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Abstract

We study the continuous-wave (CW) operation of a semiconductor laser subject
to optical feedback from a Fabry-Perot resonator in a case where the emission is
resonant to a reflection minimum of the resonator. This configuration is treated in the
framework of Lang-Kobayashi equations. The nature of bifurcations and the stability
of steady state solutions is analyzed in dependence on magnitude and phase of the
feedback. In contrast to conventional optical feedback from a single mirror, the locus
of external cavity modes is no more elliptic but represents a tilted eight with possible
satellite bubbles. Below a critical feedback strength, which is analytically given, only
one single mode exists representing the completely unchanged CW emission of the
laser. In this weak-feedback regime, the feedback phase allows a noninvasive control
of the CW emission and a tailoring of its small-signal response within wide limits. The
obtained results are prototype for all-optical realizations of delayed feedback control.

1 Introduction

Stabilization of laser emission by external cavities is long established [2, 3, 4, 1] and of
continuous interest [5, 6]. Fabry-Perot (FP) cavities are mostly operated as optical filters,
which suppress all waves which do not fit to the narrow spectral resonances [3, 4, 5].
Only exception, to our knowledge, is the powerful Pound-Drever-Hall technique [2], which
exploits a resonant minimum of the FP reflectivity in order to derive an electronic control
signal used to lock the laser cavity to the FP resonance.

In difference to all these methods, we consider stability control by direct optical feedback
from an FP with mirror-reflectivity R and round trip time 7pp (Fig.1). Under ideal
conditions, in particular no loss and equal phase and group velocities, the feedback field is

E(t) =K Y R"-[E(tn) — E(tn — rp)]- (1)
n=0

E(t) represents the field amplitude emitted by the laser. ¢, =t — 7, — n7pp is delayed by
n round trips in the resonator plus the round trip time 7; between laser and resonator.
K measures the magnitude of feedback, including a possible attenuation between FP and
laser.

We focus to a case, where the laser without feedback is assumed to emit continuous wave
(CW) with a single frequency wy resonant to the FP, i.e., woTrp is an integer multiple of
27. In this particular case, £ is Tep-periodic and the feedback field £, becomes zero. Thus,
the free running state of the laser is not modified by the presence of the resonant FP. One
might wonder whether the resonator has any influence at all. However, perturbations and
noise cause deviations from the ideal state giving rise to a nonzero feedback, which in turn
modifies the response of the laser to the perturbations. Thus, the considered feedback
configuration does not change the laser state itself but its stability properties.

Delayed feedback of type (1), originally introduced by Pyragas and Socolar [7, 8, 9], is well
known as a general and self-adaptive method for noninvasive control of dynamical systems.
It has been widely used to stabilize unstable periodic orbits within chaos [7, 8, 9, 10] and



it is also able to improve the coherence of oscillatory motion under the impact of noise
[11, 12]. Already one decade ago, Socolar et al. [8, 9] noticed that feedback from a FP
should allow an all-optical implementation of this general control scheme. Surprisingly,
no in-depth study of such an implementation exists until now, although first numerical
explorations [13, 14, 15] of similar interferrometric configurations gave examples for the
possibility of an all-optical chaos control. The lack of progress is supposably related
to the multiple time scales being specific for all-optical configurations [13]. They range
over more than six orders of magnitude from the femtoseconds of the optical oscillations
over hundreds of picoseconds for inversion oscillations up to round-trip cycles of several
nanoseconds in the long-cavity configurations considered in Refs. [13, 14, 15]. In difference
to other applications of the Pyragas-Socolar schema, oscillations on the longer time scales
are to be controled here with an interferrometric feedback that is sensitive to the shorter
time scales, too. Indeed, using the standard scaling £(t) =Re{E(t) exp iwpt} onto slowly
varying amplitudes E(t), Eq. (1) transforms to

By(t) =K R"[E(tn) — e " E(tn — p)], (2)
n=0

with K = Ke % and R = Re *. It differs from the conventional Pyragas-Socolar feed-
back by being complex valued and by the presence of the two optical phase shifts ¢ = wym
and ¢ = worpp If phase and group velocities differ from each other, ¢ = 2lwy/c, and
¢rp = 2Lwy/c, are governed by the phase velocity cp, in contrast to the round-trip times
71 = 2l/cy and Tpp = 2L /c4, which are determined by the group velocity ¢,. Incorporation
of possible phase shifts by the mirrors is also straightforward. Obviously, the impact of
this control term depends sensitively on both phases. This very fact opens new degrees
of freedom for tailoring the feedback control but it also requires to master the geometry
of the configuration on length scales small compared to the wavelength. Fortunately, con-
tinuing technological progress of multi-section lasers (see, e.g., Ref. [16]) brings into reach
correspondingly stable configurations (Fig. 1) with integrated common waveguides and
with phase shifts tunable by injection currents.

The present paper represents a first the-
oretical study of such a configuration. In

R R
@ ] L view of the complexity of the problem, we

= > ——> restrict the analysis to a special case un-
laser resonator der some simplifying assumptions. Stable

single-mode emission of the solitary laser
is assumed, being resonant to the FP, i.e.,
Figure 1: Schematic view of a single-mode DFB ¢ mod 27 = 0. Having integrated devices
laser coupled to a Fabry-Perot resonator. R: mir- in mind, a short FP cavity is considered
ror reflectivity, L: resonator length, I: distance ith small reflectivity R, allowing to ne-
betw§en laser and resonator. By the ﬁnite group glect multiple reflections. The analysis
velocity cg, the geometry causes two time delays, b th 1Lk Lane-Kob hi
the round trip times 7ep = 2L/c, and 7, = 21/c, ases_on ¢ we noviln ang-hobayashl
within the FP and between laser and FP, respec- equations [17], generalized to feedback of
tively. type (2), which are introduced in Section

2. Analytic equations are derived in Sec-
tion 3 for the external cavity modes (ECM) and evaluated for an example set of parameters.
In Section 4, we focus on the bifurcations introduced by the resonant feedback from the
FP and on its impact on the local and global stability of laser states. Feedback strength



Figure 2: Curves of ECMs in the (w, N) plane for K = 0.05. a) conventional optical feedback.
b) resonant feedback from Fabry-Perot cavity. SN: saddle-node bifurcation. ECM: external cavity
mode at a particular feedback phase. SLM: solitary laser mode. Solid line: node. Dashed: saddle.
Arrows indicate how the ECM move with increasing feedback phase. SLM keeps in its position
independent of phase.

K and phase ¢ are considered as main bifurcation parameters. The particular impact of
the Fabry-Perot on frequency and damping of relaxation oscillation is evaluated in Section
5. Finally, conclusions are drawn in section 6.

2 Model and equations

In this section we will discuss the laser setup and a model for a single mode DFB laser
under the influence of an resonant feedback from a Fabry-Perot resonator (RFFP). Such a
configuration is shown schematically in Fig. 1. We will use a Lang-Kobayashi type system
[17] for the complex field amplitude E and an excess carrier density N. In dimensionless
form, it is given by [18]

dE

— = (L +ia)NE + By(t), (3)

dN 1 9

E—T(J—N—(2N+1)|E|) (4)
where J is an excess pump current, 7' is the ratio of the carrier lifetime and the photon
lifetime, and « is the linewidth enhancement factor. The time is measured in units of
photon lifetime. As mentioned above, we focus to the resonant case ¢ = 0, i.e., the CW
emission of the unperturbed laser is at a minimum of the FP reflectivity. Additionally we
assume a small reflectivity R < 1 and account only for one round trip in the air gap and
in the Fabry-Perot cavity. In this case the feedback term can be written as

Ey(t) = Ke % [E(t—m)— E({t—1)], (5)

where 7 = 7 + 7rp. Note that K is also rescaled by choosing the nondimensional LK
model.
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Figure 3: Top panel: reflection spectrum of a Fabry Perot resonator with mirror reflectivity
R = 0.1. Solid line: n = 0 contribution of Eq. (2). Dashed: including all multiple round-trips in
the resonator. Arrow: resonant position of the solitary laser frequency wg. Lower panel: Location
of ECMs of system (3)-(5) for K = 0.1. Circles: ECMS for fixed ¢ = 0. Dotted: saddle-node

curves (SN) separating between modes and antimodes.

3 External cavity modes (ECM)
We begin our analysis by studying stationary lasing states of system (3)-(5). They are
given by rotating wave solutions of the form

E(t) = Ege™s',N = Ng, (6)

which are usually called the external cavity modes (ECMs). Inserting (6) into (3) and
splitting the equation into real and imaginary parts, we obtain

Ng = K [—cos(¢ +wgm) + cos(p + wsT)] (7)
wg —aNg = K |[—sin(p +wgm) + sin(e + wsT)]. (8)

The carrier equation (4) can be used to obtain the output intensity

J — Ng
Egl?= 25 9
Bt = 22 Q
Finally, inserting (7) into (8), we obtain
wg = aK[cos(¢ +wsT) — cos(p + wsT)]
+ Kisin(p + wsT) — sin(p + wsm)]. (10)

Note that the equations for ECMs of a laser with simple optical feedback (see e.g. [19])
can be obtained from (7)-(10) by just dropping all terms containing 7;. In this case it is
well known that in the (w, N)-plane, the ECMs are located on ellipses. For feedback

1
1+ a2’

4

K <
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Figure 4: Lines of saddle-node (SN) and transcritial (TR) bifurcations at different locations;
number of ECMs in corresponding regions

there is only one ECM, moving along the ellipse for varying phase . For feedback strength
K above this critical value, larger numbers of ECMs appear with increasing K. Varying o,
they appear and disappear in pairs at saddle-node bifurcations at the top and the bottom
end of the ellipse (see Fig. 2a, or [19] for more details). In contrast to this situation, we
have for RFFP always an ECM in the origin, which we denote as solitary laser mode.
This is due to the fact that at resonance the CW emission of the laser does not get any
feedback. However, as we will see later, its stability properties will change drastically.
Below the critical feedback level

Ko—— (11)

¢ PV 1+ a? ’

there can exist only the solitary laser mode. For larger feedback, additional ECMs can
appear again in pairs at saddle-node bifurcations. For varying phase ¢ they move now
along a figure eight, meeting the solitary laser mode, which is sitting in the waist, at
transcritical bifurcations (see Fig. 2b). For larger values of K, additional to the figure eight
there appear satellite bubbles of ECM locations, located around neighbouring reflectivity
maxima of the FP resonator, see Fig.3. Differentiating (10), we obtain the condition for
saddle-node bifurcations:

1= Klansin(p +wsm) — arsin(p + wsT)
— 1yco8(p + wgT) + 7 cos(p + wgT)] (12)

This equation together with the ECM conditions (7) and (8) can now be solved numerically.
We fixed the parameters

a=2,J =0.3,T = 1000, 7; = 0.001, 7pp = 40, (13)

and varied feedback strengt K and phase ¢. In the lower part of Fig.3, we show the
situation in the (w, N)-plane: the saddle-node curves separate the ECMs on the figure eight
and their satellites in saddles and nodes. They are usually called antimodes and modes,
respectively. The antimodes (dashed) are always unstable, the modes (solid) are stable
until they destabilize in a Hopf bifurcation, which we discuss in the next section. Figure
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Figure 5: Hopf bifurcations of stable ECMs at different locations (thick solid): Solitary laser
mode (Hg), ECMs on the right (H;4) and left (H_4) part of the figure eight, and on satellites
(Hyip,H_p). Stability of the central mode. White area: CW operation. Light-grey region:
unstable regime of central mode. Dark-grey regions: bistability between central and first modes.
Thick dotted line: transcritical bifurcation. Thin solid line: saddle-node bifurcation.

4 shows the corresponding bifurcation scenario in the plane of the feedback parameters K
and . Additional ECMs appear on the figure eight at the curve of saddle-node bifurcations
SNy4. On the satellites (+B,—B,+C,—C,...), the corresponding bifurcation curves are
SN,p,SN_p,SNyc,SN_¢,.... At the transcritical bifurcation line TR, ECMs move
from the left part +A of the figure eight to the right part —A. Note that the degenerate
point, where the transcritical bifurcation meets the saddle-node, represents a codimension
3 bifurcation, which is not completely unfolded here since we have fixed the resonance
condition.

4 Stability of ECMs

In the following we use the software DDE-BIFTOOL [20] to study the stability proper-
ties of the ECM solutions discussed above. To this end, it is necessary to use the ECM
frequency as reference frequency, which transforms the rotating wave into a stationary so-
lution. In this way, wg is considered as an extra free parameter. To exclude the degeneracy
originating from the phase shift invariance, one has to induce an additional constraint, e.g.
Re(Es) =0.

It turns out that there are three different possibilities for Hopf bifurcations of stable ECMs
(see Fig.5).

e The solitary laser mode in the waist of the figure eight can become unstable in a Hopf
bifurcation (Hg). This can happen even for feedback K < K., where the solitary
laser mode is the only existing ECM.

e On the left part —A of the figure eight and on the left satellites (—B, —C,...), stable
ECMs originate from the saddle-node bifurcation. They can become unstable for
further increasing ¢ at the corresponding Hopf curves H_ 4, H_p,.... This happens
only for a sufficiently large feedback level K.
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Figure 6: Region of stable ECMs in the (Ngs,ws)-plane (shaded), bounded by lines of Hopf
bifurcations (thin solid) and saddle-node bifurcations (dotted). Left panel: with figure eight for
K =0.025 and K = 0.05. Right panel: with figure eight and satellite bubles for K = 0.1. Thick
solid: location of stable ECMs. Thick dashed: location of unstable ECMs. Full circles: Hopf
bifurcation points for fixed values of K. Labels as in Fig. 3.

e On the right part +A of the figure eight and on the right satellites (+B,+C,...),
all ECMs are unstable, in general. Only in a small island on +A, bounded by the
Hopf curve H, 4, they are stable.

The location of stable ECMs in the (w, N)-plane is given by the shaded region in Fig. 6.
Note that the vertical line at wg = 0, N < 0 is not a bifurcation curve, because, as at the
other reflectivity minima of the resonator, ECMs do not exist there. Only in the limit of
infinite K, ECMs do approach this line.

Figure 7 shows a specific bifucation scenario for fixed K = 0.05. Figure 8 resembles
the situations ¢ fixed to 0 and —0.657. Note that for ¢ = 0, the solitary laser mode
destabilizes already for very small values of K. Collecting all bifurcations of the solitary
laser mode, we can determine its stability region. In Fig. 5, the region of instability of the
solitary laser mode is shaded in light grey. In dark grey, we indicated regions of coexistence
with another stable ECM (bistability). For large feedback, there might exist other stable
objects (e.g. periodic solutions) which we have not captured in our calculations.

As one expects from optical feedback, the feedback phase has a decisive role, whether the
feedback acts stabilizing or destabilizing to the solitary laser mode. In the next section
we perform a detailed study on the linear stability properties of the solitary laser mode.

5 Relaxation oscillations

Now we consider the control of relaxation oscillations by the resonator. To this purpose,
the system (3)-(5) is linearised in the form

L 5(t) = Av(t) + Bi(t — n) + Co(t — 1) (14)
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Figure 7: Bifurcation diagrams for K = 0.05. Upper panel: (wg, ¢) plane. Lower panel: (|E|, @)
plane. Transcritical and Hopf bifurcations are marked by triangles and circles, respectively. Solid
lines: stable stationary solutions; dashed lines: unstable ones. Squares: saddle-node bifurcations.
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Figure 8: Bifurcation diagram of the steady states in the plane |E| vs the feedback strength K for
¢ =0 and ¢ = —0.657. The solid lines show the stable stationary solutions. Circles indicate the
Hopf bifurcation points. The empty circles denote the Hopf-bifurcation which appears on unstable
branches. The triangle denotes transcritical bifurcation.



relative damping

40 LE— !
> (b) [Im()] i
c 3-92= ! =
S
2 1.0
2
2
£ 054 ¢="T S
S ——¢=-03
= swsseesen = (0.3 TR
0.0 - o= 065t U

10’3 1072 10"
feedback strength K

Figure 9: Solutions X of the characteristic equation (15) for the central mode versus feedback
strength K. Only the respective solution with lowest ReA < 0 is shown. (a) v = —Re) and (b)
w = |Im\| correspond to damping and frequency of relaxation oscillations, respectively. H and
TR label Hopf and transcritical bifurcations, respectively. The curves are normalized to the values
without feedback. Parameters: Eq. (13).

where 9(t) = (ReE(t) — E1,JImE(t) — E2, N(t) — Ng) represents the deviation from field
FEg = E1 4+ iFs and carrier density Ng of a selected ECM. The matrics A, B and C are

Ng wg —alNg FEy — aFy

A = Ole—u)S NS E2+01E1
—2E,G)T —2E2G/T (1+2|Es|?)/T
cos(p)  sin(yp
B = K | —sin(p) cos(
0
cos(yp)  sin ¢ 0
C = —K | —sin(¢) cos(z,b) 0
0 0

with G = 1+ 2Ng, ¢ = ¢ + wgT, and ¥ = ¢ + wgT. The characteristic equation for
eigenvalues of this linear system has the form

x(A\) =det(\E —A—e B —e ’C) =0, (15)

which determines the complex parameter A\. The real and imaginary parts of —\ cor-
respond in general to decay rates v and oscillation frequencies w, respectively, of small
deviations from the ECM.

In the special case of a solitary laser, one has K = 0, Ng = 0,ws = 0 and |Es|?> = J and
one gets the known expressions for damping and frequency of relation oscillations (RO),



which are v = (1 + 2J)/2T and w = /J/T, respectively, in lowest order of 1/T. These
quantities determine important parameters of lasers like small signal response, relative
intensity noise (RIN), and chirp (see, e.g., chapter 6 of Ref. [21]).

To highlight control of these properties by the resonator, we have calculated the nonzero
roots of Eq. (15) for the central mode in dependence on feedback strength K and phase
. Plots of A versus K are shown in Fig. 9 for some particular phases ¢ representing
the different regions in Fig. 5. Note that ¢ = +7 corresponds to the standard Pyragas-
type of delayed feedback control. Accordingly, the solitary laser mode keeps always stable
with slightly enhanced damping and reduced frequency of relaxation oscillations (thick
dashed in Fig. 9). At ¢ = 0.37 (thick dotted), the RO-damping drops rapidly down
towards the Hopf bifurcation H at K ~ 0.002. The frequency variation is negligible in this
tiny interval. A transition from weak damping to overdamping manifests in case ¢ = —0.3
(solid). The decay rate first increases with K, passes a kink, and falls dramatically towards
the transcritical bifurcation TR. At the kink, the frequency gets zero and the damping
enhanced by more than one order of magnitude. Perturbations decay rapidly (within few
ten ps) and monotoneously in this regime. Such behaviour is possibly of high interest for
high-speed modulation of the laser. A similar high damping with a kink and subsequent
sudden decrease appears also for ¢ = 0.657 (dash-dotted) just before the Hopf bifurcation
H. As before, this scenario is related to the proximity of a saddle-node bifurcation of two
other ECM (cf. Fig.5). However, the frequency keeps finite here and it even jumps to
much higher values beyond the kink. The dip in the damping around K ~ 0.005 is caused
by the influence of the nearby Hopf bifurcation curve Hg, see Fig.5. Altogether, these
examples demonstrate interesting possibilities to control the small-signal dynamics of a
laser without changing its CW output.

6 Conclusion

In the framework of properly adapted Lang-Kobayashi equations, we have treated a single-
mode semiconductor laser under resonant optical feedback from a Fabry-Perot cavity.
Evaluation of mode spectra and of the most relevant bifurcations in dependence of mag-
nitude and phase of the feedback leads to a comprehensive picture. Below a critical
feedback strength K., analytically given in Eq. (11), only one single mode exists. It rep-
resents the completely unchanged CW emission of the laser. Although the solitary laser
mode keeps unmodified by the resonator, the stability of it changes drastically. The effects
range from destabilization of relaxation oscillations in Hopf bifurcations to transitions into
overdamped behaviour, in sensitive dependence on the feedback phase. Thus, this weak-
feedback regime allows a wide control of the small-signal performance of the laser without
feedback-induced changes of the laser state. If the feedback increases beyond K., an
increasing number of additional external cavity modes (ECM) appear as mode-antimode
pairs in saddle-node bifurcations. Transcritical bifurcations as well as multistability reduce
the local and global stability of the solitary laser mode in this regime.

The obtained results are prototype for all-optical realizations of delayed feedback control
(DFC). The optical phase generally appears as a new control parameter, which is not
present in standard DFC. Maximum stability against perturbations has been obtained
at a feedback phase different from 7 that corresponds to standard DFC. The round-trip
phase shift in the FP must equal an integer multiple of 27 in order to get noninvasive

10



control. For an attempted noninvasive stabilization of periodic intensity-pulsations, the
group round-trip time will have to match the pulsation period in addition. Our result
on the critical feedback strength K., above which feedback-induced modes may prevent
stabilization of CW emission, will also remain valid for an all-optical DFC of other target
states.
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