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AbstractWe consider a passive nonlinear optical cavity containing a photonic crystalinside it. The cavity is driven by a superposition of the two coherent beamsforming a periodically modulated pump. Using a coupled mode reductionand direct numerical modeling of the full system we demonstrate existence ofresting and moving transversely localized structures of light in this system.Dissipative structures in optical systems have been the subject of intense researchduring the last years [1]. They result from the modulational (often called Turing [2])instability that triggers a spontaneous transition from homogeneous steady statesto self-organized or ordered structures. These can be either periodic or localized inspace. The latter case corresponds to stationary localized pulses that are formed inthe plane transverse to the beam propagation direction. They are often called cavitysolitons, and have been observed experimentally in a wide class of optical systems:lasers with saturable absorber [3], liquid crystal light valve with optical feedback[4], and single-mirror feedback systems using sodium vapor [5]. The experimentalrealization of a write/erase system based on cavity solitons in semiconductor mi-croresonator gives hope to achieve an integrable all-optical information processor[6].Recently, the inclusion of the transverse refractive index modulation into modelsof intracavity nonlinear optics has revealed the existence of a new type of localizedstructures associated with Bragg reection in lasers with a saturable absorber [7] andin discrete sets of coupled lasers [8] and resonantors [9]. It has also been shown thatthe modulation of the refractive index can inhibit a modulational instability [10].Solitons in periodically patterned semiconductor ampli�ers, i.e. without feedback,have been theoretically predicted in [11]. More recently, slowly moving dissipativelocalized structures of light have been found in a thin photonic crystal �lm withKerr nonlinearity excited under the conditions of the so-called Fano resonance [12].In this Letter, we consider a nonlinear passive cavity with a photonic crystal pumpedby two plane waves beams. We show that the photonic crystal induces a modula-tional instability and creates conditions for existence of stable Bragg-like localizedstructures in the transverse direction. These structures have zero transverse velocityif the two coherent pumping beams are symmetric and the phase shift Æ betweenthe pump intensity pro�le and the refractive index modulation is an integer multi-ple of �. If these two conditions are not satis�ed simultaneously then the localizedstructure move with constant velocity.We consider a planar passive cavity with two adjacent media inside it, see Fig.1. The �rst is a nonlinear two-level medium. The second is the photonic crystalintroducing a refractive index modulation along the transverse directions. The cavityis driven by two coherent pump beams with amplitudes P1;2 . The interferencebetween the two pumping waves produces a spatial modulation of the driving �elds,1
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M MFigure 1: Schematic setup of the nonlinear cavity �lled with a passive medium (PM) anda photonic crystal �lm (PCF). The Fabry-Perot cavity with at Mirrors (M) is driven bytwo pumping beam P1;2.see Fig. 1. For simplicity, we consider the pure absorptive bistability, i.e. the atomicdetuning is equal to zero. In the mean-�eld approximation [1], the electric �eldenvelope F and the population di�erence N can be described by the dimensionlesspartial di�erential equations@F@t = � [ + i� + 2CN � 2i cos(kx)]F + i@2F@x2+ eiqx �P1ei(kx+Æ)=2 + P2e�i(kx+Æ)=2� ; (1)@N@t = � hN � 1 +N jF j2i : (2)The modulation of the refractive index introduced by the photonic crystal is approx-imated by the cos kx function and its amplitude is rescaled to 2. Here k denotesthe wavenumber of the refractive index modulation. � is the cavity detuning andC is the cooperativity parameter [1]. The decay rates associated with the electric�eld and population di�erence are  and �, respectively. q is the pump incidenceangle. Di�raction is modeled by the second derivative with respect the transversecoordinate x.To study Eqs. (1,2), we decompose the electric �eld and the population di�erenceinto a linear superposition of waves having opposite wavenumbers: F = A1eikx=2 +A2e�ikx=2 and n = n0 + n1eikx + n2e�ikx where A1;2 and n0;1;2 are slowly varyingenvelopes with respect to the transverse coordinate. Substituting these decomposi-tions into Eqs. (1,2) and performing adiabatic elimination of the variables n0;1;2, we2



get the following nonlinear coupled mode equations:@A1@t = �( + i
)A1 + iA2 + P1ei(Q�+Æ=2) + @A1@� � 2C(1 + jA1j2)GA1; (3)@A2@t = �( + i
)A2 + iA1 + P2ei(Q��Æ=2) � @A2@� � 2C(1 + jA2j2)GA2; (4)where G�1 = 1 + (1 + jA1j2)2 + (1 + jA2j2)2;where Q = kq is the rescaled sum of the incidence angle between the two pumpingwaves and � = x=k. The e�ective detuning is 
 = � + k2=4.
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Figure 2: Instability boundaries as a function of the e�ective detuning parameter 
. (a)Pump P1 = P2 = P versus 
. The solid curve is the modulational instability boundary.The bistability region is delimited by the three dashed curves. Grey region indicatesphotonic band gap (BG). (b) Critical wavenumber at the modulational instability versus
: Parameters are  = 0:01, C = 0:4, Æ = 0, and Q = 0.Let us �rst examine the symmetric pumping situation, i.e., P1;2 � P , with a zerophase shift between the pump intensity and the refractive index, i.e., Æ = 0. In thiscase, the linear stability analysis of the uniform steady-state solutions of Eqs. (3,4)with respect to a �nite wavenumber perturbations shows that the system exhibitsa modulational instability in both the monostable and the bistable regimes. Theresults of this analysis is summarized in Fig. 2 where we plot the critical pumpamplitude as a function of the e�ective detuning. The critical wavenumbers cor-responding the maximum gain are plotted in Fig. 2 (b). From Fig. 2, we see that3



the modulational instability takes place outside the photonic band gap. The bandgap indicated in this �gure by the grey area is calculated from Eqs. (3,4) withoutdissipative terms as the region of non-existence of solutions of the form exp(�iQ�)for real Q and 
.
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Figure 3: Stationary localized structures. 
 = 1:05. Other parameters are the same as inFig. 2. (a) Real and imaginary parts of the �eld amplitudesA1;2 for P1 = P2 = 0:225. Solid(broken) lines correspond to A1 (A2). (b) Bifurcation diagram. LS: localized structures,HSS: homogeneous steady state. Broken lines correspond to unstable solutions.When a modulational instability appears subcritically, localized structures are formedin the hysteresis loop involving the homogeneous steady state and periodic patterns[1]. In what follows, we focus on the localized structures whose existence is ensuredby the Bragg scattering at the periodic refractive index modulation. These struc-tures can not be generally traced back to the limit with transversely homogeneousrefractive index, where photonic band gap disappears. We �nd the transverse pro-�les of the localized structures by solving numerically the nonlinear coupled modeEqs. (3, 4). Fig. 3a represents typical pro�les of the amplitudes A1;2 correspondingto bright stationary localized solutions which have been calculated for the case ofsymmetric pumping, Æ = 0, Q = 0, and P1 = P2, when the coupled mode equa-tions are invariant under the reection transformation � ! ��, A1 $ A2. Thebranch of the localized structures obtained by varying the pump strength parameterP = P1 = P2 is shown in Fig. 3b together with the branch of spatially homogeneoussolutions of the coupled mode equations.The localized structures found within the framework of the coupled mode approachexist also in the full model, as we demonstrated by direct numerical modelling ofEqs. (1,2), see Fig. 4. The localized structure shown in this �gure is formed by4
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Figure 4: Stationary localized structure obtained by direct numerical simulation of Eqs.(1,2). Parameters are  = 0:05, C = 2:0, Æ = 0, Q = 0, P1 = P2 = 1:2, k = 2:5, and� = �0:3125.the two waves counterpropagating in the transverse direction and therefore it ischaracterized by oscillations of the electric �eld intensity with the spatial frequencyk equal to that of the refractive index modulation and a phase shift � betweenthe two neighboring intensity maxima, which fully complies with predictions ofthe coupled mode approach. In that respect our structures are similar to the so-called \staggered" solitary waves in discrete nonlinear systems [13] and di�erent fromthe �unstaggered�olitons reported in [11]. The phase of the intensity oscillations ofthe localized structure shown in Fig. 4 coincides with that of the refractive indexpro�le. From this �gure we see that the homogeneous steady state of the coupledmode equations which serves as a background for the localized solution in Fig. 3acorresponds to a spatially periodic solution of Eqs. (1,2).In the case when the pumping is asymmetric, the localized structures move witha constant velocity. Fig. 5 illustrates the dependence of the localized structurevelocity v = d�=dt on the phase Æ, imbalance between the amplitudes of the pumpbeams ÆP = (P2�P1)=(P1+ P2), and the angle of incidence Q. From Fig. 5 (a) wesee that a phase shift Æ between the pump intensity and the refractive index pro�lesresults in a very small v, which is approximately four orders of magnitude smallerthan Æ itself. However, v increases rapidly with Æ and localized structures disappear5
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 ! �
, Æ ! Æ + � applied together with complex conju-gation. In particular, this means that the stationary localized structures found atÆ = 0 can be transformed into the structures with Æ = �� for the same absolutevalue but opposite sign of the detuning parameter 
. Unlike the structure shownin Fig. 4, the structures with Æ = �� are characterized by intensity oscillationsanti-phase with those of the refractive index pro�le.In conclusion, using the nonlinear coupled mode approach and numerical modellingof the full system, we have demonstrated the existence of bistability, modulationalinstability and stable Bragg localized structures in the transverse section of an exter-nally pumped passive cavity with photonic crystal. The localized structures move ifthe pumping is asymmetric or if the phase detuning Æ, see Eq. (1), is di�erent from0 or �. The coupled mode reduction similar to the one applied above can be used tostudy other driven nonlinear systems with a photonic band gap and one may expectthat localized structures constitute a generic and general feature of such systems.We are grateful to D. Turaev for useful discussions. This research is supported in partby the Fonds National de la Recherche Scienti�que, the Interuniversity AttractionPole Programme - Belgian Science Policy, and by Terabit Optics Berlin project.6
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