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Abstract

Randomized Spectral Models (RSM) and Randomized Fourier-Wavelet Models
(FWM) for simulation of homogeneous Gaussian random fields based on spectral
representations and plane wave decomposition of random fields are developed. Ex-
tensions of FWM to vector random processes are constructed. Convergence of the
constructed Fourier-Wavelet models (in the sense of finite-dimensional distributions)
under some general conditions on the spectral tensor is given. A comparative anal-
ysis of RSM and FWM is made by calculating Eulerian and Lagrangian statistical
characteristics of a 3D isotropic incompressible random field through an ensemble
and space averaging.

1 Introduction

Stochastic approach becomes more and more popular in all branches of science and tech-
nology, especially in problems where the data are highly irregular (in deterministic sense).
As a rule, in such problems it is very difficult and expensive to carry out measurements to
extract the desired data. As important examples we mention the turbulent flow simulation
[32]), and construction of flows through porous media [17], [4]. The temporal and spatial
scales of the input parameters in this class of problems are varying enormously, and the
behaviour is very complicated, so that there is no chance to describe it deterministically.
In the stochastic approach, one needs to know a few number of parameters, like the mean
and correlation tensor, whose behaviour in time and space is much more regular, so that
usually, it is easier to extract them through measurements.

In most applications, it is assumed that the random fields are Gaussian, or that they
can be obtained by a functional transformation of Gaussian fields. Generally, it is very
difficult to construct efficient simulation methods for inhomogeneous random fields even
if they are Gaussian. Therefore, the most developed methods deal with homogeneous or
quasi homogeneous random fields, i.e., the characteristic scales of the variations of the
means of the field are considerably larger than the correlation scale. There are highly
intensive studies and literature concerned with the simulation of homogeneous and quiasi
homogeneous random fields. We mention here only some publications dealing with the
main simulation methods.

Important class of methods includes models based on spectral representations. It includes
(1) Discrete Spectral Method (DSM) ([38]) which is simply a deterministic discrete ap-
proximation of the Fourier Stilties integral; (2) Randomized Spectral Method (RSM) (
[21], [31], [36])) which is based on a randomized approximation of the same Fourier Stilties



integral; (3) Fourier-Wavelet Method (FWM) ([10], [12], [13]) is a different approxima-
tion of the Fourier Stilties integral based on reexpansion in a special family of orthogonal
functions, and is obtained by an expansion of the Gaussian white noise in wavelet basis.

Another class of methods includes methods which deal with the expansions in the physical
space, in the relevant system of orthonormal functions: (1) methods based on expansions
in wavelet basis (WM) (]|45], [40]), (2) Karhunen-Loeve expansion method (KLEM) ([39],
[43] ) based on the expansions in eigen functions of the correlation operator; note that
it works also for inhomogeneous random fields. (3) Moving Averages Method (MAM)
(|29]) based on the representation of the random field in the form of a convolution of a
deterministic function (more precisely, a Fourier transform of a square root of the spectral
function) with the Gaussian white noise in the physical space. We mention the Fast Fourier
Transform Spectral Method (FFTSM) (e.g., see [35], [7]) which is a particular case of the
Discrete Spectral Method whose nodes are chosen as a diadic mesh to apply further the
Fast Fourier Method.

The Matrix Factorization Method (MFM) ([8],[37] ) and Circulant Embedding Method
(CEM)([9]) is based on the Holessky decomposition of the covariance matrix.

The methods listed above all have their advantages and disadvantages as well. For exam-
ple, DSM, RSM, and MAM, are simple and convenient for implementation; they provide
the possibility to calculate the values of the random field at some points on demand. But
in multidimensional cases, DSM and MAM are less efficient. FFTSM is also simple for
implementation, but it calculates the random field only on a diadic mesh and has there-
fore a disadvantage that the samples are periodic. Further, FWM and WM models are
efficient for simulating multiscale processes but they are difficult in implementation.

The KLEM model is highly efficient but is not universal since it is necessary to solve the
eigen-value problem for the correlation operator.

More details about the mentioned methods can be found in [10], [2], [15], [34], [22], [23]
where also a comparative analysis of some methods is given. In particular, in [2], [10], RSM
and FWM are compared by analysing a fractal random field with the spectral function
F(k) =k (1 < a < 3), where the calculated structure function was compared with the
exact result. The main conclusion is that to construct the samples of a multiscale random
field with a fixed desired accuracy, the cost of RSM is considerably lower than that of
FWM if 1g(lnaz/lmin) < 4 where l,,;, and [,,,, are the minimal and maxiamal spatial
scales of the random field, respectively. In [23] we have shown that a logarithmically
uniform subdivision of the spectral space (we have introduced such a subdivision in [26])
when calculating two- and a few-point statistical characteristics of the fractal random
field, the RSM is more efficient than FWM for all values of l,,4:/lmin- In particular,
when calculating the structure function of a multiscale random field with @ = —5/3,
Imaz/lmin = 10'? it was found that the cost of FWM was 12 times larger than that of
RSM; results were obtained for 9 decades, with a fixed accuracy.

Up to now, we discussed the calculation of statistical characteristics by ensemble aver-
aging over the samples constructed by the relevant method. In many practical problems
(e.g., in underground hydrology) only data obtained through spatial averaging is at hand,
for instance, statistical characteristics obtained by a spatial averages, or over a family of
Lagrangian trajectories generated in one fixed sample of the field (e.g., see [5], [17]). If
the random field is ergodic (which in practice is almost always true), then the ensemble
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averages can be well approximated by the appropriate space averages. This is very impor-
tant when a boundary value problem with random parameters is solved: then in contrast
to the ensemble averaging, we have to solve the problem only once, and then make the
relevant averaging over space. In practical calculations, to increase the efficiency, it is
sometimes reasonable to combine both the space and ensemble averaging, e.g., see [27],
[20]. The same technique is used also in simulation of turbulent transport [16], [41].

So we conclude that good ergodic properties of the constructed random field model are
very important and desired in practical problems. In [23| we studied ergodic properties of
RSM and FWM. Calculations of structure functions through ensemble and space averaging
have shown that the ergodic properties of FWM are much better than that of RSM. So
in RSM, to obtain a good approximation through space averaging, it is necessary to take
many thousands of harmonics per each decade !. However this conclusion was made only
for random processes (i.e., random fields depending on one scalar variable).

In the present paper we deal with an analogous comparative analysis of RSM and FWM
for three-dimensional random fields. Since the cost of both methods is proportional to
the number of decades of the simulated random field, 1g(,1az/lmin), it is not necessary to
handle multi-scale random fields. In this paper we simulate a 3D isotropic incompressible
random field whose longitudinal correlation function is exponential. In the comparative
analysis we have also included a Stratified Randomized Fourier-Wavelet model (SRFWM),
a new version of FWM we have introduced in this paper. We also generalized the FWM to
vector random fields (we are aware only of papers dealing with FWM for scalar processes
and isotropic fields, see [2], [10]-[14], [22].

The article is organized as follows. In Section 2, we present the basic formulae for the
discrete expansions of random fields (starting from its spectral representation) in or-
thonormal system of functions. In Section 3, we give the basics of the Fourier-Wavelet
expansions, and the Wavelet expansions too, to stress the difference between these two
representations. The randomization of spectral expansions is described in Section 4. In
Section 5, the Fourier-Wavelet model for random processes is presented, with a study of
the error when a finite number of terms is taken in the relevant series expansion. Here we
compare the model with the original method published in [10]. In Section 6, we present an
approach known as a plane wave decomposition of random fields, which suggests a general
technique of random field simulation through samples of stochastic processes. We describe
different versions (deterministic, randomized, and stratified randomized) for choosing the
nodes in the stochastic integral representation through the plane wave decomposition. In
Section 7, we present the simulation results for a 3D isotropic incompressible random field
carried out by different versions of RSM and FWM. We compare the Eulerian longitudi-
nal and transversal correlation functions, the Lagrangian correlation function of velocity,
and the diffusion coefficient. All these statistical characteristics were calculated both by
ensemble and space averaging. The main results are summarazed in the Conclusion, and
some technical details are included in Appendices A and B.



2 Discrete expansions related with the spectral repre-
sentations of Gaussian random fields

2.1 Spectral representations

We deal in this paper with real-valued homogeneous Gaussian [-dimensional vector ran-
dom fields u(x) = (u1(x),...,u(x))?, x € R? with a given correlation tensor B(r):

Bij(r) = (u(x +r)u;(x)), 1,7=1,...1 (2.1)

or with the corresponding spectral tensor F":

Ej(k):/ei%k*Bij(r) dr, Bl-j(r):/e”“'kmj(k) dk, i,j=1,...1. (2.2)
Rd Rd

We will assume that the condition [ |Bj;(r)|dr < oo is satisfied which ensures that the
Rd
spectral functions Fj; are uniformly continuous with respect to k. Here Bj; is the trace of

B, i.e., we use here and in what follows the summation convention under repeated indices.
Note that a weaker assumption that B is squared integrable guarantees only the existence
of the spectral tensor in the space L.

Let Q(k) be an | x n-matrix defined by
Qk)Q"(k) = F(k), Q(-k) =Q(k) . (2.3)

Here the star stands for the complex conjugate transpose which is equivalent to taking
two operations, the transpose 7, and the complex conjugation of each entry.

Then the spectral representation of the random field is written as follows (e.g., see [18],
[32], [44])

u(x) = / ¢ 7" Q(k) Z(dk) (2.4)
R
where the column-vector Z = (Zy, ... Z,)" is a complex-valued homogeneous n-dimensional
white noise on R? with a unite variance and zero mean:

(Z(dk)) =0, (Zi(dky) Zj(dks)) = 6;; 6(ky — ko) dky dks (2.5)

satisfying the condition Z(—dk) = Z(dk). Note that the last condition can be satisfied
as follows. Let Z = (Zg +iZ;)/+/2 where Zg and Z; are independent homogeneous real-
valued white n-dimensional vector noises with a unity variance and zero mean defined on
the half space [0, 00) x IR%~!. Now, we prolong the measures Zg and Z; on (—oo, 0) x R4!

All these conditions ensure that the random field (2.4 ) has real-valued components.

There is a different spectral representation which we will use further. Let us introduce a
complex random field

w(x) = ugp(x) +ius(x) = /eiz’rka(k) W (dk) . (2.6)



Here W (dk) = Wg(dk) +iW(dk) is an n—dimensional complex white noise where the
real and imagine parts are two independent homogeneous white noises on the whole space
R with unit variance and zero mean. It is not difficult to see that ug(x) and u;(x) are
independent Gaussian random fields both having the spectral tensor F'(k).

2.2 Series expansions

In this section, we deal with the expansions
= Ga(x)& (2.7)
acA

where G, (x) is a system of deterministic functions (or possibly matrices), &, is a family
of random variables (possibly vectors) A is a countable (finite or not) index set.

Our purpose is to construct the system G, and the family &, so that the random field
(2.7 ) has the desired spectral tensor (2.2 ).

2.2.1 Expansion with even complex orthonormal system

Let us choose the system of scalar functions ¢, (k) as a set of generally complex valued even
functions (p,(—k) = @a(k)) which are orthonormal and complete in Lo(IRY) equipped
with the scalar product (f,g) = [p. f k) dk:

(oron) = [ @al02600 k= bs. 0.5 € A 25)

where d,5 is the Kronecker symbol. Since Bj;(0) = [ Fj;(k)dk < oo, and QQ* = F,
we conclude that all the entries of the matrix @ belong to Lo(IR?). Then, we expand
e ?mkx (k) as a function of k in the system of orthonormal functions ¢, (k):

B (k) = 3 G Go(x) = /ei%kxg(k)@a(k) dk.  (2.9)

acA Rd
We now substitute this representation in (2.4 ), and obtain the expansion (2.7 ) with

€ - /%(k) Z(dk), acA. (2.10)
Rd
Note that by the construction and the assumptions made, the random vectors &, and

the functions G, (x) are all real valued. Notice also that &, are mutually independent
standard Gaussian random vectors since

(€€ =1 [ allpalo dic = L
Rd
where [ is a n X n identity matrix.

Thus we have constructed an expansion of type (2.7 ) with independent Gaussian random
vectors.



2.2.2 Expansion with real orthonormal system.

Let us construct another expansion starting from a set of orthonormal scalar real valued
functions g, (x) complete in Ly(R?):

(0o 95) = / 00 (%) g5(x) dx = b5
Rd

Then,
u(x) = 3 .)€, (2.11)

acA
where the family of random column-vectors of dimension [ is defined by

£, = /u(x)ga(x) dx. (2.12)

Substitution of the representation (2.2 ) in (2.12 ) yields

e - / 6(—1) QU Z(dK),  Gall) = / e 27y (x) dx (2.13)

Note that &, are real valued Gaussian random column-vectors of dimension /; these vectors
are generally correlated, in contrast to the family (2.10 ).

2.3 Complex valued orthogonal expansions

A different expansion can be obtained if we expand e'?"¥*Q(k) in (2.6 ) in the form
of (2.9 ) where ¢, is a set of arbitrary (possibly not even) orthonormal complex valued
functions complete in Ly(IR?), while G,(x) and the family &, are defined in (2.9 ) and
(2.10 ), respectively. This gives

un(x) = 3 (G €D - GO ED)

«

wix) = 3 (6D - O ER) (2.14)

«

where
Go(x) =GP (x) +1GV(x), &, =¢€P+ie] .

Analogously, we can generalize the expansion (2.11 ) to the general complex valued case.
Let g,(x) be an arbitrary complete system of complex valued orthonormal functions in
Ly(IR?), and let €, be a family of random column-vectors defined in (2.13 ). Then,

un(x) = - (80 €F — D)D)

wix) = Y (a0l + gNx) €M) (2.15)

where
ga(x) = g (x) +1gV(x), €, =€ +igd) .



3 Wavelet expansions

In this section we consider an important example of expansions based on even orthogonal
systems described in subsection 1.2.1. For simplicity we present here the one-dimensional
case, d = 1.

Our goal is to construct the expansion of a homogeneous Gaussian vector random process
u(z) = (ui(z),...,w(z))", x € R with a given spectral tensor F(k).

Again, we assume that F' = Q Q*, where Q(k) is [ X n—dimensional matrix satisfying
the condition Q(—k) = (k). The orthonormal system of functions ¢, is constructed as
follows.

Let us introduce the notations: ¢(z) and ¢(z), = € IR are orthonormal scaling and
wavelet functions, respectively, and

Gmj(w) =2"2P(2" = J), i (1) = 272" 2 — j), (3.1)
where m,j = ..., —=2,—1,0,1,2,.... Tt is known (e.g., see [3], [19]) that the system of
functions

TS - (T3 Y (3:2)

is, for an arbitrary fixed integer mg, a complete set of orthonormal functions in Ls(IR),
and moreover, by Parseval equality, the relevant Fourier transforms of these functions

o} e { i} Eer m =m0} (33)

compose also a complete set of orthonormal functions in Ly([R).

3.1 Fourier-wavelet expansions

Thus we choose, as the family ¢,, the system of functions (3.3 ).

From (2.9 ) and (2.7 ) we find that
r)= Y GW(x)& + Z Z W) (x (3.4)
j=—00 m=mg j=—00

where &;, £,,; 1s a family of mutually independent standard real valued Gaussian random

vectors of dimension n, and Ggf]) (), Gf:fj? (x) are | x n-dimensional matrices defined by

Gl(w) = / 2 QR) Gy () b, G () = / 2T Q(k) Yoy (k)

It is clear that

ng](k) _ 2—m/2 e—i27rkj2*m Qg(Q_m k‘), @Emj(k) _ 2—m/2 6—i27rk;j2*m 1&(2_"1 /{3) ] (35)



Now we can define the analog of G, by substituting @, (k) in (2.9 ) with these expressions,
which yields

G (1) = ]o 7 Q(k) Gy (k) ke = f ¢ BTRQK) Guny () d
= 7 e TRIQ (k) 272 e T2 RIET (27 k) dks
= 76—12”’(2”“) 2m2Q(27K ) (k') ' (3.6)
Analogously,
GV)(z) = ]oei%k’@mxﬂ? 2" 2Q(2" K Y (k') dk . (3.7)

For convenience, we define

FO(y) = / o2 gm0 (2m 1) (k) dk
FW(y) = / ek gm0 k) () d, (3.8)
hence (¢) (¥)
G (x) = FO@™z 1), CW(a) = FO@" a4 j) (3.9)
and finally,

Z FiO@™r+ )&+ > > FW@"r+5)E,, - (3.10)

j=—00 m=mg j=—00

3.2 Wavelet expansion

In this section we deal with the expansion of the type (2.11 ) and use the scaling and
wavelet functions (3.1 ), as the orthonormal system G,. Thus the expansion reads

= Z ¢m0j(l‘) Eg;fgj—'— Z Z @Z)mj(x)é%]) ) (3'11)

j=—00 m=mg j=—00

where 57(7?) - and ﬁ'i:f ) is a set of Gaussian column-vectors of dimension n defined as follows:

) = /Q ) Gy (—k) Z(dk) /Q )22 2RI G kY Z(dk) , (3.12)



and analogously,
(w) /Q 2 m/2 127rk]2 mQZ(Q mk) (dk’) ) (313)

Note that in contrast to the Fourier wavelet expansions, here the random vectors E and

E,%) are correlated, and in particular, in calculations one needs the following correlamons.

o0

(&) (€)= 2 / 2K I |27 ) 2 F (k) d (3.14)
(€9 (W) = g / i 2m k(i1 —j2) @(Qfmk)@z](z*mk)) F(k)ydk,  (3.15)
() (€n)T) = 2 [ @O P k) (3.16)

It is worth noting that in the expansion (3.11 ), a biorthogonal system of wavelet functions
can be used, see [40].

3.3 Moving averages

Let F(k) be an [ x [-dimensional spectral tensor of a random field, and Q(k) be an
[ x n-dimensional complex-valued matrix satisfying (2.3 ). Since obviously B,;(0) =
[ Fj;(k) dk < oo, we see by (2.3 ) that the entries of the matrix are squared integrable,
i.e., Q(k) € Ly(IRY). Therefore the [ x n-dimensional matrix

G(x) = /e“m@(k) dk (3.17)
Rd
is well defined, with real valued square integrable entries.

We define now an [-dimensional homogeneous Gaussian random field
u(x) = /G(X —y)W(dy) (3.18)
R

where W(dy) = (Wy(dy), ..., W,(dy))T, and W;(dy), i = 1,...,n are real valued inde-
pendent homogeneous Gaussian white noises in IR¢ with unite variance and zero mean.
Then the random field (3.18 ) has the spectral tensor F'(k). Indeed,

(ulx+r)u"(x)) = </G(x tr-y) W(dy)(/a(x ~Y)Widy))')

Rd Rd

:/G(X+r—y)GT(X—y)dy=/G(Z+r)GT(Z)dZ

R4 R4



Taking the Fourier transformation of the right-hand side we get
/612““r dr / G(z+1)Gl(z)dz = /eiz’rk(”z) G(r+z)d(r +z) /ei%kz, G"(z)dz
R4 R4 Rd Rd

_ /e—i27rkx’GT(X) dX(/e—i%rszT(Z) dz) =Qk)Q"(k) = F(k) .

Rd Rd

4 Randomized spectral models

A straightforward evaluation of the stochastic integral (2.4 ) is based on the Riemann
sums calculation with fixed cells (see, e.g. [38], [35]). The integral is approximated by a

finite sum
n

u(x) ~ Z [cos(%rki - x)&; + cos(2k; - x) 1]
i=1
where k; are deterministic nodes in the Fourier space, §; and 7, are Gaussian random
vectors with zero mean and relevant covariance. Efficient calculation of the above sum is
usually carried out by the fast Fourier transform which assumes that the nodes are chosen
uniformly. It should be mentioned that this scheme suffers from an artificially periodicity
in the scale of 1/Ak where Ak is the integration step in the Fourier space.

In Randomized models, the nodes are chosen at random, with an appropriate probability
distribution so that the model has the desired correlation structure. We mention by
passing that this model is free from the above mentioned artificial periodicity.

4.1 Randomized spectral models defined through stochastic
integrals.

Let us consider an [-dimensional random field u(x), x € R? defined by the stochastic
integral [18]:

u(x) = / H(x, k) W (dk), (4.1)
Rd

where (1) H : R?* x R®" — C™" is a matrix such that H(x,-) € Ly(IR™) for each
x € R% (2) W(-) = Wg(:) + iW;(-), where Wg(-) and W;(-) are two independent
n—dimensional homogeneous Gaussian white noises on JR% with unit variance. Here C is
the set of complex numbers.

Let us describe the randomized evaluation of the stochastic integral (4.1 ). Let p : R" —
0, 00) be a probability density on R": [ p(k)dk = 1, and let ki, ..., k,, are independent
equally distributed random points in R with the density p(k). Assume that ¢, ..., ¢,,
is a family of mutually independent standard Gaussian complex random vectors of di-

mension n (i.e., ¢; = §; +1in; with independent, n—dimensional real valued standard
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Gaussian random vectors &; and 1,). Then the random field

uno Z X kj)Cj (42)

has the same correlation tensor as u(x), provided p(k) satisfies the condition

p(k) >0, if 3Ixe€R: H(x,k)#0.

In practical calculations, to guarantie an equal presentation of different spectral regions,
one uses a stratified randomization technique (e.g., see [31],[36]). Let us describe it briefly.
Let {A;}Y; be a subdivision of the spectral space R%: R™ = U, A;, and A;NA; = 0 if
i # j. This generates the representation of the random field u(x) as a sum of independent

random fields: v
= w(x), ui(x):/H(x,k)W(dk).
i=1 A,
Let p; : A; — [0,00) (i = 1,..., N) be a probability density on A;: fAi pk)dk =1

satisfying the condition p;(k) > 0, for k € A; if Ix € R?: H(x,k) # 0. Then using the
randomized representation for u;(x) we get a stratified randomization model for u(x):

UN 1y ( Z Z \/ﬁ ki), (4.3)

where {sz 0, C A;,v=1,..., N are mutually independent random points such that
for fixed ¢ the random pomts kij,j = 1,... are all distributed with the same density
pi(k), and Cij»t=1,..., N;j =1,..., ng are mutually independent, and independent
of {ki;}72, @ = 1,..., N family of n—dimensional complex valued standard Gaussian
random Varlables

By the construction, for any N and ng, the random field u ,,(x) has the same correlation
tensor as that of u(x). As the Central Limit Theorem says, by increasing ng (N fixed)
the field uy ,,(x) is convergent to a gaussian random field (e.g., see [1],[24], [25]). So the
stratified randomization model uy ,,(x) can be considered as an approximation to u(x).

4.2 Stratified RSM for homogeneous random fields

Let now u(x), x € R? be a homogeneous I-dimensional Gaussian random field with the
spectral tensor F'(k), k € IR¢, and let Q(k) be an [ x n-dimensional matrix satisfying the
condition Q(k)Q*(k) = F(k), k € R?. Then due to the spectral representation (2.6 ),
the real and imaginary parts, ug(x) and u;(x) of the complex-valued field w(x) are two
independent copies of the random field u(x). The field w(x) can be obviously represented
((in view of (2.6 )), as a stochastic integral (4.1 ) with the kernel H(x, k) = e?™kQ(k).
Therefore, the relevant stratified randomization model has the form

10 127rx k”

W o (X Z \/_ ; m

11

(4.4)



with the conditions on the densities p; written as p;(k) > 0 for k € A; if max |g,,- (k)| > 0

(where @ = (¢mr)). Taking the real part of (4.4 ) we get the stratified randomization
model of the original real-valued random field u(x):

)cos 0;; — Q" (k;;) sin 0ij:|£ij

() (@
’ Zl \/_ Z « /pi(ki;)

+ [Q (ij) COS Oij + Q/(kU) sin 0”:| T’z]} . (45)
Here 0;; = 2nk;; - x, {k;;}, i =1,..., N;j = 1,..., ng are the same as in (4.3 ), and

&Myt =1,..., N;j=1,..., ng is a family of mutually independent and independent
of the set {k;;} n-dimensional real-valued standard Gaussian random variables.

5 Fourier-wavelet models

In the numerical implementation of (3.10 ) we have to: (1) choose the scaling and wavelet
functions, (2) evaluate the coefficients (3.8 ), and (3) find a reasonable choice of the cut-off
parameters mg and m; in the approximations:

) bo+[2m0x]
D FEREMr g Y, FRE™r+)E; (5.1)
j=—00 j=—bo+[2m0z|
00 00 bi+[2"w]
YD FV@ )by Z Y. FP@r )€, (5:2)
m=mgy j=—00 m=m j=—bi1+[2mx]

where |a| stands for the integer part of a, and by = by(mg), by = b1 (m) are such integers

that supports of the functions .7-"7(7%) and F belong essentially to the intervals [—by, by
and [—by, by], respectively. We will deal here with a scalar random process u(z), =z € IR.
Extensions to vector random processes is straightforward.

5.1 Meyer wavelet functions

The Meyer wavelet functions ¢(z) and ¢(z) are defined by their Fourier transforms (e.g.,
see [6]):

o) = [ @¥hiyan, ve) = [ i) dn (5.3)
where
1 k] <1/3,
o(k) =< cos[v@Blk| 1),  1/3<[k[<2/3 (5.4)
0, otherwise
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e mhsin[Zv(3|k| — 1)], 1/3< k| <2/3
Bk =4 e eosZu(E K| = 1)), 2/3 < [k < 4/3 (5.5)
0, otherwise .

Here v(x) is a smooth function satisfying the following conditions: v(z) = 0 for x < 0,
v(z) =1forx > 1, and v(z) + v(1 —2) = 1 for 0 < z < 1. As an example of such a
function, we consider a function v(x) = v,(x) depending on a positive parameter p (see

[10]):

l/p(x):‘lpl{[x—xo] + [z —I—QZ I — )% },

b

where ; = (1/2)[cos(((p — j)/p)7) + 1], and [a]; = max(a,0). The function v, is p — 1
times continuously differentiable, therefore, choosing p sufficiently large, we can made the
functions ¢ and ¢ smooth enough.

5.2 Evaluation of the coefficients ﬁg? ) and ﬁS;” ),

Here we give some technical details on the calculation of the functions (3.8 ) which in our
case reads

4/3

ful€) = / e 2 (k) dk (5.6)

—4/3

where g(k) = 2™/2FY2(2mk) (k) and g(k) = 2m/2FY2(2mk)(k) for FY and FY, re-
spectively.

We calculate this function on the grid of points §; = —%AS +(—-1AE j=1,...,N,
where N is an even number, and A¢ > 0 is the grid step. In order to evaluate the

truncated sums appearing in the Fourier-wavelet representation (3.7 ), we must choose
NAEJ2 > b

We approximate the integral (5.6 ) by a Riemann sum:

a

N
ful€) = / eRE () d S Ak e MG (k) (5.7)
=1

—a

where 5
k= —a+(—1/2)Ak, 1=1,...,N; Ak:Wa.

We use the same number of points N = 2" (where r is some positive integer) to discretize
the integral as we have done in representing f,,(£) in physical space, so that we can apply
the discrete fast Fourier transform. We also clearly need the cut-off in the integral in (5.7
) to satisfy a > 4/3 (with g(k) set to zero whenever evaluated for |k| > 4/3). Finally, the

13



use of the fast Fourier transform requires the steps in physical and wavenumber space be
related through A(Ak = 1/N. Indeed, simple transformations then yield

Eh = [~ 50+ (- DAE[a+ (- 17208
N-1 j—1 1N -1 (j-D-1)
IR (1_N)_ > N ’ 5:8)

hence
Jm(&;) ~ exp {ﬂ'i (j — 1)(1 — i) } ZGl exp{ — 2#1%} , (5.9)

where

G = Akg(kl)exp{ — 27 [N; L Z_Tl]} :

which is in the form of a discrete Fourier transform.

The constraints imposed on the discretization of the integral (5.7 ) to obtain an expression
amenable to fast Fourier transform imply the following sequence of choosing parameters.
First a bandwidth value b is chosen according to the desired accuracy in the Fourier-
wavelet representation (3.7 ). Then a spatial resolution AE for f,,(€) is selected, either
according to the grid spacing h on a prespecified set of evaluation points or such that
fm(&) can be calculated accurately enough by interpolation from the computed values.
(In any event, we must have A¢ < 3/8). Next a binary power N = 2" is chosen large
enough so that 2b/N < A{. Then we set a = and discretize the integral (5.7 ) with
step size Ak = 2a/N = 1/(NAE).

mgv

5.3 Cut-off parameters

In practice, we use the approximation to u(x):

b0+|_2m0$J b1+|_2me
@ =Y FReme g+ S > ED@) 6y (510)
]=*bo+L2m0€l3J m=myo ]—7b1<‘r 2m{l'J

Recall that the parameters by = bo(mo) and bl = by(m) are chosen from the criterion that
the supports of the functions Fy, @) mo and F¥ belong essentially to the intervals [—by, bo|
and [—by, by], respectively.

Let us first suggest general arguments to the choice of parameters mg and m;. Theoreti-
cally, mg can be arbitrarily, and for a fixed m;, it would be reasonable to take the value
of my large enough since the cost per sample is proportional to m; — mg + 1. However
practical calculations show that an important criterion for the choice of mg is that the

value 2" is comparable with kj, a characteristic wave number scale. This characteristic
ko

scale could be defined for instance as a value ko, for which the integrals | F(k)dk and
0

[ F(k)dk are compared in the order of magnitude. It turns out that for values of my for
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which 2 is essentially larger than kg, the dependence of by = by(1mg) on myq is exponential
(see below), hence the cost of simulation is then increasing. When choosing the parameter
my one should remember that in the approximation of u(z) by (5.10 ) the contributions of
random harmonics with wave numbers from k € R : |k| > 2™ are not taken into account.
Therefore, to simulate accurately the random field in the interval (I, lnaz), the value
of my should be taken so that 2™ > 1/l,:,.

Thus suppose these arguments have helped us to choose some values of mg and m;. The
next question then which arises naturally is the quantitative criterion of the approximation
quality. (5.10). It is clear that for Gaussian processes, the main criterion is to have a good
accuracy in evaluation of the correlation function. Therefore, the correlation function of
uFW) should well approximate the true correlation function B(r) = (u(z + 7)u(z)) in an
interval (I,in, limez) depending on the problem to be solved. In what follows we assume
that this interval is given. Thus with the fixed values of parameters mqy and my, the error
of our approximation for the random field (5.10 ) is defined by

e(mo,mi) = sup  |B(r)— BEW)(r)], (5.11)

lmin<r<lmax

where BEW)(r) = (uFW) (2 4 7)u"W)(x)). The random numbers &; and &,,; in (5.10 )
are mutually independent, hence

By = Y FREMr+ ) FRG)
4 13IVIi—[2moz] | <bo
mi
+ > Yo FReM+)FYG), (5.12)

m=mo  j:|j|V]j—[2"z]|<bo

here a Vb = max{a, b}. The cost to calculate the value of the random field «¥™) in one
point is proportional to

T(mo,ml) = bo m() Z bl (513)

m=mg

Proposition 1 Assume that a spectral function F'(k) satisfies the condition (9.4 ) for
some s > 0, and the function @ belongs to the Nikolskii-Besov space B, (RR), p > 1/2.
Then the following estimation is true:

C !
Br) — (uFW) (FW) < bs mop (5.14
supsup | B(r) — (" (z +rut )] < s+ R Y E , bzp 1 % )

with the relevant constants Cy, Cj, , and C}, , depending on F, ¢, and ).

mop

Proof. The proof is given in Appendix B

This estimation provides a justification for the construction of Fourier-wavelet approxi-
mations. Indeed, (5.14 ) shows that the right hand side of this estimation can be made
arbitrarily small by a successive choice of the parameters. For example, we could first
take some value of mg, then choose by(mg) so that the second term in the right hand
side is small enough. Then choose m; so that the first term is small, and finally, choose
bi(m), m = myg,...,my so that the last sum in (5.14 ) is small.
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Unfortunately this approach cannot be practically used since it is difficult to calculate the
coefficients C, C}, , and C}},. In addition, the estimation (5.14 ) may be crude, then the
described choice of parameters may be not the best one. Therefore in practice, we would

recommend to use a direct estimation of sup |B(r) — BYW)(r)| starting from (5.12 ).
reR

5.4 Choice of parameters

In this section we discuss some aspects of the practical choice of the parameters of our
model. First we the influence of the parameters mg and by on the accuracy of approxima-
tion. So let us consider the behaviour of F (y) under the change of m. By the definitions
(3.8 ) and (5.4 ) of the functions F(® and ¢ it follows that for large negative values of m

2/3

FOy) = / e 12Tk M2 Q) (k) i
—2/3
2/3
~ / &1k 9m2Q(0) (k) e = 27/2Q(0)(—y) (5.15)

~2/3

provided Q(k) is continuous at the point zero. It implies, for such values of m, the
function (@) (y) behaves analogous to the scaling function ¢(y) (which decreases as |y|~?
as |y| — oo, where p is a parameter characterizing the smoothness of the function é such
that ¢ € BY_(IR), see Appendix 2, Lemma 2).

For simplicity, and for the sake of a clear presentation, let us assume that F'(k) = 0 if
|k| > ki, for same k, > 0. Then for positive numbers m such that 2/3 > k,

1/3
FO(y) = / e TR M 2Q(27k) dk + / e 2R Q27 k) (k) dk:
-1/3 1/3<|k|<2/3
= / e 2R 9mm20() dk = 272 G(27™y) . (5.16)

Hence with the increase of m, the effective support of the function FiP s expanded

exponentially. Our experience says that such a broadening may happen in more general
case when the support of the spectral function is not compact. For illustration, we show
in Figure 1 the plots of the functions £\ (y) for different values of m, for F(k) = 2/(1 +
(27k)?) (see the left panel) and F(k) = e~ (™ (right panel).

So it suggests that the parameter mg should be chosen so that at m = my, the exponential
broadening of the support of Fle ) is not yet happened. This implies the condition 20 <
ko, where kg is a characteristic wave number scale. For these values of mg the width of
the support of .7-",(7%) is practically independent of my (recall that for m — —oo the support
width is defined by the function ¢, in view of (5.15 )) As a reasonable approximation we
can put by = 10.
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Let us analyse the behaviour of 7\ (y) for different values of m. The main difference

between this function and the function F is that 7\ is determined by the values of
Q(k) for 2m/3 < |k| < 20m+2) /3 while F? depends on the values of Q(k), k| < 2(m+1) /3,

Let us see what is the influence of this difference. Take an example of a spectrum F'(k)
which for |k| > k¢ has the form

F(k) = Crlk[™% k] = ko (5.17)

for some ky > 0 and a > 1. Then, for 2™ /3 > ko, we conclude by the definitions (3.8 )
and (5.5 ) of the functions F®) and 1), respectively that for m > log,(3ko)

f-(¢) (y) _ f 67i27rky 2m/2Q(2mk)T$(k> dk = 2*%@%71)0}?/214&(3;), (518)

1/3<|k[<4/3

where

M= [ R .

1/3<|k|<4/3

It follows from this equality that the support of F¥) is not broadening as m increases.
Our experience shows that this property holds for many different spectral functions F'(k).
We illustrate it in Figure 2 where 75 (y) for F(k) =2/(1+ (2mk)?) (the left panel) and
F(k) = e~ (right panel) are presented. It is seen that for both spectral functions,

T(ff)(y) are practically defined on —10 <y < 10. So we put b; = 10 for any m.

Thus when the values of by and b, are fixed, we can study the dependence of the Fourier-
wavelet model on my and m;. As an example, let us consider the case F'(k) = 2/(1 +
(27k)?) with the relevant correlation function B(r) = exp(—r). Since kg =~ 1, we can put
mo = 0 (recall that 2™ should be of order ky). In the first two rows of the Table 1 the
dependence of the error (5.11 ) on my is given, for the fixed value my = 0, and [,,,;,, and
ez are chosen as [,,;, = 0 and [,,,,. = 5.

It is seen that the error is rapidly decreasing with my, and for m; = 3 it is about 0.0121.

In this example, we have compared our Fourier-wavelet model (5.10 ) with the Fourier-
wavelet model [10] which can be obtained by ignoring the first sum in (5.10 ).

Note that the choice of mg in the model [10] is more difficult.

In the last two rows of the Table 1 we show the error £(mg,m;) of the model [10], for
different values of my, for fixed m; = 3. The cost of calculation of u*'") is proportional
to my —mg (provided by and b; do not depend on m), so the results of Table 1 show that
in this example, the cost of the method [10] is more than two times larger than that of
the model (5.10 ).

In all the above calculations we have fixed the parameters’ values as by = by = 10. Let us
study now the dependence of the error of the model (5.10 ) on the parameters by and by.

For the case of F(k) = 1/(1 + (2wk)?) we have reached the accuracy £(0,6) = 0.01 with
bp = by =5, and £(0,6) = 0.0029 was obtained with by = b; = 6. This shows that the
values by = by = 10 we recommended are in this case slightly overestimated.
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Figure 1: F,,’(y) as a function of y, for different values of m. Left panel: F(k) = T

Right panel: F(k) = e~ (™),

We have also studied the error e(mg, 6) for the model (5.10 ) for different values of my.
We have fixed b; = 10, and the parameter by = by(mg) was varying dependent on mg in
such a way that €(my,6) ~ 0.01.

The computations give: by(0) =5, by(1) = 7, and then, by(mo) is exponentially increasing
as by(mg + 1) = 7-2™ mgy > 0. Hence, the cost of evaluation of the field (5.10 ) in one
point is proportional to T'(mg, 6) ~= 7-2™~1 +10 (m; —mgy + 1) (see (5.13)). If we choose
by to ensure £(mg, 6) ~ 0.003, then by(0) = 6, by(1) =9, and by(me+1) = 9-2™° mq > 0.
This shows that the cost is exponentially increasing with my.

my 1 2 3 4 Y 6 7
£(0,mq) || 0.0455 0.0233 0.0121 0.0068 0.0041 0.0029 0.0024
my -3 -4 -9 -6 -7 -8 -9
£(mo,3) || 0.2714 0.1464 0.0789 0.0476 0.0303 0.0217 0.0124

Table 1: The errors of the Fourier-wavelet models, for different values of mg and m;.
F(k) = 1/(1 + (277]{:)2)7 lmz’n = Oa lmaz = 5.

Remarks on vector processes. For vector processes u(z) = (ui(z),...,w(t)", x € R
(I > 1) the FW model is constructed analogously to the scalar case, as we got (5.10 )
from (3.10 ) by taking a finite number of terms. Thew following generalization of the
Proposition 1 can be given.

Proposition 2 Assume that a spectral tensor F'(k) satisfies the condition

/spF(k)(1+|k‘|2)8dk‘ < oo (spF = Fj;),

—00
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Figure 2: .7-}(,?) (y) as a function of y, for different values of m. Left panel: F(k) = [ERGrLE

Right panel: F(k) = e~ (™),

for some s > 0, and the entries of the tensor @ defined by (2.3 ) belong to the Nikolskii-
Besov space Bf, (IR), p > 1/2. Then the following estimation is true:

/
Cs Crnop

1s+b2pl +Zb2pl 519)

m=m

supsup max \BU( ) — (uEFW)(x +T)u§FW)(l') <

2€R reR =1, T 4m

whith the relevant constants Cy, Cj, , and C},  depending on F, ¢, and 1.

mop

6 Randomized models of homogeneous random fields
based on plane wave decomposition

6.1 Plane wave decomposition of homogeneous random fields

Our presentation of Fourier-wavelet expansions was given above for the one-dimensional
case, i.e., u(z), x € IR. Direct generalizations to high-dimensional case is possible on
the basis of relevant multidimensional scaling and wavelet functions, see, e.g., [45], [40].
However with the dimension, the complexity of this kind of models increases drastically.
Therefore, it is reasonable to try to construct high-dimensional models via one-dimensional
ones.

Here we present plane waves decomposition method for simulating random fields using
samples of relevant random processes. This approach is especially efficient for isotropic
random fields, see, e.g., [28], [10].

Denote by S;_; a unit sphere in IR?, and A, be its surface area, d€2 the area element.

Let us introduce a function B : R x S;_y — IR such that B(-;€) is a correlation
tensor for almost all 2 € S;_;. We introduce also a n-dimensional Gaussian random field
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Z(t; A), t € R, and A is a measurable subset of S;_; which is defined by

(Z(t A)) = 0; Z(t; AU Ag) = Z( A) + Z(t: Ay) for Ain Ay, =0 (6.1)

<Z(t1;A1)zT(t2;A2)>:/ B(t; — t5; Q) dQ (6.2)

A1NAs
for each t; ,t5 € IR and measurable subsets A, Ay, A from S;_;.

The block matrix B with the entries

AiﬂAj
is positive definite and symmetric for all positive integer N and values ¢, ...ty in IR, and
measurable subsets Ay, ..., Ay in Sg_1. The proof of this statement is given in Appendix
A.

Thus the Gaussian random field Z(t; A) is well defined. Note that Z(t;-) is a Gaussian
white noise measure, for fixed t.

Let H;(€2), ¢ = 1,2 be complex-valued [ x n-matrices depending on Q € S;_; satisfying
the condition [ || H;[|*d2 < oco. We will use the following property

H,(Q) Z<t2;dﬂ>> )= [ Hi(Q)B(t —ta; Q) H3 () dS2

(| H(@) Z(0:d0) (

Sq-1 Sq-1

(6.4)
Given the correlation tensor in 7, B(7;€2) the spectral tensor in s, F,(x; Q) is defined by

F,(k; Q) = / e T B(r Q) dr . (6.5)

—00

Let H(£2) be a | x n matrix defined on S;_;. We define u(x) by

i(x) = / H(Q)Z(x - Q;dR) . (6.6)

We show now that

(a6 )7 () = [ €2 (HOO RGO () + H(-K)F, (~h R (~k)} dk
Rd

(6.7)

where k& = |k|, k = k/k. This implies that the spectral tensor F(k) of the random field

u(x) is given by

~ 1
F(k) = Ld—1

{H(K)F,(k,kK)H*(k) + H(—Kk)F,(—k, —k)H*(—k)}. (6.8)
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By the definition, we get from (6.4 )

(a(c+1) / H(Q) Z((x + ) - ©:d9) 5 H(Q)Z(x-ﬂ;dQ))*>

H(Q)B(r - Q;Q)H*(2) dQ = / dQ/eiQ’f“'“H(Q)Fv(ﬁ;Q)H*(Q)dn

dQ/elQ’”‘" CH(Q)F,(k; Q) H*(Q) dr
0

0

dﬂ/em”r'n{H(Q)Fv(n; Q) H*(Q) + H(—Q)F,(—k; —Q) H*(—Q)} dk

0

l%rkkd {H(K)F,(k k) H (k) + H(—K)F,(—k, k) H*(-k)}dk . (6.9)

/

/
+ / ds2 / eI IOV F, (—k; Q) H* () dk
/

/ e

R
Let u(x), x € IR? be a zero mean vector homogeneous Gaussian random field of dimension

[ defined by its spectral tensor F'(k). We are in position now to construct the random
field u(x) as a superposition of the plane waves. Indeed, let

6|
2
hence it follows from (6.7 ) that the random field

Fy(k; Q) = F(kQ), H(Q)=I, (6.10)

u(x) = / Z(x - Q2 dQ2) (6.11)

Sq-1

has the desired spectral tensor F(k).

Thus, we give an integral representation of homogeneous Gaussian random fields through
a superposition of plane waves Z(x€2; d€2) (see (6.6 ) and (6.11 )). A numerical model can
be constructed through an approximation of the integral over an unit sphere by a finite
sum. Here one can use both deterministic and stochastic approaches.

6.2 Decomposition with fixed nodes

Let AQ;, i =1,..., N, be a finite partition of the unit sphere S;_1: Sy 1 = UﬁvzslAQi,
and AQ; N AQ; = () when i # j. Choosing nodes §; € AQ;, i =1,..., Ny, the following
deterministic approximation to (6.6 ) can be constructed:

= / H(Q)Z(x-Q;dQ}) ~ ZSH(Qi)Z(X-Qi;AQi), (6.12)
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where by definition (see (6.1 ) and (6.2 )) Z(t;AQ;),t € R, i = 1,..., N, are mutu-
ally independent zero mean stationary Gaussian processes with the following correlation
structure:

(Z(t +7; AQ) (Z(t; AQ)T) = /AQV B(1;Q)dQ2 = /AQ. / e (k; ) drdQ.

From this it follows that the process Z(t; AQ;), ¢ € IR has a spectral tensor given by
Jaq, Folr; )dQ =~ |AQ|F,(k; §2;), where |[AQy[ = [ dS2.  therefore, the process

Z(t; AQZ) can be approximated by |[AS|Y2v®(¢) where v (¢) = (0!7(8),..., 0¥ (1)T
is a random process with the spectral tensor F,(k;€;). From this we get by (6.12 ) the
following approximation to the random field u(x),x € R

%t (x Z IAQ Y2 H(Q)v (x - Q) (6.13)

By the construction it is clear that the smaller the subregions A€;, 7« = 1,..., N, the
better % (x) approximates the random field with the spectral tensor (6.8 ). In particular
the model

ul (x) Z IAQ Y2 v (x - Q;) (6.14)

where v (t) = (1), 0P ()T, i = 1,..., N, are mutually independent zero mean
Gaussian processes with spectral tensor F®) (k) = il F(liﬂ ) is an approximation of

the random field u(x) = (u1(x), ..., w(x))?, x € R? having spectral tensor F' (k).

Let us consider the case when the spectral tensor F'(k) has the form

F(k)=Hk)H (k)Adkd_l, (6.15)
where H(€2), Q € Sy_1 is an [ X n-matrix satisfying the condition
H(-Q)H*(-Q) = H(Q)H"(?) , (6.16)

and E(k) is a scalar non-negative even function, Ay is the area of the unit sphere in R%.

Thus the approximation to the random field u(x) = (uy(x), ..., w(x))?, x € R with the
spectrum (6.15 ) can be constructed by the formula:

wr = N ((1820) 0

uy (x) = . H(Q)vW(x - 6.17

=3 (S) @O e 6.17)
where v (1) = (UY) (t),... ,vﬁf)(t))T, i =1,..., Ny are mutually independent zero mean,

stationary, Gaussian random processes with independent components each having the
same spectral function F, (k) = E(k):

[e 9]

<()@+ﬂ(mﬁ»=@m§m{/5%mEWﬁm

—00
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A homogeneous d-dimensional vector random field u(z), x € IR? is called isotropic if the
random field v(x) = UT u(Ux) has the same finite-dimensional distributions as those
of the random field u(x) for any rotation U with transpose UT (e.g., see |32]). Tt is
known that the general structure of the spectral tensor of an isotropic random field is the
following [32]:

Rl = s { B0 (3 - 52 + ) 32 (6.18)

where k = |k|, A, is the area of the unit sphere in IR?, E; and E, are non-negative scalar
even functions.

The tensor (6.18 ) can be represented in the form

2By (k)

2By (k) o
F( )_ Aykd—1

Hy(k)H; (k) + W H,(k)H; (k) (6.19)

where H; = (hg;))ﬁjzl and Hy = (th), . .,hg)) are d X d and 1 X d matrix functions

defined on the unite sphere S;_; by

The tensors H;,i = 1,2 obviously satisfy (6.16 ). Therefore, the random field u(x) can
be approximated by

ZNS AR 0 (0

uﬁlvef(x) = ( ) <H1(Qz‘)V1Z (x - Q) + Hao (i) vy (x - Qz)) (6.20)
=\ A

where VY), and Véi) 1 = 1,..., Ny are mutually independent zero mean, stationary d-

dimensional, Gaussian random processes with independent components. Each component
of Vgi)(t) has the spectral function E)(k), and each component of Vg)(t) has the spectral
function (k). Let v (t) = HQ(Qi)Véi)(t) =Q;- Vg) (t). It is not difficult to check that
the spectral function of the scalar process v\ (t), t € IR is Fy(k). Thus we can present
the formula (6.20 ) in a form convenient for simulation

N, AQ ‘ ‘
') =30 (5 ) (H@ovP (x- 20 + 00 (x- 2) (6.21)
) =\ Ad
where v (t), i = 1,..., N, is a set of independent of each other and on VY) (t),1 =
1,..., Ny scalar random processes with the spectral function Es(k).

6.3 Decomposition with randomly distributed nodes

A randomized model of the field 1(x), x € R defined by the stochastic integral (6.6 )
with the spectral tensor (6.8 ) can be represented in the form:

A2 N ‘
d H(w)vO(x - w;), (6.22)
i=1

ﬁ?vid(x) - N2
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where w;, i = 1,..., N, is a family of independent unit isotropic vectors in R?, v(?(t) =
(’UY) (t),... ,Uy(f) ()T, i = 1,..., N, is a set of mutually independent and stochastically
independent of w;, i =1,..., Ny, zero mean, stationary Gaussian random processes with
the spectral tensor F,(k,w;).

In general case of anisotropic random fields, the following generalization of the model
(6.22 ) can be given

N

~ T, 1 1 7
uNsd(X) = N1/2 § , pl/Q(w,)H(wi)V( )(X ’ wi)a (623)
s q=1 ¢

where p(€2), 2 € S;_; is a probability density function defined on a unit sphere S;_;, and
the random points w;, @ = 1,..., N are independently sampled on S;_; according to the
density p(Q); the family v(?)(¢) is constructed the same as in (6.22 ).

Proposition 3. Suppose that the density p(£2) satisfies the condition
p(2) >0 if /FU(/{; Q)dk > 0. (6.24)

Then for any N, the function uj'?(x) defined by (6.23 ) is a zero mean homogeneous
random field (generally non-Gaussian) with the spectral tensor (6.8 ):

(U (x +r)(ay(x))") :/eﬁ”'kﬁ’(k) dk. (6.25)

Rd

Proof. The terms in the sum of (6.23 ) are independent; also, the process v(¥(t) is
independent of w;, hence,

(o () (3 (x)) )

where w is a random point in S;_; having the density p(£2); The random process v, (t)
is stochastically independent of w, having a spectral tensor F,(k;w); Here (-|w) means a
conditional avergaing under a fixed w. By the construction,

(07 () (07(x)) ) = (H(w) (Ve ((x4T)w) v, (xw) |w) H (w)),

(e 9]

(Vo ((x + 1)w)vE (xw)|w) = / TR (1 W) d.
Therefore,
(H(w){(vo((x + 1)w)v] (xw)|w) H* (w /dQ/ 2T (Q)F,(k; Q) H () ds.

Then we can proceed as we have done after the second row in (6.9 ); this leads us to the
desired relation (6.25 ).

Assume that the spectral tensor of the random field to be simulated has a representation
(6.15 ) where the tensor H satisfies (6.16 ). Then, it is reasonable to choose p(2) = 1/A,,
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which means the points on w; are distributed uniformly; thus the simulation formula can
be written as follows

N
™ 1 - i
uNf@Q::ZVU2§:<HKwJV(KX~wJ (6.26)
s =l
where vO () = (0\(), ..., v2(t))T, i = 1,..., N, are mutually independent zero mean

stationary Gaussian random processes with independent components having the same
spectral function E(k). A d-dimensional isotropic random field with a spectral density
(6.18 ) is simulated by

N,

1 - ; ,

rnd (] i
uy(x) = NI Z <H1(wi)vg)(x cw;i) 4+ 0@ (x - wz)> (6.27)

s =1

where w;, i = 1,..., N, is a family of independent unit isotropic vectors in R vﬁi’ and
v® § = 1,..., N, are mutually independent and stochastically independent of w;, i =
1,..., Ny, zero mean, stationary d-dimensional scalar Gaussian random processes with

independent components. Components of Vgi)(t) are independent of each other and have
the same spectral function E; (k) while the random process v (¢) has the spectral function
Es(k). Note that the representation (6.27 ) is given in [28§].

6.4 Decomposition with stratified randomly distributed nodes

It is possible to construct a stratified randomization model by choosing a subdivision
{AQ;}Y+ and then in each AQ; a random point w; € AS; is sampled; for simplicity,
we may assume that it is uniformly distributed in A€2;. So under the condition (6.15 )
we can use, along with the models (6.17 ) and (6.26 ) the following model with stratified
randomly distributed nodes:

N, N 172 ‘
wtro =30 (B2 sy (6.2

i=1

7 Comparison of Fourier wavelet and randomized spec-
tral models

As mentioned in the Introduction, our experiments in one-dimensional case (d = 1) have
shown that the randomized models are more efficient in evaluation of ensemble averages
than the FW models, or compatible in efficiencies, if mult-point statistics should be cal-
culated, see [23]. The situation is opposite for a spatial averaging.

In this section we compare the Fourier-Wavelet Model (FWM) and the Randomized Spec-
tral Model (RSM) in the three-dimensional case (d = 3). We simulate a three-dimensional
zero mean Gaussian isotropic incompressible random field u(x) with a spectral tensor

8(2rmk)*
(1+ (27Tk:)2)3 .

2E(k) ki k;
_ (5 -

k) = = S ) i,j=1,2,3 BEk) = (7.1)
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It is known that the correlation tensor of isotropic incompressible fields is defined by
Brr(r), the longitudinal, and Byy(r), transversal correlation functions, e.g., see [32]. In
our case these functions can be represented explicitly (e.g., see [32]):

BLL(T) = <U1(l’+7" 0 O)Ul(l' 0 O)) = T,
Byn(r) = (ua(xz+7,0,0)us(x,0,0)) = e "(1 —1r/2). (7.2)

The comparison of RSM and FWM is made by calculations of Eulerian and Lagrangian
stochastic characteristics of the random field u(x) with the spectral tensor (7.1 ). The
Eulerian characteristics are namely the correlation functions (7.2 ). The Lagrangian
characteristics are the Lagrangian correlation function Bff)(t) = (Vi(t)V;(0)) and the

diffusion coefficient K (t) = +-4 (X (¢) — x0)?), where V(t) = (Vi(t), Va(t), V3(t)) = d)d(—t(t)
is the Lagrangian velocity, and X(t) = (X;(t), Xa(t), X3(t)) is the Lagrangian trajectory

starting at the point xq:

2 w(X(t), X(0) = xo. (7.3)

7.1 Some technical details of RSM.

As a basis, we take the model (4.5 ) for the simulation of isotropic random field u(x).
The spectral space is divided in N = 3 subsets A; = {k : a; < |k|] < b;}, 7 = 1,2,3
with a; = 0, by = ay = 0.34, b, = a3 = 0.8, b3 = oo. In each subset A; ng points
k;j, 7 =1,...,n9 are sampled with the same probability density

1 Ci

nlk) =T (1+ (27k)2)’ kel CGi= 1// (1+ (27k)?)

Note that the spectral tensor (7.1 ) can be written in the form (2.3 ) with Q(k) =
f12(k)H (k):
B A ~\T B (27k)?
F(K) = [POHE) (F200H19) 5 100 =16m =5 s,

and the entries h;;(Q) of 3 x 3—dimensional antisymmetric matrix H(Q), Q € S, are
defined by

h“(Q) = 07 L= 17 2737 h12(9> - _h21(Q) = Q3, hlg(Q) = —hgl(Q) = —QQ,
oy (Q) = —hs (Q) = O

For a 3—dimensional vector & H(k)¢ =k x &€ ((a x b is a vector product of vectors a
and b), hence in view of (4.5 ) we come to the simulation formula

X Zfz(

where k;; = kjw;;, wij, @ = 1,..., N; 7 = 1,..., ny are mutually independent 3-
dimensional unit isotropic vectors, and k;; « = 1,..., N;j = 1,..., ny are random

1/2
> {(wij x &;;) cos(0i;) + (wi; x my;) sin(f;;)}  (7.4)

Z
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points (independent of each other and of w;;) distributed in [a;, b;] with the density
pi(k) = Ci/(1+ (2mk)?). Here 6;; = 27k;jw;; - x, and &;;, m;5, i =1,..., N; j=1,..., ng
are mutually independent and independent of the family k;; standard 3-dimensional Gaus-
sian random variables (with zero mean and unity covariance matrix).

The points k;; in (7.4 ) are sampled isotropically which does not imply that the samples
of uy,,(x) are isotropic in space, especially when ng are relatively small. To improve
the isotropic property, it is reasonable to apply a stratified sampling over angles. So
to choose a subdivision of the unite sphere in IR3, we work in the spherical coordinates
0,0),0 <0 <7, 0< ¢ < 2m First we fix an integer parameter ny > 1 which defines
the step A9 = 7m/ng and the relevant altitude mesh 6; = (j — 1/2)Af0, j = 1,..., ny.
For each fixed j, (1 < j < ng), we construct the latitude mesh ¢; = (r — 1/2)A¢;, r

1,..., (J , where né) |27 sin(0;) /A0 |, Ap; = 27T/n§)j). Finally, a two-index subdivision
2
{{AQN 21,7 =1,..., ng} of the unit sphere Sy:

Ab Ad Ag; Ag;
AQN:{(9,¢);9j—7g9<9j+7; ¢jr—%§¢<¢jr+%}, (7.5)

is constructed, which consists of Ny = Ny(ng) = >3, n((bj) surface elements.

Thus we constructed the subdivision of the space IR? = Z” » Aijr, where

Aijy ={k € R®: a; < |k| < b; k =k/[k| € AQ;,},
where i = 1,..., N;j=1,....ng;7r =1,..., n. In each element A;j, we sample one
pOth kijr = kijrwijr, where kijr is chosen in [ai,bi) with the density pz(k?) = CZ/(l +
(27k)?), while the random direction w;j,. is sampled uniformly in AQ;,:

wijr = (Sln(é”) COS(Q;Z']‘T), sin(éij) sin(gz;ijr), COS(éZ‘j))

where éij = arccos ((1 — v;;) cos(8; — AB/2) + ~;; cos(0; + AG/2)), ém = oOjr + (Vijr —
1/2)A¢;. Here 75, vijr (i =1,..., N;j=1,...,ng;7 =1,..., n((;)) are mutually in-
dependent random numbers uniformly distributed in [0,1]. The random point k;;, is
distributed with the density

1 C
|AQ;, | [k[>(1+ (27[k])?)’

pijr(k) =

Thus the RSM for an isotropic Gaussian incompressible random field with the spectral
tensor (7.1 ) constructed from the described expansion has the form:

(4)

N ¢ 1/2
UN (X Z Z ( b ki ) {(wijr x &) cos(8ijr) + (wijr X y5,) sin(Gij) }
ZjT‘ r

i=1 j=1 r=1 ”

(7.6)
where 0;;, = 27k;jwij - X, and &, 5 0 =1,..., Ny j=1,... ngir =1,.. nfzf) are
mutually independent and independent of the family k;;, standard 3—dimensi0nal Gau551an
random variables (with zero mean and unity covariance matrix).
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7.2 Some technical details of FWM

Simulation formula for a 3—dimensional isotropic incompressible random field u(x) with
the spectral tensor (7.1 ) is constructed through the plane wave decomposition, without
a stratification, using the model (6.26 ), or with stratification, on the basis of (6.17 )
and (6.28 ), where the random processes v (t), i = 1,..., Ny are constructed by
FWM (5.10 ). In our case, the 3D FWM based on plane wave decomposition without a
stratification has the form

N,
1 - ,
up(x) = —75 > wi x v (w; - x), (7.7)
Ns™
where w;, © = 1,..., Ny are mutually independent 3—dimensional unit isotropic vectors,
and v)(¢), i = 1,..., N, are mutually independent 3—dimensional stationary Gaussian

processes with independent identically distributed components. Each component of the
process v (t) has the spectral function F (k) = E(k)

In the case of stratified models, the subdivision of the unit sphere appeared in (6.17 ) and
(6.28 ) is constructed as described in the previous section.

Thus the 3D FWM based on the plane wave decomposition with deterministic nodes (i.e.,
with (6.17)) is

; ng "o IAQ, | 1/2 .
' () = D (7]) Q;, x V9 (x - Q;,), (7.8)

where
2, = (sin(0;) cos(;,), sin(0;) sin(e;r), cos(6;)),
|AQ; .| = / dQ = 4w A¢; [cos(0; — AB/2) — cos(0; + Ab/2)].
A,

A hybrid stratified randomized FWM based on the plane wave decomposition (6.28 ) has
the form

AQ, N\ 2 ,
" ZZ(‘ . ) wjr X VI (x - wjy), (7.9)

j=1 r=1
where .
W (sm(@ )cos(gbjr) sm(Q )sm(gb]r) cos(6;7)),
0; = arccos (1 — ;) cos(0; — A0/2) + v cos(0; + A0/2)), 6 = djr + (5 — 1/2)Ad,
(4)

and v, Vi, (J=1,...,ng;r =1,..., ng; ) are mutually independent random numbers
uniformly distributed on [0, 1]. The stationary random processes vU™(t) (j = 1,..., ng; r =
L... (J)), appeared in (7.8 ) and (7.9 ) are mutually independent 3—dimensional sta-

tionary Gau551an processes with independent identically distributed components. Each
component of the process vU") (¢) has the spectral function F'(k) = E(k) (see (7.1)) and is
simulated by FWM (5.10 ). Since all three components of all these random processes have
the same spectral function, in the simulation formulae one and the same set of functions
]:(0 and ]:r(,ip), m = mg,...,mp is used.
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Parameters of the Fourier wavelet model (5.10 ) are taken as by = by = 10;mg = 0, m; = 6.

Now let us give some details related to the simulation of random fields (7.7 ) - (7.9 ).

So assume we have to simulate the random field uf®(x) (or uj’™(x) ) in a bounded

domain D C IR®. We choose segments [aj,,b;,] (j = 1,..., ng;r = 1,..., nfzf)) so that
x - Q;, € |aj,bj] Vx € D. Then we simulate by the FW model (5.10 ) the processes
vunl(t), i =1,....,ng;r=1,..., n((b]) on a sufficiently fine grid on [a;,, b;,]. The quantities

v (x - Q, ;) are evaluated through a linear interpolation of the values v(#) obtained on
this fine grid. The same can be done for the model (7.7 ).

The Bulerian and Lagrangean statistical characteristics (Brz(r), Byn(r), B (t) and
K (t)) defined above are calculated through ensemble and spatial averaging, by FWM
and RSM.

7.3 Ensemble averaging

In Figure 3 we plot the functions By (r) and Byy(r) for a Gaussian isotropic incom-
pressible random field with the spectral tensor (7.1 ). In Figure 4 the relevant Lagrangian
correlation function BX(t) = BZ(t)/3 (left panel) and the diffusion coefficient K7, (¢) (right
panel) are shown. The calculations are obtained by RSM (7.4 ) (left panels) and FWM
(7.7 ) (right panels). The number of MC samples here and in all ensemble averagings was
taken as 16000.

It is seen that with the chosen parameters, both models give very accurate plots which
are practically lying on the explicit curves.

We studied numerically how the error of the model (7.4 ) depends on the parameter no,
and also, the dependence of the error of the model (7.7 ) on Ny. In Figure 5 we show the
relevant results for By (r) and Byn(r), for different values of ny in the model (7.4 ). It
is seen (left panel) that with ny = 3 the results are not achieved the accuracy obtained
with ny = 25. On the other hand, increasing ng from 25 to 50 does not change the results.
The same is true for the results obtained by the model (7.7 ) (see Figure 6).

The models (7.6 ) and (7.9 ) show a similar behaviour: already with ny = 4 (the number
of terms in (7.6 ) and (7.9 ) is Ny = 20) this two models give practically the same results.

The situation with the model (7.8 ) is different. To get a numerically stable result (to
within 0.02 of absolute error) we have to take ng not less than 10 (the number of terms
Ny = 124). This is because for small values of ngy, the subdivision (7.5 ) of the unit sphere
Sy is crude. This is illustrated by the results presented in Figure 7 and Table 2. The
quantities €77, and ey are defined as

€L = Sup \B%)(r) —e ", ey = sup |B](\§]}\;(7“) —e (1 —-1/2),
0<r<5s 0<r<5

where B%) (r) and B](\t,}}\;(r) are obtained from (7.8 ) by a direct averaging

B (r) = (u®, (r,0,0)ud (0,0,0)), B (r) = (ui,(r,0,0)u’,(0,0,0)) . (7.10)

ng,1 ng,l ng,2 ng,2

Here uﬁf}ti, 1 = 1,2, 3 are components of the vector uif}t. When evaluating these functions,

we substitute the values of the field uf®(x) from (7.8 ) in the right hand side of the last
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Figure 3: The longitudinal (Brz) and transversal (Bypy) correlation functions calculated by
RSM (model (7.4 ) with ng = 25, left panel), and FWM (model (7.7 ) with Ny = 25, right panel)
models through ensemble averaging. Calculations: bold solid line; Explicit result (see (7.2 )) :
solid line. The number of MC samples in both cases was 16000.

equalities. Then, by the independence of the random processes vU™)(¢) (for different pairs
(4,7), and for the components ’Ul(]r) (), 1=1,2,3 as well):

AQ .
(ugel(r,0, 0)uge! (0,0, 0)) Z' iz — (D) @I QDI 0)), i =1,2,3;

where Qﬁ, i = 1,2, 3 are components of the vector €2;,. The correlation function B,(7) =
W9 (1)u97(0)) = [ €275 E(k) dr in the right hand side of the last equality is calculated

using FWM B (7) presented in (5.12 ), and in the calculation of 5 and ) we use
the spectral function Q(k) = EV/?(k).

ng 4 6 8 10 16 30

N, 20 44 78 124 320 1132
err || 0.1055 0.0750 0.0434 0.0190 0.0135 0.0139
enn || 0.0513 0.0365 0.0223 0.0152 0.0146 0.0143

Table 2: Dependence of errors €7, and exy on ng.
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Figure 4: Lagrangian correlation function B(") (left panel) and the diffusion coefficient K7,
(right panel) calculated by RSM (7.4 ) and FWM (7.7 ) through ensemble averaging with the
same parameters as in Figure 3. Bold solid line - RSM,; solid line - FWM.

Figure 5: Eulerian longitudinal and transversal correlation functions calculated by RSM (7.4 )
with n0 = 3 (left panel) and n0 = 50 (right panel). Bold solid line - calculations, solid line -
explicit result.
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Figure 6: The Eulerian longitudinal and transversal correlation functions calculated by FWM
(7.7 ) with Ny = 10 (left panel) and Ny = 100 (right panel). Bold solid line - calculations, solid
line - explicit result.

Figure 7: Eulerian longitudinal (ng)) and transversal (B](\ZL\),) correlation functions (bold solid

lines) for FWM (7.8 ) with nyp = 4 (left panel) and ny = 10 (right panel); solid lines - explicit
results (7.2 ).
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7.4 Space averaging

In this section we deal with the space averaging aiming at evaluating the statistical char-
acteristics of interest (e.g., Eulerian and Lagrangian correlation functions) on the basis of
the ergodic property.

Let us discuss this in more details.

Assume we need to evaluate the Eulerian correlation function Bpy(r) using only one
sample of the random field u(x). Since u(x) is homogeneous, the random process &(x;r) =
ui(z 4+ 7,0,0)us(x,0,0), x € R (r is fixed) is stationary, and by definition, ({(x;r)) =
Bypr(r). Assuming that this process is ergodic (this is true under quite general conditions,
e.g., see [44]) we can evaluate (£(x;r)) by a spatial avergaing. In particular, ({(z;r)) ~
i Sorr &), where z;,0 = 1,...,n, is a set of points in IR. It is reasonable to choose the
points so that the minimal distance between the points were larger than the characteristic
correlation length of our random process &(x;r). These arguments can be extended to
the case of points x; € IR® which leads to the relations

1 &
Br(r n_ Z Z Z uy(ix L + 7,0y L, i, L)uy (i, L, iy L, i, L),

lg=—Ng ly=—TNy lz=—N2

Byn(r Z Z Z Uiy L + 1, iy L, i, L)us (i, L, iy L, 1, L),

P=—ngy ly=—TNy lz=—"2

where L > 0 is the grid size, n, = (2n, + 1)(2n, + 1)(2n, + 1); in calculations we have
taken n, = n, =n, =7 (hence the number of points n, = 3375), and L = 5.

Suppose we have to evaluate a Lagrangian characteristics, say, BZ(] )( t), using only one

sample of the random field u(x). Let X(¢;x0) be a Lagrangian trajectory starting at a

point xo (i.e., a solution to (7.3 )). If we take a family of trajectories X(¢; X(()p)) iy =

1,..., n, starting at the points xéip), i, = 1,..., ny,, then (under the condition that the
minimal distance between these points is sufficiently large so that the different trajectories
were possibly small correlated) for sufficiently large values of n, we can write

np

B () = = 3 w(X (x5 (™)

np

LSO () — s (X (1))

3np

Kp(t) = S (Xi(t) = o4)us(X(t))) =

1
3

ip=1
We recall that we use the summation convention over the repeated indices.
In the calculations, we have taken the set of starting points as n, = (2n, + 1)(2n, +

1)(2n, +1) points: (iyL, iy L, 1, L), iy = =Ny, ..., Ny by = =Ny ooy Nys Iy = =Ny, ooy Ny,
with L = 5, n, = 3375.

In Figures 8-9 the correlation functions By (r) and Byy(r) evaluated by RSM (7.4 )
for different values of ny are presented. These results show that to reach the accuracy
compared to that of the ensemble averaging calculations, (see Figure 3, left panel) even
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ng = 1200 cannot be considered as satisfied. Close results were obtained by the model
(7.6 ) for ng <30 (i.e., Ny < 1132).

In Figure 10 we plot the functions By (r) and Byy(r) calculated by the use of models (7.7
) (left panel) and (7.9 ) (right panel). The model (7.8 ) with ny = 10 gave approximately
the same results. The amount of statistics is n, = 15% = 3375, so we see that the results
are in a good agreement with the results of Figure 3 obtained through the ensemble
avergaing (note that the statistics in Figure 10 is about 4 times less than that of Figure
3).

Thus we conclude that to calculate the Eulerian correlation functions By (r) and Byy(r)
by the space averaging with one sample of the field u(x), the number of harmonics N
in RSMs (7.4 ), (7.6 ) should be taken about several of thousands, to attain the same
accuracy as FWMs provide with several of hundreds of harmonics. (in both methods,
statistics was 3375).

In Figure 11 the Lagrangian correlation function B)(t) = %Bl-(l-L) (t) (left panel) and
the diffusion coefficient K (t) (right panel) was calculated through a space averaging over
n, = 3375 Lagrangian trajectories, by RSM (7.6 ) and FW model (7.8 ) with ng = 10. For
comparison, we show also the results obtained through the ensemble averaging by RSM
(7.4 ) with ng = 25. Note that when calculating Lagrangian statistical characteristics
by averaging over Lagrangian trajectories in one fixed sample, the RSM and FWM have
approximately the same efficiency. In this case, the number of harmonics in FWM and
RSM can be taken about of several hundreds.

In Figures 12, 13 we plot the Eulerian conditional correlation functions B%)(r) and
B%’}\;(r) of the random fields (7.7 ) and (7.8 ) calculated by ensemble averaging over the
processes vU(t), for fixed w;, and €., respectively. These functions are calculated
according FWM (7.7 ) analogously to the above discussed case (7.10 )). These plots show
that for relatively large values, N, ~ 100, it is better to use the stratified model (7.8 ),
than the simpler model (7.7 ) with independent isotropically distributed random nodes
w;. As to the hybrid model (7.9 ), it gave (for N, > 100) practically the same results as
that of the model (7.8 ).
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Figure 8: Eulerian longitudinal and transversal correlation functions calculated by RSM (7.4 )
with n0 = 100 (left panel) and n0 = 400 (right panel) obtained by space averaging. Bold solid
line - calculations, solid line - explicit result.

Figure 9: Eulerian longitudinal and transversal correlation functions calculated by RSM (7.4 )
with n0 = 800 (left panel) and n0 = 1200 (right panel) obtained by space averaging. Bold solid
line - calculations, solid line - explicit result.
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Figure 10: Eulerian longitudinal and transversal correlation functions calculated by FWM (7.7
) with Ns = 200 (left panel) and (7.9 ) with ng = 10 (right panel) obtained by space averaging.
Bold solid line - calculations, solid line - explicit result.
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Figure 11: The Lagrangian correlation functions (left panel) and the diffusion coefficient (right
panel) calculated by RSM (7.6 ) and FWM (7.8 ) averaged over 3375 Lagrangian trajectories.
Bold solid line - ensemble averaging by RSM with ng = 25, bold dashed line - trajectory averaged
by RSM (7.6 ) with ny = 10; solid line - FWM (7.8 ) with ny = 10.
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Figure 12: The Eulerian correlation functions Bgz) and B](\%L\; for the model(7.8 ) with ng = 10

(left panel) and ng = 16 (right panel). Bold solid line - calculations, solid line - explicit result.

Figure 13: The conditional Eulerian correlation functions ng) and By (solid and dashed lines)

for the model(7.7 ) with Ny = 100 (left panel) and Ny = 200 (right panel) for two realizations of
{w;}Y+,. Bold solid lines - explicit result.

(th)
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Conclusion.

Simulation methods of homogeneous Gaussian random fields based on randomized spectral
representations and Fourier-Wavelet decomposition are presented. Extensions of Fourier-
Wavelet Method (FWM) from scalar processes and isotropic fields to general vector fields
are suggested. Convergence of the constructed Fourier-Wavelet models (in the sense of
finite-dimensional distributions) under some general conditions on the spectral tensor
is given. A comparative analysis of RSM and FWM is made by calculating Eulerian
and Lagrangian statistical characteristics of a 3D isotropic incompressible random field
through an ensemble and space averaging.

The comparative analysis can be summarized as follows;

e In the case of ensemble averaging, in contrast to the one-dimensional case, the
complexity of Randomized Spectral Model (RSM) and 3D FWM are more or less
compatible because in FWM based on the plane-wave decomposition, the one-
dimensional processes are precalculated on a fine grid in advance so that there
is no need in the sophisticated management of random numbers choice. The best
results are obtained when the number of one-dimensional processes is about 10.
Nevertheless, the RSM seem to be preferable in this case since its implementation
is much easier.

e For space averaging, when evaluating Eulerian characteristics using one sample of
the simulated random field, FWM shows higher efficiency because its samples have
better ergodic properties. To get stable results by RSM, one needs a huge number
(several thousands) of harmonics.

e When calculating Lagrangian statistical characateristics by averaging over Lagrangian
trajectories in one fixed sample, the RSM and FWM have approximately the same
efficiency. In this case, the number of harmonics in FWM and RSM can be taken
about of several hundreds. Here a stratification in the directional space improves
the results considerably.

8 Appendix A: Positive definiteness of the matrix B

Here we prove that the matrix B with entries (6.3 ) is positive definite, i.e., for any
N-dimensional vector-rows cq,...,cy € R™

AiNA;
is true for all integers N > 0 and values ¢y, ..., ¢ty in IR, and measurable subsets Ay, ..., Ay

in Sdfl.

Let {D,}* | be a subdivision of the set A = UN,A; (i.e., D,N Dy = 0 if a # (3, and

a=
A = UM D,) such that it is also a subdivision of 4; forany i =1,..., N: A; = Ugjleaj.
Let u,(t), 1 < a < M be a family of n-dimensional vector-columns, mutually independent,

zero mean Gaussian random processes with the correlation tensor [, B(t,€)dQ. Let us

38



construct, for each i = 1,..., N, a zero mean Gaussian random process v;(t) by putting
vi(t) = Zjvzl U, (t). Then obviously,

(vi(t)vI(t)) = / B(t; —t;; Q) dS2.
ANA;

Introducing a random variable £ = ¢;v;(t;) (here we recall about the summation conven-
tion) yields
(&) = (c; VZVTCT> = cibl-jcjr.

which ensures (8.1 ).

9 Appendix B: Proof of the Proposition 1

From the definition (5.10 ) we have for the random field u(*""):

u(z) = ") (2) + vl (x }: v (z) + 5v) (2), (9.1)
where
@= Y AN e+
Jilg—[2mox]|>bo
o) (x) = > FWEM ) g

jili=[2mz]|>b

oo

dul)(z) = Yoo D FV@ A ) by

m=m1+1 j=—o00

The random variables §;, &,,; are mutually independent, hence the terms in the right hand
side of (9.1 ) are also independent, therefore

{u(e +ru(z)) - < W@+ (@) = (Gu) (@ +r)dul) ()

+ Z (v (z 4+ r)ov@(z)) + <5v£23(x+7“)5v7(33(x)>. (9.2)

m=m

Let us estimate the terms in the right hand side. First, we have for the last term

(00 (2 + )50 (2))] < (0D ( +1))2) (0D ())2)) 2. (9.3)
Lemma 1. Assume that for some s > 0
L= /F(k:)(1+ k[2) dk < oo, (9.4)
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Then a constant B, depending only on s can be found such that

(G < g [ FWO+ ) i 95)

— 00

Proof. Note that

oo

(QuR @)= > > IFPE e+ (9.6)

m=m1+1 j=—00

Further, by (3.9)

oo e}

FO @ + ) = W) (z) = / &2 Q) oy () e = / G+ 9) by (y)dy

—00 —00

where G(x f 2™ Q)(k) dk. Consequently for fixed z, the quantities Fi) (2™ + j)

(m,j=...,—1, (), 1,...) are Fourier coefficients in the expansion of G(z + -) with respect
to orthonormal system ,,; (m,j =...,—1,0,1,...). Notice that the condition (9.4 ) can
be formulated equivalently that the function G belongs to the space of Bessel potentials
H3(IR) (since G € H5(IR) means that the function Q(k)(1 + |k|?)*/? is from Ly(IR)) and
G|y = 11 (more details in [42])). Further we use the fact that H5(IR) coincides with
the Besov space Bj,(IR), and the norms in these spaces are equivalent (see [42], section
2.3.9). On the other hand, it is known(see [30]), that under quite general assumptions on
the wavelet function ¢ (x) (Meyer’s wavelet function satisfies this condition if the function
v(z) is smooth enough) the norm || f||ps in Besov’s space By ([R), 1 < p,q < 00, s >0
can be equivalently defined through the wavelet coefficients 3,,; = [ f (), (x)dz by

00 ) a/p
||fHB§q = Hf”Lp + Z (Z (|ij|2m(s+é;))p>

m=—0oQ

1/q

Since G € Bj,, we conclude

SN FW@m e+ )™ < B|G(z + )3

m=—00 j=—00

for some B, depending only on s. From this we get by ||G(z + )[[3; = ||G||%; = I that

4ms BQ
@) (om 2 M+ ) ;
D S D S Sl e

m=m1+1 j=—00 m=m1+1 j=—00

This completes the proof.
This implies due to (9.3 ) and (9.5 ) that the last term in the right hand side of (9.2 ) can

be estimated as follows:

(v (z + r)ovi (2))] < 4(75“) /F(k;)(l + |k[?)* die . (9.7)

—00
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Now we turn to the estimation of the first two terms in the right hand side of (9.2 ). We
will use some results from the theory of Nikolskii-Besov spaces (e.g., see [33], [42]).

A triple (7, 7,1) is called admissible if j € IN, [ € I[Ny and j > r—[. Here Ny = {0,1,2,...}
and IV = {1,2,...}. Let us denote by Ag)g the j-th difference of g:

Arg() = g+ h) =), AP g() = A AT Vg ().

For 1 < p,q < oo, r > 0 the space B}, (IR) consists of all functions f such that the norm

AWy, = L f 1Ly + 11 1sg,»

where
! 1
. q :
HA(J)f(l)HLp dh
| f1log, = /(W o 1 <qg<oo, (9.8)
1
/1l = sup B[ [|AF FOL, (9.9)
0<|h|<1

makes sense and is finite for some admissible triple (r, j, ). The ambiguity in the choice of
triple (r, j, 1) is not essential: different admissible triples correspond to equivalent norms.

We will exploit the following imbeddings (e.g., see [33], [42]):

Bl (R) — B (R), p=r (1 _ %(% _ pil)) 1<p<p <oo, (9.10)
B} f(R) — B, (R) — B, (R), 1<q¢<q <o0, >0, (9.11)
Bl(R) — W)(R) — B (R), 1€ Ny, 1<p<oo, (9.12)

Bl (R) — W)(R) — Bl (R), l€DN,, 1<p<oo, (9.13)

where W;(R) is the Sobolev space, and X — Y for seminormed spaces X and Y means
that X C Y and there exists a constant ¢ > 0 such that the inequality ||z|]y < c||z||x is
fulfilled.

Lemma 2. Let f € BI__(R), r > 1/2. Then f is uniformly continuous, f € Ly(IR) and
there exists a positive constant C,. depending only on r such that for all z € IR

" | f(@)] < Cll 1l 3y, (9.14)

Proof. The uniform continuity of f follows from the fact that f € L; (IR) since B}__(IR) C
Li(IR). Then, for a positive € € (0,7 — 1/2) in view of (9.10 ) and (9.11 )

By (R) — By *(IR) — By, ' *(RR). (9.15)
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From this we get by (9.13 ) that f € Ly(IR), hence f € Ly(IR). Let’ I = |r| be the integer
part of r. From

[e 9]

Agﬂ)ﬂk) _ / e—i27rkz(e—i27rhz _ 1)l+2f(x) dr (9.16)

—00

and f € Ly(R) it follows by the inverse Fourier transform

f(x)(efi%rhz _ 1)l+2 _ /OO eiQﬂszgJFQ)fA(k) dk. (917)

—00

Taking the absolut values and dividing this equation by |h|” we then take the supremum
over h € IR. This yields

|z|" | f(2)|CL < sup |h] AV f| 1, (9.18)
heR
where
—i2mt _ |42
C! =sup {u} . (9.19)
teR |t‘r

Since the triple (7,1 + 2,0) is admissible, and supycp |h| ™" ||Ag+2)f\|Ll < C{f||f||Bi><> for
some C! depending only on r, the proof of Lemma 2 is complete.

To get an estimation for (5'07(713 (x + 7")(51)%2) (x)) we estimate the quantity

(Gu@) = > IFRE -+ ) (9-20)

Jili—[2m0z][>bo

We first estimate each term of this sum. The function ]-}(r?)(y) has the Fourier transform
2m/2Q(27k) (k) (see (3.8 )). Hence if ¢ is smooth enough and if the function Q(k) belongs
to the Nikolskii-Besov space Bl (IR), p > 1/2, then 2"/2Q(2"k)¢(k) € B (IR). Then
from (9.14 ) we get

Gy
ly|P

FOW < 2Rl = D, (9.21)

where C,,,,(¢, Q) is a constant depending on p, m and functions ¢ and ). Note that from
(9.20 ) and (9.21 ) we get
&
(B (@)?) < o
0

The same arguments can be used to estimate the terms in the right hand side of (9.2 )
related with doe .

Thus, the proof of the Proposition 2 is complete.
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