sampling bins
are simply assigned to be equally spaced with respect to Ink. That is, the wave number
intervals A, = (lAc kﬁ_l] for y = 1,...,n are defined according to a geometric distribution
with ratio parameter g: kﬁ_l = qkj, 71=2,. — 1. If the spectral density of the random
fleld is confined to a bounded domain of Wavenumbers k < kmaz, then we can choose
/Acn = Kmaz; Otherwise we take k., = 0o. Similarly, if the minimal wavenumber k,;, in
the support of the spectral density is positive, we can choose ki = Kmin. Otherwise, we
would choose k; in some other way suggested by the spectrum, perhaps as the wavenumber
at which the spectral density is maximal, and then adjoin a sampling bin Aq = (0, ];1)
We call this stratified sampling strategy based on a logarithmically uniform subdivision
vartant C of the Randomization Method.

The motivation for this externally imposed subdivision scheme is that a multiscale random
field, particularly one with a self-similar fractal property, might be well represented in a
hierarchical manner with a certain number of computational elements at each important
“length scale,” with geometrically distributed length scales. Indeed, this is precisely what
the Fourier-wavelet simulation method (in fact any wavelet method) does, and appears to
be one of the essential elements behind its demonstrated efficiency in simulating random
fields with multiscale structure over many decades [6, 9, 8]. We are led to consider, there-
fore, how incorporating a similar distribution of wavenumbers within the Randomization
approach would compare with the Fourier-wavelet method. Other externally imposed
subdivision strategies may be chosen based on the spectral density of the random field to
be simulated as well as the type of statistics which are sought in the application.

All variants of the Randomization method provide unbiased estimators of the correlation
function of the simulated random field, meaning that these statistics can in principle be
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recovered with arbitrary precision through a sufficiently large sample size (though with
the usual relatively slow convergence of Monte Carlo sampling), even with fixed finite
values of the discretization parameters. In particular, there need not be a rigid maximal
and minimal length scale, £iax and £y, within which the Randomization Method confines
its effort, because the wavenumber sampling bins can extend to k = 0 or £ = co. How-
ever, in practice, the finite number ng of wavenumbers sampled in these bins does impose
effective maximum and minimum length scales over which the random field structure can
be expected to be adequately represented. We discuss this in the context of a particular
example in Subsubsection 5.1.2. The quality of higher order and multi-point statistics sim-
ulated by the Randomization Method is less clear; in particular the randomization of the
wavenumbers makes the simulated field non-Gaussian. Central limit theorem concepts,
however, suggest that with a sufficiently rich sampling of wavenumbers, the simulated
field should have some approximately Gaussian properties. (See Appendix A.1 for a sum-
mary of some rigorous results along these lines). We investigate these questions in detail
in Sections 5-7.

4 Fourier-wavelet simulation method

We present here some details for the one-dimensional case, and discuss multi-dimensional
generalizations in Appendix B. A homogeneous Gaussian random field u(z) can be rep-
resented using the Fourier-wavelet representation [6]:

Z vayfm (z/£) —7) , (4.1)

m=—00 jJ=—00

where ug is a dimensional constant having the same dimensions as the field variable w, £
is an arbitrary length scale, v,,; is a family of mutually independent standard Gaussian
random variables, and

fnl) = / ~2nibe gm/2 j1/2(gmf) 3(F) d (4.2)

where E’(ic) is a dimensionless spectral density defined through
o 1
E(k k/l
(F) = 1 B/
Here, in order to ensure an efficient wavelet representation of the random field, g%(k) is
chosen as a compactly supported function which is the Fourier transform of the Meyer
mother wavelet function based on a pth order perfect B-spline [6]:

(k) = —isign(k) ™ b(|k]), (4.3)
where
sin(Tup(3k — 1)), ke (L,2],
b(k) = { cos(Zvp,(3k — 1)), ke (2%, (4.4)
0, else



and the function v,(z) is defined by

p—1
4

p

(@) = (-1 —{le —@alf, + [2 — g% +2) (-1 e ;12 } | (4.5)

where z; = (1/2)[cos(((p — 7)/p)m) + 1], and [a]; = max(a,0). The positive integer
parameter p is chosen in [6] equal to 2.

The representation (4.1) expresses the random field u(z) as a hierarchical random super-
position of real, deterministic functions f,,, and their translates. The function f,, can be
thought of as encoding the structure of u(z) on the length scale 27 £. This can best
be seen by the dual relation between spatial lengths and Fourier wavenumbers, since f,
is completely determined by the contributions of the spectrum E(k) over the interval
22m < | < Aom,

34 — — 3

The implementation of the Fourier-wavelet method of course requires that the sums over
m and j in (4.1) be truncated to finite sums. This is done through consideration of the
length scales over which the random field is to be sampled.

First, we choose £ = /... as some convenient length scale that represents the largest
length scale of the random field which we wish to resolve in our simulation. If the random
field is to be simulated over a grid with spacing h, it will be convenient to choose £ so
that £/h = 2™ for some nonnegative integer m. By setting £ = £,.y, it is now convenient
to truncate the sum over m to run over 0 < m < M — 1, thereby formally representing
the random field down to length scale £y, = 2'7£,,,. Note that this truncated Fourier-
wavelet random field representation will only incorporate information from the energy
spectrum E(k) over the wavenumber range %Z‘l <k< %Z‘l so one should be careful

max min?

that the energy outside this range can be safely neglected for the application.

We turn now to the truncation of the sum over the translation index j. It is shown in [6],
that if the spectrum E(k) is smooth enough then the functions f,,(§) decay like |£|7P
where p is the order of the spline used to construct the Meyer wavelet. So long as p > 2,
then, we can choose a “bandwidth” cutoff b so that the total mean-square contribution
from terms with |7 — 2™z /£| > b to the random field value at z is as small as desired. For
illustation, we show in Fig. 1 typical curves f,,(¢) for m = 0, 1,2 for the spectral density
defined in (5.1), which we will study in Section 5. We therefore choose an appropriate
value for b which meets our accuracy needs, and then, when evaluating the random field
u(z) at a desired point z, only incorporating the 2b+ 1 terms satisfying |2™(z/£) — 7| < b,
where the notation |y| denotes the greatest integer not exceeding the real value y.

Hence the finitely truncated Fourier-wavelet representation for the value of the random
field at any location z can be written as follows

M-1 b
u(@) =uo Y Y Ymam(e)st fm (27 (2/8) = Am(2) = §') (4.6)
m=0 j'=—b

where i, (z) = [2™(z/£)]. One must be careful when evaluating the random field at
various locations z to be sure that the random variables 7,,; used for each evaluation are
the same (and not independent!) when the same indices m and j are involved.
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Detailed analysis of the errors of interpolation, discretization, and aliasing in the evalua-
tion of the Fourier transform (4.2) can be found in [6]. We shall simply make use of these
results in choosing suitable numerical parameters p, b, and A¢ in our simulations.

We will focus our attention on the cost of the Fourier-wavelet method (Section 5) and the
quality of the random field statistics which it generates (Section 6 and 7), particularly in
comparison to the Randomization Method. The Fourier-wavelet method is considerably
more complicated than the Randomization Method, and it does incur a statisical bias
through truncation of the sums in (4.6) and the need to approximate the functions f,,
through interpolation from a finite set of data points. We will therefore be particularly
interested to examine the circumstances in which the extra complexity of the Fourier-
wavelet method make it worthwhile relative to the Randomization Method.

5 General Considerations of Cost

We begin our studies of the Randomization and Fourier-wavelet Methods by revisiting the
question of how much computational effort is required by these methods to generate fractal
self-similarity over a desired number of decades [6, 3]. We consider the computational cost
in two settings in turn: those in which the random field is to be evaluated at points on
demand (Subsection 5.1), or on a pre-defined computational domain (Subsection 5.2).
Our theoretical considerations are intended to apply rather broadly to multiscale random
fields in multiple dimensions with characteristic parameters defined in Section 2, but
for illustrative purposes, we will refer in our discussion to some numerical results for a
one-dimensional random field example u(z) with spectral density

E(k‘) — CE|k|_a7 |k| Z kO: (5 1)
0, k| < ko. '

This random field has correlation length 4. = (o — 1)/(2ko) and £, = 0. In numerical
calculations we choose specifically o = 5/3 (corresponding to the Kolmogorov spectrum
for the inertial range of a turbulent flow [13, 31, 24], kp = 1, and Cg = 1.

To assess the basic quality of the simulated fractal random fields, we shall use the

correlation function B(p) = (u(z + p)u(z)) and the second order structure function
D(p) = ([u(z + p) — u(z)]?), where the angle brackets denote an average over an en-
semble of independent random field realizations which are related to the spectrum by the
formulae
B(p) = /ZE(k) cos(2m kp)dk, D(p)= /4E’(k) [1 — cos(2m kp)] dk .
0 0

Note that the main contribution to the structure function D(p) at a given value of p
comes from the wavenumbers which are of order of 1/p. The power law structure of the
energy spectrum implies, by Fourier duality, that the structure function should exhibit a
self-similar power law scaling on scales small compared to the cutoff length scale kg*:

D(p) ~ Jap*™! for p < kgt
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where

o0

21+o< .
— o= (1 — 2), 1 , 2
Jo =4Cg / k™[l — cos(2m k)| dk = ™ (1 —a)sin(am/2) <a<3,a#
471'2, a=2

0

(5.2)
and I'(z) for z < 0 is obtained by analytical continuation of the standard definition [15,
23]. This induced power-law scaling in the structure function is most clearly seen by
rewriting the structure function in the form

pko

D(p) = [Ja . 4/(1 — cos(2m K'))K' dk’] P, (5.3)

0

To more clearly display the accuracy of the simulation methods in replicating the correct
scaling (5.3) of the structure function, we will look at a rescaled form [6]

G2(p) = D(p)/(Jap™>™1),

which should satisfy Ga(p) ~ 1 for pkog < 1. We can therefore analyze rather rigorously
how well the Monte Carlo methods are simulating the second order statistics of the fractal
random field described by spectral density (5.1) by observing over how many decades the
function G3(p) remains near the constant value 1.

5.1 Random Field Simulations with On Demand Evaluations

We begin by revisiting the cost of simulating a multiscale random field which is to be
evaluated at certain points on demand (not specified in advance). The primary three
components of either simulation method may be categorized as follows:

o the preprocessing cost of taking the desired energy spectrum and making the deter-
ministic calculations needed for the random field representation,

e the cost in simulating a new realization of the random field, which involves the
generation of a new set of random numbers, and

e the cost of evaluation of the current realization of the random field at a location
specified on demand.

Certain aspects of these cost contributions have been considered previously [6, 3], but
we wish to re-evaluate the cost analysis of the Randomization Method in light of new
stratified sampling strategies. The preprocessing cost can probably be treated as less
important than the other costs if many realizations of a random field with a single energy
spectrum is needed [3], but it could play a more important role in dynamical simulations
where the energy spectrum evolves in time. We therefore include a brief consideration of
the preprocessing cost.

We quickly consider the costs of a standard Gaussian simulation scheme (Subsubsec-
tion 5.1.1), then consider the Randomization Method (Subsubsection 5.1.2) and the
Fourier-wavelet Method (Subsubsection 5.1.3) in turn.
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5.1.1 Standard Simulation Method

One generic approach to simulating a Gaussian random field at a set of points specified
on demand is to recognize that the values of the random field at these points form a mean
zero, jointly Gaussian collection of random variables [41]. Consequently, the value of the
random field can be simulated progressively at each new point specified on demand by the
standard regression formulas that describe the conditional expectation and variance of a
Gaussian random variable from the covariance and realized values of the other variables to
which the new random variable is correlated [12]. Implementing this in a straightforward
way would yield a negligible preprocessing cost, and a total cost proportional to N? to
simulate one realization of the values at N, points specified on demand. (With this iterated
regression approach, the division of the simulation cost into random field realization and
cost of evaluation per point is not meaningful).

When the points at which the random field is to be evaluated becomes sufficiently dense,
it may be more efficient to simulate the random field on a regular grid (with resolution
h) and then evaluate the random field at the points to be specified on demand through
interpolation. Then the preprocessing cost is determined by the calculation and Cholesky
decomposition of the covariance matrix of the random field values on the grid; this cost
scales as (L/h)%(£./h)*®. A realization of the random field entails the calculation of the
random field values on the grid, and involves the multiplication of a vector of independent
standard Gaussian random variables by the square root of the covariance matrix associated
to the grid locations, which is obtained from the Cholesky decomposition. This operation
has cost scaling as (L/h)%(£./h)? per realization of the random field. Each evaluation of
the random field through interpolation has order unity cost.

The essential point is that these standard Gaussian random field simulation approaches
grow as a superlinear power law in N, (L/h)? and (£./h)?. Whenever all these quantities
are large, as is the case for a simulation at which a multiscale random field is to be
evaluated at a large set of points, then the cost of this straightforward approach can
be expected to be quite large. We will see that the Randomization and Fourier-wavelet
Methods have costs which scale much less rapidly with respect to these parameters.

5.1.2 Randomization Method

Choice of Numerical Parameters As discussed in Section 2, we choose parameters
in a Monte Carlo simulation method based on the maximum and minimum length scales
(Lmaxs Zmin) of the random field structure which we aim to capture. The crucial deter-
minant of cost is the ratio of these length scales, which we will express in terms of the
number of decades separating them:

Ndec — 1Oglo(gmax/gmin)-

In our numerical example (5.1), we will choose £pax = ko_l (in general it should be com-
parable to the correlation length £.). The remaining parameters to be determined are the
number of sampling bins, n, and the number of wavenumbers chosen per sampling bin,
ng. These parameters are really set by Ng.., the number of decades of accurate simulation
desired, as well as our choice of bin widths. We elaborate for each of the variants of the
stratified sampling strategy.
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Variant A Without stratified sampling, n = 1. Following [3], we can estimate the
smallest length scale £.,;, which will be reasonably approximated by the Randomization
Method using ng random wavenumbers as that length scale for which the average number
of wave number samples lying in the interval (1/4min, 00) exceeds some critical numerical
value ¢. The larger we choose ¢, the more stringently we are interpreting the phrase
“accurate representation of the random field down to length scales £;,.”

For our example (5.1), the average number of wave numbers in the interval (1/Zmyin, 00) is
equal to ng(kolmin)* *, then from ng(kolmin)* * = ¢ we get

min — ko c . .
So with ny wavenumber samples, the number of decades accurately described is Ng.. =
ﬁ log,o(n0/c). Equivalently, the number of wavenumber samples required grows expo-

nentially with the number of decades desired: ng = c10Neec(2=1),

We can see, for example, in Figures 2 and 3 that increasing the number of simulated
wavenumbers from ng = 160 to ng = 1000 extends the domain of accurate self-similar
scaling by less than a decade. If we wished to simulate 9 decades of scaling, then for
a = 5/3 we have to sample 10° wavenumbers, which is practically unrealistic. Increasing
the number of decades of scaling with variant A of the Randomization Method therefore
requires a very large extra investment of computational effort.

Variant B Here we select n sampling bins, each with equal energy, and sample ng
wavenumbers from each bin. Applying similar arguments as in our analysis of variant A,
and assuming that the accuracy parameter c is smaller than ng (so that 4y, is assumed
to fall in the wavenumber bin with the highest wavenumbers), we obtain

ne | k>dk
1/lmin

L [ ke dk
ko

and consequently £, = é(nno/c)_al?. The number of decades of accurate scaling is
therefore related to our sampling effort as:

1
Ndec — —10g10(nn0/0)-
a—1

So the stratification of the sampling into bins of equal energy seems to lead to no im-
provement in efficiency; the number of decades is again logarithmically related to the total
number of wavenumbers nng sampled. The quality of the simulation is also not markedly
improved by the equal energy stratified sampling, as seen in Figures 4 and 5.

Variant C We finally consider how the cost of the logarithmically stratified sampling
strategy is related to the range of scales over which one wishes to simulate a multiscale
random field accurately. Applying the same criterion as in the previous variants for
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determining the smallest scale Z,;, which is simulated accurately given the number of
sampling bins n, the ratio g between the bin boundaries, and the number of samples ng
per bin, we obtain ¢ = no(lminkn)a_l, where k, = koq™ ! is the left endpoint of the highest

wavenumber sampling bin. Solving for Z;,, we obtain £p;, = ko_lql_”(no/c)_l/(a_l), and
so the number of decades of accuracy can be estimated as:
1
Nyee = p— logion0 + (n — 1) log g. (5.5)

Note that in contrast to Variants A and B of the Randomization Method, the number
of decades resolved in this case scales linearly with the number of bins n. So if we fix
the bin ratio ¢ and the number of samples per bin ngy at some reasonable values, our
theoretical estimate suggests that we can simulate a number of decades proportional to
our computational cost by simply increasing the number of sampling bins. This is well
illustrated by numerical results presented in the left panel of Figures 6 and 7. We see that
with the same effort as in the previous variants of the Randomization Method, we are able
to simulate 9 decades of self-similar scaling accurately. The structure function for larger
values of p is also well calculated by the Randomization method with the logarithmic
wavenumber subdivision (Figure 8).

To emphasize the quality of the second order structure function simulated by the Random-
ization Method, we compare it against a direct Monte Carlo simulation of the collection
of random variables du;, = %, 1 =1,...,np, with p1 = L, and p; = gp;_1 for
1 > 1. These random variables are Gaussian with zero mean and covariance

1
(buibuy) = ——F5—== [D(Pz') + D(p;) — D(pi — Pj)]
2Jap;* p;?

but in our simulations we approximate the right hand side by its limiting value for p;kg < 1
where D(p) is replaced by J,p* !. The results of this direct simulation, displayed in the
right panel of Figure 7, represent a Monte Carlo estimate ég(pm) = {((8um)?) of the
structure function which only exhibits sampling error. This direct simulation approach is
of course impractical for actually simulating the values of a multiscale random field over
a large number of points, as discussed in Subsubsection 5.1.1. Comparison of the panels
in Figure 7 shows that the structure function simulated by the Randomization Method
is of almost as good quality over 9 decades as the direct simulation with only sampling
error.

The same verification was made for the kurtosis

((u(p) —u(0))*

Gale) = Tup) —u(0))?)?

see the curves in Figure 9.

From our exploration of the multiscale random field with spectral density (5.1), we have
found that the Randomization Method can be made much more efficient by using more
general stratified sampling schemes other than subdivision into sampling bins of equal
energy. We have attempted a logarithmic subdivision strategy because of its natural
association with self-similar fractal random fields, using essentially an equal level of reso-
lution at each length scale within the range of the simulation. The Fourier-wavelet method
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(indeed any wavelet method) employs a similar representation. We do not claim that the
logarithmic subdivision strategy is optimal, only that it appears to greatly improve the
efficiency of the Randomization Method relative to an equal-energy subdivision. Nor do
we take the relation (5.5) too seriously by, for example, optimizing it with respect to the
numerical parameters. This would lead to silly strategies because the formula (5.5) does
not take into account the need to adequately sample wavenumbers throughout the range
of scales from £;, to £iax. Our rough theoretical considerations are only meant to suggest
what to expect with a reasonable choice of parameters to ensure a decent level of accuracy.
The main point is that the estimate (5.5), along with the numerical results in Figures 6-9
suggests that the Randomization Method with a logarithmic subdivision strategy should
be able to simulate a multiscale random field with the number of computational elements
growing linearly with the number of decades of random field structure simulated, at least
insofar as producing an accurate simulated structure function. We expect this cost scaling
to apply to more general multiscale random fields as well.

That is, to simulate a random field for the purposes of evaluation at points on demand,
we expect that a Randomization Method with logarithmic subdivision strategy could be
adequate with some fixed reasonable bin ratio (such as ¢ = 2), some fixed reasonable
number of wavenumbers sampled per bin (such as ng ~ 4 — 10), and the number of
sampling bins n chosen in proportion to the number of decades of random field structure
to be simulated (so proportional to log;,(£4./4,) if the full structure of the random field
is to be represented). We emphasize that these choices of parameters are expected to be
adequate only insofar as accurate simulation of two-point statistics (such as the structure
function) evaluated at arbitrary points suffices for the application. In Sections 6 and 7,
we examine how well the Randomization Method is able to recover multi-point statistical
properties.

Multidimensional Simulation The above discussion focused on random fields defined
over one dimension. We consider briefly how the choice of parameters can be expected
to change in higher dimensions. For concreteness, we will consider the isotropic case
(for which the Randomization formulas are presented in Appendices B), though simi-
lar conclusions can be expected to hold for the anisotropic case as well (Appendix A),
particularly if the subdivision of wavenumber space is arranged into radially symmetric
shells. We expect that a logarithmic subdivision strategy along the radial direction to
again yield an efficient simulation (at least for the purpose of simulating statistics such
as the structure function), so that the number of bins n (radial shells) should scale with
log(4max/%min). 1t is not so clear, on the other hand, how the number of wavenumbers
ngo per bin needed for an accurate simulation should depend on the length scales of the
random field to be simulated. The answer likely depends on the type of statistics in which
one is interested. If it suffices to simulate the second order structure function accurately
and for the second order correlation function to appear approximately isotropic, then a
fixed number ny wavenumbers per bin, independent of the length scales of the random
field (but presumably depending on the number of dimensions), is likely to be adequate.
There may be more complex statistics involving correlations of the random field along
different directions which may require ng to be chosen to increase with £./4,. However,
since we will not examine multi-dimensional random field statistics in much detail, we
will not dwell much on this point but rather think of ny as needing to depend somewhat

16



on dimension but not on the length scales of the random field.

Preprocessing Cost The Randomization Method has a preprocessing cost propor-
tional to the number of stratified sampling bins n.

For subdivision strategies which are determined without detailed computation involving
the energy spectrum (such as variant C), one needs to prepare a transform or rejection
method in each bin to convert a standard uniform random number to the correct proba-
bility distribution of wavenumbers within each samping bin. For bins set by equal energy
distribution (variant B), one must also compute where the bin divisions lie. We will not
concern ourselves with quantifying this additional cost because the equal energy distribu-
tion strategy does not seem to have an advantage (compared to, say, variant C) justifying
the extra computation.

Cost per Realization A new random field is simulated by choosing ng wavenumbers
randomly within each of the n bins, and then generating a Gaussian random amplitude
for each of these wavenumbers. The cost is proportional to a small multiple of ngn.

Cost per Evaluation The evaluation of the random field at a point specified on demand
is done by straightforward evaluation of the Fourier series approximation (3.2), with a
cost proportional to nng, the number of terms in the sum.

Summary of Cost Considerations The preprocessing cost is proportional to the
number of sampling bins n, while the costs per realization and evaluation are proportional
to the total number of wavenumbers sampled, non. Each of these costs are expected to
scale linearly with the number of decades of random field structure to be simulated, at
least if accuracy of the simulated second-order statistics is all that is required.

5.1.3 Fourier-wavelet Method

Choice of Numerical Parameters As with the Randomization Method, one must
choose the maximal and minimal length scales, £,,.x and £y, to be resolved by the random
field simulation. The maximal length scale £, is generally taken to be comparable to the
correlation length of the random field; in our example (5.1), we choose £pax = ko = 1. The
ratio between the minimal and maximal length scales is set by the choice of the number of
scales M in the truncated random field representation (4.6); namely, (Ymax/%min) = oM-1
The number of decades which one is attempting to capture is

Ndec — 1Oglo(gmax/gmin) - (M - 1) 10glO 2.

Good statistical quality will generally be somewhat less than this ideal figure, but we
should expect the number of decades for which the random field will be accurately simu-
lated to scale linearly with M — 1.

One must additionally choose the truncation parameter b to be large enough that the
functions f,, () derived from the wavelets can be considered negligible for || > b. Gener-
ally speaking, f,(¢) decays algebraically, with power law |¢[? if the Meyer mother wavelet
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is built out of a pth order perfect B-spline [6]. The values of p and b primarily affect the
relative error of the statistics of the simulated random field (arising from the truncation
of the sum over translates in (4.6)), and in general need not be adjusted when simulating
random fields with various length scales, so long as the relative accuracy required remains
fixed. Following [6], we choose p = 2 and b = 10.

Finally, we must choose a finite spacing A{ between the points £ = ¢ = —b+ (5 —
DA, 7 =1,...,2b/Aé+1 at which the functions f,,(§) are numerically evaluated through
their Fourier integrals (4.2). We will assume that 1/A£ is an integer. The choice of A¢
determines how accurately the functions f,, are approximated through interpolation from
the computed values throughout the interval |{] < b over which they may need to be
evaluated in the representation (4.6). Like b and p, the numerical value A¢ is determined
by the amount of bias due to numerical discretization which is tolerable in the statistics,
and is insensitive to the length scales characterizing the random field to be simulated,
since the functions f,,(£) are each single-scale functions. The value A¢ = 0.01 was used
in our calculations.

An example of the correlation function and normalized structure function G(p) for the
energy spectrum (5.1) as simulated by the Fourier-wavelet method with M = 40 scales
and b = 10 is shown in Figure 10. For multi-dimensional simulations, one must choose
how many one-dimensional random fields N, to use in the plane wave superposition (see
Appendix B). This is determined both by the angular resolution desired and the number
of plane waves required per angular direction. [9] show that a fixed number N, of plane
waves (depending on dimension but not on the length scales of the random field) is
adequate to ensure a desired approximation to isotropy of the simulated random field. As
discussed in Subsubsection 5.1.2, there may be more complex multi-dimensional statistics
that require N, to increase with £./£,, but we will not investigate this possibility in the
present work. We will rather think of N, as independent of the length scales of the random
field, as should be adequate at least for statistics involving a small number of evaluation
points.

Preprocessing Cost Once the numerical parameters have been chosen, the functions
fm used to represent the random field on various length scales each need to be com-
puted through evalulation of the Fourier transforms (4.2). Some details of how these
values can be calculated through a fast Fourier transform are given in Appendix C. The
cost of each integration is b/Aélog,(b/A¢) and M functions f,, need to be computed.
Since these numerical integrations dominate the preprocessing cost, we can estimate it as
Mb/A¢log,(b/ AE). The extra preprocessing cost in the extension to multiple dimensions
through plane wave superposition is negligible because the same functions are involved.

Cost per Realization We first consider the case in which the points at which the
random field are to be evaluated, though not specified in advance, are known to all lie
within a one-dimensional domain with length scale L. Then, one has two options with
the Fourier-wavelet method:

e Simulate at the beginning of the calculation the random field over the whole domain,
then simply evaluate the random field at the desired locations.
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e Simulate the random field only as needed to evaluate its values at the desired points
of interest.

The execution and accounting is simpler for the first approach, which we now discuss.
Later we will remark on how one may be able to reduce computational cost through the
second approach, particularly if the number of points at which the random field is to be
evaluated are sparsely distributed over the simulation domain.

The number of scales M in the Fourier-wavelet representation is specified through con-
sideration of relevant length scales in the random field as described in Section 2.1. We
now fix an index 0 < m < M (which fixes a length scale £27™), and note that we must
simulate and store 7,,; for 2™ L/¢ + 2b different indices 7 in (4.1), so that the sum (4.6)
can be accurately evaluated at any value of z on demand in the one-dimensional domain
of length L. This follows from counting the number of integers 7 such that |,(z)—7| < b
for some z within an interval of length L. Consequently, the cost to simulate a realization
of a one-dimensional random field comprehensively (to the specified level of accuracy)
over a domain of length L is

M
> (@mL/L+2b) = 2™ L/L+ 20M

m=0

For a random field to be simulated over a multi-dimensional domain with length scale L,
this cost is multiplied by the number N, of one-dimensional random fields used in the
Radon plane wave decomposition.

One can cut back on this cost if the points at which the random field is to be evaluated
are rather sparsely distributed over the domain in which they are known to lie. In this
case, the random field is only simulated as needed for evaluation [10, 9, 8], and the cost for
simulating the random field is essentially proportional to the cost of evaluation (discussed
next). In this approach, however, one must be careful with managing the random numbers
Ym; so that the same values are used when the same indices are referred to in random
field evaluations at different locations z. One can either store all random numbers that
have been generated and develop an efficient data handling routine to check whether a
random variable v,,; appearing in an evaluation needs to be generated or recalled from
a previous generation. Alternatively, one can explicitly use the structure of a reversible
pseudo-random number generator to simulate all random variables as needed, maintaining
the idenities of random variables already realized, without actually storing them [8]. In
short, one may be able to save on computation time by only simulating the random field
as needed, but one must adopt a more sophisticated code to handle the random numbers

Yomg-
Finally, if the points at which the random field are to be evaluated cannot be constrained
to lie in a pre-specified domain (as may be the case in turbulent diffusion simulations on

an unbounded domain), then one must adopt something like the second strategy described
above in which the random field must be simulated as needed.

Cost per Evaluation The evaluation of the random field at a given point involves
the calculation of a sum of the form (4.6). This involves interpolation to evaluate the
functions f,, at the indicated values, and possibly the generation or recollection of the

19



random variables 7,,; if they are only being simulated as needed. In any event, the cost
is generally proportional to the number of terms in the sum, bM.

Summary of Cost Considerations The preprocessing cost is proportional to the
quantity Mb/AElog,(b/AE), the cost per evaluation is proportional to 2Mb, while the cost
per realization may be proportional to 24+1[ /£ 4 2bM, but possibly simply proportional
to MbN,, where N, is the number of evaluations of the random field, for the case of sparse
sampling of the random field and a sufficiently sophisticated algorithm for handling the
random numbers. The preprocessing cost appears negligible relative to the other costs,
and the total cost for simulating one realization of the random field at N, locations
should scale somewhere between MbN, (for sparse sampling of points on demand) and
2M"’1L/€—|— 2bM + MbN, (for dense sampling of points on demand which lie within a fixed

bounded domain).

5.1.4 Comparison of Costs

For both algorithms, the total simulation cost is proportional to the number of realizations,
so we discuss the cost of simulating one realization of the random field at a certain number
N, of points specified on demand. We only consider the most competitive Variant C, with
logarithmically uniform subdivision, of the Randomization Method.

For this Randomization Method, the computational cost per realization is rather simply
found to be proportional to the number of decades resolved in the random field and the
number of points to be evaluated. The prefactor in the cost is not very large (say, order
10), being simply determined by the number of wavenumbers that should be simulated
per decade to provide sufficient statistical accuracy. The cost of simulating a multiscale
Gaussian random field with the Fourier-wavelet method appears to be usually greater. In
the case of sparse sampling, the cost scales nominally with MbN,N,. This may be viewed
as ostensibly comparable to the cost scaling in the Randomization Method, but one must
recall that to achieve such cost scaling in the Fourier-wavelet method for N, > 1, the
code must involve a somewhat sophisticated handling of the random numbers ~,,; in the
expansion (4.1), thereby increasing the amount of work per calculation.

If one wishes to avoid the need for a delicate management of random variables in the
Fourier-wavelet method, and one can pre-specify a bounded domain in which the points
to be evaluated must lie, then one can simulate the random field over the whole domain,
before evaluation, in which case the cost will generally scale as N, 2M"’1L/Z 4+ 26M N, +
MbNN,. The first term has the potential for growing quite large for random fields with
many scales, and has no counterpart in variant C of the Randomization Method. We can
understand the difference in scaling by noting that the random field structure on length
scale 27™/ is represented in terms of ng random variables (the number of wavenumbers
sampled at this length scale) in the Randomization Method, but by 2™L/£ 4 2b random
variables (9y,;) in the Fourier-wavelet Method. The Fourier-wavelet Method is therefore
using many more independent random numbers to represent the smaller scales of the
random field than the Randomization Method.

Both the Randomization and Fourier-wavelet Methods are much less expensive than the
standard simulation approach described in Subsubsection 5.1.1 when a multiscale random
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field (with £./fmin > 1 and L/Zymin > 1) is to be evaluated at a large number N, of points.
Indeed, the cost of the Randomization Method scales linearly in N, logarithmically with
respect to £./Lmin, and is independent of L/4,;,. The Fourier-wavelet method has similar
cost scaling with careful random variable management, but even with the simpler approach
of simulation on a grid followed by interpolation, the cost of the Fourier-wavelet method
scales as Ny L/Lmin + Nab1n(£e/Lmin) +10(£e /£inin )b Ne N, which scales logarithmically with
respect to £./lmin and linearly (and additively) with respect to L/lmin and N.. The
standard simulation method described in Subsubsection 5.1.1, by contrast, has cost scaling
superlinearly with respect to these parameters.

We conclude that to simulate a given random field, the Fourier-wavelet Method is generally
more expensive than the Randomization Method with logarithmically uniform subdivi-
sion. In particular, the computer time needed to achieve a 1%-accuracy of the simulated
structure function over 9 decades (see Figure 6) was approximately 12 times less with the
Randomization Method (n = 40, ng = 4, ¢ = 2) than for the Fourier-wavelet method
(M =40, b = 10).

We will see through numerical examples in the next few sections that the Randomization
Method can also simulate multi-point statistical characteristics of the random field more
quickly than the Fourier-wavelet method if the number of points involved is not too high
(e.g., less than 100). The Fourier-wavelet method, however has better ergodic proper-
ties and appears to simulate statistical characteristics involving many points accurately,
without the need to increase the cost of the simulation beyond that associated with the
parameters used to simulate the structure function accurately (Figure 6).

We remark that the other variants (A and B) of the Randomization Method would have
costs growing faster than that of the Fourier-wavelet method for multiscale random fields
with many decades; it is crucial to use the logarithmically uniform subdivision to render
the Randomization Method competitive for such applications.

5.2 Random Field Simulations on Pre-Specified Domain

We now discuss the relative costs of the Randomization and Fourier-wavelet Methods when
the random field is to be simulated on a uniform grid with spacing A and domain length
L. We only point out the differences from the above discussion concerning simulation of
the random field at points which can be specified on demand.

5.2.1 Standard Simulation Method

As discussed in Subsubsection 5.1.1, one can use Cholesky decomposition to simulate a
Gaussian random field on a pre-specified set of points. The number of points at which
the random field is to be evaluated scales with (L/h)?, so the preprocessing cost would
scales as (L/h)%(£./h)??, and the cost to simulate one realization of the random field over

the grid scales as (L/h)*(£./h)%.
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5.2.2 Randomization Method

The cost considerations for the Randomization Method are essentially unchanged. The
preprocessing cost scales with the number of sampling bins ng, and then each realization
of the random field over the (L/h)? lattice points requires a number of computations
proportional to nng(L/h)¢. We recall for variant C, with logarithmically uniform stratified
sampling, the number of decades simulated is proportional to n. There does not appear
to be any cost savings available from the evaluation points falling on a regular lattice; the
Fast Fourier Transform is not available due to the irregular spacing of the wavenumbers
used in the Randomization Method.

5.2.3 Fourier-wavelet Method

To first approximation, we can relate the cost for simulating a random field over a regular
lattice by simply viewing it as a special case of making N, = (L/h)? evaluations of the
random field over a domain with length scale L. In this case, it is clearly more efficient to
directly simulate all the random variables 7,,; needed, so long as they can be stored. We
therefore estimate a preprocessing cost proportional to Mb/A¢log,(b/A€), and a cost of
simulating each realization of the random field over the prescribed lattice proportional to
N2MAIL /0 + 26M N,(L/h)2.1t is natural to take the sampling distance h comparable to
the smallest length scale £, = £2' ™M resolved in the Fourier-wavelet representation, in
which case we can re-express the cost per realization of the random field on the lattice as

proportional to (L/h)N, +bM N,(L/h)? ~ bM N,(L/h)%.

5.2.4 Comparison of Costs

With the dense sampling of the random field implicit in simulating the random field over a
lattice, both the Randomization Method and Fourier-wavelet method scale similarly with
respect to the length scales involved. Namely, they are both proportional to the number of
lattice points (L/h)¢, the number of decades simulated (which is logarithmic in (£./h)),
and some numerical implementation parameters. The Fourier-wavelet parameter N, is
probably the largest in multiple dimensions; in [9], it was chosen as N, = 32 in two
dimensions. For one-dimensional random fields, the simulation costs of the two methods
appear comparable if the lattice is very dense, with b = £2'" . Both the Randomization
and Fourier-wavelet Methods are again much more efficient than the standard simulation
approach based on Cholesky decomposition of the covariance matrix associated to the
pre-specified grid for multiscale applications ((L/h)% > 1 and (£./h)? > 1), since the
latter has cost scaling as a superlinear power law with respect to these large parameters.

6 Ergodic Properties of Simulated Random Fields

An important feature of numerically simulated statistically homogenous random fields is
the quality of their ergodicity, by which is meant the convergence of spatial averages of
quantities to their theoretical averages taken over a statistical ensemble. Ergodicity is a
particularly useful feature of a simulated random field when each realization is expensive
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to compute, because statistics can be extracted by processing spatial averages of one or a
small number of realizations instead of by averaging over a large set of realizations. Sim-
ulation of a porous medium flow through the Darcy equation (1.2) for a given realization
of the conductivity, for example, is a rather time-consuming computational procedure.

As a basic example, we consider the second order correlation function and structure
function of the random field, which have, respectively, the theoretical ensemble-averaged
definitions:

B(p) = (ulp + 2)u(a)),
D(p) = {(ulp + ) — u(=))?).

Neither depend on z due to statistical homogeneity. Rather than considering the quality
of ensemble averages (as we did in Section 5), we now study how well corresponding

(6.1)

spatial averages of a single realization of the simulated random field:

Brlp) = 5 D ulp+ (= D) u((i — 14
Dl = 3 D uloi+ (G = DI —wlG = DIV, pi= Api—1), i=1,...,m,.

(6.2)

converge to the ensemble-averaged expressions B(p) and D(p) as the number of spatial
samples N, is taken large. Here 4, is a length scale describing the spatial translation
between each spatial sample. To study the ergodicity properties of the simulated random
fields, we compare simulated spatial averages for the correlation function and the normal-
ized structure function Ga(p) = D(p)/(Jap™ ') against the exact results for the energy
spectrum (5.1).

6.1 Randomization Method

In Figure 11, these comparisons are made for the Randomization Method. Note that
even for N, = 16000 spatial samples, n = 25 bins, and ng = 10 wavenumbers per bin,
the agreement is not satisfactory. Increasing ng, the number of wavenumbers per bin,
improves the results (Figures 12 and 13).

Thus we see that the number of wavenumbers per bin must be drastically increased for the
Randomization Method to exhibit good ergodic properties. This phenomenon actually
arises also for single-scale random fields. To show this, we simulate a random field with
the exponential correlation function

2Cu

Blp) = Cexp(—plpl),  B(k) = 53— 5 » (6.3)

with g = 1, C = 272 This random field has correlation length £, = 1/u = 1, and we
only consider spatial scales 1072 < p, over which the random field cannot be considered
fractal.
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In Figure 14, we present spatially averaged statistics from a Randomization Method sim-
ulation of the random field with exponential correlation function (6.3). Here the bins are
constructed by subdividing the wavenumber range 0 < k < 10° into n = 5 logarithmically
uniform subintervals. ng = 20 random wavenumbers are sampled in each bin, and even
averages over N, = 16000 spatial blocks exhibit large deviations from the true statis-
tics. Increasing the number of wavenumbers per bin to ng = 200 improves the results

(Figure 15).

We see that achieving good ergodic properties in the random fields simulated by the
Randomization Method requires a substantial increase in the number of wavenumbers
sampled per bin and therefore the expense of the simulation.

6.2 Fourier-wavelet Method

In Figure 16, the correlation function and the normalized structure function as estimated
by spatial averages of random fields simulated by a single realization of the Fourier-wavelet
method are compared against the exact result for the Kolmogorov spectrum (5.1). With
only N, = 2000 spatial blocks, the accuracy achieved was approximately the same as
in the Randomization method with N, = 16000 spatial blocks, n = 25, and ny = 250;
compare Figures 13 and 16. The cost of the Fourier-wavelet method in this case is about
ten times less than that of the Randomization method.

6.3 Comparison

We see that in order for computed spatial averages to approximate the desired correlation
function or structure function, the Randomization Method requires a drastic increase in
the number of wavenumbers per bin, ng, as compared to the values of ng adequate for
ensemble average calculations. This can be understood by noting that the statistical
quality of ergodic averages over a large spatial domain is related to the number of effec-
tively independent samples in the collection of spatial observations. The Randomization
method with logarithmically uniform stratified sampling uses a relatively small number
of independent random numbers to generate the random field, and spatial averages will
fail to improve once they already involve a number of effectively independent samples
comparable to the number of independent random numbers 3nng used in the construc-
tion of the random field. The Fourier-wavelet Method, by contrast, involves a sufficiently
rich collection of random variables so that spatial averages exhibit good ergodic proper-
ties without the need to increase the expense of the simulation beyond that necessary
for ensemble averages to approximate the second order correlation function and structure
function adequately.
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7 Multi-point statistical characteristics of simulated
random fields

We now return to consideration of the quality of ensemble averages in multiscale random
field simulations, but now examine the quality of statistics involving more than two points.
One aim is to examine whether the non-Gaussianity of the Randomization Method may
exhibit itself in a more pronounced manner in multi-point statistics as compared to two-
point statistics (such as the second order correlation fucntion and structure function).
Another objective is to determine whether the cost of the Randomization Method must
be increased (as it was for spatial averages) in order to simulate multi-point statistics
with comparable quality to that simulated by the theoretically Gaussian Fourier-wavelet
method. We remark that the consideration of spatial averages (6.2) in Section 6 yields
a statistic that involves more than two points, but we only considered single realizations
rather than ensemble averages of these random variables.

We therefore consider the following sequence of normalized random increments

u(ih) — u((i — 1)h)
[Jaha—1]1/2 ?

u(hq'™1) — u(0) . )
5’11,1' = [Ja(hq’i—l)a—l]l/27 1= ]_, N (71)

Aui =

We introduce the random variable

n! = A 7

¢ oax, |Auyl

and denote by p¢ ., the probability density function of (,s. All numerical simulations in
this section refer to the random field with Kolmogorov spectrum (5.1).

We first simulate the histogram for p¢, using variant C of the Randomization method,
and compare with direct Monte Carlo simulation. The procedure of direct Monte Carlo
simulation is analogous to that described in Subsubsection 5.1.2 for the case of the nor-
malized structure function, and its results differs from the exact results only through
sampling error.

From Figure 17 it is seen that 25 wavenumbers (n = 25, ng = 1) do not give satisfactory
accuracy (right panel) for the statistics of (10 when A = 1000 £1in, while 250 wavenumbers
(n = 25, ng = 10) show good agreement.

Other details can be extracted from the statistical moments

n(k) = ((max [Aul)"), k=1,...,n' 7.2
pm (k) = ({ max [Awl ) ), yoeea (7:2)
In Figure 18, we show the first four moments simulated by variant C of the Randomization
method for 10 values of &k, with the same parameter choices as in Figure 17. It is seen from
the right panel that 25 wavenumbers is too small to describe satisfactorily the moments

pa(k), pa(k) for k > 4.

In Figures 19 and 20, the statistics of (i are seen to deteriorate as h/lyni, is reduced.
This can be understood from the observation that wavenumbers with k& ~ 1/h are the
most influential on the increments Aw;, and that as h/Zy, is reduced, then number of
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simulated wavenumbers with & ~ 1/h becomes smaller and variability of the computed
statistics increases. The multi-point statistic (;o appears to be adequately simulated by
the Randomization Method for A > 104,;,. Similar conclusions can be drawn from
consideration of maximal statistics of collections of the normalized increments du; with
geometric spacing (Figure 21).

We expect that the number of wavenumbers ny in each bin must be increased if we
desire statistical characteristics involving a larger number of points. We illustrate this in
Figure 22 for the moments u,, (k) of the random variable (100. It is seen that no = 10
wavenumbers per bin is not sufficient for the Randomization Method to yield an accurate
evaluation of us(k) for k > 50 (left panel), but for ng = 40 wavenumbers per bin, the first
four moments are each simulated with decent accuracy.

The Fourier-wavelet method generates theoretically Gaussian multipoint statistics, and
therefore its accuracy in simulating multipoint statistics is completely determined by the
number of Monte Carlo samples and the accuracy in simulating the correct second order
correlation function . Of course the accurate evaluation of more complex statistics will
generally require better accuracy of the correlation function.

8 Conclusions

1. The Randomization Method is generally easier to implement than the Fourier-
wavelet method. For simulating random fields with accurate second order statistics,
the Randomization method with logarithmically uniform spectral subdivision can
often be considerably less expensive than that of the Fourier-wavelet method. The
scenario with greatest relative advantage for the Randomization Method appears to
be the sampling of a multiscale random field over a large but sparse set of points to
be specified on demand. Then, as is generally case, the cost of the Randomization
Method scales linearly with the number N, of evaluation points and logarithmically
in the range of scales £yax/fmin to be represented in the random field. A relatively
simple implementation of the Fourier-wavelet method (simulation on a grid followed
by interpolation as needed) has cost scaling linearly (and additively) in both N, and
Linax/Zmin- A more sophisticated management of random numbers in the code can
reduce the cost scaling of the Fourier-wavelet method in this scenario to the same
as that of the Randomization Method, but with a typically larger prefactor. Both
the Randomization Method and the simple implementation of the Fourier-wavelet
method have comparable scaling when the random field is to be simulated over a
pre-specified mesh of points.

2. The cost of the Randomization Method increases substantially if statistics involving
large numbers of points are to be simulated accurately.

3. In particular, when statistics are to be evaluated through spatial averages (and an
appeal to ergodicity) rather than ensemble averages, the Fourier-wavelet method
appears more efficient than the Randomization Method. Good ergodic properties
are important in applications which involve the solution of partial differential equa-
tions with random coefficients, such as the Darcy equation with random hydraulic
conductivity.
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A Appendix: Randomization method for homoge-
neous vector random fields

Here we briefly present the Randomization technique for simulation of a Gaussian ho-
mogeneous vector random field, and give the conditions for the weak convergence of the
method.

Let u(x) = [u1(x),. .. ,ul(x)]T, x € R? be a Gaussian homogeneous vector-valued random
field with prescribed correlation tensor B(r) = (u(x + r) ® u(x)), or prescribed spectral
density tensor F(k); the two are related through Fourier transforms:

B(r) = /exp{27rik -r}F(k)dk, F(k)= /exp{—27rik -r}B(r)dr . (A.1)
R¢ R¢
The symbol ()7 denotes the transpose operation and @ denotes a tensor (outer) product.

The spectral density function is defined

E(k) = Z Fii(k),

=1
and we assume that o2 = f E(k)dk < oo.
Rd

We will use the Cholesky decomposition to factor the nonnegative definite tensorial func-
tion F(k) into square roots:

F(k) = E(k) Q(k) Q*(k) , (A.2)

where the matrix Q* is defined as the Hermitian conjugate Q* = Q7.

The spectral density function E(k) = Tr F(k) is a scalar, nonnegative function describing
the overall strength of the random field fluctuations at wavenumber k, while Q(k) is a
matrix-valued function describing the anisotropy and correlation structure among and
along different directions. Further details can be found in [29, 41].° In the purely scalar-
valued case (I = 1), F(k) = E(k) and Q(k) = |, and all our main points can be understood
in this simpler context.

We next decompose the tensor Q into real and imaginary parts: Q(k) = Q'(k) +1Q"(k),
and subdivide the support of the spectral density A = supp (E) into a finite number of
nonoverlapping sets: A = U, A,;.

For each 1 <1 < n, we choose a collection of independent, identically distributed random

wavenumbers k;i, ..., k;n, within the set A, according to the probability distribution
function
B ke A,
pi(k) =< % ’ ’ Uf:/E(k)dk. (A.3)
0, else , K
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The random field as simulated by the Randomization method is finally expressed as

u(R)(X) — 27_1: ;% 5_0: {EU [Ql(kij) cos 0;; — Q"(kij) sin Hij]

+n;; [Q"(kz’j) cos 0;; + Q'(k;;) sin Hij]} , (A.4)

where 0;; = 2rk;; - x, and §;;,m,;, 2 = 1,...,n; 7 = 1,...,n0 are mutually indepen-
dent standard Gaussian /-dimensional random row vectors (mean zero and unity covari-
ance) which are moreover independent of the family of random wavenumbers k;;, © =
1,...,mn;7=1,...,n0.

A.1 Weak Convergence of Randomization Method

The random field representation (A.4) used in the Randomization Method is an approxi-
mation to the desired Gaussian random field whose convergence is understood as follows.

We first define one notion of convergence of a sequence of scalar random fields u,(x) to
a limiting random field u(x), all functions being defined on a compact domain K C R?.
We assume that the samples of u are continuous (i.e., belong to C(K)) with probability
one. The weak convergence u, — u as n — oo in C(K) is defined to mean that for any
uniformly bounded continuous functional f : C(K) — IR we have (f(u,)) — (f(u)) as
n — oo. Note that from the weak convergence in C(K), it follows that all the finite
dimensional distributions of u, converge to those of u [1]. A sequence of vector-valued
random fields is said to converge weakly to a limit if each component converges weakly.

In [21], it is proved that the random field representation (A.4) used in the Randomization
Method converges weeakly in C(K) for a fixed spectral subdivision n > 1 as ng — o,
provided that

/10g1+5(1 + |k|) E(k) dk < oo for some € > 0. (A.5)

Rd

If we fix instead mg and let the spectral subdivision become finer (n — o0), then the
convergence conditions are more complicated. Let

Bi = 1Ilf{|k|,k € Al}; p; = sup{|k|,k € Al} )

and assume that A, = {k € R?: |k| > r,} where r, is a sequence of real positive numbers

such that lim r, = co.
n— o0

We assume that positive constants Co, Rg and g9 € (0,1) can be chosen so that either
0; < Ry, or Ry < p; < Co(gi)l"'EO for all 2 = 1,...,n — 1. Under these assumptions,
(R)

together with (A.5), the random field representation (A.4) converges weakly u'*) — u in

C(K) for each fixed ng > 1 as n — oo [20].

We mention also that other types of functional convergence in C(K) can be established;
convergence in probability and L,-convergence was studied in [2].
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A.2 Generalizations of Randomization Method

One way to generalize the Randomization Method is to sample the wavenumbers k;; in
each A; from quite arbitrary probability density functions p;(k) satisfying the consistency
condition: p;(k) # 0 if E(k) > 0. Secondly, rather than choosing the same number ng of
wavenumbers from each sampling bin, one can choose a different number N; of random
wavenumbers from each set A;, 2 =1,...,n.

The random field representation for the Randomization method with these generalizations
has the following form:

VN; = \pi(kij)

u®) = z”: oy (E(kij))l/z{ﬁij [Q'(kij) cos 0;; — Q"(k;;) sin Hij]
i=1 j=1
-y [Q”(kij) cos 6;; + Q'(ki;) sin eij]} . (A.6)

B Appendix: Isotropic vector-valued random fields

A homogeneous d-dimensional vector-valued random field u(z), x € R? is called
isotropic if the random field UT u(Ux) has the same finite-dimensional distributions as
those of the random field u(x) for any rotation matrix U € SO(d) [9, 29, 41]. The spectral

density tensor of an isotropic random field has the following general structure [29, 41]:

1 1 2
FK) = 5 s LB (OO + Ea()PO(K)} (B.1)
where k = |k|, Aq is the area of the unit sphere in IR?, E; and E, are the transverse and
longitudinal radial spectra (scalar even nonnegative functions), and the projection tensors
are defined componentwise as:

kik; ) kik;
kzja Pij (k) = kzja

P (k) = 6; —

)

ii=1,...,d, (B.2)

with §;; defined as the usual Kronecker delta symbol.

This representation of the random field can be used to simplify the implementation of the
Randomization Method and has also been used to construct a multi-dimensional isotropic
version of the Fourier-wavelet method. We describe each briefly in turn.

B.1 Randomization Method

The isotropic spectral representation (B.1) can be associated with the Helmholtz decom-
position of the random field: u(x) = u*)(x) +u®(x) where u*) and u(® are, respectively,
the incompressible and potential parts of u with spectral density tensors

1
244 k%1

1

FO(k S
(k) 2A4 k41

Ei(k)PY (k) , FA(k) B, (k) PA(k) | (B.3)

respectively.
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Each of the random fields, u*)(x) and u(®(x), can be simulated as independent Gaussian
random fields using the approach described in Appendix A. The Cholesky factorizations
(A.2)
FO(I) = (k) QO QU | (B.4)
take the special form
_ Wy (@ = D E(K) _ )y — _L2(k)
n(k) = ZFH (k) = W , pa(k) = ZFH (k) = W . (B.5)

=1 =1

Note in particular that p;(k) = p;(k), which generally greatly simplifies the simulation of
random wavenumbers according to the probability distributions p;.

The matrices Q) and Q(® are to be chosen in any way such that
1
=7 PP = QM) PO = QP ()QP* (k) .

One convenient explicit choice in three dimensions is [35]

k3 kg kl
o T % ® 00
1 k3 kl kZ
Q(”(k)_ﬁ kg R Q@K =]k 0 0] . (B.6)
kg k1 k3
¥ —x 0 ¥ 00

Because p;(k) = p;(k) in the isotropic case, it is natural to choose the spectral subdivision

A = Y A; to be radially symmetric: A; = {k : a; < |k| < b;}. Using the tensors (B.6),
=1
we obtain the following simulation formula for the incompressible part of an isotropic

three-dimensional random vector field:

0_1(1) n

a0 =55 705 (o ) o)+ () )]
=1 7

0
=1

where (0’1(1))2 = fAipl(k)dk = %f:j Ei(k)dk, QZ(-Jl-), 1= 1,...,n; 7 = 1,...,n0 1s a
family of mutually independent random vectors distributed uniformly on the unit sphere
in IR3; €,and n,;,1=1,...,n; 5 =1,...,n0 are mutually independent families of three-
dimensional standard Gaussian random vectors; 01(;-) = 27rk1(;) (QS)
1,...,n, the kfjl),j =1,...,n91s a sequence of independent random wavenumbers sampled
from the interval (a;,b;) according to the probability density function proportional to

By (k).

-x); and for each 7 =

The potental component u(® is simulated in three dimensions through the representation
o, .
u®(x) = 3 L3 e 0 cos(0) + 7 2F sin(67)]
i= =1

Here, unlike in the previous simulation formula, the ¢;; and n;;,2=1,...,n; 7 =1,...,n0
are families of scalar standard Gaussian random variables, which are all mutually inde-
pendent. The remaining inputs are constructed analogously: (01(2))2 = [, p2(k)dk =
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%fs Es(k) dk; 91(12) is a family of mutually independent random vectors distributed uni-

formly on the unit sphere in R3; Hg-) = 27rkg) (QS) -x); and for each 2 = 1,...,n, the
ALY

]
terval (a;,b;) from the probability density function which is proportional to the function

Ey(k).

,7 =1,...,n0 1s a sequence of independent random wavenumbers sampled in the in-

B.2 Fourier-wavelet method

The Fourier-wavelet method can be extended to simulate multi-dimensional isotropic ran-
dom fields by using the Helmholtz decomposition along with a further angular decompo-
sition into plane waves varying only along one direction [9]. Discretization of the angular
integral produces the following simulation formula:

1\ 1/2
un(x) = (17) 2 [PU@) v x - 2,) + PO(Q) v x- 0)
a =1
where €2;, 7 =1,..., N, is a collection of deterministic vectors which discretize the unit

sphere in R%. The Vg-l)(r), V;_z)(r)7 j=1,...,N,, r € R are mutually independent
(1)
J

an independent Gaussian homogenous random field with spectral density iE’l(k) (respec-

Gaussian d-dimensional random fields. Each component of vi(r) (respectively V;z)(r)) is

tively iEg(k)), and can be simulated using the one-dimensional Fourier-wavelet method
presented in Section 4. Of course, in practice, one handles the projections by simulating

only d — 1 components of V;-l) and 1 component of V§-2) and rotating them according to

the direction €2; [9].

One might contemplate anisotropic versions of the Fourier-wavelet method using Helmholtz
and more general plane wave decompositions, but we are not aware of any detailed elabo-
ration of such a simulation scheme nor how difficult it would be to implement in practice.

C Appendix: Calculation of the functions f,,

Here we give some technical details on the calculation of the functions (4.2) which reads
in our case

4/3
@) = [ e g()d (C.1)
-4/3
where g(k) = 2m/2E1/2(2mk) (k).

We calculate this function on the grid of points ¢; = —%Af +(7—-1)A¢ 5 =1,...,N,
where N is an even number, and A¢ > 0 is the grid step. In order to evaluate the
truncated sums appearing in the Fourier-wavelet representation (4.6), we must choose

NAE/2 > b,
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We approximate the intergral (C.1) by a Riemann sum:

a

. N .
fm(&) = /6_2’”“9(’6) dk ~ ) Ake ™R8 g(k) (C2)

=1

where

2a

N

We use the same number of points N = 2" (where r is some positive integer) to discretize
the integral as we use to represent f,,,(¢) in physical space so that we can use the discrete
fast Fourier transform. We also clearly need the cutoff on the integral in (C.2) to satisfy
a > 4/3 (with g(k) set to zero whenever evaluated for |k| > 4/3). Finally, the use of the
fast Fourier transform requires the steps in physical and wavenumber space be related
through A¢Ak = 1/N. Indeed, simple transformations then yield

ki=—a+(1—1/2)Ak, 1=1,...,N; Ak=

Gk = [~ 5 A6+ (- DAL (et (1 1/2)AK

N-1 j-1 1y -1 (F-1)(—-1)
- _Jz (1_ﬁ)_ 2 + N ’ (0:3)

hence
fm(&;) = exp {7ri (7—1 (1 — —) } Z G exp{ — 27i U= ])Vgl — 1)} ) (C.4)

where

G :Akg(kl)exp{ — 27 [N4_1 — 1;1]} ,

which is in the form of a discrete Fourier transform.

The constraints imposed on the discretization of the integral (C.2) to obtain an expression
amenable to fast Fourier transform imply the following sequence of choosing parameters.
First a bandwidth value b is chosen according to the desired accuracy in the Fourier-
wavelet representation (4.6). Then a spatial resolution A for the f,,(€) is selected, either
according to the grid spacing h on a prespecified set of evaluation points or such that
fm(€) can be calculated accurately enough by interpolation from the computed values.
(In any event, we must have A{ < 3/8). Next a binary power N = 2" is chosen large
enough so that 26/ N < A¢. Then we set a = and discretize the integral (C.2) with

step size Ak = 2a/N = 1/(NA).

2A£’
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D(p)

Figure 1: The functions f,(§), for m = 0 (solid line), m = 1 (dashed line), and m = 2 (the
bold solid line) appearing in the Fourier-wavelet expansion computed from (4.2) for the energy
spectrum (5.1) with @ = 5/3 and kg = 1. In fact, due to the self-similarity of the energy
spectrum for k > kg, the functions f,, for m > 3 are identical to fy. For m = 0 and m = 1, the
decay of f,, is somewhat slow because they feel the abrupt (nonsmooth) cutoff of the energy

spectrum at k = ko = 1. But for m > 2, the function f,(§) is mainly supported within the
interval (-8, 8)
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Figure 2: The structure function D(p): exact formula (thin solid line) and calculated by av-
eraging over an ensemble of N, = 2000 Monte Carlo samples simulated by variant A of the
Randomization method (bold solid line). Number of wavenumbers: ng = 160 (left panel) and
ng = 1000 (right panel).
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Figure 3: The normalized structure function

Randomization method with N, = 2000 samples. Number of wavenumbers: ng = 160 (left

panel) and ng = 1000 (right panel).

Ga(p) = % calculated by variant A of the
5/3
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Figure 4: The structure function D(p): exact formula (thin solid line) and calculated by av-
eraging over an ensemble of N, = 2000 Monte Carlo samples simulated by variant B of the
Randomization method (bold solid line). Number of wavenumbers: n = 160 (left panel) and
n = 1000 (right panel), ng = 1 in both cases.
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Figure 5: The normalized structure function Gy(p) = % calculated by variant B of the
5/3

Randomization method with N, = 2000 samples. Number of wavenumbers: n = 160 (left panel)
and n = 1000 (right panel).

Figure 6: Comparison of structure function D(p) as simulated by: variant C of the Random-
ization method (left panel) with 160 wavenumbers (ng = 4 samples from each of n = 40 bins,
g = 2) and N, = 4000 Monte Carlo samples; and by the Fourier-wavelet method (right panel)
with M = 40, b = 10, and N, = 4000 Monte Carlo samples.
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Figure 7: The normalized structure function G,(p) = % calculated by: variant C of the
5/3

Randomization method (left panel) with 160 wavenumbers (ng = 4 samples from each of n = 40
bins), bin ratio ¢ = 2, and N, = 20000 Monte Carlo samples; and direct Monte Carlo simulation

(right panel) with N, = 20000 samples.

Figure 8: The correlation function (left panel) and structure function (right panel) simulated
by variant C of the Randomization method (dashed line) with n = 25 bins, ¢ = 3.16, no = 10
wavenumbers per bin, and N, = 16000 Monte Carlo samples. The solid line represents the exact

formula.
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Figure 9: Kurtosis G4(p) calculated by: variant C of the Randomization method (left panel)
with n = 40 bins, bin ratio ¢ = 2, and ng = 1 wavenumbers per bin; and direct Monte Carlo
simulation (right panel). N, = 20000 samples are used in each case.

35 14

121

25

15

Figure 10: The correlation function (left panel) and normalized structure function G3(p) (right
panel) for the spectrum (5.1). The bold line indicates the simulated results using a Fourier-
wavelet method with N, = 4000 Monte Carlo samples, M = 40 scales, and b = 10.
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Figure 11: Ergodic averaging for the correlation function B(p) (left panel) and normalized
structure function G3(p) (right panel) for the Kolmogorov spectrum (5.1) over N, = 16000
spatial blocks using variant C of the Randomization method with n» = 25 sampling bins, ng = 10
wavenumbers per bin, bin ratio ¢ = 2, and £, = 2£,.x. In the left panel, the thin solid line
denotes the exact ensemble average (6.1), while the bold solid line denotes the simulated average
over spatial translations (6.2). In the right panel, the normalized structure function should be
the constant value 1.

B(p)
11F

09r
08r
07r
0.6

05[]

Figure 12: Same as in Figure 11, but the spatial averaging is now over Ny = 16000 blocks and
ng = 50 wavenumbers are simulated per bin.
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Figure 13: Same as in Figure 12, but with no = 250 wavenumbers per bin.

B(p)
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Figure 14: Ergodic averaging for the correlation function B(p) (left panel) and ratio of spatially-
averaged to exact structure function Dy, (p)/D(p) (right panel) for the exponential correlation
function (6.3) using N, = 16000 spatial blocks and variant C of the Randomization method with
n = b sampling bins, ng = 20 wavenumbers per bin, bin ratio ¢ = 2, and &, = 2{,.x. In the
left panel, the thin solid line denotes the exact result (6.3) for B(p) , while the bold solid line
denotes the simulated average over spatial translations (6.2). In the right panel, the simulated
ratio function should be the constant value 1. In both panels, the dashed line is obtained via
ensemble average over 16000 samples.
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Figure 15: Same as in Figure 14, but the spatial avergaing is taken over 4000 blocks, and
ng = 200 wavenumbers are sampled per bin.

Figure 16: Ergodic averaging for the correlation function B(p) (left panel) and normalized
structure function G3(p) (right panel) for the Kolmogorov spectrum (5.1) over Ny = 2000 spatial
blocks using Fourier-wavelet method with with M = 40 scales, b = 10, and £, = 2¢,,.x. In the
left panel, the thin solid line denotes the exact ensemble average (6.1), while the bold solid line
denotes the simulated average over spatial translations (6.2). In the right panel, the normalized
structure function should be the constant value 1.
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Figure 17: Histograms p¢ for (10 = 1I<113}1(0|A’U,Z'| multiplied by N,, the number of samples,

calculated by variant C of the Randomization method (filled bars), with n = 25 bins, N, = 16000
samples, and h = 1000 £,,;;, and compared against the results of direct Monte Carlo simulations

(empty bars) (also with 16000 samples). Left panel: ng = 10 wavenumbers per bin. Right panel:
ng = 1 wavenumber per bin.
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Figure 18: Statistical moments p,, (k) as simulated from ensemble averages using variant C of
the Randomization method (bold line) and compared with direct Monte Carlo simulation (thin
line). The parameters are the same as in the corresponding panels of Figure 17.

41



1500 1400

N_p N, P

1200

1000
1000 T

8001

600

500 b
400+

Ll H’mﬂﬂh?:ﬂw 20: ﬂﬂﬂ Zsmwhﬂhnw )

0 05 1 15 2 25 3 4 45 0 0.5 1 15 2 3 4 45
X X

Figure 19: Histograms p¢ for (30 = max. | Au;| multiplied by the number of samples, calculated

by variant C of the Randomization method (filled bars), with n = 25 bins, ng = 10 wavenumbers
per bin, and N, = 16000 samples, and compared against the results of direct Monte Carlo
simulations (empty bars) (also with 16000 samples). Left panel: A = 100 £m;,. Right panel:
h =10 nin.

Figure 20: Statistical moments p,, (k) as simulated from ensemble averages using variant C of
the Randomization method (bold line) and compared with direct Monte Carlo simulation (thin
line). The parameters are the same as in the corresponding panels of Figure 19.
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Figure 21: Left panel: Histogram p¢ for 121,3}1(0|5Ui| multiplied by the number of samples,

calculated by variant C of the Randomization method (filled bars), compared with the results
of direct Monte Carlo simulation (empty bars).

Right panel: Statistical moments (defined as g, (k) in (7.2) except with du; replacing Awu;)
calculated by variant C of the Randomization method (bold line), compared against the results
obtained by direct Monte Carlo simulation (thin line). Both calculations involve ensemble
averages over N, = 16000 Monte Carlo samples and A = 1000 l,,,;,- The Randomization Method
uses a total of 250 wavenumbers (n = 25 bins with ng = 10 wavenumbers in each bin) and a bin
ratio ¢ = 4.

Figure 22: Statistical moments (k) of (100 with A = 100 £, calculated by variant C of the
Randomization method (bold solid line) with n = 25 sampling bins, compared against the results
obtained by direct Monte Carlo simulation (thin solid line). N, = 16000 samples are used in
both calculations. Left panel: ng = 10 wavenumbers per bin; right panel: ng = 40 wavenumbers
per bin. The dashed lines show the Monte Carlo statistical sampling error for m = 4.
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