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Abstract

Under Bernstein's condition a non-asymptotic exponential estimation for the

probability of deviations of a sum of independent random �elds in uniform norm

is proposed. Application of this result to the problem of the error estimation for

the dependent sampling Monte Carlo method is presented. It is shown that in

the domain of moderately large deviations the suggested estimations have optimal

asymptotics.

1. Introduction

In many Monte Carlo simulations, expectations of a random variable, or integrals of a

function are evaluated not as a �xed value but as functions depending on a parameter

which comes in, for example, as a parameter of the integrand. Then, it is a challenging

problem to organize the algorithm so that the calculated function would be as smooth

as possible, i.e., the scattering of statistical errors for di�erent parameter values should

be somehow correlated. This implies, we have to analyze the statistical errors in a func-

tional space. In Monte Carlo methods, a popular algorithm of this kind is the dependent

sampling method, see, for example [3]. This method is used not only in calculations of

expectations and integrals, but also in the Monte Carlo methods for solving integral equa-

tions and boundary value problems for PDEs, see [7]. In these methods, the parameters

may enter by di�erent ways, for instance, through the boundary conditions, or via the

boundary parametrization. We mention also other applications of the large and moder-

ate deviation estimations beyond the dependent sampling Monte Carlo, for instance, in

nonlinear detectors [1], and other empirical processes [2].

Let (
; A; P ) be a probability space, F (t) = F (t; !); t 2 T a random function with an

index set T , such that the expectation EF (t) is �nite: EF (t) =
R


F (t; !)P (d!) <1 for

each t 2 T . Then the well known Monte Carlo dependent sampling method's estimation

of the function f(t) = EF (t) reads (see [3], [4], [5], for example)

f(t) ' 1

n

nX
i=1

Fi(t); (1.1)

where Fi(t) = F (t; !i); i = 1; 2; : : : ; n are n independent samples of the random �eld

F (t). Despite of the independency of summands in (1.1), this method is called dependent

sampling method, since for a �xed i, the values of Fi(t) = F (t; !i) and of Fi(s) = F (s; !i)

for di�erent t and s are not necessarily independent.

For clarity, let us give the de�nition of independent sampling Monte Carlo method.

Let us assume that the set T = ft1; t2; : : : tmg consists of a �nite number of elements.

Let f!ij ; i = 1; : : : ; n; j = 1; : : : ;mg be independent samples from 
, with the same
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probability distribution P (d!). Then the independent sampling method's estimation of

f(tj) = EF (tj) (j = 1; : : : ;m) reads (e.g., see [5]):

f(tj) '
1

n

nX
i=1

F (t; !ij); j = 1; : : : ;m:

The dependent sampling method is computationally more eÆcient compared to the inde-

pendent method, and what is practically important, provides more �mooth�approximation

of f(t). Therefore, this method is widely used in applications of Monte Carlo methods

(e.g., see [5], [6], [8], [9]).

The aim of this paper is the estimation of the probability of deviations of the error of

dependent sampling method:

P

(
sup
t2T

���f(t)� 1

n

nX
i=1

Fi(t)
��� � x

)
= P

(
sup
t2T

���1
n

nX
i=1

(Fi(t)� EF (t))
��� � x

)
:

The problem of estimation of the probability of the error deviations for the dependent

sampling method have been considered in the literature (e.g., see [8], [9] and references

therein). But these results have asymptotic character (in n) and they deal with the para-

metric set with �nite number of elements. In this paper we are dealing with the set T of

general nature and propose a non asymptotic estimation for the probability of deviations

of the error in the dependent sampling method. Our result is essentially based on a result

due to Ostrovsky [10] where the theory of random variables of subgaussian type is used.

2. A generalization of Bernstein's inequality for sums

of random �elds

Considering the centered random �eld �(t) = F (t)�EF (t)we can reformulate our problem

as the estimation of Pfsup
t2T j 1n

nP
i=1

�i(t)j � xg for independent samples �1(t); �2(t); : : : �n(t)

of �(t).

So, let �1(t); �2(t); :::; �n(t); t 2 T be independent samples of a centered random �eld

�(t); t 2 T , with an arbitrary parametric set T . Denote

Sn(t) =
1p
n

nX
i=1

�i(t); pn(x) � P

n
sup
t2T

jSn(t)j � x

o
: (2.2)

In this paper we will obtain the following type of exponential inequalities for pn(x):

pn(x) � exp(��n(x)); x � 0; (2.3)

where �n(x) is a convex function of x, parametrically depending on n, such that �n(x)!
1 as x ! 1. From the convexity of �n(x) it follows that �n(x) � c0 + c1x (c1 > 0),

for x large enough. Therefore, for validity of an estimation of type (2.3) the following

condition on tails of one point distributions of �(t) should be assumed:

sup
t2T

Pfj�(t)j � xg � c2 exp(�c3x)
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for some positive constants c2; c3 which is, in turn, equivalent to the following

Generalized Kramer's condition: there exists some positive constant 
 such that

sup
t2T

E expf
j�(t)jg <1: (2.4)

Estimation of type (2.3) given in this paper is a generalization of Bernstein's inequality

for a sum of random variables.

2.1 Bernstein's inequality for sums of random variables

A real-valued random variable � is said to satisfy Bernstein's condition if there exist

positive constants � and b such that

Ej�jk � �
2
b
k�2k!

2
; k = 2; 3; : : : : (2.5)

In the following assertion the Bernstein type inequality for probability of deviations of

sums of random variables is given. For the sake of closeness we will give the proof of this

assertion. Another form of this type of inequality can be found, for example, in [11] (see

p. 90) and [12] (see p. 52).

Let �1; �2; : : : ; �n be independent samples of a centered random variable � (i.e., E� = 0)

satisfying Bernstein's condition (2.5), then

P

(
1p
n

nX
i=1

�i � x

)
� exp

8<
:�n�

2

2b2

 s
1 +

2bx

�
2
p
n

� 1

!2
9=
; ; 8x � 0: (2.6)

Proof. If 0 � � � 1=b, it follows from (2.5) that

E fexp(��)g = 1+

1X
k=2

�
k
E�

k

k!
� 1+

1

2

1X
i=2

�
k
�
2
b
k�2 = 1+

�
2
�
2

2(1 � b�)
� exp

�
�
2
�
2

2(1 � b�)

�
:

By the independence of summands, this estimate yields

E

(
exp

 
�p
n

nX
i=1

�i

!)
� exp

�
n

�
2(�=

p
n)2

2(1 � b�=

p
n)

�
= exp

�
�
2
�
2

2(1 � b�=

p
n)

�
; (2.7)

for 0 � � �
p
n

b
.

Using Chebyshev's inequality

P

(
1p
n

nX
i=1

�i � x

)
� e

��x
E

(
exp

 
�p
n

nX
i=1

�i

!)
; x > 0

and the inequality (2.7) we get

P

(
1p
n

nX
i=1

�i � x

)
� inf

0<�<
p
n

b

e
��x

E

(
exp

 
�p
n

nX
i=1

�i

!)
�

inf
0<�<

p
n

b

exp

�
��x+ �

2
�
2

2(1 � b�=

p
n)

�
= exp

 
inf

0<�<
p
n

b

�
��x+

�
�
2
�
2

2(1 � b�=

p
n)

�
:

�!
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Now, in order to complete the proof of inequality (2.6) it is enough to apply the following

equality which can be established by standard arguments

inf
0���1=�

�
�x�+ �

2

2(1 � ��)

�
= � 1

2�2

�p
1 + 2�x� 1

�2
:

Remark 1. Often, instead of inequality (2.6) the following slightly weaker but simpler

form of Bernstein's inequality is used (e.g., see [11], p. 90):

P

(
1p
n

nX
i=1

�i � x

)
� exp

(
� x

2

2�2

�
1 +

bx

�
2
p
n

��1)
; 8x � 0: (2.8)

An immediate consequence of (2.6) is the following inequality:

P

(
j 1p

n

nX
i=1

�i j � x

)
� 2 exp

8<
:�n�

2

2b2

 s
1 +

2bx

�
2
p
n

� 1

!2
9=
; : (2.9)

2.2 Formulation of results

The aim of this section is the generalization of inequality (2.9) for a sum of independent

samples of a random �eld. In order to formulate an estimation for pn(x) we need some

de�nitions. Let �(t); t 2 T be a centered random �eld with a parametric set T . De�ne a

pseudometric �1(t; s) (i.e., �1(t; s) = 0 does not necessarily imply t = s) on T by

�1(t; s) � k�(t)� �(s)k(1);

where for a random variable � the norm k�k(1) is de�ned by

k�k(1) � sup
k�2

�
2Ej�jk
k!

�1=k

:

Let us denote by H1(�) Kolmogorov's metric � entropy, i.e. the natural logarithm of N�,

the minimal integer such that T can be covered by N� balls of radius �. In what follows

we will assume that the random �eld �(t) is separable in the metric space (T; �1). The

de�nition of separable random �elds can be found in [13], p. 203.

For a �xed positive constant �, let  �(�) be a function de�ned on the interval 0 � � < 1=�

by

 �(x) =
�
2

2(1� ��)
:

Denote by  �
�
(x) the Legendre transformation of  �(�):

 
�
�
(x) = sup

0���1=�
(x��  �(�)) =

1

2�2

�p
1 + 2�x� 1

�2
; x � 0:

In what follows we will use the notation

[x]1 = maxf1; xg; x � 0:
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The following assertion is the main result of this paper. It is a direct generalization of

Bernstein's inequality (2.9) for a sum of independent samples of a random �eld.

Theorem 1. Let �(t) be a centered random �eld on a parametric set T such that:

(i) �(t) is separable on the metric space (T; �1);

(ii) there exist positive constants � and b such that for each t 2 T the random variable

� = �(t) satis�es Bernstein's condition (2.5);

(iii) the metric space (T; �1) is precompact and
R 1
0
H1(�) d� <1;

Then

pn(x) � 2 inf
p2(0;1)

exp

8<
:�n ��

�
x(1� p)

�

p
n

�
+

1

�p

�pZ
0

H1(�) d�

9=
; (2.10)

for each � � [b=�]1 and x � 0.

Remark 2. It is easy to verify (provided b � �; � = b=�), that the inequality (2.9) can

be derived by (2.10) if we take into account that a random variable can be considered as

a random �eld given in a speci�c one element parametric set. Therefore H1(�) = 0 for

each � > 0 and letting in (2.10) p! 0 one obtains the inequality (2.9).

The following assertion is an immediate consequence of Theorem 1.

Corollary 1. Let �(t) be a random �eld satisfying all the conditions of Theorem 1.

Assume that there exist positive constants C1 and � such that

H1(�) � C1 + � j ln �j (2.11)

for each � > 0. Then for each � � [b=�]1 and each x � 0

pn(x) � 2 inf
p2(0;1)

exp

�
�n �

�

�
x(1� p)

�

p
n

�
+ C1 + � [j ln(�p)j+ 1]

�
: (2.12)

Remark 3. Bogdosarov and Ostrovsky ( see [14]) have suggested the following inequality:

pn(x) � 2 inf
p2(0;1)

exp

�
�n��

�
x(1� p)

�

p
n

�
+
C2 + � j ln(�p)j

1� p

�
; x � 0; (2.13)

where ��(x) is the Legendre transformation of the function

�(�) � sup
t2T

max
z=�1

lnE expfz��(t)g;

and it is assumed that Kolmogorov's � entropy H(�) of the metric space (T; d) with

pseudometric

d(t; s) � sup
�>0

1

�

�
(�1)

�
sup
t2T

max
z=�1

lnE expfz�(�(t)� �(s))g
�

satis�es the condition H(�) � C1 + �j ln �j; � > 0: Here �(�1) is the inverse function to �.

The main advantage of our estimation (2.10) compared to (2.13) is that the function  �
�
(x)

on the right hand side of (2.10) is given explicitly while in general case, the determination

of the function ��(x) on the right hand side of (2.13) is an independent and diÆcult task.
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2.3 Proof of Theorem 1

To prove the theorem 1 we need in the following assertion:

Lemma 1. Let � be a random variable such that E expf
j�jg < 1 and Ej�j2 � �
2 for

some positive constants 
 and �, then

(i) k�k(1) � 1


[2(E expf
j�jg � 1)]

1=2
1 ; and

(ii) Bernstein's condition (2.5) is valid with

b =
1




�
2(E expf
j�jg � 1)



2
�
2

�
1

:

Proof. Since


k
Ej�jk
k!

� E expf
j�jg � 1; k = 2; 3; : : :

Hence

k�k(1) = sup
k�2

�
2Ej�jk
k!

�1=k

� sup
k�2

�
2(E expf
j�jg � 1)



k

�1=k

=
1




[2(E expf
j�jg � 1)]
1=2
1 ;

which completes the proof of (i).

To prove (ii) we note that

b =
1




sup
i�3

�
2(E expf
j�jg � 1)



2
�
2

� 1

i�2

and therefore

�
2
b
k�2 � �

2 1



k�2

2(E expf
j�jg � 1)



2
�
2

� 2Ej�jk
k!

; k = 2; 3; : : :

which completes the proof of Lemma 1.

Proof of Theorem 1. To prove the theorem we need a result due to Ostrovsky (see [10]).

Let  : [0;�) ! R+ = [0;1) be a convex and continuous function (� � 1), such that

0 < lim
�!0

 (�)

�
2

<1; lim
�!��0

 (�)

�

=1:

Let  �(x) � sup
��0

(�x �  (�)) be the Legendre transformation of  . Let (T; �) be a pre-

compact pseudometric space, H(�) is Kolmogorov's � entropy of (T; �). Assume thatR 1
0
H(�) d� <1.

Theorem 2. (see [10]). Let �(t); t 2 T be a centered and separable on (T; �) random

�eld such that

lnE expf��(t)g �  (�j�j); � 2 R1
; t 2 T ;

lnE exp f�(�(t)� �(s))g �  (�j�j�(t; s)) ; � 2 R1
; t; s 2 T

6



for some � > 0. Then

Pfsup
t2T

j�(t)j � �xg � 2 exp

(
� �(x(1 � p)) +

1X
k=1

(1� p)pk�1H(pk)

)
(2.14)

for each x � 0 and p 2 (0; 1).

Now let us continue the proof of Theorem 1. From independency of �1(t); �2(t); : : : ; �n(t)

it follows that (cf. (2.7)):

E expf�Sn(t)g � exp

�
�
2
�
2

2(1 � bj�j=
p
n)

�
; j�j �

p
n

b

:

Taking into account � � b=� we have

E expf�Sn(t)g � exp

(
�
2
�
2

2(1 � �

j�j�p
n
)

)
= expf n(�j�j)g; � 2 R1

; (2.15)

where  n(�) � n �(�=
p
n). Here and below we assume that  �(�) = 1 if � � 1=�. By

de�nition of the norm k � k(1) and pseudometric �1(t; s) we have

Ej�(t)� �(s)jk � k!�k1(t; s)

2
; k = 2; 3; : : : :

Therefore

E expf�(Sn(t)� Sn(s))g =
�
E exp

�
�p
n

(�(t)� �(s))

��n

�
 
1 +

1X
k=2

j�jk�k1(t; s)
2nk=2

!n

= (1 +  1(�))
n � expfn 1(�)g; where � =

j�j�1(t; s)p
n

;

and taking into account that � � 1 (which implies  1(�) �  �(�) for each � � 0 ) we

have

E expf�(Sn(t)� Sn(s))g � exp

�
n �(

j�j�1(t; s)p
n

)

�
= expf n(j�j�1(t; s))g; � 2 R1

:(2.16)

Thus, if we put �(t) � Sn(t),  (�) �  n(�) and �(t; s) � �1(t; s)=�, then it follows from

(2.15)- (2.16) that all the assumptions of Theorem 2 are ful�lled. Therefore it follows

from (2.14) that

pn(x) � 2 � inf
p2(0;1)

exp

(
�n �

�

�
x(1� p)

�

p
n

�
+

1X
k=1

(1� p)pk�1H(pk)

)
:

From the fact that the Kolmogorov � entropy is a monotonically decreasing function of �

it follows that

1X
k=1

(1 � p)pk�1H(pk) � 1

p

pZ
0

H(�) d� � 1

�p

�pZ
0

H1(�) d�

which completes the proof.
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3. Random �elds with parametric set T � R
k

Let us consider the case when T � R
k is a bounded (therefore T is precompact) subset

of the k dimensional Euclidean space Rk. Denote by k � k the norm ktk = maxi=1;k jtij.
Let F (t); t 2 T be a random �eld, which is assumed to be separable on the metric space

(T; �), where �(t; s) = kt� sk. Then the following assertion holds

Theorem 3. Let F1(t), F2(t); : : : ; Fn(t) be independent samples of the random �eld

F (t). Assume that

(i) there exists a positive constant 
, such that

A � sup
t2T

E expf
jF (t)jg <1

(ii) there exist constants 
0 > 0, � 2 (0; 1] and a positive random variable �0 satisfying

the condition A0 � E expf
0�0g <1 such that

P fjF (t)� F (s)j � �0kt� sk�g = 1 for each t; s 2 T ;

(iii) there exists positive � such that

sup
t2T

E(F (t)� EF (t))2 � �
2;

then for each x � 0

P

(
sup
t2T

j 1p
n

nX
i=1

(Fi(t)� EF (t)) j � x

)
� (3.17)

2 � inf
p2(0;1)

exp

8<
:� n

2�20

 s
1 +

2�0x(1� p)

�

p
n

� 1

!2

+ k ln(1 +DC

1=�
3 ) +

k

�

(1 + j ln(�p)j)

9=
; ;

where

�0 = [b=�]1; b =
1




�
2(A2 � 1)



2
�
2

�
1

; D = sup
t;s2T

kt� sk; C3 =
lnA0


0

+
1


0

[2(A0 � 1)]
1=2
1 :

Proof. De�ne the centered random �eld �(t) = F (t)�EF (t); t 2 T . Taking into account
j�(t)j � jF (t)j+ jEF (t)j we have

E expf
j�(t)jg � E expf
(jF (t)j+ jEF (t)j)g � A
2
:

From this inequality and by Lemma 1 it follwos that the random �eld �(t) satis�es Bern-

stein's condition (2.5) with b = 1



h
2(A2�1)

2�2

i
1
.

Now let us estimate the � entropy H1(�) of the metric space (T; �1) where �1(t; s) =

k�(t)� �(s)k(1). From

j�(t)� �(s)j � jF (t)� F (s)j+ jEF (t)� EF (s)j

8



and by the assumptions of the Theorem it follows that

k�(t)� �(s)k(1) � (k�0k(1) + E�0)kt� sk�:

Using Lemma 1 and Jensen's inequality we have

k�0k(1) �
1


0

[2(A0 � 1)]
1=2
1 and expf
0E�0g � E expf
0�0g = A0;

respectively. These inequalities show that

�1(t; s) = k�(t)� �(s)k(1) � C3kt� sk�:

Hence for each � > 0

H1(�) � H(Æ); where Æ = (�=C3)
1=�
:

Therefore taking into account H(Æ) � k ln(1 +D=Æ) we have

H1(�) � k ln

 
1 +D

C

1=�
3

�
1=�

!
� k

�
ln(1 +DC

1=�
3 ) +

1

�

j ln �j
�
:

Here we applied the following simple inequality ln(1 + a=x) � ln(1 + a) + j ln xj for each
positive a and x.

Hence the inequality (3.17) follows from that of Corollary 1 if we put C1 = k ln(1+DC

1=�
3 )

and � = k=�: This completes the proof.

4. Asymptotic behaviour of the estimation (2.12) for

moderately large deviations

In this section we study asymptotic behaviour of the right- and the left-hand sides of

the inequality (2.12) in the domain of moderately large deviations. For moderately large

deviations (e.g., see [11], p. 123)

xn !1; and
xnp
n

! 0 as n!1: (4.18)

Remark 4. Let us explain the importance of moderately large deviations. We consider

the equality

P

(
sup
t2T

j1
n

nX
i=1

(Fi(t)� EF (t)) j � �n

)
= pn(xn); xn = �n

p
n:

From one side, it makes a sense to consider such �n that satis�es the condition �n ! 0 as

n!1 (since � is the measure of the error in the dependent sampling method). Therefore

�n = xn=

p
n ! 0 as n ! 1. From the other side it is meaningful to consider such �n

which ensures the convergence of the probability pn(xn) to zero (since this probability

characterizes the con�dence of the estimation based on the dependent sampling method).

Therefore it should be assumed that xn !1 as n!1.
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In the domain of moderately large deviations, the asymptotic behaviour of probabilities

of deviations is quite similar to that of Gaussian distributions. In this section we will use

the following known result of the theory of large deviations (e.g., see [15]).

Theorem 4. Let �1; �2; : : : be a sequence of independent identically distributed centered

random variables satisfying Bernstein's condition (2.5) and xn; n = 1; 2; : : : a sequence

satisfying the condition (4.18). Assume that E�2
i
= �

2, then

P

(
j 1p

n

nX
i=1

�i j � xn

)
= exp

�
� x

2
n

2�2
(1 + Æn)

�
;

where Æn; n = 1; 2; : : : is a sequence satisfying the condition Æn ! 0 as n!1:

Now let us consider the estimation (2.12). For the brevity of notations let us rewrite the

inequality (2.12) in the form (2.3).

Let �(t); t 2 T be a random �eld satisfying all the conditions of Corollary 1, and the

following condition

9t0 2 T such that �2 = E�
2(t0): (4.19)

Then it follows from Theorem 4 that

pn(xn) � P

(
j 1p

n

nX
i=1

�i(t0) j � xn

)
= exp

�
� x

2
n

2�2
(1 + Æn)

�
: (4.20)

From the de�nition of  �
�
(x) it follows that

n 
�
�

�
xn(1� p)

�

p
n

�
=

x
2
n

2�2
(1 + Æ

0
n
)(1� p)2; (4.21)

where Æ0
n
; n = 1; 2; : : : is a sequence satisfying the condition Æ0

n
! 0 as n!1:

Due to xn !1 as n!1 we can choose a sequence fpng � (0; 1) such that pn ! 0 and

j ln pnj=x2n ! 0 as n!1. Therefore, taking into account (4.21) we have

�n(xn) �
x
2
n

2�2
(1 + Æ

00

n
);

where Æ
00

n
; n = 1; 2; : : : is a sequence satisfying the condition Æ

00

n
! 0 as n!1: From this

inequality and (4.20) we come to the following conclusion

exp

�
� x

2
n

2�2
(1 + Æn)

�
� pn(xn) � expf��n(xn)g � exp

�
� x

2
n

2�2
(1 + Æ

00

n
)

�
:

Thus we establish that in the range of moderately large deviations under the conditions

of Corollary 1 and the condition (4.19) the asymptotic behaviour of the right-hand side

of (2.12) is optimal in the sense that

lim
n!1

�n(xn)

j ln pn(xn)j
= 1: (4.22)
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5. Conclusions

An exponential estimations of the type (2.3) for the probability (2.2) of deviations a sum

of independent random �elds is established. Application of this result to the problem

of the error estimations for the dependent sampling Monte Carlo method is discussed.

Proposed estimations have the following features:

� the parametric set of a random �eld might be arbitrary;

� all the estimations are non asymptotic, i.e. they are valid for an arbitrary number

of summands n;

� for moderately large deviations the estimations have optimal log-asymptotics in the

sense that (4.22) holds.
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