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Generalized Nash equilibrium
problems with partial differential operators:

Theory, algorithms, and risk aversion
Deborah Gahururu, Michael Hintermüller, Steven-Marian Stengl,

Thomas M. Surowiec

Abstract

PDE-constrained (generalized) Nash equilibrium problems (GNEPs) are considered in a de-
terministic setting as well as under uncertainty. This includes a study of deterministic GNEPs
with nonlinear and/or multivalued operator equations as forward problems and PDE-constrained
GNEPs with uncertain data. The deterministic nonlinear problems are analyzed using the theory
of generalized convexity for set-valued operators, and a variational approximation approach is
proposed. The stochastic setting includes a detailed overview of the recently developed theory
and algorithms for risk-averse PDE-constrained optimization problems. These new results open
the way to a rigorous study of stochastic PDE-constrained GNEPs.

1 Introduction

Many applications and areas in science study phenomena sharing the common requirement of min-
imizing more than one objective simultaneously. In general the solution of these problems has to
address conflicting interests of the involved agents. Hence, we turn our attention to modeling a degree
of competition and non-cooperative behavior leading to Nash games. This concept has been success-
fully applied to a variety of applications in economics and in the context of networks, see [9, 11] and
additionally [35] for the combinatorial branch of optimization. In many practical cases the actions of
the players in these games are restricted by equilibrium constraints establishing a reinforced linkage
between the diverging interests. As we know from the mathematical treatment of optimal control and
design problems, this coupling is usually resolved as an operator equation. However, in the context
of partial differential equation (PDE) constrained optimization this type of concept has not yet been
frequently studied.

We start by motivating N agent games. In this context, mathematically speaking, a set of N agents
(or players) solve each an individual minimization problem to find their respective optimal strategy. For
player i this reads as

minimizeui∈U i
ad
Ji(ui, u−i) over ui ∈ Ui,

where U i
ad ⊂ Ui, with Ui a Banach space, is the set of feasible strategies. The functional Ji is

specific for the player and involves his strategy ui as well as the (given) strategies of all other players
denoted as u−i. Here and in the following the combined vector of all strategies is usually denoted as
u = (ui, u−i) without any permutation of components. A vector u ∈ U with U = U1 × · · · × UN is
called a Nash equilibrium if every strategy chosen by an agent is his optimal choice given the strategies
of the other agents. This yields

ui ∈ argminu′i∈U i
ad
{Ji(u′i, u−i) over u′i ∈ Ui} for all i = 1, . . . , N. (1.1)
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The problem of finding such a strategy vector is then called a Nash equilibrium problem (NEP). In
this setting the influence of the other players’ actions are limited to the objectives whereas the strategy
sets remain unchanged. Allowing the other players to also influence the set of feasible strategies
leads to a set-valued strategy mapping Ci : U−iad

−→
−→U

i
ad in the underlying optimization problems. A

Nash equilibrium is then a point u ∈ Uad with Uad = U1
ad × ...× UN

ad satisfying

ui ∈ argminu′i∈Ci(u−i)
{Ji(u′i, u−i) over u′i ∈ Ui} for all i = 1, . . . , N.

Finding a solution for the latter type of problem is also known as Generalized Nash equilibrium problem
(GNEP). Correspondingly, we assume the strategy mapping to be structured as

Ci(u−i) =
{
u′i ∈ U i

ad : g(u′i, u−i) ∈ K
}

with g : U → X and K ⊆ X a nonempty, closed, convex subset of some Banach space X .
In principle it is possible to incorporate several mappings gi : U → Xi, but we want to keep our
presentation concise. Therefore, in our context a (GNEP) is given by

ui ∈ argmin{Ji(u′i, u−i) subject to u′i ∈ U i
ad and g(u′i, u−i) ∈ K} (1.2)

for all i = 1, . . . , N . Concerning the general constraint, we are particularly interested in constraints
on the state variable y that is generated through a continuous solution mapping S : U → Y involving
the entirety of the players strategies via y = S(u). Here, the set Y is again a Banach space. The
origin of this operator might be a PDE or the minimization of an underlying parametrized optimization
problem. Moreover, we assume in our setting that the players’ objectives are separable of the type

Ji(ui, u−i) = J1
i (S(ui, u−i)) + J2

i (ui).

Here J1
i only depends on the state, e.g. by a data-fitting respectively tracking-type term, and J2

i only
on the control, e.g., in form of a regularization or control cost. Note that by this setting a coupling
between the players is established via the objectives. The dependence of the feasible sets occurs
through the presence of a state constraint G(y) ∈ K , which might stem from a physical or technical
consideration. Hence a (GNEP) in our setting has the general form

minimizeui,y J1
i (y) + J2

i (ui) over ui ∈ Ui, y ∈ Y
subject to ui ∈ U i

ad and G(y) ∈ K with y = S(ui, u−i).
(1.3)

Here, the continuous mapping G : Y → X , together with the set K , models the state constraint,
leading to the relation g = G ◦ S. This model is flexible enough to allow for a wide variety of different
mathematical and practical applications. However, some aspects discussed hereafter are more con-
veniently described using the more abstract setting of (1.2) rather than (1.3). We will, hence, switch
between these formulations keeping their formal relation in mind.

As previously mentioned, the operator S may originate from a broad variety of problems including
(possibly nonlinear) PDEs, VIs or complementarity problems. Throughout we assume the solution
mapping to be a singleton, meaning that given u the state y = y(u) is unique. This does not need to
be the case in general. Our model may thus be seen as closely related to multi-leader-follower games
(MLFG) which are investigated within the scope of this report, as well.

Mathematical games involve a broad variety of challenges, including existence, characterization of
equilibria via first-order systems, as well as numerical analysis and solvers. Moreover, in many ap-
plications problem data are uncertain, occurring, e.g., as random parameters. This gives rise to risk
related formulations of the involved PDE-constrained minimization as well as ((G)NEP). In this paper
we study in particular risk-averse agents by modelling appropriate individual objectives.
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Generalized Nash equilibrium problems 3

2 Nash Games Involving Nonlinear Operator Equations

We study the following Nash game with a linear operator equations; compare [21]:

minimize J1
i (y) + J2

i (ui) over ui ∈ Ui, y ∈ Y,
subject to ui ∈ U i

ad and Ay = b+Bu in W.
(2.1)

Here, Y is as before, W a Banach space, b ∈ W fixed, A ∈ L(Y,W ) an invertible, bounded linear
operator, and B ∈ L(U,W ) a bounded, linear operator involving the strategies of all players at once.
This motivates the solution operator S(u) = A−1(b+Bu) of the state equation Ay = b+Bu.

First we study existence of an equilibrium of (2.1). Here, the coupling of the minimization problems
of the individual agents prevents using a technique associated with a single minimization problem.
Rather we need to invoke fixed point theory for set-valued operators. For this we reformulate (1.1) as

u ∈ B(u), (2.2)

with B(u) := ΠN
i=1Bi(u−i), and Bi(u−i) = argmin {Ji(u′i, u−i) : u′i ∈ U i

ad} . Here, the best re-
sponse mapping B : Uad ⇒ Uad assigns to every given strategy the Cartesian product of all players’
feasible strategies yielding the optimal value. The existence proof of a solution to (2.2) uses a result of
Kakutani, Fan and Glicksberg:

Theorem 2.1 (cf. [14]). Given a closed point-to-(nonvoid)-convex-set mapping Φ : Q ⇒ Q of a
convex compact subset Q of a convex Hausdorff linear topological space into itself, then there exists
a fixed point x ∈ Φ(x).

Two assumptions are crucial in the above theorem: (i) The convexity assumption on the values of
the mapping and (ii) the compactness of the underlying set. In our situation, (i) becomes a topolog-
ical condition regarding the set of minimizers for the players’ optimization problems. This property is
guaranteed when the (reduced) objective functional is convex. Concerning (ii), in finite dimensions
the compactness is guaranteed by closedness and boundedness. In our infinite dimensional setting,
however, this condition is usually not fulfilled with respect to the strong topology. Hence we require a
transition to the weak topology leading to a strengthened condition on the closedness of the graph of
the operator.

In order to apply Theorem 2.1 let J1
i , J

2
i be convex, continuous, functionals. Moreover, let J2

i or S
be completely continuous on their respective domains. Additionally, let Ui be a reflexive, separable
Banach space and U i

ad a nonempty, closed and bounded subset of Ui. Then the latter is also compact
with respect to the weak topology. These conditions guarantee the existence of an equilibrium by
applying the theorem.

We next come to the (GNEP) in [21] which reads

minimize J1
i (y) + J2

i (ui) over ui ∈ Ui, y ∈ Y,
subject to ui ∈ U i

ad and y ∈ K with

Ay = b+Bu in W,

(2.3)

with a continuous embedding Y ↪→ X . Let

Ci(u−i) :=
{
u′i ∈ U i

ad : S(u′i, u−i) ∈ K
}
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denote the associated set-valued strategy map, with C again the Cartesian product. This setting adds
another difficulty to the existence proof, as we are now confronted with moving sets of feasible strate-
gies. Hence the selection of sequences in the range of the operator to prove the closedness property
of the best response map becomes an issue. To address this challenge, we notice that the condition
restricting the players’ feasible strategies is the same for all players. Hence one is able to formulate
the overall set of feasible strategies as

F = {u ∈ Uad : S(u) ∈ K} .

It is worth noting that the set F characterizes the whole strategy mapping via

u′i ∈ Ci(u−i)⇔ (u′i, u−i) ∈ F

for all i = 1, . . . , N , which implies in particular Fix(C) = F , where Fix(·) denotes the set of fixed
point of a map. In fact this observation applies already to the more general setting of (1.2) and allows
us to introduce the strengthened solution concept of variational equilibria. It relates to a strategy vector
u ∈ F solving the fixed point problem

u ∈ B̂(u), (2.4)

with B̂ : F → F , and B̂(u) = argmin
{∑N

i=1 Ji(u′i, u−i) over u′ ∈ F
}
. In this formulation only

a single minimization process occurs. It is straightforward to prove that every variational equilibrium is
also a Nash equilibrium. Consequently, providing existence for the operator B̂ is sufficient. To apply
Theorem 2.1 we note that due to the linearity of S the joint set of feasible strategies is convex as well.
If a (GNEP) has in addition only convex objectives then it is referred to as a jointly convex Nash
game.

Nonlinear PDEs lead to an underlying operator equation of the type

A(y) = b+B(u) in W,

with a nonlinear operator A : Y → W and again a bounded linear B : U → W . Now the solution
mapping S : U → Y is nonlinear. In contrast to the previously discussed case convexity of the
reduced objectives is not necessarily fulfilled. Of course, the same holds in the generalized case for
values of the strategy set C as well as for the joint set of strategy vectors F . Hence, the existence
proof becomes a very delicate task. One option to proceed is the identification of combinations of
objectives and operator equations that still guarantee the required convexity conditions. In this context
it is interesting to discuss the necessary structure first for mere optimization problems and then for
Nash games. If not otherwise stated, the subsequent results of the following subsection will be made
available in [19] together with their proofs.

2.1 On the Convexity of Optimal Control Problems Involving Nonlinear Oper-
ator Equations

In the following we investigate generalized operator equations of the type

w ∈ A(y) in W.

This setting allows us to treat also variational inequalities (VIs). Here, w ∈ W is a given control
and y ∈ Y the associated state. To ensure well-posedness, we assume that the set-valued operator
A : Y ⇒ W has a single-valued inverse A−1 : W → Y with the entire space W as its domain.

DOI 10.20347/WIAS.PREPRINT.2654 Berlin 2019
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Moreover, associated with Y and W let K ⊆ Y respectively KW ⊆ W denote nonempty, closed,
and convex cones. These cones induce preorder relations≤K and≤KW

on their respective spaces by
y0 ≤K y1 :⇔ y1 − y0 ∈ K for y0, y1 ∈ K (and analogously for W ). Using these relations it
is possible to generalize the convexity notion from functionals to operators, and further even to set-
valued operators between Banach spaces, cf. [5, Subsection 2.3.5].

Definition 2.2. Let X1, X2 be topological vector spaces with L ⊆ X2 a nonempty closed, convex
cone inducing a preorder relation as described above. A set-valued mapping Φ : X1 ⇒ X2 is called
L-convex, if for all t ∈ (0, 1) and x0, x1 ∈ X1 the relation

tΦ(x1) + (1− t)Φ(x0) ⊆ Φ(tx1 + (1− t)x0) + L

holds. Additionally, Φ is called L-concave if it is (−L)-convex.

Our next aim is to identify conditions on the operator A which guarantee that the solution operator
A−1 : W → Y is L-convex.

Theorem 2.3. Let Y,W be Banach spaces, both equipped with closed and convex cones L ⊆ Y and
LW ⊆ W , respectively. LetA : Y ⇒ W be a set-valued operator fulfilling the following assumptions:

i) The operator A is LW -concave in the sense of Definition 2.2.

ii) The mapping A−1 : W → Y is single-valued with domain domA = W , and it is LW -L-
isotone (compare also to [4, Section 1.2]), i.e.,

for w1, w0 ∈ W with w2 ≥LW
w1 it holds that A−1(w2) ≥L A−1(w1).

Then the mapping A−1 : W → Y is L-convex.

We illustrate the previous Theorem 2.3 by two examples.

Example. Let d ∈ N\{0} and D ⊆ Rd be an open, bounded domain with Lipschitz boundary.
Consider the operator

A(y) := −∆y +N(y) (2.5)

on the Sobolev space Y = H1
0 (D) with W = H−1(D). Let N be a superposition operator N :

L2(D)→ L2(D) induced by a concave, nondecreasing function on R.
We set L := {ϕ ∈ H1

0 (D) : ϕ ≥ 0 a.e. on D} together with LW := L+ with

L+ =
{
ξ ∈ H−1(D) : 〈ξ, ϕ〉H−1,H1

0
≥ 0 for all ϕ ∈ H1

0 (D) with ϕ ≥ 0 a.e. on D
}
.

Then A is LW -concave: Indeed, let t ∈ (0, 1) and y0, y1 ∈ H1
0 (D) and ϕ ∈ L be arbitrarily chosen,

then we have

〈tA(y1) + (1− t)A(y0)− A(ty1 + (1− t)y0), ϕ〉H−1,H1
0

= (tN(y1) + (1− t)N(y0)−N(ty1 + (1− t)y0), ϕ)L2(D) ≤ 0,

showing the concavity of A. Moreover, the operator A is invertible and isotone in the LW -L-sense.
The first property can be deduced from the monotonicity of the operatorN together with the coercivity
of the Laplacian. To see the latter, choose w0, w1 ∈ W with w0 ≤LW

w1, and let y0, y1 ∈ Y be the
solution of wj = A(yj) for j = 0, 1. Testing the difference of the equations by (y0 − y1)+ yields

0 ≥ −‖∇(y0 − y1)+‖2
L2(D) − (N(y0)−N(y1), (y0 − y1)+)L2(D)

= 〈A(y1)− A(y0), (y0 − y1)+〉H1
0 ,H

−1 = 〈w1 − w0, (y0 − y1)+〉H1
0 ,H

−1 ≥ 0,

which implies y1 ≥ y0 a.e. and hence the isotonicity of A−1, which gives us finally the L-convexity of
the solution operator A−1.

DOI 10.20347/WIAS.PREPRINT.2654 Berlin 2019
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In the previous example, (2.5) relates to semilinear elliptic PDEs and hence addresses a constraint
that has been widely discussed in the optimal control literature (cf. [42] for an general overview and
[30, 7] for more recent research activities). An extension to semilinear parabolic equations is possible;
see, e.g., [31, Chapter 3, Section 2]. Theorem 2.3 can be applied to VIs as well; see [32, Lemma 4.1]
for a first result. In contrast, here we provide a more general result.

Example. Let Y be a reflexive vector lattice with order cone L, i.e., Y is a reflexive Banach space
and L a nonempty, closed, and convex cone with L ∩ (−L) = {0}, and consider an L+-concave,
demicontinuous and strongly monotone operator A : Y ⇒ Y ∗. Moreover, assume A to be strictly
T-monotone, i.e., 〈A(y+z)−A(y), (−z)+〉 < 0 for z with (−z)+ 6= 0. LetM ⊆ Y be a nonempty,
closed, convex set and lower bounded, i.e., M + L ⊆ M and for all y0, y1 ∈ M and min(y0, y1) ∈
M . Moreover, let w ∈ Y ∗ be given. We consider the following VI.

Find y ∈M : w ∈ A(y) +NM(y).

Then one can show that the associated solution operator S : Y ∗ → Y is L-convex.

These examples illustrate the power of the proposed concept, which allows us to next consider opti-
mization problems of the type

minimize J1(y) + J2(u) over u ∈ U, y ∈ Y,
subject to u ∈ Uad and y ∈ K with

b+Bu ∈ A(y) in W,

(2.6)

which may represent a model for a single agent’s decision process. In order to guarantee the convexity
of (2.6) we assume the convexity of both parts J1 and J2, respectively. Additionally, we assume
the isotonicity of J1 on Y , i.e., y0 ≤L y1 ⇒ J1(y0) ≤ J1(y1). Considering single-valuedness,
the L-convexity of the solution operator S(u) := A−1(b + B(u)) reads S(tu1 + (1 − t)u0) ≤L
tS(u1)+(1−t)S(u0). Hence, J1◦S is convex, and so is the entire objective as well. For a nonempty,
closed, convex set K ⊆ Y with K − L ⊆ K , the indicator functional iK : Y → [0,+∞] is isotone
and convex. Thus, the convexity of the set of feasible controls in (2.6) can be stated as the following
intersection of closed, convex sets:

{u ∈ Uad : S(u) ∈ K} = Uad ∩ {u ∈ U : iK(S(u)) ≤ 0}.

Under these conditions, the convexity of the optimization problem (2.6) is guaranteed. We illustrate
this by the following optimization of doping profiles; cf. [28].

Example. Let D ⊆ R2 be a given, bounded, open domain with Lipschitz boundary and Do ⊆ D an
open subset. For a function z ∈ L2(Ω) we denote z2+ := max(0, z)2. Consider

min
u∈Uad

1

2

∫
Do

(S(u) + 1)2+dx+
α

2

∫
D

u2dx, (2.7)

where S : L2(D)→ H1(D) is the solution operator of the following PDE

−κ∆y + sinh(y) = −Bu− b in D, κ
∂y

∂n
= 0 on ∂D,

with B the (linear) solution operator of the PDE

−r∆d+ d = u in D, r
∂d

∂n
= 0 on ∂D,
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and Uad := {u ∈ L2(D) : 0 ≤ u ≤ 1 a.e. on D}. Note that by the use of the Trudinger-Moser
inequality (cf. [34]) the function sinh(y) lies in L2(D) for y ∈ H1

0 (D). Assume further that b ≥ 0 a.e.
onD. Then the solution operator isL-convex. To see this, define the auxiliary operatorA : H1(D)→
H−1(D), 〈A(y), w〉H−1,H1 := (∇y,∇w)L2 + (N(y), w)L2 , with

N(y) =

{
y, if y ≥ 0
sinh(y), else

as a superposition operator. Recalling the result corresponding to (2.5) we see that the operator N is
induced by a monotone and concave function on R. Hence, the solution map isL-convex. The solution
operator of the auxiliary problem and S coincide, because both operators are sign preserving. Since
u ≥ 0 a.e. by feasibilty, we get Bu ≥ 0 a.e. and together with b ≥ 0 a.e. on D the nonnegativity of
the solutions. Hence, the operators sinh and N coincide. Thus, we see that S is indeed L-convex on
Uad. Moreover, the objective is convex and isotone yielding the convexity of (2.7).

We would now like to derive first-order optimality conditions for (2.6). For this purpose we extend
the subdifferential concept from convex and nonsmooth analysis to vector-valued operators. For an
element y∗ ∈ L+ with

L+ := {z∗ ∈ Y ∗ : 〈z∗, y〉 ≥ 0 for all y ∈ L}

we define the subdifferential of the solution operator S : U → Y in direction y∗ as

∂S(u)(y∗) := ∂〈y∗, S( · )〉(u). (2.8)

Due to the L-convexity of S also the functional u 7→ 〈y∗, S(u)〉 is convex. Hence the above expres-
sion (2.8) is well-defined and reads as a scalarizing formulation; compare [33, Theorem 1.90]. Note
that this object is closely linked to the (Fréchet) coderivative (cf. [33, Definition 1.32], which is defined
for a set-valued operator F : X1 ⇒ X2 as

D∗F (x1, x2)(x∗2) :=
{
x∗1 ∈ X∗1 : (x∗1,−x∗2) ∈ Ngph(F )(x1, x2)

}
,

where Ngph(F )(x1, x2) denotes the (Fréchet) normal cone of gph(F ) in (x1, x2) ∈ gph(F ), the
graph of F ; see [5] for more details. In the case of a nonempty, closed, convex set the Fréchet normal
cone and its corresponding notion from convex analysis coincide. Using the mapping SL : U ⇒ Y
defined by SL(u) := S(u) + L we obtain for our notation in (2.8) the equivalent formulation

∂S(u)(y∗) = {u∗ ∈ U∗ : (u∗,−y∗) ∈ Ngph(SL)(u, S(u))},

where we use y∗ ∈ K+. This concept allows for the following type of chain rule. In its formulation, D
denotes the set of arguments of a set-valued map with non-empty image, and core the core of a set;
see, e.g., [5, Definition 2.72] and [6, Subsection 4.1.3] for definitions and details.

Theorem 2.4. Let U, Y be Banach spaces, the latter one equipped with a closed, convex cone L.
Let f2 : U → R ∪ {+∞} and f1 : Y → R ∪ {+∞} be convex, proper, lower semi-continuous
functionals, and moreover let f1 be L-isotone. Let the operator S : U → Y be L-convex. Then the
functional f1 ◦ S + f2 : U → R ∪ {+∞} is convex. Furthermore, consider u ∈ D(∂f2) with
S(u) ∈ D(∂f1) and let one of the following two conditions hold:

i) Let S be locally bounded and the following constraint qualification hold

0 ∈ core (dom f2 × dom f1 − gph(S)) .

DOI 10.20347/WIAS.PREPRINT.2654 Berlin 2019



D. Gahururu, M. Hintermüller, S.-M. Stengl, T. M. Surowiec 8

ii) Let S be demi-continuous and the following constraint qualification hold

0 ∈ core (S (dom f2)− dom f1) .

Then the following chain rule holds for the subdifferential of the composed objective:

∂(f1 ◦ S + f2)(u) = ∂S(u)
(
∂f1(S(u))

)
+ ∂f2(u).

The proposed chain rule in Theorem 2.4 as well as the proof and the other results of Section 2 will
be made available in [19]. Using the functionals f2 = J2 + iUad

and f1 = J1 + iC we obtain the
first-order system

−q ∈ ∂J2(u) +NUad
(u),

y∗ ∈ ∂J1(y) +NK(y),

q ∈ ∂S(u)(y∗).

(2.9)

Theorem 2.4 enables one to derive necessary and sufficient optimality conditions even for constraints
involving PDEs, VIs, or complementarity problems admitting a nonsmooth solution operator. Of course,
not all optimal control problems will fit into the above framework and might not meet the assumptions
required in Theorem 2.1. Hence it might be worthwhile investigating the use of more general fixed
points results. One possibility in this direction is the Eilenberg-Montgomery Theorem (cf. [8]) where a
weaker topological assumption replaces convexity. The application of this result still requires a charac-
terization of the solution set for the players’ optimization problems. This, however, is ongoing research.

3 Nash Games Using Penalization Techniques

The direct application of the non-smooth approach in the previous section may be delicate for many
Nash games. We therefore draw our attention to a characterization of first-order conditions for (1.3)
involving a continuously differentiable solution operator. Indeed, let A : Y → W be an invertible,
continuously differentiable operator with an everywhere invertible derivative. In the following let K
denote a nonempty, closed convex cone, and G a constraint map. The first-order system for a Nash
equilibrium of the game associated with

minimize J1
i (y) + J2

i (ui) over ui ∈ Ui, y ∈ Y subject to

ui ∈ U i
ad and G(y) ∈ K with

A(y) = b+Bu

(3.1)

for i = 1, . . . , N , can be derived by the proposition of a constraint qualification of Robinson-Zowe-
Kurcyusz type (RZK) (see [45]). In this setting it reads(

DG(y) ◦DA(y)−1 ◦Bi

)
U i

ad −K(G(y)) = X for all i = 1, . . . , N. (3.2)

The first-order system then becomes

0 = ∂iJ
2
i (ui) +B∗i pi + λi in U∗i ,

A(y) = b+Bu in W,

DA(y)∗pi = ∂yJ
1
i (y)−DG(y)∗µi in Y ∗,

λi ∈ NU i
ad

(ui) in U∗i ,

X∗ ⊇ K+ 3 µi ⊥ G(y) ∈ K ⊆ X for all i = 1, . . . , N.

(3.3)
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In the case of a variational equilibrium the single non decoupling optimization process leads to a
(possibly weaker) constraint qualification formulated as(

DG(y) ◦DA(y)−1 ◦B
)
Uad(u)−K(G(y)) = X. (3.4)

This leads to a special instance of (3.3) where all multipliers µi ∈ X∗, i = 1, . . . , N , coincide, i.e.,
µi = µ for all i ∈ {1, . . . , N} in (3.3). In many situations involving function spaces, higher regularity
of the state is needed to guarantee the constraint qualification. This on the other hand leads to a
reduced regularity of the multiplier(s) µ(i) and subsequently also of the adjoint states pi in practice.
The above results the subsequent ones in this section can be found in [18], if not stated otherwise.

3.1 Γ-Convergence

Next we use the notion of Γ-convergence to approximate our state constrained Nash game by a
sequence of simpler Nash games with a weakened form of the state constraint.

First we introduce a unified view on the different notions of equilibria discussed here.

Definition 3.1. Let a Banach space U and a functional E : U × U → R be given. A point u ∈ U is
called equilibrium, if

E(u, u) ≤ E(u′, u) holds for all u′ ∈ U.

The first component in the functional fulfills the task of a control variable whereas the second one
acts as a parameter and hence establishes a feedback mechanism. Note that the dependence of
the domain of the reduced functional E(·, u) on u is possible. Recalling the definition of the strategy
mapping C as C(u) =

∏N
i=1Ci(u−i) with Ci(u−i) = {u′i ∈ U i

ad : g(u′i, u−i) ∈ K} and g = G ◦S
as the composition of state constraint and solution operator, we reobtain by the choice of functionals

E(u′, u) =
N∑
i=1

Ji(u′i, u−i) + iC(u)(u
′) =

N∑
i=1

(
Ji(u′i, u−i) + iCi(u−i)(u

′
i)
)

=
N∑
i=1

(
Ji(u′i, u−i) + iU i

ad
(ui) + iK(g(u′i, u−i))

) (3.5)

and

Ê(u′, u) =
N∑
i=1

Ji(u′i, u−i) + iF(u′)

=
N∑
i=1

(
J (u′i, u−i) + iU i

ad
(u′i)

)
+ iK(g(u′i, u−i))

(3.6)

the notion of Nash, respectively variational equilibria. Our aim is now a generalization of Γ-conver-
gence to equilibrium problems of the above form.

Definition 3.2. Let U be a Banach space and let T denote either the strong or weak topology on U .
A sequence of functionals En : U × U → R is called Γ-convergent to a functional E : U × U → R
if the following two conditions hold:

i) For all sequences un
T→ u it holds E(u, u) ≤ lim infn→∞ En(un, un).
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ii) For all u′ ∈ U and all sequences un
T→ u there exists a sequence u′n

T→ u′ such that
E(u′, u) ≥ lim supn→∞ En(u′n, un).

Of course, it is as well possible to combine the strong and weak topology in Definition 3.2. Note that
the classical notion of Γ-convergence for a minimization problem is a special case of the above. The
following convergence result holds true.

Proposition 3.3. Let En be a Γ-convergent sequence of functionals as in Definition 3.1 with limit E .
Then, every accumulation point of a sequence of corresponding equilibria (un)n∈N is an equilibrium
of the limit.

Our intention is to address the state constraint by applying a penalization technique. Therefore the
constraint g(u) ∈ K encoded in the indicator function is substituted by a continuously differentiable
penalty function β : X → [0,+∞),

β(x) = 0 if and only if x ∈ K,

scaled by a penalty parameter γ > 0. This leads to the formulation of the penalized functionals
corresponding to the (GNEP) as

Eγ(v, u) =
N∑
i=1

(
Ji(vi, u−i) + γβ(g(vi, u−i))

)
+ iUad

(v),

as well as to the variational equilibrium problem

Êγ(v, u) =
N∑
i=1

Ji(vi, u−i) + γβ(g(v)) + iUad
(v).

Using the definition of the state as well as the composition g = G ◦ S, this leads to the penalized
Nash game

minimize J1
i (ui) + J2

i (y) + γβ(G(y)) over ui ∈ Ui, y ∈ Y
subject to ui ∈ U i

ad with A(y) = b+Bu.
(3.7)

and in a similar fashion to the penalized variational equilibrium problem

minimize
N∑
i=1

(
J1
i (yi) + J2

i (u′i)
)

+ γβ(G(y)) over u′i ∈ Ui, yi ∈ Y and y ∈ Y

subject to u′i ∈ U i
ad and A(yi) = b+B(u′i, u−i) as well as

A(y) = b+Bu′.

(3.8)

The definition of the states yi and y comes from the presence of the terms S(u′i, u−i) in the state
related functionals J1

i and of the expression S(u′) occurring in β ◦ G for the penalization of the
constraint u′ ∈ F . Moreover, we assume in the terms of the abstract setting (1.2) that the functionals
u 7→ Ji(ui, u−i) are continuous with respect to the strong topology on Ui and the weak one on
U−i, i.e., for all sequences uni → ui and un−i ⇀ u−i it holds that Ji(uni , un−i) → Ji(ui, u−i). This
condition can usually be guaranteed for a wide variety of applications as in the setting of (1.3) by
complete continuity of the solution map S together with continuity of the mappings J i1 on Y and J i2 on
Ui. With these conditions at hand it is possible to derive the Γ-convergence of (3.6) and by proposing
dom(C) = Uad also the Γ-convergence of (3.5).
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Turning to the derivation of a first-order system for the penalized problems we assume for convenience
that J1

i , J
2
i , i = 1, . . . , N , are all continuously differentiable. In both equilibrium cases this leads to

the following system
0 = ∂iJ

2
i (ui) +B∗i pi + λi in U∗i ,

A(y) = b+Bu in W,

DA(y)∗pi = DJ1
i (y)−DG(y)∗µ in Y ∗,

λi ∈ NU i
ad

(ui) in U∗i ,

µ = −γDβ(G(y)) in X∗.

(3.9)

In fact, for a jointly convex game the first-order system would not only be necessary, but also sufficient
implying the equivalence of the two penalized equilibrium problems. Assuming for the moment that
at least the functionals J2

i are strongly convex, we find the strong monotonicity of the first derivative
∂iJ

2
i : Ui → U∗i and hence the unique solvability of the VI

Find ui ∈ Ui : u∗i ∈ ∂J2
i (ui) +NUad

(ui),

given an arbitrary u∗i ∈ U∗i . This problem admits a Lipschitz-continuous solution operator denoted by
Pi : U∗i → Ui. In the simplest case of J2

i (ui) = 1
2
‖ui‖2

Ui
for a separable Hilbert space Ui this map

reads as a composition with the projection mapping on Uad. Often, the system can be rewritten as a
fixed point problem

u = T (u)

with T : Uad → Uad defined by T (u) = (T1(u), . . . , TN(u)) and

Ti(u) = Pi(−B∗i pi) with pi = pi(y) = DA(y)−∗
(
∂yJ

1
i (y) + γDG(y)∗Dβ(G(y))

)
,

and y = S(u) = A−1(b + Bu). Since this is a fixed point problem involving only a single-valued
operator – in contrast to the formulation for Nash and variational equilibria – the existence question
does not suffer from a lack of topological characterization of its values and can thus be treated with
classical Schauder-type results; cf. [44, Theorem IV.7.18]. Using the described penalization technique
one is hence able to propose a generalized solution concept which is also suitable for a numerical
treatment of the state constraint by motivating a path following technique. The idea is to observe the
solution(s) of the above first-order system for a range of penalty parameters γ ∈ [γmin,+∞) leading
to the path

P =
{

(γ, uγ, yγ, pγ, µγ, λγ) ∈ [γmin,+∞)× U × Y × (W ∗)N ×X × U∗

such that (uγ, yγ, pγ, µγ, λγ) solves (3.9)} .

From the numerical viewpoint it is interesting to study the behavior of the solutions of (3.9) for γ →
+∞. As a first step towards a path analysis, we study the boundedness of the path. This is next done
in the fully abstract setting only.

Lemma 3.4. Let the mappings v 7→ ∂iJi(vi, v−i) (in the fully abstract setting) be bounded for all
i = 1, . . . , N (i.e., images of bounded sets are bounded). If additionally the RZK condition (3.4)
holds, then the path P is bounded.

Using this result it is straightforward to utilize reflexivity and the Banach-Alaoglu theorem to obtain
the existence of weakly and weakly* converging subsequences. The next result guarantees that the
corresponding limits are the desired solutions.
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Theorem 3.5. Let the condition (3.4) as well as the boundedness condition of Lemma 3.4 be fulfilled
and let moreover the following additional assumptions hold:

i) The first derivatives of the objectives Ji with respect to the players’ strategy satisfy for every
weakly convergent sequence uni ⇀ u∗i in U the property

〈∂iJi(u∗i , u∗−i), u∗i 〉Ui,U∗i
≤ lim sup

n→+∞
〈∂iJi(uni , un−i), uni 〉Ui,U∗i

.

ii) The mapping g : U → X is strongly continuous and uniformly Fréchet differentiable on every
bounded set, i.e., on very bounded subset M ⊆ U holds that

lim
‖h‖X→0

sup
u∈M

‖g(u+ h)− g(u)−Dg(u)h‖X
‖h‖U

= 0.

Then every path has a limiting point (u∗, q∗, λ∗, µ∗) along a subsequence and every limiting point
fulfills the necessary first-order condition for a Nash equilibrium (resp. variational equilibrium).

Together with the existence for solutions to the first-order system for the penalized system (3.9), the
combined fulfillment of the conditions guarantees the existence of a point fulfilling the first-order system
for (VEP) and hence especially for (GNEP).

This procedure sketches the numerical treatment of the (GNEP) problem (2.4). Besides identifying a
suitable algorithm to solve the system (3.9), also an adaptive parameter update technique is needed;
compare [21] for the latter. Here take a highly related approach leading to the definition of the value
functions

Wγ(u
γ) = inf

u′∈Uad

Eγ(u′, uγ) = inf
u′∈Uad

N∑
i=1

(
Ji(u′i, u

γ
−i) + γβ(g(u′i, u

γ
−i))

)
=

N∑
i=1

inf
u′i∈U i

ad

(
Ji(u′i, u

γ
−i) + γβ(g(u′i, u

γ
−i))

) (3.10)

and analogously for the penalized (VEP)

Ŵγ(u
γ) = inf

u′∈Uad

(
N∑
i=1

Ji(u′i, u
γ
−i) + γβ(g(u′))

)
. (3.11)

One observes that Eγ(uγ, uγ)−Wγ(u
γ) ≥ 0 and Êγ(uγ, uγ)−Ŵγ(u

γ) ≥ 0, with equality only if uγ

is a solution of the penalized Nash game respectively (VEP). Using the defined value functionals we
seek to evaluate the effect of an increase of γ on the behavior of our solution. Therefore we consider
the functional γ̃ 7→ Wγ̃(uγ) respectively γ̃ 7→ Ŵγ̃(uγ). For a local description of the the behavior
we extract first-order information by providing bounds for the upper and lower limits for the directional
derivative of the proposed functionals.

Lemma 3.6. Let J1
i , J

2
i be continuous functionals and let the best response mapping with respect to

the penalty parameter γ̃, i.e.,

γ̃ 7→ Bγ̃(uγ) = argmin

{
N∑
i=1

(
Ji(u′i, u

γ
−i) + γ̃β(g(u′i, u

γ
−i))

)
over u′ ∈ Uad

}
and

γ̃ 7→ B̂γ̃(uγ) = argmin

{
N∑
i=1

Ji(u′i, u
γ
−i) + γ̃β(g(u′)) over u′ ∈ Uad

}
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be nonempty-valued. Let uγ ∈ Uad be an equilibrium for the penalized (GNEP) in (3.7) respectively
(VEP) in (3.8). Then the difference quotients satisfy

0 ≤ lim inf
η↘0

W(γ + η)−W(γ)

η
≤ lim sup

η↘0

W(γ + η)−W(γ)

η
≤ Nβ(g(uγ)) and

0 ≤ lim inf
η↘0

Ŵ(γ + η)− Ŵ(γ)

η
≤ lim sup

η↘0

Ŵ(γ + η)− Ŵ(γ)

η
≤ β(g(uγ)).

If, moreover, the best response map γ̃ 7→ Bγ̃(uγ), respectively γ̃ 7→ B̂γ̃(uγ), is single-valued and

continuous, then the functionalsW , respectively Ŵ , is even differentiable withW ′(γ) = Nβ(g(uγ)),

respectively Ŵ ′(γ) = β(g(uγ)).

Hence, the composition of the penalty and the state constraint serves as a way to adjust the penalty
parameter for each step of the path-following procedure by

γ 7→ γ + max

(
πpath

β(g(uγ))
, ε

)
with a fixed parameter πpath > 0. Using this technique strong violations of the state constraint resulting
in a big penalty term induce a more timid update, whereas low values cause a more aggressive
behavior. The update is safeguarded with a fixed upper bound ε > 0 for the case of very low values of
the penalty functional. If the value is zero, then the algorithm terminates since it has found a solution
of the original (GNEP) respectively (VEP). The results of Section 3 together with the corresponding
proofs and details will be made available in [18].

With this outline of an algorithm we end the discussion of deterministic Nash equilibria and turn our
attention to the case involving uncertainties.

4 PDE-Constrained GNEPs under Uncertainty

4.1 Motivation

Most real world problems in the natural sciences, engineering, economics, and finance are subject
to uncertainty. This inherent stochasticity arises from a number of unavoidable factors, which range
from noisy measurements and data acquisition to ambiguity in the choice of model and its underlying
exogenous parameters. Consequently, we must incorporate random parameter into our mathematical
models. Within the framework of PDE-constrained decision problems we are then confronted with the
task of optimizing systems of random partial differential equations.

In order to ensure these new infinite dimensional stochastic decision problems yield robust solutions
to outliers or potentially catastrophic events we appeal to the theory of risk-averse optimization, which
has been widely developed over the last several decades within the (finite dimensional) stochastic
programming community, see e.g., [41] and the many references therein. Furthermore, using risk
models in the context of Nash equilibrium problems allows us to model the preferences of the agents
more accurately by assuming they have well-defined risk preferences.

Nevertheless, the literature on risk-averse PDE-constrained optimization was extremely scarce until
recently [24, 26, 28, 27, 25, 13]. Therefore, in order to tackle risk-averse PDE-constrained GNEPs
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it has been necessary to first develop the theory, approximation, and algorithms for the optimization
setting. These results can now be leveraged for the NEP and ultimately GNEP setting.

In what follows, we will first present the recent theory of risk-averse PDE-constrained optimization in
which the risk preferences of the individual agents are modeled by convex risk measures. Following
this, we will apply the theory to a model risk-averse PDE-constrained Nash equilibrium problem. This
will more clearly delineate the differences between the optimization and game-theoretic frameworks.
We then present the recent approach in [25] for smoothing nonsmooth risk measures that is inter-
esting both from a theoretical perspective, but also useful for gradient-based optimization algorithms.
In particular, we will see that epi-regularization of risk measures is an essential component of the
primal-dual risk minimization algorithm recently developed in [27].

4.2 Additional Notation and Preliminary Results

In addition to the notation introduced above, we recall several further concepts necessary for the
coming discussions. Unless otherwise stated, these are considered standing assumptions in the text
below.

Let (Ω,F ,P) be a complete probability space where Ω is an arbitrary set of outcomes, F ⊆ 2Ω is
the associated σ-algebra of events and the set function P : F → [0, 1] is a probability measure.
We employ the standard abbreviations “a.e.” and “a.a.” for “almost everywhere” and “almost all” with
respect to P, respectively. If necessary, we will append these by P and write P-a.e. or P-a.a. As F
is fixed, we write “F -measurable” simply as “measurable” if clear in context. Since we will often deal
with Banach space valued random terms, we recall that a random element X in a Banach space X
is a measurable mapping X : Ω → X , where X is endowed with the Borel σ-algebra. We denote
expectation by E[X].

We assume that the control space U is a real reflexive Banach space and denote the set of admissible
decisions by Uad ⊂ U . The latter is assumed to be a nonempty, closed, and convex set. In the context
of Nash equilibrium problems, Uad is assumed to be bounded as well. The physical domain for the
deterministic PDE-solutions will be denoted by D ⊂ Rd. We assume that D is an open and bounded
set with Lipschitz boundary ∂D. The associated state space for the deterministic solutions will be
denoted by V := H1(D) (or H1

0 (D)), where H1(D) is the usual Sobolev space of L2(D)-functions
with weak derivatives in L2(D) [1].

The natural function space setting for solutions of random PDEs is in classical Bochner spaces, cf.
[17]. We recall that the Bochner space Lp(Ω,F ,P;W ) comprises all measurable functions that map
Ω into some Banach spaceW with p finite moments for p = [1,∞). When p =∞,L∞(Ω,F ,P;W )
is the space all of essentially bounded W -valued measurable functions. The norms are given by:

‖v‖Lp(Ω,F ,P;W ) = E [‖v‖pW ]1/p for p ∈ [1,∞)

‖v‖L∞(Ω,F ,P;W ) = ess sup
ω∈Ω

‖v(ω)‖W .

When W = R, we set Lp(Ω,F ,P;R) = Lp(Ω,F ,P). In our optimization and equilibrium settings
the random objective maps U into X := Lp(Ω,F ,P) for some p ∈ [1,∞). Whenever it is clear, we
simply write X .

As discussed in Section 4.1, we model risk-averse behavior by means of risk measures. There is
a vast literature on the subject of risk measures and their usage in optimization. In our models, the
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individual agents’ problems are assumed to take the form:

min
u∈Uad

R[J (S(u))] + ℘(u),

where R is a nonlinear, typically nonsmooth, functional on X . We refer the interested reader to [41,
Chap. 6.] and the references therein as a starting point. For our purposes, it will suffice to introduce two
general classes of risk measures here, each of which follows the standard axiomatic approach as in
[3, 12, 39]. We start by recalling the definition of a regular measure of risk as suggested by Rockafellar
and Uryasev in [39]. The conditions below were postulated as minimal regularity properties for risk
measures in the context of optimization. A functionalR : X → R where R := (−∞,∞] is a regular
measure of risk provided it is proper, closed, convex, and satisfiesR[C] = C for all constant random
variables C ∈ R, and R is risk averse: R[X] > E[X] for all nonconstant X ∈ X , Therefore, the
expected value is not a regular measure of risk in this setting. This is reasonable from the perspective
that settingR = E would indicate neutrality to risk and not yield a robust solution.

Perhaps the most well-known risk measures are the coherent risk measures. These were introduced
in a systematic way in [3] as a means of axiomatizing the behavior of risk-averse decision makers. The
risk measureR is coherent provided:

(C1) Subadditivity: If X,X ′ ∈ X , thenR[X +X ′] ≤ R[X] +R[X ′];

(C2) Monotonicity: If X,X ′ ∈ X and X ≥ X ′ almost surely, thenR[X] ≥ R[X ′];

(C3) Translation equivariance: If C ∈ R and X ∈ X , thenR[X + C] = R[X] + C ;

(C4) Positive homogeneity: If C ∈ [0,∞) and X ∈ X , thenR[CX] = CR[X].

A rather popular coherent risk measure is the conditional or average value-at-risk (CVaR or AVaR).
Given a risk or confidence level β ∈ (0, 1), the average value-at-risk of a random variable X is the
average of the associated quantiles F−1

α (X) over α ∈ (β, 1). Here, we have

F−1
α (X) = VaRβ(X) := inf {x ∈ R : FX(x) ≥ β} ,

i.e., the value-at-risk of X at confidence level β, and

AVaRβ(X) :=
1

1− β

∫ 1

β

VaRα(X) dα

This gives a measure of the tail of the distribution of X . It is particularly well-suited in the context of
risk-averse optimization as a means of accounting for tail events. CVaR can be written in several ways,
for optimization we use

AVaRβ(X) = inf
t∈R

{
t+

1

1− β
E[(X − t)+]

}
(4.1)

where (x)+ := max{0, x} [38]; the (smallest) minimizer in (4.1) is VaRβ(X).

As shown in [25, Thm 1], the only coherent risk measures that are continuously Fréchet differentiable
are expectations. Therefore, regardless of how smooth the objective or control-state-mappings are,
any risk-averse PDE-constrained optimization problem using coherent regular risk measures is an
infinite-dimensional nonsmooth optimization problem.
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4.3 Risk-Averse PDE-Constrained Optimization: Theory

We now focus on developing the theory for the “single-player” setting. We start by considering the
following abstract optimization problem

min
u∈Uad

R[J (S(u))] + ℘(u). (4.2)

Here, u ∈ U represents the decision variable (controls, parameters, designs, etc.), Uad is the asso-
ciated feasible set, ℘ is a deterministic cost function, R is a risk measure as in section 4.2, J is a
random objective in the form of a general superposition operator, and S(u) is the solution mapping
for the random PDE.

As motivation for the chosen setting, we recall the class of random PDE considered in [28] (in strong
form): For u ∈ U and P-a.e. ω ∈ Ω, y = S(u) solves

−∇ · (κ(ω)∇y(ω)) + c(ω)y(ω) +N(y(ω), ω) = [B(ω)u] + b(ω), in D

κ(ω)
∂y

∂n
(ω) = 0, on ∂D.

(4.3)

Here, we assume κ, c, b are random elements in an appropriate Bochner space and the operator
N is a potentially nonlinear maximal monotone operator. B(ω) maps u into the image space of the
differential operator.

Returning to the abstract setting, it was shown in [26] that a number of basic regularity assumptions
need to be imposed on R, J , S, ℘ and Uad in order to prove the existence of a solution and derive
optimality conditions for (4.2). The inclusion of stochasticity and the nonlinearity and nonsmoothness
of R add a further level of complexity not seen in deterministic problems. We impose the following
conditions on S and J throughout.

Assumption 4.1 (Properties of the solution map). It holds that

1 S(u) : Ω→ V is strongly F -measurable for all u ∈ Uad.

2 There exists an increasing function ρ : [0,∞) → [0,∞) and C ∈ Lq(Ω,F ,P) with C ≥ 0,
q ∈ [1,∞] such that

‖S(u)‖V ≤ Cρ(‖u‖U) P-a.e. ∀u ∈ Uad.

3 If un ⇀ u in Uad, then S(un) ⇀ S(u) in V P-a.e.

Each of these assumptions are minimal. For example, if S(u) is not measurable, than R ◦ J ◦ S is
meaningless. The second assumption can be seen as an integrability requirement. SinceJ is typically
a nonlinear operator, it is essential for S to possess such properties. The latter condition appears to
be the weakest condition needed (along with the assumption onR, J , etc. below) to prove existence
of a solution. As shown in [24, Sec. 2.2], Assumption 4.1 implies:

1 S(u) ∈ Lq(Ω,F ,P;V ) for all u ∈ Uad.

2 By letting,
V := Lq(Ω,F ,P;V ),

we have S(un) ⇀ S(u) in V for any {un} ⊂ Uad such that un ⇀ u.
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Furthermore, in order to derive optimality conditions, S needs to be continuously differentiable.

Assumption 4.2. There exists an open set W ⊆ U with Uad ⊆ W such that the solution map
u 7→ S(u) : W → V is continuously Fréchet differentiable.

The results in [24] indicate that we could slightly weaken this to Hadamard directional differentiability,
which would allow us to consider risk-averse control of random elliptic variational inequalities in the
future.

Continuing, we will assume that the random objective J is the result of a superposition of some
possibly random integral functional J and an element y ∈ V . The necessary, and in part sufficient,
conditions needed for J are given below.

Assumption 4.3 (Properties of J : V × Ω→ R). It holds that

1 J is a Carathéodory function, i.e., J(·, ω) is continuous for P-a.e. ω ∈ Ω and J(u, ·) is mea-
surable for all v ∈ V .

2 If 1 ≤ p, q <∞, then there exists a ∈ Lp(Ω,F ,P) with a ≥ 0 P-a.e. and c > 0 such that

|J(v, ω)| ≤ a(ω) + c‖v‖q/pU (4.4)

If 1 ≤ p < ∞ and q = ∞, then the uniform boundedness condition holds: for all c > 0 there
exists γ = γ(c) ∈ Lp(Ω,F ,P) such that

|J(v, ω)| ≤ γ(ω) P-a.e. ∀ v ∈ V, ‖v‖V ≤ c. (4.5)

3 J(·, ω) is convex for P-a.e. ω ∈ Ω.

It follows from a well-known result due to Krasnosel’skii, see e.g., [29], [43, Thm 19.1], see also The-
orem 4 in [15], that Assumption 4.3.1-2 guarantees J : V → Lp(Ω,F ,P) continuously. These
are necessary and sufficient and cannot be weakened. For several examples of objectives that sat-
isfy Assumption 4.3 we refer to [26, Sec. 3.1]. Finally, the convexity assumption guarantees Gâteaux
directional differentiability. If this is not available, then additional assumptions must be made on the
partial derivatives of J with respect to u. We gather the related main statements on J from [26] here
for the reader’s convenience.

Theorem 4.4 (Continuity and Gâteaux Differentiability of J ). Let Assumption 4.3.1-2 hold. Then
J : V → Lp(Ω,F ,P) is continuous. Furthermore, if Assumption 4.3.1-3 holds, then J is Gâteaux
directionally differentiable.

Since the objective functional in (4.2) is of the formR ◦ J ◦ S, Theorem 4.4 is not strong enough to
guarantee the necessary smoothness properties ofJ as a nonlinear operator fromV intoLp(Ω,F ,P)
that would provide us with first-order optimality conditions. This requires further regularity conditions.
The weakest type of directional differentiability that allows a chain rule is Hadamard directional differ-
entiability, cf. [40]. In the current setting, this can be demonstrated if J is locally Lipschitz, see [26,
Cor. 3.10]. For the development of function-space-based optimization algorithms, in particular the con-
vergence analysis, we generally need continous Fréchet differentiability. This can be proven provided
the partial derivatives of ∂uJ(·, ω) satisfy a Hölder continuity condition, see [26, Thm. 3.11].

We now have a sufficient amount of structure to prove existence of optimal solutions to (4.2). The
following lemma is essential.
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Lemma 4.5 (Weak Lower-Semicontinuity of the Composite Objective). Let Assumptions 4.1 and
4.3 hold. If R : L1(Ω,F ,P) → R is proper, closed, monotonic, convex, and subdifferentiable at
J (S(u)) for some u ∈ Uad, then the composite functional (R ◦ J ◦ S) : Uad → R is weakly lower
semicontinuous at u ∈ Uad.

Using Lemma 4.5, we can now prove existence of solutions.

Theorem 4.6 (Existence of Optimal Solutions). Let Assumptions 4.1, 4.2, and 4.3 hold. Let R :
L1(Ω,F ,P) → R be a proper, closed, convex, and monotonic risk measure and let ℘ : U → R be
proper, closed, and convex. Finally, suppose either Uad is bounded or u 7→ R(J (S(u))) + ℘(u) is
coercive. Then (4.2) has a solution.

Next, we can also derive a general first-order optimality condition. The essential point here is the
regularity condition on R, which guarantees the composite reduced objective function R ◦ J ◦ S is
Hadamard directionally differentiable. The standard regularity assumptions: finiteness or int domR
6= ∅ are considerably mild given the types of risk measures used in practice.

Theorem 4.7 (A General Optimality Condition). Suppose that in addition to the assumptions of Theo-
rem 4.6, the risk measureR is either finite on L1(Ω,F ,P) or int domR 6= ∅. Moreover, assume that
J : V → Lp(Ω,F ,P) is locally Lipschitz and ℘ is Gâteaux directionally differentiable. Then for any
optimal solution u? to (4.2), the following first-order optimality condition holds:

sup
ϑ∈∂R(J (S(u?)))

E[J ′(S(u?);S(u?)′δu)ϑ] + ℘′(u?; δu) ≥ 0, ∀δu ∈ TUad
(u?) (4.6)

where TUad
(u?) is the contingent cone to Uad at u?, which is defined by

TUad
(u?) := {d ∈ U | ∃ τk ↓ 0, ∃ dk → d in U : z? + τkdk ∈ Uad ∀k} .

For illustration of (4.6), let p = 2, U = L2(D), S(u?) = A−1(Bu? + b) and

J(y, ω) = J(y) :=
1

2
‖y − yd‖2

L2(D) and ℘ =
ν

2
‖u‖2

L2(D),

where A−1 is a linear isomorphism from V∗ into V , B ∈ L(U,V∗), and b ∈ V∗; then (4.6) unfolds
into a somewhat more familiar form: If u? is an optimal solution of (4.2), then there exists an adjoint
state p? ∈ V∗ and a subgradient ϑ? ∈ L∞(Ω,F ,P) such that(

u? − 1

ν
E[B∗p?ϑ?], u− u?

)
U

≥ 0, ∀u ∈ Uad,

R[X]−R[J (y?)]− E[ϑ?(X − J (y?))] ≥ 0, ∀X ∈ L1(Ω,F ,P),

Ay? −Bu? + b = 0,

A∗p? − yd + y? = 0.

(4.7)

This provides us with the interesting fact that the optimal control is the projection onto Uad of the
expectation of adjoint term B∗p?, where the expectation has been adjusted according to the risk
preference expressed inR via the subgradient ϑ?. The latter is often referred to as the “risk indicator”
in the literature for obvious reasons. In the case of AVaRβ , the numerical experiments in [24] indicate
that P(suppϑ?) = 1 − β. Therefore, the majority of support is used to treat tail events. Note also
that when designing first-order methods for such problems, this fact allows a significant reduction in
the number of PDE solves per iteration required to calculate the reduced gradient.
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For a more challenging example, we recall the setting from [28] in (4.3) in more detail. Among the
most difficult aspects of the assumptions used to prove existence of a solution and derive optimality
conditions are the conditions placed on the solution mapping S. In [28], we postulate several verifiable
assumptions. To this aim, we suppose that S(u) is the solution of a general parametric operator
equation: For each u ∈ U , find y(ω) = [S(u)](ω) ∈ U such that

e(y, u;ω) := A(ω)y + N(y, ω)−B(ω)u− b(ω) 3 0 for a.a. ω ∈ Ω. (4.8)

We impose the following assumptions on the operators.

Assumption 4.8 (Pointwise Characterization of the Problem Data in (4.8)).

1 Let A : Ω→ L(V, V ∗) satisfy A(ω) is monotone for a.a. ω ∈ Ω and there exists γ > 0 and
a random variable C : Ω→ [0,∞) with C > 0 a.e. such that

〈A(·)y, y〉U∗,U ≥ C‖y‖1+γ
V a.e. ∀ y ∈ V. (4.9)

2 Let b : Ω→ V ∗.

3 Let N : V × Ω ⇒ V ∗ satisfy N(·, ω) is maximal monotone with N(0, ω) = {0} for a.a.
ω ∈ Ω.

4 Let B : Ω→ L(U, V ∗) be completely continuous for a.a. ω ∈ Ω.

Since these conditions are taken to be pointwise in ω, they can be viewed as the minimal data as-
sumptions that are imposed when considering optimization of elliptic semilinear equations. The follow-
ing assumption is essential for measurability issues. It is unclear if it can be weakened. Ultimately, the
coefficients and mappings used to define A,N, etc. will dictate the integrability of S(u).

Assumption 4.9 (Measurability and Integrability of the Operators in (4.3)). Let Assumption 4.8 hold
and suppose there exists s, t ∈ [1,∞] with

1 +
1

γ
≤ s <∞ and t ≥ s

γ(s− 1)− 1

such that A(·)y ∈ Ls(Ω,F ,P;V ∗) for all y ∈ V , N(·, ω) is single-valued and continuous for
a.a. ω ∈ Ω and N(y, ·) ∈ Ls(Ω,F ,P;V ∗) for all y ∈ V , B ∈ Ls(Ω,F ,P;L(U, V ∗)), b ∈
Ls(Ω,F ,P;V ∗) and C−1 ∈ Lt(Ω,F ,P).

Finally, we require assumptions on N to derive optimality conditions.

Assumption 4.10 (Differentiability of N(·, ω)). In addition to Assumption 4.9, we assume that N(·, ω)
is single-valued and continuously Fréchet differentiable from V into V ∗ for a.a. ω ∈ Ω with par-
tial derivative N′(y, ω), which defines a bounded, nonnegative linear operator from V into V ∗ a.e.
for all y ∈ V . Moreover, we assume that A and y 7→ N(y, ·) are continuous maps from V into
Ls(Ω,F ,P;V ∗) and y 7→ N′(y, ·) is a continuous map from V into Lqs/(q−s)(Ω,F ,P;L(V, V ∗)).

We gather the main results in [28, Sec. 2.3] here for the reader’s convenience.

Theorem 4.11 (Properties of the Solution Mapping S(u)). Under the standing assumptions, the fol-
lowing statements hold.
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1 If Assumption 4.8 holds, then, A(ω) + N(·, ω) is surjective from V into V ∗ for a.a. ω ∈ Ω. In
particular, there exists a unique solution S(u) to (4.8) such that [S(u)](ω) ∈ V for a.a. ω ∈ Ω.

2 If in addition Assumption 4.9 holds and we let

q :=
sγ

1 + s/t
, (4.10)

then S(u) ∈ V := Lq(Ω,F ,P;V ) for all u ∈ V . Furthermore, If uk ⇀ u in U , then
S(uk)→ S(u) in V a.e. and S(uk)→ S(u) in V , i.e., S is completely continuous.

3 If in addition Assumption 4.10 holds, then u 7→ S(u) is continuously Fréchet differentiable from
U into V .

We now return to a concrete example and cast (4.3) in the form (4.8).

Example. Define the linear elliptic operator A(ω) by

〈A(ω)y, v〉V ∗,V =

∫
D

{κ(ω, x)∇y(x) · ∇v(x) + c(ω, x)y(x)v(x)} dx.

for y, v ∈ V . Analogously, we let N(·, ω) be the nonlinear operator given by

〈N(y, ω), v〉V ∗,V =

∫
D

N(y(x), ω, x)v(x) dx,

where N : R× Ω×D → R. The righthand side can be define by

〈B(ω)u, v〉V ∗,V =

∫
D

[B(ω)u](x)v(x) dx and 〈b(ω), v〉V ∗,V =

∫
D

b(ω, x)v(x) dx,

where B : Ω→ L(U,L2(D)) and b ∈ V∗.
Assuming that κ(ω, ·), c(ω, ·) ∈ L∞(D) for a.a. ω ∈ Ω and for a.a. ω ∈ Ω, x ∈ D, satisfy: there
exist κ0 > 0 and c0 > 0 such that

κ0 ≤ κ(ω, x) and c0 ≤ c(ω, x),

then the conditions in Assumptions 4.8 and 4.9 on A are satisfied with γ = 1, C = min{κ0, c0},
s = 2, t = ∞. For N, we at least need N(·, ω, x) : R → R to be continuous and monotonically
increasing with N(0, ω, x) = 0 for a.a. ω ∈ Ω and a.a. x ∈ D. This would yield the monotonicity
requirement in Assumption 4.8, which would be the case for a nonlinearity of the type: N(u, ω, x) =
c(ω, x)(sinh(u) − u). Otherwise, we can obtain continuity via the usual growth conditions of Kras-
noselskij as in, e.g., Theorems 1 and 4 in [15] or the comprehensive monograph [2]. Similarly, if we
have b(ω, ·) ∈ Lr(D) with r > d/2 for a.a. ω ∈ Ω, then Assumption 4.8.2 holds and if B is, e.g.,
the canonical embedding operator from L2(D) into H1(D)∗, then Assumption 4.8.3 also holds. For
Assumption 4.9, we could require b ∈ L∞(Ω,F ,P;L2(D)) and κ, c ∈ L∞(Ω,F ,P;L∞(D)). This
assumption would not hold for N when generated by the hyperbolic sine unless V were replaced by
a more regular space, e.g, H2(D). However, if d = 2 and ∂D is sufficiently regular, then by the
Sobolev embedding theorems we could still use V = H1(D) when N is generated by monotone
polynomials of arbitrary degree.
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Behind all of these technical details lie the hypotheses imposed by measurable selection theorems,
e.g., Filippov’s theorem, which generally require the random elements to map into separable spaces.
The integrability conditions are then derived using the monotonicity of the operators. Therefore, one
should be rather careful when generating new examples from deterministic PDE-models as they may
not always be well-defined in the stochastic setting.

Finally, we conclude this section by noting that many example problems used in the literature consider
linear elliptic PDE under uncertainty. This drastically simplifies the measurability, integrability, conti-
nuity and differentiability issues for the solution mapping S. Building on the properties of the solution
operator and requirements on the objective functionals J discussed above, one can derive similar
measurability, integrability, and (weak) continuity results for the adjoint equations and ultimately an
optimality system as in the linear case shown above.

4.4 A Risk-Averse PDE-Constrained Nash Equilibrium Problem

We may now formulate a model risk-averse PDE-constrained Nash equilibrium problem. Using the re-
sults of the previous section, we prove existence of a Nash equilibrium and derive optimality conditions.
In what follows, we consider the following setting: For each i = 1, . . . , N (N > 1), we assume

1 U i := L2(D), U i
ad := {v ∈ U i | ai ≤ v ≤ bi a.e. D}, ai, bi ∈ L2(D) : ai < bi.

2 Ji(y, ω) := 1
2
‖y − yid‖2

L2(D), y
i
d ∈ L2(D); ℘(u) := νi

2
‖u‖2

L2(D) νi > 0.

3 S : U1 × · · · × UN → V is the solution mapping for the random PDE given by (4.8) under
Assumptions 4.8 and 4.9 such that A is defined as in Example 4.3, i.e., uniformly elliptic with
γ = 1, C = min{κ0, c0}, s = 2, t = ∞; N ≡ 0; b ∈ V∗; and B : U1 × · · · × UN → V∗
satisfies

Bu = B1u1 + . . .BNuN ,

where Bi i = 1, . . . , N is defined as in Assumptions 4.8 and 4.9. In particular,

S(u) := A−1

(∑
i

Biui + b

)
.

4 Ri : L1(Ω,F ,P)→ R is a regular coherent measure of risk, e.g., AVaRβ .

Under these assumptions, we consider the associated risk-averse PDE-constrained Nash equilibrium
problem (NEP) in which the ith player’s problem takes the form

min
ui∈U i

ad

Ri(Ji(S(ui, u−i))) + ℘(ui) over ui ∈ U i. (4.11)

Using the Kakutani-Fan-Glicksberg fixed point theorem (Theorem (2.1) above, [14]), we can demon-
strate that this problem admits a Nash equilibrium.

Theorem 4.12 (Existence of a Risk-Averse Nash Equilibrium). The Nash equilibrium problem whose
individual players each solve a variant of (4.11) admits a solution in the form of a pure strategy Nash
equilibrium.
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Proof. We need to verify the conditions of Theorem 2.1. Since each U i is infinite-dimensional, we
view each U i

ad as metrizable compact locally convex topological vector spaces as in [20, 21]. This is
possible since U i

ad is a norm bounded, closed, and convex set in a separable Hilbert space. Next, we
define the best-response mappings:

Bi(u−i) := argminui∈U i
ad
Ri(Ji(S(ui, u−i))) + ℘(ui) over ui ∈ U i.

We need to show that each Bi has nonempty, bounded, and convex images in U i.

The risk measure Ri is proper, closed, convex, and monotonic. Since Ri is defined on all of
L1(Ω,F ,P), it is finite everywhere and therefore continuous and consequently subdifferentiable; in
particular at Ji(S(ui, u−i)) for any feasible strategy vector (ui, u−i). The tracking-type functional
considered here can easily be shown to satisfy all the necessary assumptions outlined above; see
[24] or [26]. Concerning S, we note that for any fixed u−i ∈ U−iad , we have B(0, u−i) =

∑
j 6=iBjuj .

The latter term can be taken on the righthand side of the PDE as a perturbation of b. Clearly, this “new”
constant term is in V∗. It light of this, we can readily verify the necessary assumptions for continuity
and differentiability with respect to ui required in Theorem 4.11.

It follows that R ◦ J ◦ S : U i → R is weakly lower semicontinuous (cf. Lemma 4.5). The existence
of solutions results from the fact that ℘ is coercive and Ri ◦ Ji ◦ S nonnegative (cf. Theorem 4.6).
Furthermore, since Ri is a monotone risk measure, it preserves the pointwise convexity of the inte-
grand J ◦S. Therefore, the set of all optimal solutions is convex and, by hypothesis on U i

ad, bounded.
Therefore, we conclude that Bi has nonempty, convex, bounded images in U i

ad.

Next, define B : U1
ad × · · · × UN

ad ⇒ U1
ad × · · · × UN

ad by

B(u) := B1(u−1)× · · · × BN(u−N).

Suppose that (uk, vk) ∈ gphB such that (uk, vk) ⇀ (ū, v̄). This means in particular that for all k
we have vki ∈ Bi(uk−i), i.e.,

(Ri ◦ Ji ◦ S)(vki , u
k
−i) + ℘(vki ) ≤ (Ri ◦ Ji ◦ S)(w, uk−i) + ℘(w) ∀w ∈ U i

ad.

In the current setting

S(u) = A−1

(∑
i

Biui + b

)
= A−1Biui + A−1b +

∑
j 6=i

A−1Bjuj

As shown in Lemma 2.1 [28], each Bi is completely continuous from U i into L2(Ω,F ,P;V ∗) = V∗.
Therefore, we have Biv

k
i → Biv̄i and Bju

k
j → Bjūj strongly in V∗ for each i and each j 6= i.

It immediately follows from that S(vki , u
k
−i) → S(v̄i, ū−i) and for any w ∈ U i

ad S(w, uk−i) →
S(w, ū−i).

Next, sinceRi and Ji are continuous on their respective spaces we have

(Ri ◦ Ji ◦ S)(vki , u
k
−i)→ (Ri ◦ Ji ◦ S)(v̄i, ū−i)

(Ri ◦ Ji ◦ S)(w, uk−i)→ (Ri ◦ Ji ◦ S)(w, ū−i)

Then due to the weak lower semicontinuity of ℘ on U i, it follows that

(Ri ◦ Ji ◦ S)(v̄i, ū−i) + ℘(v̄i) ≤ (Ri ◦ Ji ◦ S)(w, ū−i) + ℘(w) ∀w ∈ U i
ad,

i.e., v̄i ∈ Bi(ū−i). Hence, the noncooperative game admits a Nash equilibrium.
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Remark 4.13. The previous proof can easily be extended to more complicated PDE models and
objective functions. However, for nonlinear operators N, we need to extend the results in Section 2 to
the stochastic setting.

Given the explicit structure of the current setting, we can also derive optimality conditions for the NEP.
Moreover, we can show that this specific problem reduces to a special kind of equilibrium problem in
which the risk indicators are determined simultaneously by a single “risk trader.”

Theorem 4.14 (Optimality Conditions). Let ū be a Nash equilibrium for (4.11). Then for each i =
1, . . . , N there exists a pair (p?i , ϑ

?
i ) ∈ V × L∞(Ω,F ,P) such that the follows conditions hold:

ϑ? ∈ ∂Ri[Ji(y?)] and (
u?i −

1

νi
E[B∗i p

?
iϑ

?
i ], w − u?i

)
U i

≥ 0, ∀w ∈ U i
ad,

Ay? −Bu? + b = 0,

A∗p?i − yid + y? = 0.

(4.12)

Proof. This follows from Section 4.3 and the definition of a Nash equilibrium.

System (4.12) leads to a useful reformulation. For each i the adjoint states p?i split into the sum of
a joint adjoint state q? := A−∗y? and a fixed i-dependent term ỹid := −A−∗yid, where ỹid is now
stochastic. Then, for each i we have

1

νi
E[B∗i p

?
iϑ

?
i ] =

1

νi
E[B∗i (q

? + ỹid)ϑ
?
i ] =

1

νi
E[B∗i q

?ϑ?i ] +
1

νi
E[B∗i ỹ

i
dϑ

?
i ]︸ ︷︷ ︸

=:ĉi

By defining Giu := 1
νi
B∗iA

−∗A−1Bu and gi := 1
νi
B∗iA

−∗A−1b, the variational inequality in (4.12)
can be written

(u?i − (E[ϑ?iGiu
?] + ci(ϑ

?
i )), v − u?i )U i ≥ 0 ∀v ∈ U i

ad

where ci(ϑi) := E[ϑigi]− ĉi. Summing over i we obtain

N∑
i=1

(u?i − (E[ϑ?iGiu
?] + ci(ϑ

?
i )), vi − u?i )U i ≥ 0 ∀v ∈ Uad. (4.13)

Conversely, if the previous inequality holds, then by using the variations

(v?1, . . . , vi, . . . , v
?
N) = v ∈ Uad = U1

ad × · · · × UN
ad

for each i = 1, . . . , N (leaving only vi to vary) we recover the individual inequalities. We will refer to
(4.13) as the “aggregate player’s problem.” Letting ProjU i

ad
denote the metric projection onto U i

ad this

can be formulated as a single nonsmooth equation in the product space U = U1 × · · · × UN : Find
u? ∈ U : ∀i = 1, . . . , N

u?i = ProjU i
ad

[E[ϑ?iGiu
?] + cI(ϑ

?
i )] (4.14)

Continuing, sinceRi is assumed to be a coherent risk measure, we have

ϑ?i ∈ argmax
ϑ∈Ai

E[ϑJi(y?)],
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where Ai := dom(R∗i ) is the domain of the Fenchel conjugateR∗i ofRi. It is then easy to show that
all of the subdifferential inequalities can be joined into a single maximization problem:

max

{
N∑
i=1

E[ϑiJi(A−1(Bu? + b))], over ϑ ∈ A

}
(4.15)

where A := A1 × · · · × AN . Problem (4.15) always has a solution since the objective is a bounded
linear functional and A is a weakly-∗ sequentially compact, closed, and convex set. Inspired by the
terminology in [37], we will refer to (4.15) as the “risk trader’s problem.”

We have thus proven that the risk-averse PDE-constrained NEP can be understood as a type of
MOPEC (multiple optimization problems with equibrium constraints) comprising a single aggregate
player, who solves a well-posed variational inequality in u given a fixed risk indicator vector ϑ, and
a risk trader who spreads the risk of the decision vector u over the components of ϑ in light of the
various objective Ji and risk preferences Ai.

Even in this special case, it is difficult to immediately select an appropriate solution algorithm. Perhaps
the main challenge lies in the fact that the risk trader’s problem does not have a unique solution. One
remedy for this to ensure a unique ϑ for a given u is to replace the objective in (4.15) by

E[ϑiJi(A−1(Bu? + b))]− ε

2
E[ϑ2

i ] ε > 0. (4.16)

This was suggested in [24] for treating the nonsmooth risk measure AVaRβ in the context of PDE-
constrained optimization under uncertainty. It was later demonstrated that such a regularization is a
special case of the deeper theory of epi-regularization of risk measures in [25]. We briefly discuss this
notion below.

4.5 Risk-Averse PDE-Constrained Decision Problems: Smooth Approximation

As a means of circumventing the unacceptably slow performance of classical nonsmooth optimization
algorithms such as subgradient methods or bundle methods, we proposed smoothing approaches in
[24] and [25]. An alternative viewpoint can be found by exploiting the structure of a specific class of
coherent risk measure and using an interior-point approach as in [13]. In addition, the analysis in the
previous section indicates yet another reason to consider some form of variational smoothing in the
context of stochastic PDE-constrained equilibrium problems.

We briefly give the details of epi-regularization as it has proven to be a versatile tool not only for
smoothing risk measures but also for analyzing new optimization methods for risk-averse PDE-con-
strained optimization, cf. [27]. Let Ψ : X → R be a proper, closed, and convex functional and R a
regular measure of risk. Then for ε > 0, we define the epi-regularized measure of risk as

RΨ
ε [X] = inf

Y ∈X

{
R[X − Y ] + εΨ

[
ε−1Y

]}
= inf

Y ∈X

{
R[Y ] + εΨ

[
ε−1(X − Y )

]}
.

As mentioned above, the regularization in (4.16) is equivalent to using the function Ψ[X] = 1
2
E[X2]

Another import example can be seen by setting X = L2(Ω,F ,P), R = AVaRβ , and Ψ[X] :=
E[X] + 1

2
E[X2]. This results in

RΨ
ε [X] = inf

t∈R
{t+ E[vβ,ε(X − t)]} ,
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which is continuously Fréchet differentiable and in which the scalar function vβ,ε is given by

vβ,ε(x) =


− ε

2
, if x ≤ −ε

1
2ε
x2 + x, if x ∈

(
−ε, εβ

1−β

)
1

1−β

(
x− εβ2

2(1−β)

)
, if x ≥ εβ

1−β .

Epi-regularization has a number of advantageous properties. For example, we can show that the
sequence of functionals

{
RΨ
ε

}
ε>0

converges in the sense of Mosco toR. Furthermore, under certain
assumptions on J and ℘, we can show that weak accumulation points of approximate minimizers z?ε
are optimal for (4.2) and weak accumulation points of approximate stationary points are stationary for
(4.2). For more on this topic, we refer to the forthcoming publication [25].

4.6 Risk-Averse PDE-Constrained Optimization: Solution Methods

In this final section, we outline the main components of the recently proposed primal-dual risk mini-
mization algorithm in [27]. This is an all purpose optimization algorithm for minimizing risk measures
in the context of PDE-constrained optimization under uncertainty.

In general, the individual problems in our risk-averse setting have the form:

min
x∈Xad

{g(x) + Φ(G(x))} (4.17)

where g is a deterministic objective function,G is an uncertain objective function, and Φ is a functional
that maps random variables into the real numbers. The functional Φ is typically convex, positively ho-
mogeneous, and monotonic with respect to the natural partial order on the space of random variables.

Let Φ : Y → R, whereY = L2(Ω,F ,P). As shown in [41, Th. 6.5], there exists a nonempty, convex,
closed and bounded set A ⊆ {θ ∈ Y∗ | θ ≥ 0 a.s.} such that a convenient bi-dual representation
of Φ is available:

Φ(X) = sup
θ∈A

E[θX] (4.18)

Moreover, Φ is continuous and subdifferentiable, cf. [41, Prop. 6.6], and A = ∂Φ(0).

Using these facts, (4.17) exhibits a familiar structure in which, by introducing the Lagrangian-type
function `(x, λ) := g(x) + E[λG(x)], we can consider the minimax reformulation:

min
x∈Xad

sup
λ∈A

`(x, λ). (4.19)

We can then develop a method similar to the classical method of multipliers [16, 36].

To this end, we introduce the (dual) generalized augmented Lagrangian:

L(x, λ, r) := max
θ∈A

{
`(x, θ)− 1

2r
E[(λ− θ)2]

}
. (4.20)

Now, using several techniques from convex analysis it can be shown that

L(x, λ, r) = g(x) + min
Y ∈Y

{
Φ(G(x)− Y ) + E[λY ] +

r

2
E[Y 2]

}
. (4.21)
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In other words,L is the objective in (4.17) with Φ replaced by a multiplier-dependent epi-regularization,
where the regularizer is

Ψr,λ(Y ) = E[λY ] + r
2
E[Y 2].

Furthermore, letting

Λ(x, λ, r) := ProjA(rG(x) + λ),

where ProjA : Y → Y is the projection onto A, L attains the closed form

L(x, λ, r) = g(x) + E[λG(x)] +
r

2
E[G(x)2]− 1

2r
E[{(Id− ProjA)(rG(x) + λ)}2].

For many risk measures of interest, e.g., mean-plus-semideviation or convex combinations of mean
and AVaR [27, Sec. 5.1], the optimization problem (4.17) can be rewritten so that Φ(Y ) = E[(Y )+].
Therefore, the projection operator ProjA can be easily evaluated. For more general coherent risk
measures, A can be split into box constraints and a simple normalizing constraint that is treatable with
a Lagrange multiplier, cf. [27, Sec. 5.2].

The basic algorithm is given in Algorithm 1. A detailed implementable version allowing for inexact sub-
problem solves and multiplier-update strategies can be found in [27] (Algorithm 2). A full convergence
theory for the primal and dual updates in both convex and nonconvex settings in infinite-dimensional
spaces is given in [27, Sec. 4]. Here, the convergence of the primal variables exploits a number of
powerful results arising in the theory of epi-regularization. For the dual variables, a regularity condition
that postulates the existence of a saddle-point is needed.

Algorithm 1 Primal-Dual Risk Minimization

1 Initialize: Given x0 ∈ Xad, r0 > 0 and λ0 ∈ A.

2 While(“Not Converged”)

2.1 Compute xk+1 ∈ Xad as approximate minimizer of L(·, λk, rk).

2.2 Set λk+1 = Λ(xk+1, λk, rk).

2.3 Update rk+1.

3 End While

Returning to our game-theoretic setting in Section 4.4, we see a clear link to the risk trader’s problem
(4.15). As mentioned in Section 4.4, (4.15) does not admit a unique solution. This makes the numerical
solution of the game, in its original form as well as the proposed reduced from, very challenging. The
suggestion in (4.16) indicates that we could handle this aspect by applying an epi-regularization tech-
nique to the risk measures. Though the suggestion given there is viable, the favorable convergence
behavior of Algorithm 1 given in [27, Sec. 4] indicates that the multiplier-dependent epi-regularization
update in the primal-dual algorithm is probably better suited (clearly algorithmically motivated). We
thus propose a method that successively solves the aggregate player’s game using an update formula
for ϑ similar to the Λ-operator in the primal dual algorithm. This avenue of thought will be the focus of
future work. Nevertheless, the epi-regularization technique does not rule out the possibility that the as-
sociated system of nonlinear and semismooth equations admits distinct solutions. A possible remedy
to this issue can be found in the recent publication [10].
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5 Outlook

Generalized Nash equilibrium problems with PDE-constraints represent a challenging class of infinite-
dimensional equilibrium problems. Beyond the deterministic convex setting involving linear elliptic or
parabolic PDEs, major theoretical and algorithmic challenges arise. Nevertheless, we have shown that
it is still possible to treat some GNEPs involving semilinear, nonsmooth, and even mutlivalued forward
problems by appealing to the notions of generalized convexity and isotonic mappings. Due to a lack
of convexity, we have chosen to derive stationarity conditions using the versatile limiting variational
calculus in the sense of Mordukhovich. In doing so, we have been able to push the boundaries of
existence and optimality theory in the deterministic setting beyond linear state systems. Therefore,
we may now build upon these advances towards the development of function-space-based numerical
methods similar to [20, 21]. The recent results in [23] on augmented Lagrangian-type methods (also
developed within the priority program) may also prove to be useful here.

As outlined above, the stochastic risk-averse setting is now poised to transfer the results from the
newly developed theory of risk-averse PDE-constrained optimization [13, 24, 25, 26, 27, 28] to the
setting of noncooperative strategic games. This will be the focus for the remainder of the project dura-
tion. In addition to the algorithmic strategy mentioned above, there are several open theoretical ques-
tions relating to variational convergence in the context of strategic games and asymptotic statistical
properties of Nash equilibrium in the vein of [41, Chap. 5]. Some progress on related stability issues
using probability metrics have been made in the recent Master’s thesis [22]. In addition, the results
from the deterministic nonlinear case can be folded into the stochastic setting by using the results in
[27] for risk-averse control of semilinear equations. Finally, in order to treat even jointly convex state-
constrained risk-averse PDE-constrained GNEPs, a sufficient theory of PDE-constrained optimization
under uncertainty with state constraints is under development.
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