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Low-rank tensor reconstruction of concentrated densities with
application to Bayesian inversion

Martin Eigel, Robert Gruhlke, Manuel Marschall

ABSTRACT. This paper presents a novel method for the accurate functional approximation of possibly
highly concentrated probability densities. It is based on the combination of several modern techniques
such as transport maps and low-rank approximations via a nonintrusive tensor train reconstruction. The
central idea is to carry out computations for statistical quantities of interest such as moments based
on a convenient reference density for which accurate numerical methods can be employed. Since the
exact transport from target to reference can usually not be determined exactly, one has to cope with a
perturbed reference density due to a numerically approximated transport map. By the introduction of
a layered approximation and appropriate coordinate transformations, the problem is split into a set of
independent approximations in seperately chosen orthonormal basis functions, combining the notions
h- and p-refinement (i.e. “mesh size” and polynomial degree). An efficient low-rank representation of
the transport is achieved via the Variational Monte Carlo (VMC) method. This nonintrusive regression
technique reconstructs the map in the tensor train format. An a priori convergence analysis with re-
spect to the error terms introduced by the different (deterministic and statistical) approximations in the
Hellinger distance and the Kullback-Leibler divergence is derived. Important applications are presented
and in particular the context of Bayesian inverse problems is illuminated which is a main motivation
for the developed approach. Several numerical examples illustrate the efficacy with densities of differ-
ent complexity and degrees of perturbation of the transport to the reference density. The (superior)
convergence is demonstrated in comparison to Monte Carlo and Markov-Chain Monte Carlo methods.

1. OVERVIEW

We derive a novel numerical method for the functional representation of complicated (in particular
highly concentrated) probability densities. This difficult task usually is attacked with Markov-Chain
Monte Carlo (MCMC) methods which yield samples of the posterior. Despite their popularity, the con-
vergence rate of these methods is ultimately limited by the employed Monte Carlo sampling technique,
see e.g. [10] for recent multilevel techniques in this context. Moreover, practical issues e.g. regarding
the initial number of samples (burn-in) arise.

In this work, we propose a new approach based on function space representations with efficient surro-
gate models in several instances. This is motivated by our previous work on adaptive low-rank approx-
imations of solutions of parametric random PDEs with Adaptive Stochastic Galerkin FEM (ASGFEM,
see e.g. [17, 14]) and in particular the sampling-free Bayesian inversion presented in [15] where the
setting of uniform random variables was examined. A generalization to the important case of Gaussian
random variables turns out to be non-trivial from a computational point of view due to the difficulties of
representing highly concentrated densities in a compressing tensor format which in fact is required in
order to cope with the high dimensionality of the problem. As a consequence, we develop a discretiza-
tion approach which takes into account the potentially problematic structure of the probability density
at hand by a combination of several transformations and approximations that can be chosen adaptively
to counteract the interplay of the employed numerical approximations. With the computed functional
representation of the density, the evaluation of moments or other statistical quantities of interest can
be carried out efficiently and with high accuracy.

A central idea of the method is to obtain a map which transports the target density to some convenient
reference density. For the latter, accurate numerical methods are assumed to be available, hence sim-
plifying any subsequent computations once such a transport map is determined. Transport maps for
probablity densities are a classical topic in mathematics. They are under active research in particular
in the area of optimal transport [48, 41] and also have become popular in current machine learning
research [47, 39, 9]. A main application we have in mind is Bayesian inversion where, given a prior
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density and some observations of the forward model, the posterior density of the sought parameters
should be determined. In this context, the rescaling approaches in [42, 43] based on the Laplace ap-
proximation can be considered as transport maps of a certain (affine) form. More general transport
maps have been examined extensively in [19, 36, 37] and other works of the group. In the optimal
case that the exact transport is known and a chosen multivariate Gaussian reference density, a sub-
sequent polar transformation results in 1D approximation problems of analytically smooth functions.
By projection onto a trigonometric or polynomial basis, a very accurate functional representation of
the density could then be obtained. However, it is obvious that by assuming an accurate transport,
the difficulty is shifted from coping with a complicated density to the computation of a complicated
map which of course usually is also infeasible. We hence suppose that only an inexact transport is
available, leading to perturbed densities. The degree of perturbation has then to be coped with in the
subsequent approximation steps. Similar to ideas in adaptive FEM, in addition to the selection of (lo-
cal) approximation spaces of a certain degree (“p-refinement”), we introduce a spatial decomposition
of the density representation into layers (“h-refinement”) around some center of mass of the consid-
ered density. This enables to exploit the decay behaviour of the approximated density, in the best case
in a one dimensional low-rank setting. Overall, this “hp-refinement” allows to balance incaccuracies
and hence perturbations of the reference density by putting more effort into the discretization part.
One hence has the freedom to decide whether more effort should be invested into computing an ex-
act transport map or into a more elaborate discretization (with more layers and larger bases) of the
transported and transformed density.

For eventual computations with the devised (possibly high-dimensional) functional density representa-
tion, an efficient representation format is required. In our context, hierarchical tensors and in particular
tensor trains (TT) prove to be advantageous, cf. [2, 35]. These compressing formats enable to alle-
viate the curse of dimensionality under suitable conditions and allow for efficient evluations of very
high-dimensional objects. We aim to obtain a low-rank tensor representation of the respective trans-
port map, for each layer of the discretization. In certain cases it can be shown that these maps are
even of rank one. In more general cases, a low-rank representability may be observed numerically. To
generate a tensor train representation of the maps (in the extended form, i.e. coupled with a function
basis), the Variational Monte Carlo (VMC) method [18] is employed. It basically is a tensor regression
approach based on function samples for which a convergence analysis is available. Notably, depend-
ing on the chosen loss functional, it leads to the best approximation in the respective model space. It
has previously been examined in the context of random PDEs in [18] as an alternative nonintrusive
numerical approach to Adaptive Stochastic Galerkin FEM in the TT format [17, 14]. The approximation
of [14] is in fact used in one of the presented examples for Bayesian inversion with the random Darcy
equation with lognormal coefficient. We note that surrogate models of the forward model have been
used in the context of MCMC e.g. in [30] and tensor representations (obtained by cross approximation)
were used in [11] to improve the efficiency of MCMC sampling.

The derivation of our method is supported by an a priori convergence analysis with respect to the
Hellinger distance and the Kullback-Leibler divergence. In the analysis, different error sources have
to be considered, in particular a layer truncation error depending on decay properties of the density,
low-rank representability, rank truncation errors and the perturbations introduced by inexact transport
maps, leading to perturbed reference densities. Moreover, the VMC error analysis [18] comprising
statistical estimation and numerical approximation errors is adjusted to be applicable to the devised
approach. While not usable for an a posterior error control in its current initial form, the derived analysis
leads the way to more elaborate results for this promising method in future research.

With the constructed functional density surrogate, sampling-free computations of statistical quantities
of interest such as moments or marginals become feasible by fast tensor contractions, even for highly
concentrated or (depending on the available transport map) nonlinearly transformed high-dimensional

DOI 10.20347/WIAS.PREPRINT.2672 Berlin 2019



Tensor reconstruction for densities 3

densities. For non-smooth quantities simple sample generation based on inverse transformation sam-
pling approaches from the uniform distribution are easily possible due to the compactness of the
discretisation layers.

While several assumptions have to be satisfied for this to work most efficiently, the approach is rather
general and can be further adapted to the considered problem. Moreover, it should be emphasized
that by obtaining a functional representation, structural properties of the density at hand (in particular
smoothness, sparsity, low-rank approximability and decay behaviour in different parameters) can be
exploited in a much more extensive way than what is possible with sampling based methods such
as MCMC, leading to more accurate and faster converging statistical computations. We note that the
perturbed posterior surrogate can be used to efficiently generate samples for rejection sampling or
within a MCMC scheme. Since the perturbed transport can be seen as a preconditioner, the sample
generation can be based on the perturbed prior. These samples can then be pushed forward to the
posterior. As a prospective extension, the constructed posterior density can directly be used in a
Stochastic Galerkin FEM based on the integral structure, closing the loop of forward and inverse
problem, resulting in the inferred forward problem with model data determined by Bayesian inversion
from the observed data.

The structure of the paper is as follows. Section 2 is concerned with the representation of probability
densities and introduces a relation between a target and a reference density. Such a transport map
can be determined numerically by approximation in a chosen class of functions and with an assumed
structure, leading to an the concept of perturbed reference densities. To counter the perturbation, a
layered truncated discretization is introduced. An efficient low-rank representation of the mappings is
described in Section 3 where the tensor train format is discussed. In order to obtain this nonintrusively,
the Variational Monte Carlo (VMC) tensor reconstruction is reviewed. A priori convergence results
with respect to the Hellinger distance and Kullback-Leibler divergence are derived in Section 4. For
practical purposes, the proposed method is described in terms of an algorithm in Section 5. Possible
applications we have in mind are examined in Section 6. In particular, the setting of Bayesian inverse
problems is recalled. Moreover, the computation of moments and marginals is scrutinized. Section 7
illustrates the performance of the proposed method. In addition to an examination of the numerical
sensitivity of the accuracy with respect to the perturbation of the transport maps, a typical model prob-
lem from Uncertainty Quantification (UQ) is depicted, namely the identification of a parametrization for
the random Darcy equation with lognormal coefficient given as solution of a stochastic Galerkin FEM.

2. DENSITY REPRESENTATION

The aim of this section is to introduce the central ideas of the proposed approximation of densi-
ties. For this task, two established concepts are reviewed, namely transport maps [19, 5], which are
closely related to the concept of optimal transport [48, 41], and hierarchical low-rank tensor repre-
sentations [35, 26, 2]. By the combination of these techniques, assuming the access to a suitable
transformation, the developed approach yields a functional representation of the density in a format
which is suited to computations with high-dimensional functions. In particular, we are able to handle
highly concentrated posterior densities, e.g. appearing in the context of Bayesian inverse problems.
While transport maps on their own in principle enable the generation of samples of some target dis-
tribution, the combination with a functional low-rank representation allows for integral quantities such
as (centered) moments to become computable. Given an approximate transport map, the low-rank
representation can be seen as a further approximation step (improving the inaccuracy of the used
transport) to gain direct access to the target density.
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Consider a target measure π with Radon-Nikodym derivative with respect to to the Lebesgue measure
λ denoted as f with support in Rd, d <∞, i.e.

(1) f(y) :=
dπ

dλ
(y), y ∈ Y := Rd.

In the following we assume that point evaluations of f are available up to a multiplicative constant,
motivated by the framework of Bayesian posterior density representation with unknown normalization
constant. Furthermore, let π0 be some reference measure exhibiting a Radon-Nikodym derivative with
respect to to the Lebesgue measure denoted as f0. This is motivated by the prior measure and density
in the context of Bayesian inference.

2.1. Transport Maps. The notion of density transport is classical and with optimal transport has
become a popular field recently, see e.g. [48, 41]. It has been employed to improve numerical ap-
proaches for Bayesian inverse problems e.g. in [19, 5, 11]. Similar approaches are discussed in terms
of sample transport e.g. for Stein’s method [31, 8] or multi-layer maps [5]. We review the properties
required for our approach in what follows. Note that since our target application is Bayesian inver-
sion, instead of the more general reference and target densities, we usually use the terms prior and
posterior.

Let X := Rd and assume that there exists an exact transport map

(2) T : X → Y,

which is a diffeomorphism1 that relates π and π0 via pullback, i.e.

f0(x) = f(T (x))| detJT (x)|, x ∈ X.(3)

Then, computations might be carried out in terms of the measure π0, which is commonly assumed to
be of a simpler structure. For instance the moment computation with respect to some multiindex α
reads as follows,

(4)

∫
Y

yαdπ(y) =

∫
X

T (x)αdπ0(x) =

∫
X

T (x)αf0(x)dλ(x).

Note that the computation of the right-hand side in (4) may still be a challenging task depending on
the actual structure of T . In [19] T is expanded in chaos polynomials with respect to π0. From a prac-
tical point of view, this provides access to lower-order moments using orthogonality of the underlying
polynomial system.

Here we follow an alternative strategy with the aim to efficiently compute moments of some target den-
sity based on a functional representation. Notably we assume a convenient (simple) structures of T
with the potential drawback of reduced accuracy, i.e. an inexact (pull-back) transport from the target to
an auxiliary (instead of the exact reference) density. Motivated by the Bayesian context, we call such a
pull-back of some posterior density the perturbed prior density, see Section 2.2. Given a simple trans-
port structure, the possibly demanding computational task is shifted to the accurate approximation
of the perturbed prior. For this, there is justified hope of feasibility in some appropriate (alternative)
coordinate system. In order to tackle moment computations, other posterior statistics or to generate
posterior samples, we hence devise a numerical approach that enables a workload balancing between
the reconstruction of some problem-dependent transport structure and the accurate evaluation of the
perturbed prior. In the following we list some examples of transport maps.

1note that the requirements on T can be weakened, e.g. to local Lipschitz
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T (x)

f0f

FIGURE 1. Illustration of affine transport: translation, rotation and rescaling.

T (x)
f0f

FIGURE 2. Illustration of quadratic transport: affine properties and bending.

2.1.1. Affine transport. In [42, 43] the authors employ an affine linear preconditioning for acceleration
of MCMC or sparse-grid integration in the context of highly informative and concentrated Bayesian
posterior densities, using a s.p.d. matrix H ∈ Rd,d and M ∈ Rd. In the mentioned articles, up to
a multiplicative constant, H corresponds to the inverse square root of the Hessian at the MAP M ,
i.e. the location of the local optimum of an Laplace approximation of the posterior density. This rather
simple construction, under the assumption of an unimodal density, leads to stable numerical algorithms
for the computation of quantities of interest as the posterior mass concentrates. In the framework of
push-forward of a reference density f0 to a target density f this concept coincides with an affine
transport

(5) y = T (x) = Hx+M, x ∈ X.

In the transport settingH andM may be computed for instance via some minimisation of the Kullback-
Leibler divergence as in [19]. Note that H and M do not necessarily have to be the inverse square
root of the Hessian or the MAP. Figure 1 illustrates the concept of an affine transport.

2.1.2. Quadratic transport. A more general class of polynomial transport exhibits the form

(6) T (x) =
1

2
x : A : x+Hx+M, x ∈ X,

with A ∈ Rd,d,d, H ∈ Rd,d,M ∈ Rd. Such a quadratic transport may be used for simple curve
structures as depicted in Figure 2.

2.1.3. More general transport maps. The parametrisation of transport maps can be chosen quite
liberally as long as certain criteria are satisfied, which are either directly imposed in the ansatz space
T of the maps or added as constraints during optimization. In particular, the approximate transport
map has to be invertible, which can be ensured by requiring a positive Jacobian. A commonly used
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measure for optimization is the Kullback-Leibler divergence2 leading to the optimization problem

(7) min
T∈T

dKL(Y ;Tπ0, π) such that det∇T > 0 π-almost everywhere.

Several suggestions regarding simplifications and special choices of function spaces T such as
smooth triangular maps based on higher-order polynomials or radial basis functions can for instance
be found in the review article [19]. An interesting idea is to subdivide the task into the iterative compu-
tation of simple correction maps which are then composed as proposed in [5]. We again emphasize
that while an accurate transport map is desirable, any approximation of such a map can in principle
be used with the proposed method. In fact one can decide whether it is beneficial to spend more effort
on the approximation of the perturbed density or on a better representation of the transport.

2.2. Inexact transport and the perturbed prior. In general, the transport map T is unknown or
difficult to determine and hence has to be approximated by some T̃ : X → Y , e.g. using a polynomial
chaos representation with respect to π0 [19] or with a more advanced composition of simple maps in
a reduced space such as in [5]. As a consequence, it holds

(8)

∫
Y

yαdπ(y) ≈
∫
X

T̃ (x)αdπ0(x)

subject to the accuracy of the involved approximation of T . One can also view T̃ as the push-forward
of some measure π̃0 with density f̃0 to π given by

(9) f̃0(x) = f(T̃ (x))| detJT̃ (x)|.

We henceforth refer to (9) as the auxiliary reference density or, motivated by Bayes framework, as the
perturbed prior density. Using this construction, the moment computation reads

(10)

∫
Y

yαdπ(y) =

∫
X

T̃ (x)αdπ̃0 =

∫
X

T̃ (x)αf̃0(x)dλ(x).

If one would know f̃0, by (9) and (10) one would also have access to the exact posterior.

Equation (10) is the starting point of a follow-up strategy by approximating f̃0 in another coordinate
system which is better adapted to the structure of the approximate (perturbed) prior. Consider a (fixed)
diffeomorphism

(11) Φ : X̂ ⊂ Rd → X, x̂ 7→ x = Φ(x̂)

with Jacobian x̂ 7→ | detJΦ(x̂)| and define the perturbed transformed prior

(12) f̂0 : X̂ 7→ R+, x̂ 7→ f̂0(x̂) := f̃0(Φ(x̂)).

In case (12) can be approximated accurately by some function f̃h0 then

(13)

∫
Y

yαdπ(y) ≈
∫
X̂

T̃ (Φ(x̂))αf̃h0 (x̂)| detJΦ(x̂)|dλ(x̂)

with accuracy determined only by the approximation quality of f̃h0 . Thus, (12) and (13) enable a balanc-
ing between the construction of the transport map approximation T̃ of T to shift its complexity given
the underlying diffeomorphism Φ to the approximation of (12) in a new coordinate system intrinsic to
X̂ .

2although in machine learning Wasserstein or Sinkhorn distances have become very popular when so-called normalis-
ing flows are computed
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The construction of T̃ and a suiteable map in (11) may be used to obtain a convenient transformed
auxillary reference density giving in (12). An approximation thereof can be significantly simpler com-
pared to a possibly complicated and concentrated target density f or the computation of the exact
transport T . This e.g. is satisfied if

� f0 is a Gaussian density and T̃ maps f to f̃0 which is in some sense near to a Gaussian
density. In this case, Φ from (11) may be chosen as the d-dimensional spherical transformation
and extended low-rank tensor formats are employed as approximation class, see Section 3. In
this setting, the introduction of an adapted coordinate system allows to shift the exponential
decay to the one dimensional radial parameter. The accuracy of an approximation can then be
improved easily by additional h-refinements as described in Section 2.3.

� The reference density f0 has a complicated form and might be replaced by f̃0 to become com-
putationally accessible.

In the following we state an important property that needs to be fulfilled by the perturbed prior f̃0 in
order to lead to a convergent method with the employed approximations.

Definition 2.1. (outer polynomial exponential decay) A function f̃0 : X → R+ has outer polyno-
mial exponential decay if there exists a simply connected compact K ⊂ X with, a polynomial π+

being positive on X \K and a C > 0, s.t.

(14) f̃0(x) ≤ C exp (−π+(x)), x ∈ X \K.

2.3. Layer based representation. To further refine and motivate the notion of an adapted coordinate
system, let L ∈ N and (X`)L`=1 be pairwise disjoint domains in X s.t.

(15) K :=
L⋃
`=1

X`

is simply connected and compact and define XL+1 := X \ K . Then, for given L ∈ N we may
decompose the perturbed prior f̃0 as

(16) f̃0(x) =
L+1∑
`=1

f̃ `0(x) with f̃ `0 := χ`f̃0,

where χ` denotes the indicator function on X`. Moreover, for any tensor set X̂` :=×d

i=1
X̂`
i and

diffeomorphism Φ` : X̂` 7→ X`, 1 ≤ ` ≤ L + 1, we may represent the localised perturbed prior f̃0
`

as a pull-back function

(17) f̃ `0 = f̂ `0 ◦ Φ`
−1
,

where f̂ `0 is a map defined on X̂` as in (12). We consider the following illustrative example.

Example 2.2. (multivariate polar transformation)
The d-dimensional spherical coordinate system allows for simple layer layouts in terms of hyperspher-
ical shells. In particular, for ` = 1, . . . , L+ 1 <∞, with 0 = ρ1 < ρ2 < . . . < ρL+1 < ρL+2 =∞,
let

(18) X̂` := [ρ`, ρ`+1]× [0, 2π]×
d−2×
i=2

[0, π], X` := Bρ`+1
(0) \Bρ`(0) ⊂ X,

i.e. X̂` and X` denote the corresponding adopted (transformed) and the original parameter space,
respectively. Then, for x̂ = (ρ, θ0,θ) ∈ X̂ , θ = (θ1, . . . , θd−2), the polar transformation Φ` : X̂` →
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X` reads

(19) Φ`(x̂) = Φ`(ρ, θ0,θ) = ρ



cos θ0 sin θ1 sin θ2 · · · sin θd−3 sin θd−2
sin θ0 sin θ1 sin θ2 · · · sin θd−3 sin θd−2

cos θ1 sin θ2 · · · sin θd−3 sin θd−2
cos θ2 · · · sin θd−3 sin θd−2

...
cos θd−3 sin θd−2

cos θd−2


Moreover, the Jacobian is given by

detJΦ`(ρ, θ0,θ) = ρd−1
d−2∏
i=1

sini θi.(20)

The advantage of employing this layer based coordinate change is twofold.

� The definition on a finite set of layers enables a representation of the density on bounded do-
mains. Even though the effective last remainder layer is unbounded, we assume that K is
sufficiently large to cover a high percentage of the probability mass of f̃0.

� The chosen coordinate system can favour specific approximation schemes. For instance, we
present a class of low-rank formats which are able to represent with linear complexity with
respect to dimension d while circumventing typical disadvantages such as the requirement of
large ranks.

Up to this point, the choice of transformation Φ`, ` = 1, . . . , L+ 1, is fairly general. However, for the
further development of the method we assume the following property.

Definition 2.3. (rank 1 stability)
Let X , X̂ =×d

i=1
X̂i ⊂ Rd be open and bounded sets. A diffeomorphism Φ : X̂ 7→ X is called rank

1 stable if Φ and the absolute value of its Jacobian detJΦ have rank 1, i.e. there exists univariate
functions Φi : X̂i → X , hi : X̂ → R, i = 1, . . . , d, such that for x̂ ∈ X̂

(21) Φ(x̂) =
d∏
i=1

Φi(x̂i), |detJΦ(x̂)| =
d∏
i=1

hi(x̂i).

Proposition 2.4. The multivariate polar coordinate transformation from Example 2.2 is rank 1 stable.

Due to the notion of rank 1 stable transformations, the map x̂ 7→ T (Φ(x̂)) in (13) inherits the rank
structure of T , see section 3. Furthermore, since the Jacobian x̂ 7→ | detJΦ(x̂)| is rank 1, we can
construct tensorized orthonormal basis functions which may be used to approximate the perturbed
transformed prior in (12).

Remark 2.5. The described concept can be extended to any rank r ∈ N Jacobians of Φ, i.e.

(22) | detJΦ(x̂)| =
r∑

k=1

d∏
i=1

hi,k(x̂i).

Motivated by the right hand side in (13), one might use several approximations of the perturbed trans-

formed prior f̃0 ◦ Φ in r distinct tensorized spaces, each associated to the rank 1 weight
d∏
i=1

hi,k.
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2.4. Layer truncation. This paragraph is devoted to the treatment of the last (remainder or truncation)
layer introduced in (16) with the aim to suggest some approximation choices.

If f̃0 is represented in the layer format (16), it is convenient to simply extend the function to zero after
layer L ∈ N. By this, the remaining (possibly small) probability mass is neglected. Such a procedure
is typically employed in numerical applications and does not impose any computational issues since
events on the outer truncated domain are usually exponentially unlikely for truncation value chosen
sufficiently large. Nevertheless, in order to present a rigorous treatment, we require properties like
absolute continuity, which would be lost by using a cut-off function. Inspired by [43] regarding the
information limit of unimodal posterior densities3, we suggest a Gaussian approximation for the last
layer L + 1 on the unbounded domain XL+1, i.e. for some s.p.d. Σ ∈ Rd,d and µ ∈ Rd we define
the hybrid representation of the perturbed prior by

(23) f̃Trun
0 (x) :=

1

C<
L + C>

L

{
f̃ `0(x), x ∈ X`, ` = 1, . . . , L,
fΣ,µ(x), x ∈ XL+1.

Here,

C<
L :=

∫
X\K

fΣ,µ(x) dλ(x),(24)

C>
L :=

L∑
`=1

∫
X`

f̃ `0(x) dλ(x),(25)

and fΣ,µ denotes the Gaussian probability density function with mean µ and covariance matrix Σ.

Remark 2.6. A good choice for µ and Σ would be the mean and covariance of the exact perturbed
prior f̃0, which however is not accessible a priori. Thus, in numerical simulations one may choose µ
and Σ as (centralised) moments of the normalised truncated perturbed prior density ˜fTrun

0 |K or as
the MAP point and the corresponding square root of the numerically computed Hessian as a result of
an optimization algorithm on f̃0.

Lemma 2.7. (truncation error) For µ ∈ Rd and Σ ∈ Rd,d let f̃0 have outer polynomial exponential
decay with positive polynomial π̃+ and C̃ > 0 with K = BR(µ) for some R > 0. Then, for CΣ =
1/2λmin(Σ

−1) there exists C = C(C̃, Σ, d, CΣ) > 0 s.t. it holds

(26) ‖f̃0 − f̃Trun
0 ‖L1(X\K) ≤ C

(
‖exp (−π̃+)‖L1(X\K) + Γ

(
d/2, CΣR

2
))

and

(27)

∣∣∣∣∣∣∣
∫

X\K

log

(
f̃0
fΣ,µ

)
f̃0 dx

∣∣∣∣∣∣∣ ≤
∫

X\K

(
1

2
‖x‖2Σ−1 + π̃+(x)

)
e−π̃

+(x) dλ(x)

with the incomplete Gamma function Γ .

Proof. The proof follows immediately from the definition of f̃Trun
0 . �

In the case that the perturbed prior is close to a Gaussian standard normal distribution, it holds c ≈ 1.

Note that the normalisation constant in (24) may exhibit an analytical form whereas computing (25)
suffers from the curse of dimensionality and is in general not available. To circumvent this issue and
render further use of the representation (23) feasible, we introduce a suitable low-rank approximation
in the next section.

3A results of [43] is that under suitable conditions the posterior distribution converges to a Gaussian in the limit of zero
noise and infinite measurements.
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3. LOW-RANK TENSOR TRAIN FORMAT

The computation of high-dimensional integrals and efficient construction of surrogates is a challenging
task with a multitude of approaches. Some of these techniques are sparse grid methods [6, 23],
collocation [20, 33, 22] or modern sampling techniques [24, 40, 32]. As motivated by equation (25),
we aim for a model to adequately approximate the localised perturbed prior maps f̃ `0 . The idea to
introduce an adopted coordinate system is to enable the exploitation of additional structure for low-
rank representations such as the tensor train (TT) format [35, 27, 26]. Hence, this section is concerned
with the concept of low-rank tensor trains in possibly infinite dimensional spaces. We highlight a black-
box (“non-intrusive”) sample-based approach to obtain such a representation of arbitrary maps via the
so-called Variational Monte Carlo method [18].

Let X̂ =
⊗d

i=1 X̂i be a tensor space of separable Banach spaces X̂i, i ∈ [d] := {1, . . . , d}, and

consider a map g : X̂ → R. The function g can be represented in the tensor train (TT) format if there
exists a rank vector r = (r1, . . . , rd−1) ∈ Nd−1 and univariate functions gi[ki−1, ki] : X̂i → R for
ki ∈ [ri], i ∈ [d], such that for all x̂ ∈ X̂

(28) g(x̂) =
r∑
k=1

d∏
i=1

gi[ki−1, ki](x̂i) with k := (k1, . . . , kd−1).

For ease of notation it is convenient to set k0 = kd = 1. In the forthcoming sections we consider
weighted tensorized Lebesgue spaces. In particular, for a non-negative weight function w : X̂ → R
with w =

⊗d
i=1wi, w ∈ L1(X̂), define the tensorization of L2(X̂, w) =

⊗d
i=1 L

2(X̂i, wi) by

(29) V(X̂) := L2(X̂, w) =

{
v : X̂ → R | ‖v‖2V :=

∫
X̂

v(x̂)2w(x̂) dλ(x̂) <∞
}
.

We assume that there exists an accessible orthonormal complete basis {P i
k : k ∈ N} in L2(X̂i, wi)

for every i ∈ [d] which is known a priori. For discretisation purposes, we introduce the finite dimen-
sional subspaces

(30) Vi,ni := span
{
P i
1, . . . , P

i
ni

}
⊆ L2(X̂i, wi), i = 1, . . . , d, ni ∈ N.

On these we formulate the extended tensor train format in terms of the coefficient tensors

(31) Gi : [ri−1]× [ni]× [ri]→ R, (ki−1, j, ki) 7→ Gi[ki−1, j, ki], i ∈ [d] ,

such that every univariate function gi ∈ Vi,ni can be written as

(32) gi[ki−1, ki](x̂i) =

ni∑
j=1

Gi[ki−1, j, ki]P
i
j (x̂i) for x̂ ∈ X̂i.

In contrast to the full tensor format for which the function

(33) g ∈ VΛ :=
d⊗
i=1

Vi,ni ⊆ V(X̂)

can be expressed by a high dimensional algebraic tensor G : Λ :=×d

i=1
[ni] → R and tensorized

spanning functions Pα :=
⊗d

i=1 Pαi for α = (α1, . . . , αd) ∈ Λ such that

(34) g(x̂) =
∑
α∈Λ

G[α1, . . . , αd]
d∏
i=1

Pαi(x̂i),
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the format given by (28) and (32) admits a linear structure in the dimension. More precisely, the mem-
ory complexity ofO(max{n1, . . . , nd}d) in (34) reduces to

(35) O(max{r1, . . . , rd−1}2 · d ·max{n1, . . . , nd}).

This observation raises the question of expressibility for certain classes of functions and the existence
of a low-rank vector r where max{r1, . . . , rd−1} is sufficiently small for practical computations. This
issue is e.g. addressed in [44, 1, 25] under certain assumptions on the regularity and in [21, 35, 3, 18]
explicit (algorithmic) constructions of the format are discussed even in case that g has no analytical
representation.

For later reference we define the finite dimensional low-rank manifold of rank r tensor trains by

(36) Mr := {g ∈ V(X̂) | g as in (28) with gi as in (32)}.

This is an embedded manifold in the finite full tensor space VΛ from (33) admitting the cone property.
We also require the concept of the algebraic (full) tensor space

(37) T :=
{
G : Nd → R

}
and the corresponding low-rank form for given r ∈ Nd−1 defined by

(38) TTr :=

{
G : Λ→ R | G[α] =

r∑
k=1

d∏
i=1

G[ki−1, αi, ki]

}
.

Without going into detail, we mention the higher order singular value decomposition (HOSVD), which
is used to decompose a full algebraic tensor into a low-rank tensor train. The algorithm is based on
successive unfoldings of the full tensor into matrices, which are orthogonalized and possibly truncated
by a singular value decomposition, see [34] for details. This algorithm enables us to state the following
Lemma.

Lemma 3.1 ([34, Theorem 2.2]). For any g ∈ VΛ and r ∈ Rd−1 there exists an extended low-rank
tensor train gr ∈Mr with

(39) ‖g − gr‖2V(X̂)
≤

d−1∑
i=1

σ2
i ,

where σi is the distance of the i-th unfolding matrix of the coefficient tensor of g in the HOSVD to its
best rank ri approximation in the Frobenius norm.

Proof. The proof follows from the best approximation result of the usual matrix SVD with respect to
the Frobenius norm and the orthonormality of the chosen basis. �

3.1. Tensor train regression by Variational Monte Carlo. We review the sampling-based Varia-
tional Monte Carlo (VMC) method presented in [18] which is employed to obtain TT representations
of the local maps Φ` as in (17). The approach generalizes the concept of randomised tensor com-
pletion [16] and its analysis relies on the theory of statistical learning, leading to a priori convergence
results. It can also be seen as a generalized tensor least squares technique. An alternative cross-
interpolation method for probability densities is presented in [11]. The technique relies on active sam-
pling along adaptively chosen index fibers to reduce the amount of evaluations of g.

For the VMC framework, consider the model class Mr(c, c) ⊂ Mr of truncated rank r ∈ Rd−1

tensor trains which is given for 0 ≤ c < c ≤ ∞ by

(40) Mr(c, c) :=
{
g ∈Mr | c ≤ g(x̂) ≤ c a.e. in X̂

}
.
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The model classMr(c, c) is a finite subset of the truncated nonlinear space

(41) V(X̂, c, c) := {v ∈ L2(X̂, w) | c ≤ v(x̂) ≤ c a.e. in X̂} ⊆ V(X̂),

which we equip with the metric dV(X̂,c,c)(v, w) := ‖v − w‖V .

Alternative, we may characterizeMr(c, c) and V(X̂, c, c), by shifting the bounds as constraints of
the coefficients. Here, we write for `2(T) := {G ∈ T |

∑
α∈Nd G[α]

2 <∞}

V(X̂, c, c) =

{
v(x̂) =

∑
α∈Nd

G[α] · Pα(x̂) | G ∈ `2(T), F (G) ≥ 0, F (G) ≤ 0

}
,(42)

M(c, c) =

{
v(x̂) =

∑
α∈Λ

G[α] · Pα(x̂) | G ∈ TTr, F r(G) ≥ 0, F
r
(G) ≤ 0

}
,(43)

for constrain functions F , F : `2(T)→ R and F r, F
r
: `2(TTr)→ R implicitly bounding the coeffi-

cient tensors. Note that due to the orthonormality of {Pα}α∈Nd in V(X̂) it holds for every v ∈ V(X̂)

(44) ‖v‖V = ‖G‖`2(T) with v =
∑
α

G[α]Pα ∈ V .

Additionally, we define a loss function ι : V(X̂, c, c) × X̂ → R such that ι(·, x̂) is continuous for
almost all x̂ ∈ X̂ and ι(v, ·) is integrable with respect to the weight function w of V(X̂) for every
v ∈ V(X̂, c, c). Then, we consider the cost functional J : V(X̂, c, c)→ R given by

(45) J (v) :=

∫
X̂

ι(v, x̂)w(x̂)dλ(x̂).

To further analyse the approximability in the given tensor train format using sampling techniques we
present the following properties of two commonly accepted error measures for probability density
functions.

Lemma 3.2. (KL loss compatibility) Let h∗ ∈ V(X̂, 0, c∗) for c∗ <∞ and 0 < c < c <∞. Then

(46) V(X̂, c, c) 3 g 7→ ι(g, x̂) = ι(g, x̂, h∗) := − log(g(x))h∗(x)

is uniformly bounded and Lipschitz continuous on Mr(c, c) if Pα ∈ L∞(X̂) for every α ∈ Λ.
Furthermore, J is globally Lipschitz continuous on the metric space (V(X̂, c, c), dV(X̂,c,c)).

Proof. The loss ι is bounded onMr(c, c) since 0 < c < c < ∞. Let g1, g2 ∈ Vr(X̂, c, c) with
coefficient tensors G1 and G2 ∈ TTr, then

(47) |ι(g1, x̂)− ι(g2, x̂)| ≤ sup
ξ∈[c,c]

{
1

ξ

}
sup
x̂∈X̂
{h∗(x̂)}︸ ︷︷ ︸

:=CL<∞

|g1(x̂)− g2(x̂)|.

The global Lipschitz continuity of J follows by using (47) and

(48) |J (g1)−J (g2)| ≤ CL‖g1 − g2‖L1(X̂,w) ≤ CCLdV(X̂,c,c)(g1, g2),

with a constant C related to the embedding of L2(X̂, w) into L1(X̂, w). In case that g1, g2 addition-
ally be inMr(c, c) due to Parseval’s identity and the finite dimensionality ofMr(c, c) there exists

c = c
(
supα∈Λ ‖Pα‖L∞(X̂)

)
> 0 such that

(49) |g1(x)− g2(x)| ≤ c‖G1 −G2‖`2(T) = c‖g1 − g2‖V = c dV(X̂,c,c)(g1, g2),
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which yields the Lipschitz continuity onMr(c, c). Now let g1, g2 ∈ V(X̂, c, c). The global Lipschitz
continuity of J follows by using (47) and

(50) |J (g1)−J (g2)| ≤ CL‖g1 − g2‖L1(X̂,w) ≤ CCLdV(X̂,c,c)(g1, g2),

with a constant C related to the embedding of L2(X̂, w) into L1(X̂, w). �

Lemma 3.3. (L2-loss compatibility) Let h∗ ∈ V(X̂, 0, c) for c <∞ Then

(51) V(X̂, 0, c) 3 g 7→ ι(g, x̂) = ι(g, x̂, h∗) := |g(x̂)− h∗(x̂)|2,

is uniformly bounded and Lipschitz continuous onMr(0, c) provided Pα ∈ L∞(X̂) for every α ∈ Λ.

Proof. Let g1, g2 ∈ V(X̂, 0, c). Then

(52) |ι(g1, x̂)− ι(g2, x̂)| ≤ |g1(x̂)− g2(x̂)| · |g2(x̂) + g2(x̂)|+ 2|g1(x̂)− g2(x̂)|h∗(x̂).
Due to c <∞ the Lipschitz property follow as in the proof of Lemma 3.2 if g1, g2 inMr(c, c). �

To examine the VMC convergence in our setting, we recall the analysis of [18] in a slightly more general
manner. The target objective of the method is to find a minimizer

(53) v∗ ∈ argminv∈V(X̂,c,c) J (v).

Due to the infinite dimensional setting we confine the minimization problem in (53) to our model class
M =Mr(c, c). This yields the minimization problem

(54) find v∗M ∈ argminv∈MJ (v).

A crucial step is then to consider the empirical functional instead of the integral in J , namely

(55) JN(v) :=
1

N

N∑
k=1

ι(v; x̂k),

with independent samples {x̂k}k≤N distributed according to the measurewλwith a (possibly rescaled)
weight function w with respect to the Lebesgue measure λ. The corresponding empirical optimization
problem then takes the form

(56) find v∗M,N ∈ argminv∈MJN(v).

The analysis examines different errors with respect to h∗ ∈ V(X̂, 0, c) defined by

E :=
∣∣J (h∗)−J

(
v∗M,N

)∣∣ (VMC error)(57)

Eapp := |J (h∗)−J (v∗M)| (approximation error)(58)

Egen :=
∣∣J (v∗M)−J

(
v∗M,N

)∣∣ (generalization error).(59)

By a simple splitting, the VMC error can be bounded by the approximation and the generalization error,
namely

(60) E ≤ Eapp + Egen.
For our application, E corresponds to a (truncated) Kullback-Leibler divergence and to ‖.‖2V . Due to
the global Lipschitz property on V(X̂, c, c) with c > 0 in the setting of (46) or c ≥ 0 as in (51), the
approximation error can be bounded by the best approximation inM. In particular it exists C > 0,
such that

(61) Eapp ≤ C inf
v∈M
‖h∗ − v‖2V(X̂)

.

We note that such an estimation by the best approximation in M with respect to the V(X̂)-norm
may not be required in the context of Kullback-Leibner divergence, if one is interested directly in the
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best approximation within the latter. Then the c > 0 assumption can be relaxed in the construction
of V(X̂, c, c), as no global Lipschitz continuity of J in Lemma 3.2 is required. Thus, more naturally
the subspace of V(X̂, 0, c) of absolutly continuous functions with respect to h∗ may be considered
instead.

It remains to bound the statistical generalization error Egen. For this the notion of covering numbers is
required. Let (Ω,F ,P) be an abstract probability space.

Definition 3.4. (covering number) Let ε > 0. The covering number ν(M, ε) denotes the minimal
number of open balls of radius ε with respect to the metric dV(X̂,c,c) needed to coverM.

Lemma 3.5. Let ι be defined as in (46) or (51). Then there exist C1, C2 > 0 only depending on the
constants of uniform bound and Lipschitz continuity onM given in Lemma 3.2 resp. 3.3 such that for
ε > 0 and N ∈ N denoting the number of samples in the empirical cost functional in (55) it holds

(62) P[Egen > ε] ≤ 2ν(M, C−12 ε)δ(1/4ε,N) with δ(ε,N) ≤ 2 exp(−2ε2N/C2
1).

Proof. The claim follows immediately from Lemma 3.2 resp. 3.3 and [18, Thm. 4.12, Cor. 4.19]. �

Remark 3.6 (choice of c, c and X̂). Due to the layer based representation in (16) and (23) on each
layer X̂` = Φ−1(X`) we have the freedom to choose c separately. In particular, assuming that the
perturbed prior f̃0 decays per layer, we can choose c according to the decay and with this control the
constant in (47).

4. ERROR ESTIMATES

This section is devoted to the derivation of a priori error estimates for the previously introduced con-
struction in terms of the Hellinger distance and Kullback Leibler divergence. Concepts arising in Vari-
ational Monte Carlo from Section 3.1 are linked to the employed layer structure and the results for two
loss functions are collected in the concluding theorems.

Recall that our goal is to approximate the perturbed prior f̃0 given some transport T̃ represented by a
function f̃Trun,TT

0 defined by

(63) f̃Trun,TT
0 (x) :=

1

C<
L + C>,TT

L

{
f̃ `,TT
0 (x), x ∈ X`, ` = 1, . . . , L,
fΣ,µ(x), x ∈ XL+1.

with

C<
L =

∫
X\K

fΣ,µ(x) dλ(x) and C>,TT
L :=

L∑
`=1

∫
X`

f̃ `,TT
0 (x) dλ(x).

Here f̃ `,TT
0 = f̂ `,TT,N`

0 ◦ Φ`−1 is the pullback of a function f̂ `,TT,N`
0 inM` = M(c`, c`) over X̂`.

Analog to the empirical minimization problem (55) with w` = | detJΦ` | we choose f̂ `,TT,N`
0 as

(64) f̂ `,TT,N`
0 ∈ argminv∈M`

1

N`

N∑̀
k=1

ι(v, x̂k, f̂0),

with samples {x̂k}N`k=1 drawn from the (possibly rescaled) finite measure w`λ.

The connection to the actual approximation of the target density f given by

(65) f̃TT := f̃Trun,TT
0 ◦ T̃−1 ⊗ |JT̃−1|

is reviewed in the following. We refer to Figure 3 for a visual presentation of the involved objects,
approximations and transformations.
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(approximation domain) (reference domain) (target domain)
X̂` ⊂ X̂ X` ⊂ X Y

Φ`

Φ`

Φ`

T

T̃

V
M

C
(S

ec
tio

n
3.

1)

f̂
`,TT,N`
0 from (63)

f̂0 = f̂ `0 from (17)

f0 ◦ Φ` f0 from (3)

f̃0 from (9)

f̃Trun,TT
0 from (63)

f from (1)

f̃TT from (65)

FIGURE 3. Overview of the presented method sketching the different involved trans-
formations and approximations with references to the respective equations.

We first consider the relation of a target density f and its perturbed prior f̃0. Since the transport T̃
maps X to Y , an error functional d(Y ; ·, ·) has to satisfy

(66) d
(
Y ; f, f̃TT

)
= d

(
X; f̃0, f̃

Trun,TT
0

)
.

This stability property ensures that control of the error of the approximation in terms of the perturbed
prior with respect to d(X; ·, ·) transfers directly to f . Note that this criterion is canonical as passing to
the image space of some measurable function is fundamental in probability theory.

Prominent measures of distinctness for two absolutely continuous Lebesgue probability density func-
tions h1 and h2 on some measurable space Z are the Hellinger distance

(67) dHell(Z, h1, h2) =

∫
Z

(√
h1(z)−

√
h2(z)

)2
dλ(z),

and the Kullback-Leibler divergence

(68) dKL(Z, h1, h2) =

∫
Z

log

(
h1(z)

h2(z)

)
h1(z) dλ(z).

For the Hellinger distance, the absolute continuity assumption can be dropped from an analytical point
of view. Observe that both dHell and dKL both satisfy (66).

Lemma 4.1. It holds

dHell(Y ; f, f̃TT ) = dHell(X; f̃0, f̃
Trun,TT
0 ),(69)

dKL(Y ; f, f̃TT) = dKL(X; f̃0, f̃
Trun,TT
0 ).(70)
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Proof. We only show (70) since (69) follows by similar arguments. By definition

(71) dKL(Y ; f, f̃TT) =

∫
Y

log

(
f(y)

f̃TT(y)

)
f(y) dλ(y)

and the introduction of the transport map T̃ yields the claim

�(72)

∫
X

log

(
f ◦ T̃ (x)
f̃TT ◦ T̃ (x)

· | detJT̃ (x)|
| detJT̃ (x)|

)
f̃0(x) dλ(x) = dKL(X; f̃0, f̃

Trun,TT
0 ).

Collecting the previous results and notations the following assumption turns out to be required.

Assumption 4.2. For a target density f : Y → R+ and a transport map T̃ : X → Y , there exists a
simply connected compact set K such that f̃0 = (f ◦T )⊗| detJT | ∈ L2(K) has outer polynomial
exponential decay with polynomial π+ on X \ K . Consider the symmetric positive definite matrix
Σ ∈ Rd,d and µ ∈ Rd as the covariance and mean for the outer approximation fΣ,µ. Furthermore,

let K =
⋃L
`=1X

`, with X` being the image of a rank 1 stable diffeomorphism Φ` : X̂` → X` for
every ` = 1, . . . , L.

We can now formulate the main theorems of this section regarding the convergence of the approxima-
tion.

Theorem 4.3. (A priori estimates in Hellinger distance) Let Assumption 4.2 hold and let a sequence
of sample sizes (N `)L`=1 ⊂ N be given. For every ` = 1, . . . , L consider bounds 0 < c` < c` <∞
and let f̃TT be defined as in (65). Then there exist constants C,CΣ, C`, C`

ι > 0, ` = 1, . . . , L such
that

(73) dHell(Y, f, f̃
TT) ≤ C

(
L∑
`=1

(
E `best + E `sing + E `gen

)
+ Etrun

)
.

Here, E `best denotes the error of the best approximation v`Λ to f̂ `0 in the full truncated polynomial space
V`Λ(c`, c`) = V`Λ ∩ V(X̂`, c`, c`) given by

E `best := ‖f̂ `0 − v`Λ‖V(X̂`) = inf
v`∈V`Λ(c`,c

`)
‖f̂ `0 − v`‖V(X̂`),

E `sing is the low-rank approximation error of the algebraic tensor associated to v`Λ and the truncation
error Etrun is given by

E2trun := ‖exp (−π+)‖L1(X\K) + Γ
(
d/2, CΣR

2
)
.

Furthermore, for any (ε`)L`=1 ⊂ R+ the generalization errors E `gen can be bounded in probability

P(E `gen > ε`) ≤ 2ν(M`, C`ε`)δ`(1/4ε`, N `)

with ν denoting the covering number from Definition 3.4 and δ`(ε,N) ≤ 2 exp(−2ε2N/C`
ι ).

Proof. We note that the Hellinger distance can be bounded by the L2 norm. Note that |
√
a−
√
b| ≤√

|a− b| for a, b ≥ 0 and with Lemma 4.1 it holds

dHell(Y ; f, f̃TT) = dHell(X; f̃0, f̃
Trun,TT
0 )

≤ ‖f̃0 − f̃Trun,TT
0 ‖L1(K) + ‖f̃0 − f̃Trun,TT

0 ‖L1(X\K).
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Since K = ∪L`=1X
` and X` bounded, there exist constants C(X`) > 0, ` = 1, . . . , L such that

‖f̃0 − f̃Trun,TT
0 ‖L1(K) =

L∑
`=1

‖f̃0 − f̃Trun,TT
0 ‖L1(X`)

≤
L∑
`=1

C(X`)‖f̃0 − f̃Trun,TT
0 ‖L2(X`).

Moreover, by construction

(74) ‖f̃0 − f̃Trun,TT
0 ‖L2(X`) = ‖f̂ `0 − f̂

`,TT,N`
0 ‖V(X̂`).

Then the claim follows by application of Lemmas 2.7, 3.1 and 3.5 together with equation (60). �

Theorem 4.4. (A priori estimates in Kullback Leibler divergence) Let Assumption 4.2 hold and
let a sequence of sample sizes (N `)L`=1 ⊂ N be given. For every ` = 1, . . . , L consider bounds
0 < c` < c` <∞ and let f̃TT be defined as in (65). Then there exists constantsC,CΣ, C`, C`

ι > 0,
` = 1, . . . , L such that

(75) dKL(Y, f, f̃
TT) ≤ C

(
L∑
`=1

(
E `best + E `sing + E `gen

)
+ Etrun

)
.

Here, E `best denotes the error of the best approximation v`Λ to f̂ `0 in the full truncated polynomial space
V`Λ(c`, c`) = V`Λ ∩ V(X̂`, c`, c`) given by

E `best := ‖f̂ `0 − v`Λ‖V(X̂`) = inf
v`∈V`Λ(c`,c

`)
‖f̂ `0 − v`‖V(X̂`),

E `sing is the low-rank approximation error of the algebraic tensor associated to v`Λ and the truncation
error Etrun is given by

Etrun :=

∫
X\K

(
1

2
‖x‖2Σ−1 + π̃+(x)

)
e−π̃

+(x) dλ(x).

Furthermore, for any (ε`)L`=1 ⊂ R+ the generalization errors E `gen can be bounded in probability

P(E `gen > ε`) ≤ 2ν(M`, C`ε`)δ`(1/4ε`, N `)

with ν denoting the covering number from Definition 3.4 and δ`(ε,N) ≤ 2 exp(−2ε2N/C`
ι ).

Proof. Using Lemma 4.1 and the construction (63) it holds

(76) dKL(Y ; f, f̃TT) =
L∑
`=1

∫
X`

log
f̃0

f̃ `,TT
0

f̃0dλ(x) +

∫
X\K

log
f̃0
fΣ,µ

f̃0dλ(x).

By Lemma 2.7 we can bound the integral overX \K by the truncation error Etrun. Employing the loss
function and cost functional of Lemma 3.2 yields

(77)

∫
X`

log
f̃0

f̃ `,TT
0

f̃0dλ(x) ≤ E `app + E `gen.

The claim eventually follows by application of Lemmas 3.1 and 3.5 together with (60). �
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5. ALGORITHM

Since a variety of techniques are employed in the density discretisation, this section provides an ex-
emplary algorithmic workflow to illustrate the required steps in practical applications (see also Figure 1
for a sketch of the components of the method). The general method to obtain a representation of the
density (1) by its auxiliary reference (9) is summarized in Algorithm 1. Based on this, the computation
of possible quantities of interest such as moments (10) or marginals are considered in Sections 6.3
and 6.4, respectively. In the following we briefly describe the involved algorithmic procedures.

Computing the transformation. Obtaining a suitable transport map is a current research topic and
discussed in various publications. We hence do not cover it in detail here but only provide some
references. In Section 2.1, two naive options are introduced. In the numerical applications, we employ
affine transport and also illustrate the capabilities of quadratic transport in a two-dimensional example.
For the affine linear transport we utilize a semi-Newton optimizer to obtain the maximum value of f
and an approximation of the Hessian at the optimal value, see Section 2.1.1. For the construction of a
quadratic transport we rely on the library TransportMaps [4]. We summarize the task to provide
the (possibly inexact) transport map in the function

(78) T̃ ← ComputeTransport[f ].

In the following paragraphs we assume Φ` to be the multivariate polar transformation as in Exam-
ple 2.2, defined on the corresponding hyperspherical shells X̂`. We refer to X̂`

1 as the radial dimen-
sion and X̂`

i as the angular dimensions for 1 < i ≤ d. Note that the loop over ` = 1, . . . , L can be
parallelized in practice.

Generating an orthonormal basis. To obtain suitable finite dimensional subspaces one has to intro-
duce spanning sets that allow for an efficient computation of e.g. moments (4) and the optimization of
the functional (45). Given a fixed dimension vector n` ∈ Nd for the current X̂`, ` = 1, . . . , L, and by
the chosen parametrization via Φ` introducing the weight w`, the function

(79) P` = {P`i }di=1 ← GenerateONB[X̂`,n`, w`, τGS]

can be split into three distinct algorithmic parts as follows.

� 1st coordinate x̂1: The computation of an orthonormal polynomial basis {P `
1,α}α with respect to

the weight w`1(x̂1) = x̂d−11 in the radial dimension by a stabilized Gram-Schmidt method. This
is numerically unstable since the involved summations cause cancellation. As a remedy, we de-
fine arbitrary precision polynomials with a significant digit length τmant to represent polynomial
coefficients. By this, point evaluations of the orthonormal and computations of integrals of the
form

(80)

∫
X̂`

1

x̂m1 P
`
1,α(x̂1)x̂

d−1
1 dλ(x̂1), m ∈ N,

e.g. required for computing moments with polynomial transport, can be realized exactly. The
length τmant is set to 100 in the numerical examples and the additional run-time is negligible as
the respective calculations can be precomputed.

� 2nd coordinate x̂2: Since X̂`
2 = [0, 2π] and to preserve periodicity, we employ trigonometric

polynomials given by

(81) P `
2,j(x̂2) =


1√
2π
, j = 1

sin( j
2
x̂2)√
π

, j even
cos( j−1

2
x̂2)√

π
, j > 1 odd.
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Note that here the weight function is constant, i.e. w`2(x̂2) ≡ 1, and the defined trigonometric
polynomials are orthonormal in L2(X̂`

2).
� coordinate x̂3, . . . , x̂d: On the remaining angular dimensions i = 3, . . . , d, we employ the usual

Gram-Schmidt orthogonalization algorithm on [0, π] with weight function w`i (x̂i) = sini(x̂i),
based on polynomials.

Fortunately, the basis for dimensions 1 < i ≤ d coincides on every layer ` = 1, . . . , L. It hence
can be computed just once and passed to the individual process handling the current layer. Only the
basis in the radial dimension needs to be adjusted to X̂`. The parameter τGS collects all tolerance
parameters for the applied numerical quadrature and the significant digit length τmant.

Generation of Samples. To generate samples on X̂` with respect to the weight function w`, we em-
ploy inverse transform sampling. For this the weight function is rescaled to have unit norm in L1(X̂`).
Then, the involved inverse cumulative distribution functions can be computed analytically. We denote
the generation process of N ∈ N samples as the function

(82) S` :=
{(
x̂s, f̂ `0(x̂

s)
)}N

s=1
← GenerateSamples[f̂ `0 , X̂

`, w`, N ].

Reconstruction of a Tensor Train surrogate. The VMC reconstruction approach of Section 3 is
summarized in the function

(83)
{
F̂ `,TT
0,i

}d
i=1
← ReconstructTT[S`,P`, r`, τRecon].

The tensor components F̂ `,TT
0,i are associated with the corresponding basis P`i to form a rank r`

extended tensor train as defined in (28) and (32). The additional parameter τRecon is a “wild-card” for
all parameters that determine the VMC algorithm.

The method basically involves the optimization of a loss functional over the set of tensor trains with
rank (at most) r`. In the presented numerical computations we consider a mean-square loss and
the respective empirical approximation based on a current sample set S`. The tensor optimization,
based on a rank adaptive, alternating direction fitting (ADF) algorithm, is implemented in the xerus
library [28] and wrapped in the ALEA framework [13]. Additionally, the machine learning framework
PyTorch [38] can be utilized in ALEA to minimize the empirical cost functional from (55) by a
wide class of state-of-the-art stochastic optimizers. The latter enables stochastic gradient methods to
optimize the tensor coefficients as known from machine learning applications. Having this setting in
mind, the actual meaning of the parameter τRecon depends on the chosen optimizer. In this article we
focus on the ADF implementation and initialize e.g. the starting rank, the number of iteration of the
ADF and a target residual norm.

6. APPLICATIONS

In the preceding sections the creation of surrogate models of rather arbitrary probability density func-
tions were developed. Using this, in the following we focus on actual applications where such a rep-
resentation is beneficial. We start with the framework of Bayesian inverse problems with target den-
sity (1) corresponding to the Lebesgue posterior density. Subsequently, we cover the computation of
moments and marginals as important applications.

6.1. Bayesian inversion. This section is devoted to a brief review of the Bayesian paradigm. We
recall the general formalism and highlight the notation with setup of Section 2 in mind. We closely
follow the presentation in [15] and refer to [46, 7, 29] for a comprehensive overview.
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Algorithm 1 Tensor train surrogate creation of perturbed prior

Input: Lebesgue target density f : Rd → R+ (1)

tensor spaces
{
X̂`
}L
`=1

, with X̂` =×d

i=1
X̂`
i (17)

coordinate transformations Φ` : X̂` → X` ⊂ Rd (21)
with rank-1 Jacobians w` := |det [JΦ` ]| : X̂` → R

basis dimensions (n1, . . . ,nL), n` ∈ Nd for ` = 1, . . . , L (32)
sample size N` ∈ N, ` = 1, . . . , L for level-wise reconstruction
tensor train ranks (r1, . . . , rL), r` ∈ Nd−1, for ` = 1, . . . , L (28)
Gram-Schmidt tolerance parameter τGS

tensor reconstruction parameter τRecon

Output: Level-wise low-rank approximation of perturbed prior

Diffeomorphism T̃ ← ComputeTransport[f ]

for ` = 1, . . . , L, (in parallel) do

• Set transformed perturbed prior f̂ `0(x̂) :=
(
f ◦ T̃ ⊗ | detJT̃ |

)
◦ Φ`(x̂), x̂ ∈ X̂`

• Build one-dimensional ONB P`i of Vi,n`i ⊆ L2(X̂`
i , w

`
i ) for i = 1, . . . , d

P` = {P`i }di=1 ← GenerateONB[X̂`,n`, w`, τGS]

• Generate samples with respect to the weight w`

S` :=
{(
x̂s, f̂ `0(x̂

s)
)}N

s=1
← GenerateSamples[f̂ `0 , X̂

`, w`, N ]

• Reconstruct TT surrogate f̃ `,TT
0 : X̂` → R{

F̃ `,TT
0,i

}d
i=1

← ReconstructTT[S`,P`, r`, τRecon]

• Equip tensor components with basis

f̂ `,TT
0 (x̂) :=

∑r`

k

∏d
i=1 f̂

`,TT
0,i [ki−1, ki](x̂i)

where f̂ `,TT
0,i [ki−1, ki](x̂i) :=

∑n`j
j=1 F̂

`,TT
0,i [ki−1, µi, ki]P

`
i,j(x̂i)

end for

return
{
f̃`

}L
l=1

Let Y , V and Y denote separable Hilbert spaces equipped with norms ‖·‖H and inner products
〈·, ·〉H , H ∈ {Y, V,Y}. The uncertain quantity y ∈ Y is tied to the model output q ∈ V by the
forward map

(84) G : Y → V, θ 7→ q(y) := G(y).

The usual forward problem reads

(85) Given y ∈ Y, find q ∈ V.

DOI 10.20347/WIAS.PREPRINT.2672 Berlin 2019



Tensor reconstruction for densities 21

In contrast to this, the inverse problem is defined by

(86) Given observations of q, find y ∈ Y.

The term observations is determined by a bounded linear operator O : V → Y that describes the
measurement process of the quantity q. In practical applications this could be direct observations at
sensor points or averaged values from monitoring devices, i.e. one models Y = RJ for some J ∈ N.

Classically, the (deterministic) quantification problem (86) is not well-posed. To overcome this, a prob-
lem regularization of some kind is required. The chosen probabilistic approaches introduces a random
measurable additive noise η : (Ω,U ,P)→ (Y ,B(Y)), with lawN (0, C0) for some symmetric posi-
tive definite covariance operator C0 on Y , and compose it with the observed system response

(87) δ = (O ◦G)(y) + η =: G(y) + η where G : Y → Y .

As a consequence, the quantities y, q and δ become random variables over a probability space
(Ω,F ,P) with values in Y , V and Y , respectively. In [46] mild conditions on the forward operator
are derived to show a continuous version of Bayes formula which yields the existence and uniqueness
of the Radon-Nikodym derivative of the (posterior) measure πδ of the conditional random variable y|δ
with respect to a prior measure π0 of y. More precisely, by the Gaussian noise assumption on η and
assuming independence with respect to y, both measures π0 and πδ on Y are related by the Bayesian
potential

(88) Ψ(y, δ) :=
1

2
〈C−10 (δ − G(y)), δ − G(y)〉Y

in the sense that

(89)
dπδ
dπ0

(y) = Z−1 exp (−Ψ(y, δ)) , Z := Eπ0 [exp (−Ψ(y, δ))] .

Note that we interchangeably write y as an element of Y and the corresponding random variable with
values in Y .

6.2. Bayesian inversion for parametric PDEs. Random partial differential equations (PDEs), i.e. PDEs
with random (in our case parametric) data, play an important role in the popular research area of Un-
certainty Quantification (UQ). As a prominent benchmark example, we consider the structural ground
water flow model, also called the Darcy problem, as e.g. examined in [12, 17, 14]. In this linear second
order PDE model, the forward operatorG in (84) on some domainD ⊂ Rd, d = 1, 2, 3 is determined
by a forcing term f ∈ L2(D) and the random/parametric quantity a(y) ∈ L∞(D), which for almost
every y ∈ Y models a conductivity or permeability coefficient. The physical system is described by

(90) − div (a(y)∇q(y)) = f in D, q(y)|∂D = 0

and the solution q(y) ∈ V = H1
0 (D) corresponds to the system response G(y) = q(y). Pointwise

solvability of (90) for almost every y ∈ Y is guaranteed by a Lax-Milgram argument and existence and
uniqueness of a uniform solution q : D×Y → R for several choices of a as well as a comprehensive
overview on parametric PDEs can be found in [45].

For the applications in this article we employ a truncated log-normal coefficient field

(91) a(y) = exp

(
d∑

k=1

akyk

)
for some fixed (ak)dk=1 with ak ∈ L2(D) and the image of some random variable with lawN (0, I) de-
noted by y = (yk)

d
k=1 ∈ Y . Together with synthetic point observations of q at nodes δ = (δ1, . . . , δJ)
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in D corresponding to some unknown q(y∗), y∗ ∈ Y and related by (87), we consider the Bayesian
posterior density (89). Following the initial notation in (1), we set

(92) f(y) = Z−1dπδ(y)dπ0(y)

as the Lebesgue density of the target measure π on Y .

6.3. Moment computation. In this section we discuss the computation of moments for the presented
layer-based format with low-rank tensor train approximations. In particular we are interested in an
efficient generation of the map

(93) α 7→
∫
Y

yαf(y)dλ(y) for multiindex α = (αk)k ∈ Nd
0.

Given some transport T̃ : X → Y with an associated perturbed prior f̃0 = (f ◦ T̃ ) ⊗ |detJT̃ | by
integral transformation it holds

(94)

∫
Y

yαf(y)dλ(y) =

∫
X

T̃ (x)αf̃0(x)dλ(x).

Motivated by the preceding sections fix 1 ≤ ` ≤ L and assume tensor spaces X̂`, X` such that a
layer based splitting can be employed to obtain integrals over X` of the form

(95)

∫
Y

yαf(y)dλ(y) =
L∑
`=1

∫
X`

T̃ (x)αf̃0(x)dx.

Note that we neglect the remaining unbounded layerXL+1 since for moderate |α| and vol(
⋃L
`=1X

`)
sufficiently large, the contribution to the moment does not have a significant influence on the overall
approximation. Additionally, a rank 1 stable diffeomorphism Φ` : X̂` 7→ X` is assumed for which
there exist univariate functions Φ`,j : X̂

`
j → X` with Φ`,j = (Φ`i,j)

d
i=1 and hj : X̂`

j → R for every
j = 1, . . . , d such that

(96) Φ`(x̂) =
d∏
j=1

Φ`,j(x̂j) and | det[JΦ` ](x̂)| =
d∏
j=1

hj(x̂j).

6.3.1. Moments under affine transport. Let H = [hki]
d
k,i=1 = [h1, h2, . . . , hd] ∈ Rd,d be a symmet-

ric positive definite matrix and M = (Mi)
d
i=1 ∈ Rd such that the considered transport map takes the

form

(97) T̃ (·) = H ·+M.

With the multinomial coefficient for j ∈ N, β ∈ Nd
0 with j = |β| given by(

j
β

)
:=

j!

β1! · . . . · βd!
,

the computation of moments corresponds to the multinomial theorem as seen in the next lemma.

Lemma 6.1. Let k ∈ N with 1 ≤ k ≤ d and αk ∈ N0. It holds

[HΦl(x̂) +M)]αkk =

αk∑
jk=0

∑
|βk|=jk

CH
k [jk, αk,βk]

d∏
j=1

Φβkj (x̂j),(98)
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where the high-dimensional coefficient CH
k is given by

(99) CH
k [jk, αk,βk] :=

(
αk
jk

)
cαk−jkk

(
jk
βk

)
hβkk ,

with ck :=
d∑
i=1

hkiMi and

(100) Φβkj := [Φ`1,j(x̂j), . . . , Φ
`
d,j(x̂j)]

βk .

Proof. Note that

[HΦ`(x̂) +M)]αkk =

αk∑
jk=0

(
αk
jk

)
cαk−jkk

(
d∑
i=1

hki

d∏
j=1

Φ`ij(x̂j)

)jk

.

The statement follows by the multinomial theorem since(
d∑
i=1

hki

d∏
j=1

Φ`ij(x̂j)

)jk

=
∑
|βk|=jk

(
jk
βk

)( d∏
i=1

h
(βk)i
ki

)(
d∏
j=1

d∏
i=1

Φ`ij(x̂j)
(βk)i

)
. �

Generalizing Lemma 6.1 to multi-indices α ∈ Nd
0 yields

(101) [HΦ`(x̂) +M)]α =
α∑
j=0

∑
(|βk|)k=j

(
d∏

k=1

CH
k [jk, αk,βk]

)
d∏
j=1

Φ

d∑
k=1

βk

j (x̂j),

where the abbreviation
∑

(|βk|)k=j
:=

∑
|β1|=j1

. . .
∑
|βd|=jd

is used.

By exploitation of the layerwise tensor train representation of f̂` from (63) and using the rank-1 stable
map (96), the high-dimensional integral over X` reduces to∫

X`

T̃ (x)αf̃0(x)dλ(x) =
α∑
j=0

∑
(|βk|)k=j

(
d∏

k=1

CH
k [jk, αk,βk]

)
r∑̀
k=0

×(102)

×
d∏
i=1

∫
X̂i

f̂`,i[ki−1, ki]⊗Φ d∑
k=1

βk

i ⊗ hi

(x̂i) dx̂i.(103)

Note that the right-hand side is composed via decoupled one dimensional integrals only. We point out
that while the structure is simplified, the definition of Φj in (100) a priori results in several integrals

(indexed by
d∑

k=1

βk). These integrals, whose number depends on the cardinality of α, have to be

computed. This simplifies in several cases, e.g. when Φ` transforms the spherical coordinate system
to Cartesian coordinates.

Moment computation using spherical coordinates. In the special case that Φ` is the multivariate
polar transformation of Example 2.2, the number of distinct computation of integrals from (103) reduces
significantly. Recall that x̂1 = ρ, x̂2:d = θ = (θ0, . . . , θd−2) and let βki := (βk)i as the i-th entry of

DOI 10.20347/WIAS.PREPRINT.2672 Berlin 2019



M. Eigel, R.Gruhlke, M. Marschall 24

βk. We find that

Φ

d∑
k=1

βk

1 (ρ) = ρ|j|,(104)

Φ

d∑
k=1

βk

2 (θ0) = cos

(
d∑
k=1

βk1

)
(θ0) sin

(
d∑
k=1

βk2

)
(θ0),(105)

Φ

d∑
k=1

βk

i+2 (θi) = sin

(
i∑
l=1

d∑
k=1

βkl

)
(θi) cos

(
d∑
k=1

βki+1

)
(θi), 1 ≤ i ≤ d− 2.(106)

It is notable that the exponential complexity due to the indexing of
∑d

k=1 βk reduces to linear complex-
ity in |α|. More precisely, the amount of exponents in (104) - (106) is linear in the dimensions since the
sums only depend on |α|, leading to O(|α|d) different integrals that may be precomputed for each
pair (ki−1, ki). This exponential complexity in the rank vanishes in the presence of an approximation
basis associated with each coordinate dimension as defined in Section 3.

6.4. Computation of marginals. In probability theory and statistics, marginal distributions and espe-
cially marginal probability density functions provide insights into an underlying joint density by means
of lower dimensional functions that can be visualized. The computation of marginal densities is a fre-
quent problem encountered e.g. in parameter estimation and when using sampling techniques since
histograms and corner plots provide easy access to (in general high-dimensional) integral quantities.

In contrast to the Markov chain Monte Carlo algorithm, the previously presented method of a layer
based surrogate for the Lebesgue density function f : Y = Rd → R allows for a functional represen-
tation and approximation of marginal densities without additional evaluations of f .

For simplicity, for y ∈ Y and i = 1, . . . , d define y−i = (y1, . . . , yi−1, yi+1, . . . yd) as the marginal-
ized variable where the i-th component is left out and f(y−i, yi) := f(y). Then, for given i =
1, . . . , d, the i-th marginal density reads

(107) dfi(yi) :=

∫
Rd−1

f(y−i, yi)dλ(y−i).

Computing this high-dimensional integral by quadrature or sampling is usually infeasible and the trans-
port map approach as given by (4) fails since the map T : X → Y can not be used directly in (107).
Alternatively, the we can represent dfi : R→ R in a given orthonormal basis {ϕj}Nϕj=1 and consider

(108) dfi(yi) =

Nϕ∑
j=1

βjϕj(yi),

where βj , j = 1, . . . , Nϕ denotes the L2(R) projection coefficient

(109) βj :=

∫
R
ϕj(yi)dfi(yi)dλ(yi).

With this the transport map approach can in fact be employed and arguments as described in the
computation of moments in Section 6.3 are valid.

A convenient basis is given by monomials since (109) then simplifies to

(110) βj =

∫
Rd
yji f(y)dλ(y),

which is the moment corresponding to the multi-index α = (αk)
d
k=1 ∈ Nd with αk = δk,j . Alternativly

indicator functions may be considered in the spirit of histograms.

DOI 10.20347/WIAS.PREPRINT.2672 Berlin 2019



Tensor reconstruction for densities 25

6.5. More general quantities of interest. The main question of applicability of a novel presented
surrogate is probably if for a given quantity of interest (QoI) Q : Y → R the expectation

(111) E [Q] =

∫
Y

Q(y)f(y)dλ(y)

can be computed efficiently.

In the previous subsections we already discussed this issue for moments in Section 6.3 and basis
representations of marginals in Section 6.4 since in those cases the structure of Q allows for direct
computations of the integrals via tensor contractions. For more involved choices of the QoI we suggest
a universal sampling approach by repeated evaluation of the low-rank surrogate. More precisely, by
application of the transformation approach we can approximate

(112) E[[Q] ≈
L∑
`=1

∫
X̂`

Q ◦ T̃ ◦ Φ`(x̂)f̃ `,TT
0 (x̂)|det [JΦ` ] (x̂)|dλ(x̂)

and replace the integrals over X̂` by Monte Carlo estimates with samples according to the (normal-
ized) weight |det [JΦ` ]|. Those samples can be obtained by uniform sampling on the tensor spaces
X̂` and the inverse transform approach as mentioned in the paragraph Generating Samples of Sec-
tion 5. Alternatively, efficient MCMC sampling by marginalisation can be employed [49].

7. NUMERICAL VALIDATION AND APPLICATIONS

This section is devoted to a numerical validation of the proposed Algorithm 1 using various types
of transformations T while employing it with practical applications. We focus on three example set-
tings. The first consists of an artificial Gaussian posterior density, which could be translated to a linear
forward model and Gaussian prior assumptions in the Bayesian setting. Second, we study the approx-
imation behaviour under non-exact transport and conclude as a third setting with an actual Bayesian
inversion application governed by the log-normal Darcy flow problem of Section 6.2.

7.1. Validation experiment 1: Gaussian density. In this experiment we confirm the theoretical re-
sults from Section 4 and verify the numerical algorithm. Even though the approximation of a Gaussian
density is not a challenging task for the proposed algorithm, it can be seen as the most basic illustration
and reveals interesting properties of the approximation.

We consider the target or posterior density determined by a Gaussian density with covariance matrix
Σ ∈ Rd,d and mean µ ∈ Rd as

(113)
dπ

dλ
(x) = f(x) = C exp

(
−1

2
‖x− µ‖2Σ−1

)
,

where C = (2π)−d/2 detΣ−1/2 is the normalizing factor of the multivariate Gaussian density. We set
the covariance operator such that the Gaussian density belongs to uncorrelated random variables, i.e.
Σ exhibits a diagonal structure, and it holds for some 0 < σ � 1 that Σ = σ2I . This Gaussian
setting has several benefits as a validation setting. On the one hand, we have explicit access to the
quantities that are usually of interest in Bayesian inference like the mean, covariance, normalisation
constant and marginals. On the other hand, the optimal transport to a standard normal density

(114) f0(x) = (2π)−
d/2 exp

(
−1

2
‖x‖2

)
is given by an affine linear function, defined via mean µ and covariance Σ. We subsequently employ
the multivariate polar transformation from Example 2.2 and expect a rank-1 structure in the recon-
struction of the local approximations of the (perturbed) prior.
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dimension σ2 = 10−2 σ2 = 10−4 σ2 = 10−6 σ2 = 10−8

2 5.24 · 10−11 1.09 · 10−10 2.8 · 10−11 9.3 · 10−11
4 2.21 · 10−10 4.57 · 10−10 5.48 · 10−10 3.4 · 10−10
6 5.01 · 10−11 9.5 · 10−11 7.49 · 10−11 6.19 · 10−10
8 1.48 · 10−11 8.21 · 10−10 2.99 · 10−10 2.1 · 10−10
10 2.91 · 10−9 9.61 · 10−10 4.43 · 10−11 2.46 · 10−9

TABLE 1. Numerical approximation of Z in the Gaussian example. Absolute error of
normalization constant computed via TT surrogate to Z = 1.

The remainder of this section considers multiple choices of σ ∈ R and d ∈ N and highlights the
stability of our method under decreasing variance (i.e. with higher density concentration) and increas-
ing dimension. This ia accomplished by comparing approximations with their exact counterparts. More
specifically, the error of the normalization constant is observed, i.e. ,

(115) errZ := |1− Zh|,

the relative `2 error of the mean and covariance

(116) errµ := ‖µ− µh‖`2(Rd)‖µ‖−1`2(Rd), errΣ := ‖Σ −Σh‖`2(Rd,d)‖Σ‖−1`2(Rd,d)
and the deviation in terms of the Kullback-Leibler divergence (68). Computing the Kullback-Leibler
divergence is accomplished by Monte Carlo samples (xi)

NKL
i=1 of the posterior (i.e. in this case the

multivariate Gaussian posterior) to compute the empirical approximation

(117) dKL(π, πh) =

∫
Rd

log

(
f(x)

fh(x)

)
f(x)dλ(x) ≈ 1

NKL

NKL∑
i=1

log

(
f(xi)

fh(xi)

)
.

The index h generically denotes the employed approximation (63). In the numerical experiments the
convergence of these error measures are depicted with respect to the amount of calls to the forward
model (i.e. the Gaussian posterior density), the disrectization of the radial component ρ ∈ [0,∞) in
the polar coordinate system and the number of samples on each layer X`, ` = 1, . . . , L for fixed
L ∈ N.

In Table 7.1 we show errZ for different choices of σ and d. The experiment comprises radial discretiza-
tions 0 = ρ0 < ρ1 < . . . < ρL = 10 with L = 19 equidistanly chosen layers and 1000 samples
of f0 on each resulting subdomain X`. The generated basis (79) contains polynomials of maximal
degree 7 in ρ`, ` = 0, . . . , L and constant functions in every angular direction. The choice of constant
functions relies on the assumption that the perturbed prior that has to be approximated corresponds
to the polar transformation of (114), which is a function in ρ only. Additional numerical test show that
even much fewer samples and a larger basis lead to the the assumed rank-1 structure.

Figure 4 depicts the error measures for increasing amount of layers, which increases the sample sizes
linearly. Since drawing N = 100 samples on each layer, going from L to L + 1 samples implies
additional N calls of the function f .

In Figure 5 we compare the number of calls of the posterior density f explicitly. Here, the presented
low-rank surrogate is again constructed on an increasing amount of layers, whereas the Monte Carlo
estimates are computed using a Markov-Chain Monte Carlo algorithm and subsequent empirical inte-
gration of the error quantity.

7.2. Validation experiment 2: Perturbation of exact transport. In the following experiment we con-
sider the so-called “banana example” as posterior density. For this let f0 be the density of a standard
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FIGURE 4. Approximation results for (1) normalisation constant (errZ ), (2) mean
(errµ), (3) covariance (errΣ) and (4) Kullback-Leibler divergence (dKL). For the
Gaussian setting we set d = 6, mean= 1, σ2 = 1e − 6 and take 100 samples
on each layer for the surrogate construction. The Kullback-Leibler divergence is com-
puted with NKL = 104 samples.

101 102 103
10−16

10−12

10−8

10−4

100

number of posterior calls

re
la

tiv
e
`2

er
ro

r

rel mean err TT

rel mean err MC
rel cov err TT

rel cov err MC
KL distance

101 102 103
10−15

10−11

10−7

10−3

101

number of posterior calls

FIGURE 5. Example: Gaussian density with d = 3 (left) and d = 10 (right) for µ = 1
and noise level σ = 10−7. We compare an MCMC approximation and our reconstruc-
tion setting in terms of function evaluations. The results for errµ, errΣ and dKL are
shown. Note that the exact mean and covariance are known in this example.

normal Gaussian measure and let TΣ be the affine transport of N (0, I) to the Gaussian measure
N (0, Σ). Furthermore, set

(118) T2(x) =

(
x1

x2 − (x21 + 1)

)
.

The exact transport T from N (0, I) to the curved and concentrated banana distribution with density
f is then given by

(119) T (x) = T2 ◦ TΣ(x), Σ =

(
1 0.9
0.9 1

)
.

Note that the employed density can be transformed into a Gaussian density using a quadratic transport
function. For this experiment, we employ transport maps T̃ of varying accuracy for the pull-back of the
posterior density to a standard Gaussian. In particular we use an affine transport T̃1 and a quadratic
transport T2 to build an approximation of the optimal map T̃ as convex combination

(120) T̃ (x) = (1− t) T̃1(x) + t T (x), t ∈ [0, 1].
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FIGURE 6. Illustration of the effect of the perturbed transport in (120) for t =
0, 0.25, 0.5, 1. (top to bottom).

For t = 1, the transport map is optimal since it generates the desired reference density and for
0 ≤ t < 1 a perturbed prior density can be assumed with perturbation magnitude depending on the
choice of t. The impact of the perturbed transport is visualized in Figure 6.

In Figure 7 we show the impact of an inexact transport on the approximation results in terms of errµ
and errΣ . For the considered target density, mean and covariance are known analytically and hence
no reference sampling has to be carried out. We additionally employ an MCMC sampling to show
the improvement due to the additional low-rank reconstruction. For the optimal transport map one
observes that the surrogate reconstruction reduces to the approximation of a rank-1 Gaussian den-
sity, which can be done efficiently with few evaluations of f . If the transport becomes less accurate,
additional samples are required to ensure at least comparable or better approximation results than
MCMC.

7.3. Bayesian inversion with log-normal Darcy forward model. Revisiting the example of Sec-
tion 6.2, we consider the elliptic diffusion problem with a log-normal random parametric permeability
coefficient. The considered field in L2(Y, L∞(D)) takes the form

(121) a(x, y) = exp

(
d∑
i=1

ak(x)yk

)
where the yk correspond to random variables with law N(0, 1) and the L2(D) basis functions are
planar Fourier cosine modes. A detailed description and an adaptive Galerkin approach to solve the
forward problem can be found in [14]. For the inverse problem, the observation operator is modelled
by J = 144 equidistantly distributed observations in D = [0, 1]2 of the solution q(y∗) ∈ H1

0 (D) for
some y∗ ∈ Y = Rd, which is drawn from a standard normal distribution. Additionally, the observations
are perturbed by some centered Gaussian noise with covariance σI with σ = 10−7.

To obtain the desired error measures, we employ reference computations that involve adaptive quad-
rature for the two dimensional example in Figure 8 and Markov-Chain Monte Carlo integration with
106 steps of the chain and a burn-in time of 1000 samples for the experiment in Figure 9. For the
reconstruction algorithm on every layer we employ 100 samples each, which is depicted in Figure 9.
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FIGURE 7. Convex combination of affine and quadratic transport for banana posterior.
Affine linear transport (t = 0 top left), (t = 0.25) transport (top right), (t = 0.5) trans-
port (bottom left) and exact quadratic transport (t = 1, bottom right). Error quantities
errµ and errΣ for the employed tensor train surrogate and a Markov-Chain Monte
Carlo approximation in terms of the number of calls to the posterior function. The sur-
rogate is reconstructed from 100 samples per layer yielding a tensor with radial basis
up to polynomial degree 9 and Fourier modes up to degree 20.
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