
Weierstra�-Institut

f�ur Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 { 8633

Generation of the Maxwellian Inow Distribution

Alejandro L. Garcia 1 and Wolfgang Wagner2

submitted: 4th March 2005

1 Dept. Physics

San Jose State University

San Jose, California 95192, USA

E-Mail: algarcia@algarcia.org

2 Weierstrass Institute for

Applied Analysis and Stochastics

Mohrenstrasse 39

10117 Berlin, Germany

E-Mail: wagner@wias-berlin.de

No. 1013

Berlin 2005

W I A S

2000 Mathematics Subject Classi�cation. 65C05, 76P05, 82C80.

Key words and phrases. Maxwellian inow distribution, boundary conditions, rare�ed gas

dynamics, Direct Simulation Monte Carlo.



Edited by

Weierstra�-Institut f�ur Angewandte Analysis und Stochastik (WIAS)

Mohrenstra�e 39

10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

This paper presents several eÆcient, exact methods for generating the

Maxwellian inow distribution, the velocity distribution of gas molecules cross-

ing a plane. The new methods are demonstrated to be computationally faster

and more accurate than the schemes commonly used for open boundary con-

ditions in particle simulations.
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1 Introduction

Stochastic algorithms, commonly referred to as Monte Carlo methods, use random

numbers generated from a variety of distributions. EÆcient generators have been

developed for the most commonly used distributions (e.g., uniform, Gaussian, and

exponential) and general techniques (e.g., inversion) are available for arbitrary distri-

butions [1, 2]. However generating a complicated distribution by a generic method

may not be eÆcient or accurate, which is why specialized generators for speci�c

applications are welcome.

This paper discusses the generation of random values z from the distribution

pa(z) =
2(a � z) exp(�z2)

exp(�a2) + a
p
� [1 + erf(a)]

; z < a ; (1.1)

As shown in section 2, this distribution arises when implementing the inow bound-

ary condition for particles crossing a surface. Speci�cally, it is associated with the

velocity distribution of particles, Maxwellian distributed in their moving frame of

reference, that pass through a plane. This boundary condition is very common

in molecular simulations of hydrodynamic ows in open systems [3, 4]. With this

association, we call pa(z) the Maxwellian inow distribution; functionals and trans-

formations related to this distribution are discussed in section 3.

Section 4 describes the general algorithm for generating the random velocities of

particles for an inow boundary condition. For the Maxwellian inow distribution

(1.1) there are three methods for random variate generation that are in common

use. The �rst is inversion (see section 5), which has the disadvantage of being

computationally expensive. The other two are approximate acceptance-rejection

schemes, discussed in [5] and in section 7, which are more eÆcient than inversion

but not exact.

In section 6 we develop several exact acceptance-rejection schemes that are more

eÆcient than any of the three methods in common use. The computational eÆciency

of all the schemes is discussed in section 8. Their programming implementation in a

practical example is summarized in section 9. We conclude in section 10 with some

further remarks regarding applications of the present schemes and their extension

to other distributions.

2 Maxwellian inow

This section establishes the mathematical formulation for inow boundary condi-

tions. Readers interested in a more physical introduction, presented in the context

of a speci�c example, are directed to Section 9.

The general inow boundary condition for the Boltzmann equation [6] is

f(t; x; v) (v; n(x)) = b(x; v) ;
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where t � 0 ; x 2 @D and v 2 R3 is such that (v; n(x)) > 0 : Here @D denotes the

boundary of the spatial domain D ; n(x) is the unit inward normal vector at x 2 @D ;

(v; n) is the scalar (dot) product of vectors v and n: The function b determines the

inow intensity (waiting time parameter)

� =
1

g

Z
@D

Z
(v;n(x))>0

b(x; v) dv �(dx) (2.1)

and the inow law

1

g �
b(x; v) ; (2.2)

where �(dx) denotes the uniform surface measure (area) on @D and g is the weight

of the incoming particles.

A case of special interest is Maxwellian inow

b(x; v) =

�
M%;V;T (v) (v; e) ; if x 2 � ; (v; e) > 0 ;

0 ; otherwise ;

where

M%;V;T(v) =
%

(2�T )3=2
exp

�
�
kv � V k2

2T

�

is the Maxwellian distribution and

e = n(x) ; 8x 2 � � @D ;

is the unit normal for some plane part � of the boundary. The inow intensity (2.1)

takes the form

� =
1

g
�(�)C ; (2.3)

where

C =

Z
(v;e)>0

M%;V;T (v) (v; e)dv : (2.4)

According to the inow law (2.2), the position of the incoming particle is distributed

uniformly on � : Its velocity is generated according to the probability density

q(v) =

�
C
�1
M%;V;T (v) (v; e) ; if (v; e) > 0 ;

0 ; otherwise :
(2.5)
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3 Inow functionals and transformations

Here we calculate functionals of the normal velocity component of the incoming

particles (cf. (2.5))

�( ) =

Z
R3

 ((v; e)) q(v) dv : (3.1)

Moments are obtained for

 (x) =  k(x) = x
k
; k = 1; 2; : : : : (3.2)

These moments will �x the normalization (cf. (3.11)) and quantify the errors in the

approximate generators (see Section 7.3).

Let e be given in spherical coordinates as

e =
�
cos' sin � ; sin' sin � ; cos �

�
; ' 2 [0; 2�) ; � 2 [0; �] :

Introduce the orthogonal matrix

Q(e) =

0
@ cos' cos � � sin' cos' sin �

sin' cos � cos' sin' sin �

� sin � 0 cos �

1
A

and note that

Q(e)0 e = (0; 0; 1) ;

where Q0 denotes the transposed matrix. Using the substitution

v = V +
p
2T Q(e)w ; dv = (2T )3=2 dw ; (3.3)

and taking into account that

(V +
p
2T Q(e)w; e) = (V; e)+

p
2T w3 (3.4)

and

M%;V;T (V +
p
2T Q(e)w) =

%

(2�T )3=2
exp(�kwk2) ; (3.5)

one obtains

�( ) =
%

p
2T

C �3=2

Z
R3

 (
p
2T (a+ w3)) exp(�kwk2) (a+ w3)�(a+ w3) dw

=
%

C

r
2T

�

Z
a

�1
 (
p
2T (a� z)) (a� z) exp(�z2) dz ; (3.6)
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where � denotes the Heaviside function and

a =
(V; e)
p
2T

: (3.7)

Note that

Z
x

�1
exp(�z2) dz =

p
�

2
[1 + erf(x)] ; 8x 2 R ; (3.8)

Z
x

�1
(�z) exp(�z2) dz =

1

2
exp(�x2) ; 8x 2 R ; (3.9)

and Z
x

0

z
2 exp(�z2) dz =

p
�

4
erf(x)�

x

2
exp(�x2) ; 8x � 0 ; (3.10)

where

erf(y) =
2
p
�

Z
y

0

exp(�z2) dz ; y � 0 ;

erf(y) = �erf(�y) ; y < 0 :

Since �(1) = 1 (cf. (3.1)), we obtain from (3.6) (cf. (2.4))

C = %

r
2T

�

Z
a

�1
(a� z) exp(�z2) dz = %

r
T

2�
m(a) ; (3.11)

where

m(x) = exp(�x2) + x
p
� [1 + erf(x)] ; x 2 R : (3.12)

Thus, (3.6) takes the form

�( ) =
2

m(a)

Z
a

�1
 (
p
2T (a� z)) (a� z) exp(�z2) dz : (3.13)

In particular (using (3.10)), we obtain the mean value (cf. (3.2))

�( 1) =
2
p
2T

m(a)

Z
a

�1
(a� z)2 exp(�z2) dz

=

r
T

2

p
� [1 + erf(a)] (1 + 2 a2) + 2 a exp(�a2)

p
� a [1 + erf(a)] + exp(�a2)

:
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4 General Algorithm

We now turn to the question of how to generate a random variable � according to

the probability density (2.5). Considering the substitutions (3.3) and taking into

account (3.4), (3.5), (3.7), (3.11), (3.12), one obtains

q(w1; w2; w3) =

�
2m(a)�1 ��1 (a+ w3) exp(�jjwjj2) ; if a+ w3 > 0 ;

0 ; otherwise :

The components of w are independent; the �rst two components are distributed

according to the probability density

1

�
exp(�w2

1 � w
2
2) ; w1; w2 2 R ;

and the third is obtained as

w3 = �z ; (4.1)

where z is distributed according to the Maxwell inow distribution

pa(z) =
2

m(a)
(a� z) exp(�z2) ; z 2 (�1; a) : (4.2)

The random variable � is obtained as (cf. (3.3), (4.1))

� = V +
p
2T Q(e)

0
@ w

�
1

w
�
2

�z�

1
A : (4.3)

The variables w�1 and w
�
2 are independent Gaussians with zero mean and variance

1=2 : In the case a = 0 ; one obtains from the inverse transformation (see Section 5)

and (3.9)

z
� = �

p
� log u ; (4.4)

where u is uniformly distributed on (0; 1) : The generation of the variable z� in the

case a 6= 0, which is the point of this paper, will be discussed in the following

sections.

5 Inverse transform

One method to obtain the component z� to be used in (4.3) is by the inverse trans-

form method [1, 2], that is, by solving numerically the equation

Z
z

�1
pa(x) dx = u ; z < a ; (5.1)
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where u is uniformly distributed on (0; 1) : Denote the left-hand side of equation

(5.1) by Fa(z) : According to (3.8) (3.9), and (4.2), one obtains

Fa(z) =
1

m(a)

n
exp(�z2) + a

p
� [1 + erf(z)]

o
:

Furthermore, F 0
a
(x) = pa(x) and

p
0
a
(z) =

2

m(a)
exp(�z2) [2 z2 � 2 z a� 1] :

Thus, the function Fa has an inection point at

z(a) =
a�

p
a2 + 2

2
; (5.2)

and the function pa takes its maximum there, that is,

max
z<a

pa(z) = pa(z(a)) : (5.3)

Note that z(a) < min(a; 0) :

Equation (5.1) is solved by a Newton iteration, starting with the initial guess

z0 = z(a) : Calculate the error

Ek = Fa(zk)� u

and stop if it is small enough, speci�cally if jEkj < Ed. Otherwise, calculate the new

guess

zk+1 = zk �
Ek

F 0
a
(zk)

= zk �
m(a)Ek

2 (a� zk) exp(�z2k)
:

and continue the iteration.

The inversion method has the disadvantage of being computationally expensive

relative to other generators, as discussed in section 8.

6 Acceptance-rejection

This section discusses the use of the acceptance-rejection technique to generate the

component z� to be used in (4.3). This technique is based on selecting a suitable

majorant (envelope) p̂ such that (cf. (4.2))

pa(z) � p̂(z) ; 8 z < a : (6.1)

The component z� is generated according to the probability density

1R
a

�1 p̂(x) dx
p̂(z) ; z < a ; (6.2)
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and is accepted with probability

pa(z
�)

p̂(z�)
(6.3)

so

1R
a

�1 p̂(x) dx
(6.4)

is the acceptance rate.

The eÆciency of the acceptance-rejection method obviously depends on the

choice of the envelope function p̂ . Ideally the acceptance rate will be close to one

and the probability density (6.2) is a distribution that can be generated eÆciently.

The remainder of this section presents four envelope functions, two for each case

a < 0 and a > 0. We later show (see section 8) that these envelopes yield eÆcient

acceptance-rejection schemes, with two of them specialized for the regime jaj � 1

(low-speed ows).

6.1 Envelope 1 (a < 0)

For a < 0, consider the envelope

p̂1(z) =
2

m(a)
(�z) exp(�z2)

and note that (cf. (3.9))

Z
z

�1
p̂1(x) dx =

1

m(a)
exp(�z2) : (6.5)

The acceptance rate (6.4) is

m(a)

exp(�a2)

and tends to 1 as a! 0 (see Figure 1). One obtains from (6.5)

z
� = �

p
a2 � log u (6.6)

and the acceptance probability (6.3) is

a� z
�

�z�
!

�
0 ; if z

� ! a ;

1 ; if z
� !�1 :
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Figure 1: Acceptance rates for: envelopes 1 and 3 (solid lines); envelopes 2 and 4

(dashed lines).

6.2 Envelope 2 (a < 0)

For a < 0, consider the envelope (cf. (5.2), (5.3))

p̂2(z) =

�
p̂1(z) ; if z < �(a) ;

pa(z(a)) ; if z 2 [�(a); a) ;

where the function � satis�es

�(a) � a :

The previous case is obtained for �(a) = a : One obtainsZ
a

�1
p̂2(z) dz =

1

m(a)

h
exp(��(a)2) + 2 exp(�z(a)2) (a� z(a)) [a� �(a)]

i

and the corresponding acceptance rate (6.4). Our particular choice is

�(a) = a� (1� a) (a� z(a)) ;

which gives a favorable acceptance rate over a wide range of a (see Figure 1).

For this piece-wise envelope, with probability

exp(��(a)2)
exp(��(a)2) + 2 exp(�z(a)2) (a� z(a)) [a� �(a)]

;
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z
� is generated according to the probability density

2 exp(�(a)2) (�z) exp(�z2) ; z < �(a) ;

so that (cf. (6.6))

z
� = �

p
�(a)2 � log u ;

and accepted with probability

a� z
�

�z�
:

With probability

2 exp(�z(a)2) (a� z(a)) [a� �(a)]

exp(��(a)2) + 2 exp(�z(a)2) (a� z(a)) [a� �(a)]

z
� is generated uniformly on [�(a); a] and accepted with probability

a� z
�

a� z(a)
exp(z(a)2 � (z�)2) :

6.3 Envelope 3 (a > 0)

For a > 0, consider the envelope

p̂3(z) =

�
pa(z) ; if z � 0 ;

2m(a)�1 (a� z) ; if z 2 (0; a) ;

and note that (cf. (3.8), (3.9))

Z
a

�1
p̂3(z) dz =

1

m(a)

�
a
p
� + 1 + a

2
�
:

The acceptance rate (6.4) is

m(a)

a
p
� + 1 + a2

;

which is shown in Figure 1 to be close to unity for a < 1 :

With probability

a
p
�

a
p
� + 1 + a2

one generates z� according to the probability density

2
p
�
exp(�z2) ; z � 0 ;
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so that z� is a one-sided Gaussian with parameters 0 and 1=2 : With probability

1

a
p
� + 1 + a2

one generates z� according to the probability density

2 (�z) exp(�z2) ; z � 0 ;

so that z� is de�ned in (4.4). With probability

a
2

a
p
� + 1 + a2

one generates z� according to the probability density

2

a2
(a� z) ; z 2 (0; a) ;

so that

z
� = a (1�

p
u) ;

and accepts it with probability

exp(�(z�)2) :

6.4 Envelope 4 (a > 0)

For a > 0, consider the envelope

p̂4(z) =

�
pa(z) ; if z � 0 ;

2m(a)�1 a exp(�z2) ; if z > 0 ;

and note that (cf. (3.9))

Z
a

�1
p̂4(z) dz =

1

m(a)

�
2 a
p
� + 1

�
:

The acceptance rate (6.4) is

m(a)

2 a
p
� + 1

;

which is shown in Figure 1 to be favorable over a wide range of values, going to

unity as a!1 :

With probability

2 a
p
�

2 a
p
� + 1

11



one generates z� according to the probability density

1
p
�
exp(�z2) ; z 2 R ;

so that z� is Gaussian with zero mean and variance 1=2 : With probability

1

2 a
p
� + 1

one generates z� according to the probability density

2 (�z) exp(�z2) ; z � 0 ;

so that z� is de�ned in (4.4), and accepts it with probability

pa(z
�)

p̂4(z�)
=

8<
:

1 ; if z
� � 0 ;

1� z
�
=a ; if z

� 2 (0; a) ;

0 ; if z
� � a :

7 Approximate methods

This section presents two approximate acceptance-rejection methods that are in

common use [5]. The schemes are approximate because the envelopes do not satisfy

(6.1) and thus the distributions they generate only approximate pa(z) :

7.1 Box envelope

The �rst approximate method uses a rectangular box envelope (cf. (5.2), (5.3))

p̂B(z) =

�
pa(z(a)) ; z<(a) < z < z>(a) ;

0 ; otherwise;

where z<(a) < z>(a) � a are some parameters to be speci�ed later. Note that

Z
z

�1
p̂B(x) dx =

8<
:

0 ; z < z<(a) ;

pa(z(a)) (z � z<(a)) ; z<(a) < z < z>(a) ;

pa(z(a)) (z>(a)� z<(a)) ; z > z>(a) :

One generates z� as

z
� = z<(a) + (z>(a)� z<(a))u

which is accepted with probability (cf. (6.3))

pa(z
�)

pa(z(a))
=

a� z
�

a� z(a)
exp(z(a)2 � (z�)2) :

12



This method is approximate since the condition (cf. (6.1))

pa(z) � p̂B(z)

is not satis�ed for z < z<(a) and for z > z>(a). The actual distribution generated

by the box envelope is

~pa(z) =

�
pa(z)=mB(a); z<(a) < z < z>(a);

0; otherwise;

where

mB(a) =

Z
z>

z<

pa(z) dz :

7.2 Reservoir

The second approximate method uses the envelope

p̂R(z) =
2

m(a)
(a� z<(a)) exp(�z2) ;

where z<(a) < a is some parameter to be speci�ed later. One generates z� according

to the probability density

1
p
�
exp(�z2) (7.1)

so that z� is a Gaussian with zero mean and variance 1=2. The generated value is

rejected if z� > a, accepted with probability (cf. (6.3))

pa(z
�)

p̂R(z�)
=

a� z
�

a� z<(a)
(7.2)

if z� > z<(a), and accepted with probability one otherwise.

The reservoir method is so named because it has the following physical interpre-

tation: A particle is generated in a reservoir with position x and velocity v. The

position is chosen uniformly from the interval (�L; 0) and the velocity chosen as

v = a� z where z is distributed as (7.1). The particle is accepted if it moves past

the origin during a time interval � , that is,

x+ v� > 0 or (a� z)� > uL :

Taking

� =
L

a� z<(a)

gives us that z is accepted with probability (7.2).

13



Note that this method is approximate since the condition (cf. (6.1))

pa(z) � p̂R(z)

is not satis�ed for z < z<(a) : The actual distribution generated by the reservoir

envelope is

~pa(z) =
1

mR(a)
�
�
pa(z); z<(a) < z < a;

p̂R(z); otherwise;

where

mR(a) =

Z
a

z<

pa(z) dz +

Z
z<

�1
p̂R(z) dz :

7.3 Truncation Errors

The error in these approximate methods is most easily seen from the absolute frac-

tional error in the moments, that is,

�����
hzii � ~hzii

hzii

�����
where (cf. (3.13))

hzii =
Z

a

�1
z
i
pa(z) dz and ~hzii =

Z
a

�1
z
i ~pa(z) dz :

This error is shown in Figure 2 for the box and reservoir envelopes using typical

values for the parameters (see [5, 7]) in these approximate envelopes. For the higher

moments the error is large (a few percent) when a < 0. This error can be reduced

by suitable choice of the envelopes' parameters but at the price of computational

eÆciency (see Section 8).

8 Computational EÆciency

The various numerical schemes outlined in the previous sections are summarized in

Tables 1{5. In those tables, <u, <0u, and <00u are independent, uniformly distributed

random values in the interval (0,1) and <n is a normal (Gaussian) distributed ran-

dom value with zero mean and unit variance.

The computational eÆciencies of the di�erent generators were evaluated by mea-

suring CPU time. Following [5], the relative eÆciency was obtained by normalizing

these CPU times relative to the CPU time of the box envelope method (see Sec-

tion 7.1) for a = 0. Parameter values typical of commonusage were used, speci�cally:

Ed = 10�5 for inversion; z<(a); z>(a) for box and reservoir envelopes, as in Figure 2.
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Figure 2: Absolute fractional error in the �rst three moments as a function of

speed ratio, a. Upper �gure is for the box envelope with z<(a) = min(a� �1;�3),
z>(a) = min(a; 3) for �1 = 1 (solid line) and �1 = 2 (dashed line). Lower �gure is

the reservoir envelope with z<(a) = min(a� 1;�3).
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Figures 3 and 4 present the computational eÆciencies of the various methods.

Figure 4 shows that the �rst method, which combines Envelopes 1 and 3 (see Sections

6.1, 6.3 and Table 1) is the most eÆcient for low speed ows (jaj � 1). Figure 3

illustrates that the second method, which combines Envelopes 2 and 4 (see Sections

6.2, 6.4 and Table 2) is eÆcient over a wide range of speed ratio. Inversion is

computationally expensive, even though Newton's method converges quickly and our

implementation uses an eÆcient polynomial approximation for the error function [9].

For a < �1 the box method is eÆcient when �1 = 1 but not accurate (see Fig. 2); for

�1 = 2 the box method is not competitive. The reservoir method is very ineÆcient

for a < 0 and not competitive with the second method (using Envelopes 2 and 4)

for a > 0.
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Figure 3: Relative computational eÆciency versus speed ratio. Data is for: envelopes

1 and 3 (circles); envelopes 2 and 4 (squares); inversion (stars), box envelope (as-

terisks for �1 = 1, crosses for �1 = 2), reservoir envelope (triangles).

9 Practical Example

For the convenience of readers wishing to implement the generators described in

this paper this self-contained section illustrates their use in the context of a typical

physics application.

Consider particles (mass �) uniformly distributed in space, with number den-

sity %, and Maxwell-Boltzmann distributed in velocity, with mean velocity V =
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Figure 4: Relative computational eÆciency versus speed ratio in the low-speed (jaj <
1) regime. See Fig. 3 caption for legend.

(Vx; Vy; Vz) and temperature T . The probability distribution for the velocity of

particles, v = (vx; vy; vz), crossing the y � z plane in the +x direction is

p(v) = C
�1
vx exp(�jv�Vj2=v2

T
) ; vx > 0

where vT =
p
2kT=� is the most probable thermal speed, k is Boltzmann's constant,

and C is the normalization constant.

From the inow intensity (cf. (2.3), (2.4), (3.11)) the mean number of particles

crossing a surface area � during a time interval � is

% � �
vT

2
p
�

�
exp(�a2) + a

p
� [1 + erf(a)]

	

where a = Vx=vT is the speed ratio. Typically an open boundary condition is

implemented by determining the number of particles that cross a surface during a

time interval and generating those particles at random times, uniformly distributed

in the time interval [5, 7]. As shown in [8], the random integer number of particles

should be chosen from a Poisson distribution with the appropriate mean to avoid

anomalous correlations.

For the velocity distribution, the y and z components are independent and gen-

erated as

vy = Vy +

q
1
2
vT <n ; vz = Vz +

q
1
2
vT <0n ;
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where <n, <0n are independent, normal (Gaussian) distributed random values with

zero mean and unit variance.

For the special case Vx = 0, the normal component is easily generated as

vx = vT

p
� log<u

where <u is a uniformly distributed random value in the interval (0; 1). In the

general case (Vx 6= 0), we generate this component as vx = (a � z
�)vT where z� is

generated from the Maxwell inow distribution.

From our studies, we recommend generating z� by the method outlined in Table 1

for the low speed ows in the approximate range �0:4 vT < Vx < 1:3 vT (see Figs. 3

and 4). This method uses Envelope 1 (section 6.1) for a � 0 and Envelope 3

(section 6.3) for a > 0. The method outlined in Table 2, which uses Envelope 2

(section 6.2) for a < 0 and Envelope 4 (section 6.4) for a � 0, is recommended

for high speed or mixed speed ows. For reference, three alternative methods in

common use, inversion (section 5), box envelope (section 7.1), and reservoir (section

7.2), are outlined in Tables 3, 4, and 5.

10 Concluding Remarks

To summarize the main results, two new formulations are developed for generating

random values from the Maxwell inow distribution (1.1). For small jaj, acceptance-
rejection using the envelopes in sections 6.1 and 6.3 is recommended. For the more

general case, acceptance-rejection using the envelopes in sections 6.2 and 6.4 are

recommended. These new formulations are simple to implement (see Tables 1 and

2) and are several times faster computationally than the generators in common use

(see Section 8).

The most common application for generators of the Maxwell inow distribution is

the implementation of open boundary conditions for particle simulations, especially

direct simulation Monte Carlo (DSMC) and related schemes based on the Boltz-

mann equation [7]. Adaptive algorithm hybrids [10, 11, 12], which couple a particle

simulation with a continuum solver, also generate random velocities for particles

crossing the algorithms' interface. Another numerical application is the computa-

tion of Master Equation trajectories for Brownian systems, such as the \adiabatic

piston" and thermal Brownian motors [13].

Finally, the Maxwell inow distribution may be used in the construction of gener-

ators for other distributions. For example, [14] describes two iterative methods that

use the simple Maxwellian (Gaussian) generator to produce random values from the

Chapman-Enskog distribution. It should be possible to generalize these methods

to generate eÆciently the Chapman-Enskog inow distribution using the Maxwell

inow distribution schemes presented in this paper.
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� If a � 0,

1. Compute z� = �
p
a2 � log<u.

2. If
a� z

�

�z�
> <0

u

return z�, else go to step 1.

� If a > 0,

1. Set u = <u.

2. If
a
p
�

a
p
� + 1 + a2

> u

then return z� = � 1p
2
j<nj.

3. Else if
a
p
� + 1

a
p
� + 1 + a2

> u

then return z� = �
p
� log<0

u
.

4. Else,

(a) Compute z� = (1 �
p
<0
u
)a.

(b) If

exp(�(z�)2) > <00
u

then return z�, else go to step 1.

Table 1: Outline of acceptance rejection method using envelopes 1 and 3. Recom-

mended generator for low-speed problems.
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� If a < 0,

1. Set z(a) = 1
2
(a�

p
a2 + 2) and �(a) = a� (1� a)[a� z(a)].

2. If,
exp(��(a)2)

exp(��(a)2) + 2[a� z(a)][a� �(a)] exp(�z(a)2)
> <u

(a) Compute z� = �
p
�(a)2 � log<0

u
.

(b) If,
a� z

�

�z�
> <00

u

then return z�, else go to step 2.

3. Else,

(a) Compute z� = �(a) + [a� �(a)]<0
u
.

(b) If,
a� z

�

a� z(a)
exp(z(a)2 � (z�)2) > <00

u

then return z�, else go to step 2.

� If a � 0,

1. If
1

2a
p
� + 1

> <u

then z� = �
p
� log<0

u
, else z� = 1p

2
<n:

2. If
a� z

�

a
> <00

u

then return z�.

3. Else go to 1

Table 2: Outline of acceptance rejection method using envelopes 2 and 4. Recom-

mended generator for general problems.
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1. Select the desired absolute error, Ed.

2. Set u = <u, k = 0, m(a) = exp(�a2) + a
p
� [1 + erf(a)].

3. Compute initial guess z0 =
1
2
(a�

p
a2 + 2).

4. Compute current absolute error,

Ek =
1

m(a)

�
exp(�z2

k
) + a

p
� [1 + erf(zk)]

	

5. If jEkj < Ed, then return z� = zk.

6. Else,

(a) Compute new guess,

zk+1 = zk �
Ekm(a)

2(a� zk) exp(�z2k)

(b) Set k = k + 1 and go to step 4.

Table 3: Outline of inversion method.

1. Select z<(a) and z>(a). Typically z<(a) = min(a � �1;��2), z>(a) =

min(a; �2) with �1 = 1 or 2 and �2 = 3

2. Set z(a) = 1
2
(a�

p
a2 + 2 ).

3. Compute z� = z<(a) + [z>(a)� z<(a)]<u.

4. If
a� z

�

a� z(a)
exp(z(a)2 � (z�)2) > <0

u

then return z�, else go to step 3.

Table 4: Outline of box envelope method.

21



1. Select z<(a). Typically z<(a) = min(a� 1;��R) with �R = 3.

2. If a � 0, compute z� = � 1p
2
j<nj, else z� = 1p

2
<n.

3. If
a� z

�

a� z<(a)
> <u

then return z�, else go to step 2

Table 5: Outline of reservoir envelope method.
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