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Asymptotic analysis of a tumor growth model
with fractional operators

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels

Abstract

In this paper, we study a system of three evolutionary operator equations involving fractional
powers of selfadjoint, monotone, unbounded, linear operators having compact resolvents. This
system constitutes a generalized and relaxed version of a phase field system of Cahn–Hilliard
type modelling tumor growth that has originally been proposed in Hawkins-Daarud et al. (Int. J.
Numer. Math. Biomed. Eng. 28 (2012), 3–24). The original phase field system and certain re-
laxed versions thereof have been studied in recent papers co-authored by the present authors
and E. Rocca. The model consists of a Cahn–Hilliard equation for the tumor cell fraction ϕ, cou-
pled to a reaction-diffusion equation for a function S representing the nutrient-rich extracellular
water volume fraction. Effects due to fluid motion are neglected. Motivated by the possibility that
the diffusional regimes governing the evolution of the different constituents of the model may be
of different (e.g., fractional) type, the present authors studied in a recent note a generalization of
the systems investigated in the abovementioned works. Under rather general assumptions, well-
posedness and regularity results have been shown. In particular, by writing the equation governing
the evolution of the chemical potential in the form of a general variational inequality, also singular
or nonsmooth contributions of logarithmic or of double obstacle type to the energy density could
be admitted. In this note, we perform an asymptotic analysis of the governing system as two
(small) relaxation parameters approach zero separately and simultaneously. Corresponding well-
posedness and regularity results are established for the respective cases; in particular, we give a
detailed discussion which assumptions on the admissible nonlinearities have to be postulated in
each of the occurring cases.

1 Introduction

Let Ω ⊂ R3 denote an open, bounded, and connected set with smooth boundary Γ and unit outward
normal n; let T > 0 be given. Setting Qt := Ω× (0, t) for t ∈ (0, T ) and Q := Ω× (0, T ), as well
as Σ := Γ× (0, T ), we investigate in this paper the evolutionary system

α ∂tµ+ ∂tϕ+ A2ρµ = P (ϕ)(S − µ) in Q, (1.1)

µ = β ∂tϕ+B2σϕ+ F ′(ϕ) in Q, (1.2)

∂tS + C2τS = −P (ϕ)(S − µ) in Q, (1.3)

µ(0) = µ0, ϕ(0) = ϕ0, S(0) = S0, in Ω. (1.4)

In the above system, A2ρ, B2σ, C2τ , with ρ > 0, σ > 0, τ > 0, denote fractional powers of the
selfadjoint, monotone, and unbounded linear operators A, B, and C , respectively, which are sup-
posed to be densely defined in H := L2(Ω) and to have compact resolvents. Moreover, F ′ denotes
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the derivative of a double-well potential F . Typical and physically significant examples of F are the
so-called classical regular potential, the logarithmic double-well potential , and the double obstacle
potential , which are given, in this order, by

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.5)

Flog(r) :=


(1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r

2 , r ∈ (−1, 1)
2 log(2)− c1 , r ∈ {−1, 1}
+∞ , r 6∈ [−1, 1]

, (1.6)

F2obs(r) := c2(1− r2) if |r| ≤ 1 and F2obs(r) := +∞ if |r| > 1. (1.7)

Here, the constants ci in (1.6) and (1.7) satisfy c1 > 1 and c2 > 0, so that the corresponding
functions are nonconvex. In cases like (1.7), one has to split F into a nondifferentiable convex part F1

(the indicator function of [−1, 1], in the present example) and a smooth perturbation F2. Accordingly,
in the term F ′(ϕ) appearing in (1.2), one has to replace the derivative F ′1 of the convex part F1 by the
subdifferential ∂F1 and interpret (1.2) as a differential inclusion or as a variational inequality involving
F1 rather than F ′1. Furthermore, the function P occurring in (1.1) and (1.3) is nonnegative and smooth,
and the terms on the right-hand sides in (1.4) are prescribed initial data.

The above system is a generalization of a system of PDEs that constitutes a relaxed version of a
model for tumor growth originally introduced in [47] that was investigated in the papers [12–14] co-
authored by the authors of this note and E. Rocca. In these works, we studied the special situation
when A2ρ = B2σ = C2τ = −∆ with zero Neumann boundary conditions, and established general
results concerning well-posedness, regularity, and optimal control. In particular, in [12,13] a thorough
asymptotic analysis, coupled with rigorous error estimates, was performed for the situation when the
relaxation parameters α > 0 and β > 0 approach zero, either separately or simultaneously. Notice
also that in the case P ≡ 0 the equation (1.3) decouples from the other two equations (1.1), (1.2); the
latter system of equations has for the case α = 0 recently been the subject of a series of investigations
by the present authors (cf. the papers [15–18]).

In this paper, we intend to perform a corresponding asymptotic analysis for the general system (1.1)–
(1.4), where we take advantage of the well-posedness and regularity results that were established in
our recent paper [19]. It will be demonstrated that for each of the three limit processes

α↘ 0 , β > 0, α > 0 , β ↘ 0, α↘ 0 , β ↘ 0,

meaningful limit problems occur for which the existence of solutions can be shown. In this analysis, it
will turn out that each of the three limit processes needs specific assumptions for the fractional oper-
ators and the admissible nonlinearities. We will also address questions of uniqueness and continuous
dependence, where, again, specific assumptions are necessary for the three cases.

Modeling the dynamics of tumor growth has recently become an important issue in applied mathemat-
ics (see, e.g., [23, 68]), and some different models have been introduced and discussed, numerical
simulations have been provided and a comparison with the behavior of other special materials has
been in order; for all that we just refer to, e.g., the works [2, 22, 23, 30, 33, 34, 46, 56, 69]. In partic-
ular, about diffuse interface models, we point out that these models mostly follow the Cahn–Hilliard
framework (see [5]) that originated from the theory of phase transitions and is extensively employed
in materials science and multiphase fluid flow. Among these models, two main classes can be cate-
gorized: the first one looks at the tumor and healthy cells as inertialess fluids and takes the effects
generated by the fluid flow development into account by postulating a Darcy or a Brinkman law; in this
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direction, we refer to [24,27,36,37,40,41,43,49,53,63,67] (cf. [3,21,25,26,32,44,65,66] as well, where
local or nonlocal Cahn–Hilliard systems with Darcy or Brinkman law are dealt with). Moreover, further
mechanisms such as chemotaxis and active transport can be considered in the phenomenology. On
the other hand, the second class of models, including the one from which the system (1.1)–(1.4) origi-
nates, actually neglects the velocity and admits as variables concentrations and chemical potential. A
variety of contributions inside this class is provided by the works [6,8,11,31,38,39,42,55,57–60].

To our knowledge, except for the recent papers [19,20], fractional operators have not been studied in
either of these two groups of models, although one may also wonder about nonlocal operators. We
point out that in recent years fractional operators provide a challenging subject for mathematicians:
they have been successfully utilized in many different situations, and a wide literature already exists
about equations and systems with fractional terms. For an overview of recent contributions, we refer
to the papers [15,16] and [9], which offer to the interested reader a number of suggestions to deepen
the knowledge of the field. In our approach here, we adopt the setting of [19] and consequently work
on fractional operators defined via spectral theory. This framework includes, in particular, powers of
a second-order elliptic operator with either Dirichlet or Neumann or Robin homogeneous boundary
conditions, and other operators like, e.g., fourth-order ones or systems involving the Stokes opera-
tor. A precise definition for our fractional operators A2ρ, B2σ, C2τ along with their properties will be
given in the first part of Section 2 below. As far as a biological background for the system (1.1)–(1.3)
is concerned, we claim that in our approach the three fractional operators, which may be consider-
ably different the one from the other, are employed for the dynamics of tumor growth and diffusion
processes. The three operators A2ρ, B2σ, C2τ are allowed to be a variation of fractional Laplacians,
but also other elliptic operators, and may show different orders. Indeed, some components in tumor
development, such as immune cells, exhibit an anomalous diffusion dynamics (as it observed in ex-
periments [28]), but other components, like chemical potential and nutrient concentration are possibly
governed by different fractional or non-fractional flows. However, taking all this into account, it is the
case of pointing out that fractional operators are becoming more and more implemented in the field
of biological applications: to this concern, a selection of notable and meaningful references is given
by [1,7,28,29,45,48,50,51,54,62,64,70].

The paper is organized as follows: in the next section, we list our assumptions and notations, and
we state some results for the system (1.1)–(1.4) that are valid if both of the relaxation parameters
are positive. The following sections then bring the asymptotic analysis as the parameters α > 0
and β > 0 approach zero, where each of the relevant cases will be treated in a separate section.
Throughout this paper, we make use of the elementary Young inequality

ab ≤ γa2 +
1

4γ
b2 for every a, b ∈ R and γ > 0. (1.8)

Moreover, given a Banach space X , we denote by ‖ · ‖X its norm and by X∗ its dual. The dual
pairing between X∗ and X is denoted by 〈 · , · 〉X . The only exception from this rule is the space
H := L2(Ω), for which ‖ · ‖ and ( · , · ) denote the standard norm and inner product, respectively.

2 General assumptions and known results

In this section, we give precise assumptions and notations and state some results for the relaxed
system where α > 0 and β > 0. Now, we start introducing our assumptions. As for the operators, we
first postulate that

DOI 10.20347/WIAS.PREPRINT.2625 Berlin 2019



P. Colli, G. Gilardi, J. Sprekels 4

(A1) A : D(A) ⊂ H → H , B : D(B) ⊂ H → H , and C : D(C) ⊂ H → H , are
unbounded, monotone, selfadjoint, linear operators with compact resolvents.

Therefore, there are sequences {λj}, {λ′j}, {λ′′j}, and {ej}, {e′j}, {e′′j}, of eigenvalues and corre-
sponding eigenfunctions such that

Aej = λjej, Be′j = λ′je
′
j, Ce′′j = λ′′j e

′′
j , with (ei, ej) = (e′i, e

′
j) = (e′′i , e

′′
j ) = δij,

for all i, j ∈ N , (2.1)

0 ≤ λ1 ≤ λ2 ≤ . . . , 0 ≤ λ′1 ≤ λ′2 ≤ . . . , and 0 ≤ λ′′1 ≤ λ′′2 ≤ . . . , where

lim
j→∞

λj = lim
j→∞

λ′j = lim
j→∞

λ′′j = +∞ , (2.2)

{ej}, {e′j}, and {e′′j}, are complete systems in H. (2.3)

As a consequence, we can define the powers of these operators with arbitrary positive real exponents
as done below. As far as the first operator is concerned, we have for ρ > 0

V ρ
A := D(Aρ) =

{
v ∈ H :

∞∑
j=1

|λρj (v, ej)|2 < +∞
}

and (2.4)

Aρv =
∞∑
j=1

λρj (v, ej)ej for v ∈ V ρ
A , (2.5)

the series being convergent in the strong topology of H , due to the properties (2.4) of the coefficients.
We endow V ρ

A with the graph norm, i.e., we set

(v, w)V ρA := (v, w) + (Aρv,Aρw) and ‖v‖V ρA := (v, v)
1/2

V ρA
for v, w ∈ V ρ

A , (2.6)

and obtain a Hilbert space. In the same way, we can define the powersBσ andCτ for every σ > 0 and
τ > 0, starting from (2.1)–(2.3) for B and C . We therefore set V σ

B := D(Bσ) and V τ
C := D(Cτ ),

endowed with the norms ‖ · ‖V σB and ‖ · ‖V τC induced by the inner products

(v, w)V σB := (v, w) + (Bσv,Bσw) and (v, w)V τC := (v, w) + (Cτv, Cτw),

for v, w ∈ V σ
B and v, w ∈ V τ

C , respectively. (2.7)

Since λj ≥ 0 for every j, one immediately deduces from the definition of Aρ that

Aρ : V ρ
A ⊂ H → H is maximal monotone, and

εI + Aρ : V ρ
A → H is for every ε > 0 a topological isomorphism with the inverse

(εI + Aρ)−1v =
∞∑
j=0

(
ε+ λrj

)−1
(v, ej)ej for v ∈ H, (2.8)

where I : H → H is the identity operator. Similar results hold for Bσ and Cτ . It is clear that, for
every ρ1, ρ2 > 0, we have the Green type formula

(Aρ1+ρ2v, w) = (Aρ1v,Aρ2w) for every v ∈ V ρ1+ρ2
A and w ∈ V ρ2

A , (2.9)

and that similar relations holds for the other two types of fractional operators. Due to these properties,
we can define proper extensions of the operators that allow values in dual spaces. In particular, we
can write variational formulations of the equation (1.1)–(1.3). It is convenient to use the notations

V −ρA := (V ρ
A)∗, V −σB := (V σ

B )∗, and V −τC := (V τ
C )∗, for ρ > 0, σ > 0, τ > 0. (2.10)
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Thus, we have that

A2ρ ∈ L(V ρ
A , V

−ρ
A ), B2σ ∈ L(V σ

B , V
−σ
B ), and C2τ ∈ L(V τ

C , V
−τ
C ), (2.11)

as well as
Aρ ∈ L(H,V −ρA ), Bσ ∈ L(H,V −σB ), and Cτ ∈ L(H, V −τC ). (2.12)

The symbols 〈 · , · 〉V ρA and 〈 · , · 〉V τC will be used for the duality pairings between V −ρA and V ρ
A and

between V −τC and V τ
C , respectively. Moreover, we identifyH with a subspace of V −ρA in the usual way,

i.e., such that
〈v, w〉V ρA = (v, w) for every v ∈ H and w ∈ V ρ

A . (2.13)

Analogously, we have that H ⊂ V −σB and H ⊂ V −ρC and use similar notations. Notice (see, e.g., [15,
Sect. 3]) that all of the embeddings

V r2
A ⊂ V r1

A ⊂ H, for 0 < r1 < r2, (2.14)

H ⊂ V −r1A ⊂ V −r2A , for 0 < r1 < r2, (2.15)

V σ2
B ⊂ V σ1

B ⊂ H, for 0 < σ1 < σ2, (2.16)

V τ2
C ⊂ V τ1

C ⊂ H, for 0 < τ1 < τ2, (2.17)

are dense and compact.

From now on, we assume:

(A2) ρ, σ and τ are fixed positive real numbers.

For the nonlinear functions entering the equations (1.1)–(1.3) of our system, we postulate the proper-
ties listed below:

(A3) F = F1 + F2, where:

F1 : R→ [0,+∞] is convex and lower semicontinuous with F1(0) = 0. (2.18)

F2 ∈ C1(R), and F ′2 is Lipschitz continuous with Lipschitz constant L > 0. (2.19)

F (s) ≥ c1s
2 − c2 for some positive constants c1 and c2 and every s ∈ R. (2.20)

P : R→ [0,+∞) is bounded and Lipschitz continuous. (2.21)

We set, for convenience,
f1 := ∂F1 and f2 := F ′2 , (2.22)

and denote by D(F1) and D(f1) the effective domain of F1 and f1, respectively. We notice that f1 is
a maximal monotone graph in R×R and use the same symbol f1 for the maximal monotone operators
induced in L2 spaces. For every s ∈ D(f1), we denote by f ◦1 (s) the element of minimal modulus in
f1(s). Moreover, if the subdifferential ∂F1(s) is a singleton for every s ∈ D(f1) (which is, e.g., the
case if F1 ∈ C1(R)), then we identify the singleton {f1(s)} with the real number f1(s) and treat the
mapping s 7→ f1(s) as a real-valued function without further comment.

Using (2.9) and its analogues for B and C , we can give a weak formulation of the equations (1.1)–
(1.3). Moreover, we present (1.2) as a variational inequality. For the data, we make the following
assumptions:
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(A4) µ0 ∈ H , ϕ0 ∈ V σ
B with F1(ϕ0) ∈ L1(Ω), and S0 ∈ H .

By assuming α ≥ 0 and β ≥ 0, we then look for a triple (µ, ϕ, S) satisfying

µ ∈ L2(0, T ;V ρ
A), (2.23)

ϕ ∈ L∞(0, T ;V σ
B ), β ∂tϕ ∈ L2(0, T ;H), (2.24)

∂t(αµ+ ϕ) ∈ L2(0, T ;V −ρA ), (2.25)

S ∈ H1(0, T ;V −τC ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V τ
C ), (2.26)

F1(ϕ) ∈ L1(Q), (2.27)

and solving the system

〈 ∂t(αµ(t) + ϕ(t)), v 〉V ρA + (Aρµ(t), Aρv) =
(
P (ϕ(t))(S(t)− µ(t)), v

)
for every v ∈ V ρ

A and for a.e. t ∈ (0, T ), (2.28)(
β ∂tϕ(t), ϕ(t)− v

)
+
(
Bσϕ(t), Bσ(ϕ(t)− v)

)
+

∫
Ω

F1(ϕ(t)) +
(
f2(ϕ(t)), ϕ(t)− v

)
≤
(
µ(t), ϕ(t)− v

)
+

∫
Ω

F1(v)

for every v ∈ V σ
B and for a.e. t ∈ (0, T ), (2.29)

〈 ∂tS(t), v 〉V τC + (CτS(t), Cτv) = −
(
P (ϕ(t))(S(t)− µ(t)), v

)
for every v ∈ V τ

C and for a.e. t ∈ (0, T ), (2.30)

(αµ+ ϕ)(0) = αµ0 + ϕ0 , (βϕ)(0) = βϕ0 , and S(0) = S0 . (2.31)

Here, it is understood that
∫

Ω
F1(v) = +∞ whenever F1(v) 6∈ L1(Ω).

Remark 2.1. The above formulation is meaningful for nonnegative coefficients α and β. This holds, in
particular, for (2.31). However, depending on whether these coefficients are positive or zero, the initial
conditions can be reformulated in a more explicit way, namely,

µ(0) = µ0, ϕ(0) = ϕ0, and S(0) = S0, if α > 0 and β > 0, (2.32)

(αµ+ ϕ)(0) = αµ0 + ϕ0, and S(0) = S0, if α > 0 and β = 0, (2.33)

ϕ(0) = ϕ0, and S(0) = S0, if α = 0 and β ≥ 0. (2.34)

Observe that (2.28)–(2.30) are equivalent to their time-integrated variants, in particular for (2.29) we
have ∫ T

0

(
β ∂tϕ(t), ϕ(t)− v(t)

)
dt+

∫ T

0

(
Bσϕ(t), Bσ(ϕ(t)− v(t))

)
dt

+

∫
Q

F1(ϕ) +

∫ T

0

(
f2(ϕ(t)), ϕ(t)− v(t)

)
dt

≤
∫ T

0

(
µ(t), ϕ(t)− v(t)

)
dt+

∫
Q

F1(v) for every v ∈ L2(0, T ;V σ
B ), (2.35)

where we put
∫
Q
F1(v) = +∞ whenever F1(v) 6∈ L1(Q).

The following result was proved in [19, Thms. 2.3 and 2.5]:

DOI 10.20347/WIAS.PREPRINT.2625 Berlin 2019



Asymptotic analysis of a tumor growth model with fractional operators 7

Theorem 2.2. Let the assumptions (A1)–(A4) be fulfilled, and assume that α > 0 and β > 0. Then
there exists a triple (µ, ϕ, S) with the regularity (2.23)–(2.27) that solves the problem (2.28)–(2.30)
and the initial conditions (2.32). Moreover, this solution satisfies the estimate

‖∂t(αµ+ ϕ)‖L2(0,T ;V −ρA ) + α1/2‖µ‖L∞(0,T ;H) + ‖Aρµ‖L2(0,T ;H)

+ β1/2 ‖∂tϕ‖L2(0,T ;H) + ‖ϕ‖L∞(0,T ;V σB ) + ‖F (ϕ)‖L∞(0,T ;L1(Ω))

+ ‖S‖H1(0,T ;V −τC )∩C0([0,T ];H)∩L2(0,T ;V τC ) + ‖P 1/2(ϕ)(S − µ)‖L2(0,T ;H)

≤ K̂1

(
α1/2‖µ0‖ + ‖Bσϕ0‖ + ‖F (ϕ0)‖L1(Ω) + ‖S0‖+ 1

)
, (2.36)

with a constant K̂1 > 0 that depends only on Ω, the constants c1 and c2 from (2.20), and P . If, in
addition, the condition

µ0 ∈ V ρ
A , ϕ0 ∈ V 2σ

B with f ◦1 (ϕ0) ∈ H, S0 ∈ V τ
C , (2.37)

is fulfilled, then the above solution enjoys the further regularity

µ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ), (2.38)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ), (2.39)

S ∈ H1(0, T ;H) ∩ L∞(0, T ;V τ
C ) ∩ L2(0, T ;V 2τ

C ). (2.40)

Moreover, if the embedding conditions

V ρ
A ⊂ L4(Ω) and V τ

C ∈ L4(Ω) (2.41)

are fulfilled, then the above solution is uniquely determined.

Remark 2.3. The first embedding in (2.41) is, for instance, satisfied if A2ρ = A : = −∆ with the
domainH2(Ω)∩H1

0 (Ω) (thus, with zero Dirichlet conditions, but similarly for zero Neumann boundary
conditions with domain {v ∈ H2(Ω) : ∂nv = 0 on Γ}). Indeed, we have V ρ

A = H1
0 (Ω) in this case.

Clearly, the same embedding holds true if ρ is sufficiently close to 1/2.

Remark 2.4. More generally, we could add known forcing terms uµ, uϕ and uS to the right-hand sides
of equations (1.1), (1.2) and (1.3), respectively, and accordingly modify the definition of solution. If we
assume that

uµ, uϕ , uS ∈ L2(0, T ;H) , (2.42)

then we have a similar well-posedness result. In estimate (2.36), one has to modify the right-hand side
by adding the norms corresponding to (2.42) (possibly multiplied by negative powers of α and β). This
remark is useful for performing a control theory of the above system with distributed controls.

Remark 2.5. We cannot repeat the proof given in [19], here. We only note for later use that the result
is achieved by approximation using the Moreau–Yosida regularizations F λ

1 and fλ1 of F1 of f1 at the
level λ > 0 introduced in, e.g., [4, p. 28 and p. 39]. We set, for convenience,

F λ := F λ
1 + F2 and fλ := fλ1 + f2 . (2.43)

DOI 10.20347/WIAS.PREPRINT.2625 Berlin 2019
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Denoting by Jλ := (id + λ f1)−1 (where id : R→ R is the identity mapping) the resolvent mapping
associated with the maximal monotone graph f1 for λ > 0, we recall some well-known properties of
this regularization, namely,

F λ
1 (s) =

∫ s

0

fλ1 (s′) ds′ , 0 ≤ F1(Jλ(s)) ≤ F λ
1 (s) ≤ F1(s) for every s ∈ R, (2.44)

fλ1 (s) ∈ f1(Jλ(s)) for every s ∈ R , (2.45)

and it follows from (2.20) that there are constants ĉ1 > 0, ĉ2 > 0, and Λ > 0, such that, for all
λ ∈ (0,Λ), we have

F λ(s) ≥ ĉ1 s
2 − ĉ2 for every s ∈ R . (2.46)

In the following, we always tacitly assume that 0 < λ < Λ when working with Moreau–Yosida approx-
imations.

Now, we replace F1 in (2.29) by F λ
1 to obtain the system

α 〈∂tµλ(t), v〉V ρA +
(
∂tϕ

λ(t), v
)

+ (Aρµλ(t), Aρv) =
(
P (ϕλ(t))(Sλ(t)− µλ(t)), v

)
for every v ∈ V ρ

A and for a.e. t ∈ (0, T ), (2.47)

β
(
∂tϕ

λ(t), ϕλ(t)− v
)

+
(
Bσϕλ(t), Bσ(ϕλ(t)− v)

)
+

∫
Ω

F λ
1 (ϕλ(t)) +

(
f2(ϕλ(t)), ϕλ(t)− v

)
≤
(
µλ(t), ϕλ(t)− v

)
+

∫
Ω

F λ
1 (v) for every v ∈ V σ

B and for a.e. t ∈ (0, T ), (2.48)

〈∂tSλ(t), v〉V τC + (CτSλ(t), Cτv) = −
(
P (ϕλ(t))(Sλ(t)− µλ(t)), v

)
for every v ∈ V τ

C and for a.e. t ∈ (0, T ), (2.49)

µλ(0) = µ0 , ϕλ(0) = ϕ0 , and Sλ(0) = S0 . (2.50)

Observe that (2.48) is equivalent to both its time-integrated analogue and the pointwise variational
equation (since F λ

1 is differentiable and fλ1 is its globally Lipschitz continuous derivative)

β
(
∂tϕ

λ(t), v
)

+
(
Bσϕλ(t), Bσv

)
+
(
fλ(ϕλ(t)), v

)
=
(
µλ(t), v

)
for every v ∈ V σ

B and for a.e. t ∈ (0, T ). (2.51)

In the proof of [19, Thm. 2.3], it was shown under slightly weaker assumptions on F that the system
(2.47), (2.49)–(2.51) has for every λ ∈ (0,Λ) a unique solution triple (µλ, ϕλ, Sλ) satisfying (2.23)–
(2.26) and the estimate∥∥∂t(αµλ + ϕλ)

∥∥
L2(0,T ;V −ρA )

+ α1/2
∥∥µλ∥∥

L∞(0,T ;H)
+
∥∥Aρµλ∥∥

L2(0,T ;H)

+ β1/2
∥∥∂tϕλ∥∥L2(0,T ;H)

+
∥∥Bσ(ϕλ)

∥∥
L∞(0,T ;H)

+
∥∥F λ(ϕλ) + C0

∥∥
L∞(0,T ;L1(Ω))

+
∥∥Sλ∥∥

H1(0,T ;V −τC )∩L∞(0,T ;H)∩L2(0,T ;V τC )
+
∥∥P 1/2(ϕλ)(Sλ − µλ)

∥∥
L2(0,T ;H)

≤ Ĉ1 , (2.52)

where the constant Ĉ1 > 0 is independent of α , β , λ and has the same structure as the right-hand
side of (2.36), and where C0 > 0 is a constant such that F λ(s) + C0 ≥ 0 for all s ∈ R. Owing
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to (2.46), we may take C0 = ĉ2 in our case. A fortiori, (2.46) and (2.52) imply that, by choosing a
possibly larger Ĉ1, we may assume that

‖ϕλ‖L∞(0,T ;V σB ) ≤ Ĉ1 . (2.53)

Since, by the global Lipschitz continuity of f2, the nonlinearity F2 grows at most quadratically, we then
can also infer the bounds

‖F λ
1 (ϕλ)‖L∞(0,T ;L1(Ω)) + ‖F2(ϕλ)‖L∞(0,T ;L1(Ω)) ≤ Ĉ1 . (2.54)

The existence result and the global bound (2.36) then follow from a passage to the limit as λ ↘ 0 in
the system (2.47)–(2.50) and in (2.52).

In the general case, the equation for ϕ is just the variational inequality (2.29), and we cannot write
anything that is similar to (1.2), since no estimate for f1(ϕ) is available. However, if one reinforces
the assumptions on the structure, then one can recover (1.2) at least as a differential inclusion. The
crucial condition is the following:

ψ(v) ∈ H and
(
B2σv, ψ(v)

)
≥ 0, for every v ∈ V 2σ

B and every monotone

and Lipschitz continuous function ψ : R→ R vanishing at the origin. (2.55)

We notice that this assumption is fulfilled if B2σ = −∆ with zero Neumann boundary conditions.
Indeed, in this case it results that V 2σ

B = {v ∈ H2(Ω) : ∂nv = 0} and, for every ψ as in (2.55) and
v ∈ V 2σ

B , we have that ψ(v) ∈ H1(Ω) (since v ∈ H1(Ω)) and(
B2σv, ψ(v)

)
=

∫
Ω

(−∆v)ψ(v) =

∫
Ω

∇v · ∇ψ(v) =

∫
Ω

ψ′(v)|∇v|2 ≥ 0.

More generally, in place of the Laplace operator, we can take the principal part of an elliptic operator in
divergence form with Lipschitz continuous coefficients, provided that the normal derivative is replaced
by the conormal derivative. In any case, we can take the Dirichlet boundary conditions instead of the
Neumann boundary conditions, since the functions ψ for which (2.55) is required satisfy ψ(0) = 0.

The following result has been proved in [19, Thm. 2.6].

Theorem 2.6. Let the assumptions (A1)–(A4) be fulfilled, and assume that α > 0 and β > 0. If,
in addition, (2.55) is satisfied, then there exist a solution (µ, ϕ, S) to the problem (2.28)–(2.31) and
some ξ such that

ϕ ∈ L2(0, T ;V 2σ
B ) and ξ ∈ L2(0, T ;H), (2.56)

β ∂tϕ+B2σϕ+ ξ + f2(ϕ) = µ and ξ ∈ f1(ϕ) a.e. in Q. (2.57)

Moreover, also ξ is unique if (2.41) holds true, and if we also assume that the condition (2.37) is valid,
then the unique solution (µ, ϕ, S) and the associated ξ satisfy (2.38)–(2.40) as well as

ϕ ∈ L∞(0, T ;V 2σ
B ) and ξ ∈ L∞(0, T ;H). (2.58)

We conclude our preparations with a technical lemma that relates to each other the solutions to (2.28)–
(2.31) for different pairs (αi, βi), i = 1, 2.
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Lemma 2.7. Suppose that (A1)–(A4) are fulfilled, and let (µαi,βi , ϕαi,βi , Sαi,βi) be solutions to (2.28)–
(2.31) in the sense of Theorem 2.2 for the parameters (αi, βi) ∈ (0, 1], i = 1, 2. Then there is some

M̂ > 0, which only depends on the global constant

K̂1

(
α1/2‖µ0‖ + ‖Bσϕ0‖ + ‖F (ϕ0)‖L1(Ω) + ‖S0‖+ 1

)
in the right-hand side of (2.36), such that, for every t ∈ (0, T ) and every δ > 0, we have

(1− α1L− δ)
∫
Qt

∣∣ϕα1,β1 − ϕα2,β2

∣∣2 ≤ 1

4δ

∫
Qt

∣∣(α1µα1,β1 + ϕα1,β1)− (α2µα2,β2 + ϕα2,β2)
∣∣2

+ M̂
∣∣α1 − α2

∣∣ + α1

∣∣β1 − β2

∣∣ ∫ t

0

‖∂tϕα2,β2(s)‖ ‖ϕα1,β1(s)− ϕα2,β2(s)‖ ds . (2.59)

Proof. For convenience, we set ϕi := ϕαi,βi , µi := µαi,βi , for i = 1, 2. Then we multiply (2.29),
written for β1, µ1, ϕ1, by α1, insert v = ϕ2(t), and add the term (ϕ1(t), ϕ1(t)−ϕ2(t)) to both sides
of the resulting inequality. We then obtain, almost everywhere in (0, T ), the inequality

(α1β1 ∂tϕ1, ϕ1 − ϕ2) + α1(Bσϕ1, B
σ(ϕ1 − ϕ2)) + (ϕ1, ϕ1 − ϕ2)

≤ (α1 µ1 + ϕ1, ϕ1 − ϕ2) − (α1 f2(ϕ1), ϕ1 − ϕ2) + α1

∫
Ω

(F1(ϕ2)− F1(ϕ1)).

Similarly, arguing on the inequality for β2, µ2, ϕ2, we get

(α2β2 ∂tϕ2, ϕ2 − ϕ1) + α2(Bσϕ2, B
σ(ϕ2 − ϕ1)) + (ϕ2, ϕ2 − ϕ1)

≤ (α2 µ2 + ϕ2, ϕ2 − ϕ1) − (α2 f2(ϕ2), ϕ2 − ϕ1) + α2

∫
Ω

(F1(ϕ1)− F1(ϕ2)).

Adding the two inequalities, and rearranging terms, we find that almost everywhere in (0, T ) it holds
the inequality(

α1β1 ∂tϕ1 − α2β2 ∂tϕ2, ϕ1 − ϕ2) + ‖ϕ1 − ϕ2‖2 + α1

∥∥Bσ(ϕ1 − ϕ2)
∥∥2

≤
(
(α1µ1 + ϕ1)− (α2µ2 + ϕ2), ϕ1 − ϕ2

)
− (α1 − α2)(Bσϕ2, B

σ(ϕ1 − ϕ2))

− α1(f2(ϕ1)− f2(ϕ2), ϕ1 − ϕ2) − (α1 − α2)(f2(ϕ2), ϕ1 − ϕ2)

− (α1 − α2)

∫
Ω

(F1(ϕ1)− F1(ϕ2)) . (2.60)

Now, recalling (2.19), we see that

−α1(f2(ϕ1)− f2(ϕ2), ϕ1 − ϕ2) ≤ α1L‖ϕ1 − ϕ2‖2 . (2.61)

Moreover, we have the identity(
α1β1 ∂tϕ1 − α2β2 ∂tϕ2, ϕ1 − ϕ2)

=
α1β1

2

d

dt
‖ϕ1 − ϕ2‖2 +

(
(α1 − α2)β2 + α1(β1 − β2)

)
(∂tϕ2, ϕ1 − ϕ2) . (2.62)

At this point, we integrate the inequality (2.60) over (0, t). Omitting two nonnegative terms on the
left-hand side, invoking (2.61) and (2.62), and applying the Cauchy–Schwarz and Young inequalities,
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we find that

(1− α1L)

∫
Qt

|ϕ1 − ϕ2|2 ≤ δ

∫
Qt

|ϕ1 − ϕ2|2 +
1

4δ

∫
Qt

|(α1µ1 + ϕ1)− (α2µ2 + ϕ2)|2

+ |α1 − α2|
(∫ t

0

‖Bσϕ2(s)‖ ‖Bσ(ϕ1(s)− ϕ2(s))‖ ds +

∫
Qt

(
F1(ϕ1) + F1(ϕ2)

)
+

∫ t

0

(
‖f2(ϕ2(s))‖ + β2‖∂tϕ2(s)‖

)
‖ϕ1(s)− ϕ2(s)‖ ds

)
+ α1 |β1 − β2|

∫ t

0

‖∂tϕ2(s)‖ ‖ϕ1(s)− ϕ2(s)‖ ds . (2.63)

Finally, observe that the expression in the bracket multiplying |α1 − α2| is, owing to (2.36), bounded
in terms of the constant K̂1. From this, the assertion follows.

3 The case α↘ 0, β > 0.

In order to indicate their dependence on the parameters α, β, we denote in the following solution
triples of the problem (2.28)–(2.31) by (µα,β, ϕα,β, Sα,β), for α, β ∈ [0, 1). In this section, we in-
vestigate their asymptotic behavior as α ↘ 0 and β > 0. Obviously, the main difficulty in the limit
processes is to pass through the limit in the nonlinearities, which requires a strong convergence of
the arguments ϕα,β , in particular. Denoting in the following by 1 both the functions that are identically
equal to unity on Ω or Q, we assume, in addition to the general assumptions (A1)–(A4):

(A5) At least one of the following three conditions is satisfied:

(i) λ1 is positive.

(ii) P (s) ≥ P0 for all s ∈ R and some fixed P0 > 0.

(iii) λ1 = 0 is a simple eigenvalue of A and 1 is an eigenfunction belonging to V σ
B ;

moreover, D(F1) = R, and there are constants ĉ3 > 0 and ĉ4 ≥ 0 such that

|s′| ≤ ĉ3 F1(s) + ĉ4 whenever s ∈ R and s′ ∈ f1(s). (3.1)

Remark 3.1. The condition (A5),(i) is satisfied by the standard second-order elliptic operators with
zero Dirichlet boundary conditions (however, also zero mixed and Robin boundary conditions can be
considered, with proper definitions of the domains of the operators). The case (A5),(ii) is, unfortunately,
not too realistic in the practical application to tumor growth models, in which, usually, P should also
attain the value zero. Finally, we comment on (A5),(iii). The condition λ1 = 0 is satisfied, e.g., if
A is the Laplace operator −∆ with zero Neumann boundary conditions. Furthermore, in this case,
the eigenvalue λ1 = 0 is simple, and the corresponding eigenfunctions are constants, since Ω is
supposed to be connected. Furthermore, we have 1 ∈ V σ

B for many standard elliptic operators with
zero Neumann boundary conditions (and even with zero Dirichlet boundary conditions if σ is small, for
instance, if B = −∆ with D(B) = H2(Ω) ∩ H1

0 (Ω) and σ < 1/4). Moreover, the condition (3.1)
excludes the logarithmic and double obstacle potentials, but it still allows f1 to be multi-valued, since it
does not require that F1 is differentiable; it is, however, satisfied for a wide class of smooth potentials
of polynomial (and even first-order exponential) type such as Freg.
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Remark 3.2. Clearly, we have that

‖Aρv‖2 =
∞∑
j=1

|λρj (v, ej)|2 ≥ λ2ρ
1

∞∑
j=1

|(v, ej)|2 = λ2ρ
1 ‖v‖2 for every v ∈ V ρ

A .

Hence, in the case (A5)(i) in which λ1 > 0, the function v 7→ ‖Aρv‖ is a norm on V r
A that is

equivalent to (2.6). On the contrary, in the case (A5)(iii), we have λ1 = 0 and the above function is
just a seminorm on V ρ

A . However, the assumptions that λ1 = 0 is a simple eigenvalue and that the
eigenfunctions are constants imply the Poincaré type inequality (cf. [15, Eq. (3.5)])

‖v‖ ≤ ĉ ‖Aρv‖ for some ĉ > 0, for every v ∈ V ρ
A with mean(v) = 0, (3.2)

where mean(v) denotes the mean value of v. Then, a standard argument based on (3.2) and the
compactness of the embedding V ρ

A ⊂ H yield that the mapping

v 7→ |mean(v)| + ‖Aρv‖ for v ∈ V ρ
A , (3.3)

defines a norm on V ρ
A which is equivalent to ‖ · ‖V ρA .

In the following, we denote by Ci, i ∈ N, positive constants that may depend on the data of the
system but not on the parameters α, β, λ. We suppose that β > 0 is fixed and {αn} is any sequence
satisfying αn ↘ 0. In view of the global bounds (2.36), we may without loss of generality assume that
there are functions ζ, ξ, µ0,β, ϕ0,β, S0,β such that, as n→∞,

αn µαn,β → 0 strongly in L∞(0, T ;H), (3.4)

∂t
(
αn µαn,β + ϕαn,β

)
→ ζ weakly in L2(0, T, V −ρA ), (3.5)

Aρµαn,β → ξ weakly in L2(0, T ;H), (3.6)

ϕαn,β → ϕ0,β weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V σ
B ), (3.7)

Sαn,β → S0,β weakly-star in H1(0, T ;V −τC ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V τ
C ). (3.8)

Obviously, (3.4), (3.5) and (3.7) imply that ζ = ∂tϕ0,β . We now claim that the condition (A5) implies
that, at least for a subsequence,

µαn,β → µ0,β weakly in L2(0, T ;V ρ
A), (3.9)

which entails, in particular, that ξ = Aρµ0,β .

This follows directly if λ1 > 0: indeed, as observed in Remark 3.2, the mapping v 7→ ‖Aρv‖
defines a norm on V ρ

A which is equivalent to ‖ · ‖V ρA in this case, and thus the boundedness of
{‖Aρµαn,β‖L2(0,T ;H)}n∈N entails that (3.9) holds true at least for a subsequence.

Suppose next that λ1 = 0 and that (A5),(ii) is fulfilled. Then we can test the equation (2.47) in the
Moreau–Yosida approximation, written at the time s, by v = µλαn,β(s) and integrate over (0, t) where
t ∈ (0, T ]. We then obtain the inequality

αn
2

∥∥µλαn,β(t)
∥∥2

+

∫ t

0

(
‖Aρµλαn,β(s)‖2 + P0 ‖µλαn,β(s)‖2

)
ds

≤ αn
2
‖µ0‖2 +

∫ t

0

∫
Ω

(
P (ϕλαn,β)Sλαn,β − ∂tϕ

λ
αn,β

)
µλαn,β . (3.10)
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Invoking the global bounds (2.52) and Young’s inequality, we readily see that the right-hand side is
bounded by an expression of the form

P0

2

∫ t

0

‖µλαn,β(s)‖2 ds + C1 .

Therefore, it turns out that
∥∥µλαn,β∥∥L2(0,T ;V ρA)

≤ C2. Letting λ↘ 0, and invoking the semicontinuity

of norms, we then conclude that∥∥µαn,β∥∥L2(0,T ;V ρA)
≤ C2 ∀n ∈ N, (3.11)

which yields the validity of (3.9) on a subsequence also in this case.

It remains to show (3.9) if λ1 = 0 and (A5),(iii) is satisfied. We recall that (2.45) yields fλ1 (s) ∈
f1(Jλ(s)) for all s ∈ R so that we can apply (3.1) with s replaced by Jλ(s) and s′ = fλ1 (s). Hence,
by also using (2.44), we find for every λ ∈ R and s ∈ R the chain of inequalities

|fλ1 (s)| ≤ ĉ3 F1(Jλ(s)) + ĉ4 ≤ ĉ3 F
λ
1 (s) + ĉ4 . (3.12)

Now recall that f2 is globally Lipschitz continuous on R, whence it follows that f2 grows at most linearly
and F2 grows at most quadratically. Hence, invoking also (2.46), we can infer that, for every s ∈ R,

|fλ(s)| ≤ |fλ1 (s)| + |f2(s)| ≤ ĉ3 F
λ
1 (s) + ĉ4 + |f2(s)|

≤ ĉ3 F
λ(s) + ĉ3 |F2(s)| + ĉ4 + |f2(s)| ≤ ĉ3 F

λ(s) + C3(1 + s2)

≤
(
ĉ3 + C3 ĉ

−1
1

)
F λ(s) + C4 . (3.13)

Therefore, we can conclude from (2.52) and (2.46) the bounds∥∥fλ(ϕλαn,β)
∥∥
L∞(0,T ;L1(Ω))

+
∥∥ϕλαn,β∥∥L∞(0,T ;H)

≤ C5 . (3.14)

At this point, we insert v = ±1 ∈ V σ
B in (2.51) to find the estimate

±
∫

Ω

µλαn,β(t) ≤ C6

(
β ‖∂tϕλαn,β(t)‖ + ‖Bσϕλαn,β(t)‖ ‖Bσ1‖ +

∥∥fλ(ϕλαn,β)(t)
∥∥
L1(Ω)

)
≤ C6

(
β ‖∂tϕλαn,β(t)‖ + ‖ϕλαn,β(t)‖V σB ‖B

σ1‖ + C5

)
,

which, owing to (2.52) and (3.14), then shows that∥∥mean(µλαn,β)
∥∥
L2(0,T )

≤ C7 (1 + β) .

Combining this with (2.52), and recalling the equivalence of the norms (3.3) and
‖ · ‖V ρA given in Remark 3.2, we have finally shown that the sequence {‖µλαn,β‖L2(0,T ;V ρA)}n∈N is
bounded. Passage to the limit as λ ↘ 0, and the semicontinuity of norms, then yield that also
{‖µαn,β‖L2(0,T ;V ρA) }n∈N is bounded. With this, we can conclude the validity of (3.9) on a subse-
quence also in this case.

With (3.9) shown for all of the cases considered in (A5), we can continue our analysis. At first, thanks
to (3.7), (3.8), and known compactness results (see, e.g., [61, Sect. 8, Cor. 4]), we may without loss
of generality assume that

ϕαn,β → ϕ0,β strongly in C0([0, T ];H), (3.15)

Sαn,β → S0,β strongly in L2(0, T ;H). (3.16)
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Then, by the Lipschitz continuity of both P and f2,

P (ϕαn,β) → P (ϕ0,β) strongly in C0([0, T ];H), (3.17)

f2(ϕαn,β) → f2(ϕ0,β) strongly in C0([0, T ];H). (3.18)

Next, we observe that the convergence properties (3.9), (3.16), and (3.17) imply that

P (ϕαn,β)
(
Sαn,β − µαn,β

)
→ P (ϕ0,β)

(
S0,β − µ0,β

)
weakly in L1(Q) .

On the other hand, P (ϕαn,β)
(
Sαn,β − µαn,β

)
is bounded in L2(0, T ;H) due to (2.52), since P is

bounded. Hence, we deduce that

P (ϕαn,β)
(
Sαn,β − µαn,β

)
→ P (ϕ0,β)

(
S0,β − µ0,β

)
weakly in L2(0, T ;H) . (3.19)

Now we are in a position to take the limit as n → ∞ in the time-integrated versions of (2.28)
and (2.30), respectively, written with time-dependent test functions v. We then obtain that the triple
(µ, ϕ, S) := (µ0,β, ϕ0,β, S0,β) satisfies (2.28) for α = 0, (2.30), and the initial conditions (2.34).

It remains to show the validity of (2.29) or of its time-integrated version (2.35). To this end, notice that
the convex functional v 7→

∫
Ω
F1(v), extended with value +∞ whenever F1(v) 6∈ L1(Ω), is proper,

convex and lower semicontinuous in H . Hence, the convergence (3.15) and the bound (2.36) imply
that

0 ≤
∫

Ω

F1(ϕ0,β(t)) ≤ lim inf
n→∞

∫
Ω

F1(ϕαn,β(t)) ≤ C8 for every t ∈ [0, T ],

for some uniform constant C8. It therefore follows that F1(ϕ0,β) ∈ L∞(0, T ;L1(Ω)), and Fatou’s
lemma allows us to infer that

0 ≤
∫
Q

F1(ϕ0,β) ≤ lim inf
n→∞

∫
Q

F1(ϕαn,β) < +∞. (3.20)

Moreover, the quadratic form v 7→
∫ T

0
(Bσv(t), Bσv(t)) dt is weakly sequentially lower semicontin-

uous on L2(0, T ;V σ
B ), which entails that∫ T

0

(
Bσϕ0,β(t), Bσϕ0,β(t)

)
dt ≤ lim inf

n→∞

∫ T

0

(
Bσϕαn,β(t), Bσϕαn,β(t)

)
dt . (3.21)

Using all of the above convergence results, we can therefore conclude that, for every v ∈ L2(0, T ;V σ
B ),∫

Q

F1(ϕ0,β) +

∫ T

0

(
Bσϕ0,β(t), Bσ(ϕ0,β(t)− v(t)

)
dt

≤ lim inf
n→∞

(∫
Q

F1(ϕαn,β) +

∫ T

0

(
Bσϕαn,β(t), Bσ(ϕαn,β(t)− v(t))

)
dt

)
≤ lim inf

n→∞

(∫ T

0

(
µαn,β(t)− f2(ϕαn,β(t))− β ∂tϕαn,β(t), ϕαn,β(t)− v(t)

)
dt +

∫
Q

F1(v)

)
=

∫ T

0

(
µ0,β(t)− f2(ϕ0,β(t))− β ∂tϕ0,β(t), ϕ0,β(t)− v(t)

)
dt +

∫
Q

F1(v), (3.22)

which shows the validity of (2.35) for (µ, ϕ, S) = (µ0,β, ϕ0,β, S0,β). From the above analysis, we can
conclude the following existence and convergence result.
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Asymptotic analysis of a tumor growth model with fractional operators 15

Theorem 3.3. Suppose that the conditions (A1)–(A5) are fulfilled, let β > 0 be fixed and {αn}n∈N ⊂
(0, 1] be a sequence such that αn ↘ 0. Then there are a subsequence {αnk}k∈N and functions
(µαnk ,β, ϕαnk ,β, Sαnk ,β), which solve the system (2.28)–(2.31) for α = αnk in the sense of Theo-
rem 2.2, such that there is a triple (µ0,β, ϕ0,β, S0,β) with the following properties:

∂t
(
αnk µαnk ,β + ϕαnk ,β

)
→ ∂tϕ0,β weakly in L2(0, T ;V −ρA ), (3.23)

µαnk ,β → µ0,β weakly-star in L2(0, T ;V ρ
A), (3.24)

ϕαnk ,β → ϕ0,β weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V σ
B ), (3.25)

Sαnk ,β → S0,β weakly-star in H1(0, T ;V −τC ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V τ
C ). (3.26)

In addition, F1(ϕ0,β) ∈ L∞(0, T ;L1(Ω)), and (µ0,β, ϕ0,β, S0,β) solves the system (2.28)–(2.30)
for α = 0 and satisfies the initial conditions (2.34). Finally, it holds the additional regularity

µ ∈ L2(0, T ;V 2ρ
A ). (3.27)

Proof. Except for (3.27), everything was already proved above. The validity of (3.27) follows directly
from comparison in (2.28), since, owing to the boundedness of P , we have P (ϕ0,β)

(
S0,β − µ0,β

)
−

∂tϕ0,β ∈ L2(0, T ;H).

Next, we give a regularity result that resembles the corresponding results (2.38)–(2.40) in Theorem 2.2
for the case when both α > 0 and β > 0. Note that we cannot expect the same regularity here, since
a vanishing α entails a loss of coercivity with respect to the solution component µ.

Theorem 3.4. Suppose that (A1)–(A4), (2.37), (2.41), and at least one of the two conditions

(i) λ1 > 0, and (ii) P (s) ≥ P0 > 0 for all s ∈ R, (3.28)

are fulfilled. Then the solution (µ0,β, ϕ0,β, S0,β) established in Theorem 3.3 enjoys the additional
regularity

µ0,β ∈ L∞(0, T ;V 2ρ
A ), (3.29)

ϕ0,β ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ), (3.30)

S0,β ∈ H1(0, T ;H) ∩ L∞(0, T ;V τ
C ) ∩ L2(0, T ;V 2τ

C ). (3.31)

Proof. Let, for convenience, (µ, ϕ, S) := (µ0,β, ϕ0,β, S0,β). We only give a formal proof of the as-
sertion based on the Moreau–Yosida approximation, which is for λ > 0 given by the system (2.47)
with α = 0, (2.51) (in place of (2.48)), (2.49), together with the initial condition (2.34). For a rigorous
proof, one would have to carry out the following arguments on the level of the time-discretized version
introduced in [19]. Since this requires a considerable writing effort without bringing new insights in
comparison with the calculations in [19], we prefer to argue formally, here. To this end, we differen-
tiate (2.51) with respect to t and take v = ∂tϕ

λ(t) in the resulting equation. In addition, we insert
v = ∂tµ

λ(t) in (2.47), add the two resulting equations, and integrate their sum over (0, t) where
t ∈ (0, T ]. Noting that the two terms involving ∂tϕ

λ ∂tµ
λ cancel each other, we arrive at the identity

β

2
‖∂tϕλ(t)‖2 +

1

2
‖Aρµλ(t)‖2 +

∫
Qt

|Bσ(∂tϕ
λ)|2 +

∫
Qt

(fλ1 )′(ϕλ) |∂tϕλ|2

=

∫
Qt

P (ϕλ) (Sλ − µλ) ∂tµλ +
β

2
‖∂tϕλ(0)‖2 +

1

2
‖Aρµ0‖2 −

∫
Qt

f ′2(ϕλ) |∂tϕλ|2 , (3.32)
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P. Colli, G. Gilardi, J. Sprekels 16

where, due to the general assumptions, all of the terms on the left-hand side are nonnegative and the
last term on the right-hand side is from (2.52) already known to be bounded independently of λ. Now
observe that, by formal insertion of ∂tϕλ(0) in (2.51) for t = 0, it follows from (2.37) that

β ‖∂tϕλ(0)‖2 =
(
−B2σϕ0 − fλ(ϕ0) + µ0, ∂tϕ

λ(0)
)
≤ β

2
‖∂tϕλ(0)‖2 + C1, (3.33)

where, here and in the remainder of this proof, we denote by Ci, i ∈ N, positive constants that do not
depend on λ. Next, an integration by parts yields that

−
∫
Qt

P (ϕλ)µλ ∂tµ
λ =

1

2

∫
Ω

(
P (ϕ0) |µ0|2 − P (ϕλ(t)) |µλ(t)|2

)
+

1

2

∫
Qt

P ′(ϕλ)∂tϕ
λ |µλ|2

≤ C2 −
1

2

∫
Ω

P (ϕλ(t)) |µλ(t)|2 + C3

∫ t

0

‖µλ(s)‖2
L4(Ω) ‖∂tϕλ(s)‖ ds

≤ C2 −
1

2

∫
Ω

P (ϕλ(t)) |µλ(t)|2 + C4

∫ t

0

‖µλ(s)‖2
V ρA
‖∂tϕλ(s)‖2 ds , (3.34)

where we used Hölder’s inequality and (2.41). Note that, by virtue of (2.21), the second term on the
right-hand side of (3.34) is nonpositive so that it can be moved with the right sign on the left-hand
side of (3.32). Moreover, we notice that ‖µλ‖L2(0,T ;V ρA) is uniformly bounded with respect to λ as
shown in the proof of Theorem 3.3, and we will account for this information in applying Gronwall’s
lemma. Moreover, integrating by parts and using also the already known bounds (2.52), the inequality
P ≤ P 1/2(supP 1/2) and the Young inequality, we infer that∫

Qt

P (ϕλ)Sλ ∂tµ
λ

=

∫
Ω

(
P (ϕλ(t)Sλ(t)µλ(t)− P (ϕ0)S0 µ0

)
−
∫
Qt

(
P ′(ϕλ) ∂tϕ

λ Sλ + P (ϕλ) ∂tS
λ
)
µλ

≤ C5 +
1

4

∫
Ω

P (ϕλ(t)) |µλ(t)|2 + C6

∫ t

0

‖∂tϕλ(s)‖ ‖Sλ(s)‖V τC ‖µ
λ(s)‖V ρA ds

+
1

2

∫
Qt

|∂tSλ|2 + C7

∫
Qt

P (ϕλ)|µλ|2 . (3.35)

Note that the third term on the right-hand side can be treated for instance as

C6

∫ t

0

‖∂tϕλ(s)‖ ‖Sλ(s)‖V τC ‖µ
λ(s)‖V ρA ds

≤ C6

∫ t

0

‖Sλ(s)‖V τC ‖µ
λ(s)‖V ρA

(
1 + ‖∂tϕλ(s)‖2

)
ds, (3.36)

and both ‖Sλ‖L2(0,T ;V τC ) and ‖µλ‖L2(0,T ;V ρA) are uniformly bounded with respect to λ (cf. (2.36)).

Finally, we test (2.49) by ∂tSλ(t) and integrate over (0, t). Then we obtain∫
Qt

|∂tSλ|2 +
1

2
‖CτSλ(t)‖2 ≤ 1

2
‖CτS0‖2 +

∫ t

0

(
zλ(s), ∂tS

λ(s)
)
ds

≤ 1

2
‖CτS0‖2 +

1

4

∫
Qt

|∂tSλ|2 +

∫
Qt

|zλ|2, (3.37)
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Asymptotic analysis of a tumor growth model with fractional operators 17

where zλ := P (ϕλ)(µλ− Sλ) is already known to be bounded in L2(0, T ;H), independently of λ,
by (2.52) and the boundedness of P . Combining (3.32)–(3.37), and invoking Gronwall’s lemma, we
have therefore shown the estimate

‖∂tϕλ‖2
L∞(0,T ;H)∩L2(0,T ;V σB ) + ‖Sλ‖2

H1(0,T ;H)∩L∞(0,T ;V τC )

+ sup
t∈(0,T )

(
‖Aρµλ(t)‖2 +

∫
Ω

P (ϕλ(t))|µλ(t)|2
)
≤ C8. (3.38)

In particular, it follows from (3.28) (see Remark 3.2) that

‖µλ‖L∞(0,T ;V ρA) ≤ C9. (3.39)

It remains to show the boundedness of Sλ in L2(0, T ;V 2τ
C ) and of µλ in L∞(0, T ;V 2ρ

A ). But this
follows immediately from (2.49) and (2.47), respectively, by comparison. At this point, we take the limit
as λ↘ 0 and invoke the semicontinuity of norms to infer that the derived bounds are valid also in the
limit. This concludes the proof of the assertion.

Remark 3.5. It is also possible to prove a uniqueness result for the case α = 0, β > 0, under
restrictive additional assumptions. Since the related analysis requires a major detour in the line of
argumentation and is carried out in detail in the recent paper [20], we do not present it here. Note also
that in the case P ≡ 0 the system (2.28), (2.29) coincides for α = 0 and β ≥ 0 with the system
that has recently been studied by the present authors in a series of papers (see [15–17]); for precise
results in this much simpler case, in which (2.28), (2.29) decouple from (2.30), we refer to these works.

4 The case α > 0, β ↘ 0.

In this section, we investigate the asymptotic behavior of the solutions (µα,β, ϕα,β, Sα,β) as α > 0
and β ↘ 0. In this case, an additional coercivity condition for µ like (3.28) is not necessary. Instead,
the main difficulty is to establish a strong convergence for the phase variable ϕ. Indeed, we have to
make the following additional assumption:

(A6) It holds αL < 1.

Now, let {βn}n∈N ⊂ (0, 1] be any sequence such that βn ↘ 0. Then, according to the global bound
(2.36), we may without loss of generality assume the existence of functions ζ, µα,0, ϕα,0, Sα,0 such
that, at least for a subsequence as n→∞,

βn ∂tϕα,βn → 0 strongly in L2(0, T ;H), (4.1)

∂t
(
αµα,βn + ϕα,βn

)
→ ζ weakly in L2(0, T, V −ρA ), (4.2)

µα,βn → µα,0 weakly-star in L∞(0, T ;H) ∩ L2(0, T ;V ρ
A), (4.3)

ϕα,βn → ϕα,0 weakly-star in L∞(0, T ;V σ
B ), (4.4)

Sα,βn → Sα,0 weakly-star in H1(0, T ;V −τC ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V τ
C ). (4.5)
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Now, combining (4.2)–(4.4), we see that ζ = ∂t (αµα,0 + ϕα,0), and we infer from (4.3) and (4.4)
that {αµα,βn + ϕα,βn}n∈N is also bounded in the Banach space L2(0, T ;V ρ

A + V σ
B ), where

V ρ
A + V σ

B := {v + w : v ∈ V ρ
A and w ∈ V σ

B }, and (4.6)

‖y‖V ρA+V σB
: = inf {‖v‖V ρA + ‖w‖V σB : v ∈ V ρ

A , w ∈ V
σ
B , and y = v + w}. (4.7)

Since both V ρ
A and V σ

B are compactly embedded in H , so is V ρ
A + V σ

B , and we can infer from the
Aubin–Lions compactness lemma (see, e.g., [52, Thm. 5.1, p. 58]) that

αµα,βn + ϕα,βn → αµα,0 + ϕα,0 strongly in L2(0, T ;H). (4.8)

Next, we aim at showing that {ϕα,βn}n∈N is a Cauchy sequence in L2(0, T ;H), which would imply
that, possibly taking another subsequence,

ϕα,βn → ϕα,0 strongly in L2(0, T ;H) and

ϕα,βn(t) → ϕα,0(t) strongly in H , for a.e. t ∈ (0, T ). (4.9)

To prove the claim, we employ Lemma 2.7 with the special choice (α, βn) and (α, βm), where n >
m so that 0 < βn < βm. Thanks to (2.59), we have, for every δ > 0,

(1− αL− δ)
∫
Q

∣∣ϕα,βn − ϕα,βm∣∣2 ≤ 1

4δ

∫
Q

∣∣(αµα,βn + ϕα,βn)− (αµα,βm + ϕα,βm)
∣∣2

+ α
∣∣βn − βm∣∣ ∫ T

0

‖∂tϕα,βm(s)‖ ‖ϕα,βn(s)− ϕα,βm(s)‖ ds . (4.10)

Now observe that |βn − βm| = (βm − βn) ≤ βm . Moreover, {ϕα,βn − ϕα,βm} is bounded in
L2(0, T ;H). Hence, by virtue of (4.1) and (4.8), the right-hand side of (4.10) converges to zero as
n > m and m→∞. Therefore, choosing δ ∈ (0, 1− αL), we conclude from (4.10) that the above
claim is valid. We thus may assume that (4.9) holds true. But this implies that also

µα,βn → µα,0 strongly in L2(0, T ;H), (4.11)

P (ϕα,βn) → P (ϕα,0) and f2(ϕα,βn) → f2(ϕα,0)

both strongly in L2(0, T ;H), (4.12)

using (4.8) and the Lipschitz continuity of P and f2. Moreover, the Aubin–Lions lemma yields that also

Sα,βn → Sα,0 strongly in L2(0, T ;H), (4.13)

and, as in (3.19), it is readily verified that

P (ϕα,βn)(Sα,βn − µα,βn)→ P (ϕα,0)(Sα,0 − µα,0) weakly in L2(0, T ;H). (4.14)

Now we are in a position to take the limit as n → ∞ in the time-integrated versions of (2.28)
and (2.30), respectively, written with time-dependent test functions. We then obtain that the triple
(µ, ϕ, S) := (µα,0, ϕα,0, Sα,0) satisfies (2.28) and (2.30), and (4.2) entails that αµα,βn + ϕα,βn →
αµα,0 + ϕα,0 weakly in C0([0, T ];V −ρA ) , which shows, in particular, that (αµα,0 + ϕα,0)(0) =
αµ0 + ϕ0, i.e., the first of (2.33). At the same time, we conclude from (4.5) the weak convergence
Sα,βn → Sα,0 in C0([0, T ];V −τC ); therefore, we also have the second of the initial conditions (2.33).
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It remains to show the validity of (2.29) or its time-integrated version (2.35), for β = 0. To this end,
notice that (2.36), (4.9) and the lower semicontinuity of the functional v 7→

∫
Ω
F1(v) in H imply that

0 ≤
∫

Ω

F1(ϕα,0(t)) ≤ lim inf
n→∞

∫
Ω

F1(ϕα,βn(t)) ≤ C for a.e. t ∈ (0, T ), (4.15)

for some constant C independent of βn. Thus, it follows that F1(ϕα,0) ∈ L∞(0, T ;L1(Ω)) and, by
Fatou’s lemma,

0 ≤
∫
Q

F1(ϕα,0) ≤ lim inf
n→∞

∫
Q

F1(ϕα,βn) < +∞. (4.16)

Moreover, the quadratic form v 7→
∫ T

0
(Bσv(t), Bσv(t)) dt is weakly sequentially lower semicontin-

uous on L2(0, T ;V σ
B ). Therefore, a similar calculation (which needs no repetition here) as in (3.20)

yields the validity of (2.35).

In conclusion, we have the following result.

Theorem 4.1. Suppose that the conditions (A1)–(A4) and (A6) are fulfilled. Moreover, let α > 0 and
{βn} ⊂ (0, 1) be a sequence with βn ↘ 0 as n → ∞. Then there are a subsequence {βnk}k∈N
and functions (µα,βnk , ϕα,βnk , Sα,βnk ), which solve the system (2.28)–(2.31) for β = βnk in the sense
of Theorem 2.2, and a triple (µα,0, ϕα,0, Sα,0) with the following properties:

βnk ∂tϕα,βnk → 0 strongly in L2(0, T ;H), (4.17)

∂t
(
αµα,βnk + ϕα,βnk

)
→ ∂t

(
αµα,0 + ϕα,0

)
weakly in L2(0, T, V −ρA ), (4.18)

µα,βnk → µα,0 weakly-star in L∞(0, T ;H) ∩ L2(0, T ;V ρ
A) (4.19)

and strongly in L2(0, T ;H), (4.20)

ϕα,βnk → ϕα,0 weakly-star in L∞(0, T ;V σ
B ) and strongly in L2(0, T ;H), (4.21)

Sα,βnk → Sα,0 weakly-star in H1(0, T ;V −τC ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V τ
C ). (4.22)

In addition, F1(ϕα,0) ∈ L∞(0, T ;L1(Ω)), and (µα,0, ϕα,0, Sα,0) solves the system (2.28)–(2.30)
for β = 0 and satisfies the initial conditions (2.33).

It seems to be difficult to derive additional regularity results for α > 0 and β = 0, and we give a
comment on this in the forthcoming Remark 5.4. However, we can show a more important uniqueness
result. To this end, we need to make a compatibility assumption that strongly relates the operators Aρ

and Bσ to each other. We have the following result.

Theorem 4.2. Assume, in addition to (A1)–(A4) and (A6), that the following embeddings are continu-
ous:

V σ
B ⊂ V ρ

A , V ρ
A ⊂ L4(Ω) , V σ

B ⊂ L4(Ω) and V τ
C ⊂ L4(Ω) . (4.23)

Then the solution to the system (2.28)–(2.30), (2.33) for α > 0 and β = 0 established in Theorem 4.1
is uniquely determined.

Proof. We point out that the third condition in (4.23) is a straightforward consequence of the first and
second ones. The continuity of the embedding V σ

B ⊂ V ρ
A implies the existence of a constant κ (which

we will refer to) such that

‖Aρv‖2 ≤ κ
(
‖Bσv‖2 + ‖v‖2

)
for all v ∈ V σ

B . (4.24)
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Let (µi, ϕi, Si), i = 1, 2, be two solution triples. We denote wi := αµi + ϕi, for i = 1, 2, and set
µ := µ1 − µ2, ϕ := ϕ1 − ϕ2, S := S1 − S2, and w := w1 − w2. Then we have a.e. in (0, t), and
for i = 1, 2, that

〈∂twi, v〉V ρA + (Aρµi, v) = (P (ϕi)(Si − µi), v) ∀ v ∈ V ρ
A , (4.25)

α(Bσϕi, B
σ(ϕi − v)) + α

∫
Ω

F1(ϕi) + α(f2(ϕi), ϕi − v) + (ϕi, ϕi − v)

≤ (wi, ϕi − v) + α

∫
Ω

F1(v) ∀ v ∈ V σ
B , (4.26)

〈∂tSi, v〉V τC + (CτSi, C
τv) = (P (ϕi)(µi − Si), v) ∀ v ∈ V τ

C . (4.27)

Next, we insert v = ϕ2 in the inequality (4.26) for i = 1, v = ϕ1 in the inequality for i = 2, add
the resulting inequalities and multiply the result by a positive constant M which is yet to be specified.
Then we integrate over (0, t), where t ∈ (0, T ). Note that all of the terms involving F1 cancel. Hence,
also using (2.19), we obtain the inequality

Mα

∫
Qt

|Bσϕ|2 + M(1− αL)

∫
Qt

|ϕ|2 ≤ M

∫
Qt

wϕ ,

and Young’s inequality yields that for every δ > 0 (which is yet to be chosen) it holds that

Mα

∫
Qt

|Bσϕ|2 + (M(1− αL)− δ)
∫
Qt

|ϕ|2 ≤ M2

4δ

∫
Qt

|w|2 . (4.28)

Now we subtract the equations (4.25) for i = 1, 2 from each other and insert v = w in the resulting
equation. Similarly, we subtract the equations (4.27) for i = 1, 2 from each other and insert v = S in
the resulting equation. Finally, we add the two results. Integration over (0, t) then yields the identity

1

2
‖w(t)‖2 + α

∫
Qt

|Aρµ|2 +

∫
Qt

AρµAρϕ +
1

2
‖S(t)‖2 +

∫
Qt

|CτS|2

=

∫
Qt

(
P (ϕ1)(S1 − µ1)− P (ϕ2)(S2 − µ2)

)
(w − S) . (4.29)

Now observe that Young’s inequality and (4.24) yield that

−
∫
Qt

AρµAρϕ ≤ α

2

∫
Qt

|Aρµ|2 +
2

α

∫
Qt

|Aρϕ|2

≤ α

2

∫
Qt

|Aρµ|2 +
2κ

α

∫
Qt

(|Bσϕ|2 + |ϕ|2) . (4.30)

It remains to estimate the right-hand side of (4.29) which we denote by Z . We have

Z =

∫
Qt

(
P (ϕ1)− P (ϕ2))(S1 − µ1)(w − S) +

∫
Qt

P (ϕ2)(S − µ) (w − S)

=: Z1 + Z2, (4.31)

with obvious notation. Using the Hölder and Young inequalities, and invoking (4.23), we see that

|Z1| ≤ C1

∫ t

0

‖ϕ(s)‖L4(Ω)

(
‖S1(s)‖L4(Ω) + ‖µ1(s)‖L4(Ω)

) (
‖w(s)‖+ ‖S(s)‖

)
ds

≤ δ

∫ t

0

‖ϕ(s)‖2
V σB
ds +

C2

δ

∫ t

0

Φ(s)
(
‖w(s)‖2 + ‖S(s)‖2

)
ds , (4.32)
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where the function Φ(s) := ‖S1(s)‖2
V τC

+ ‖µ1(s)‖2
V ρA

is known to belong to L1(0, T ). Here, and in

the remainder of the proof, Ci, i ∈ N, denote positive constants that depend only on the global data
of the system.

Finally, we estimate Z2. Omitting an obvious nonpositive term, we have, by virtue of Young’s inequality,
and since αµ = w − ϕ,

|Z2| ≤ C3

∫ t

0

(
‖S(s)‖ ‖w(s)‖ + ‖S(s)‖ ‖µ(s)‖ + ‖µ(s)‖ ‖w(s)‖

)
ds

≤ δ α2

∫
Qt

|µ|2 + C4

(
1 +

1

δα2

)∫
Qt

(
|S|2 + |w|2

)
≤ 2δ

∫ t

0

‖ϕ(s)‖2
V σB
ds + C5

(
1 + δ +

1

δα2

) ∫
Qt

(
|S|2 + |w|2

)
. (4.33)

Combining (4.28)–(4.33), we have thus shown the estimate(
Mα− 2κ

α
− 3δ

)∫
Qt

|Bσϕ|2 +
(
M(1− αL)− 2κ

α
− 4δ

)∫
Qt

|ϕ|2

+
1

2

(
‖w(t)‖2 + ‖S(t)‖2

)
+
α

2

∫
Qt

|Aρµ|2 +

∫
Qt

|CτS|2

≤
∫ t

0

[C2

δ
Φ(s) + C6

(
M2 + 1

)(
1 + δ +

1

δ
+

1

δα2

)] (
‖w(s)‖2 + ‖S(s)‖2

)
ds . (4.34)

At this point, we make the choices

M > M0 := max

{
2κ

α2
,

2κ

α(1− αL)

}
and 0 < δ <

1

4
(M −M0) min {α, 1− αL} .

Then the brackets in the first two terms on the left-hand side become positive, and we may apply
Gronwall’s lemma to conclude that w = S = ϕ = 0, whence also µ = 0.

Remark 4.3. It ought to be clear from the above arguments that in the case that controls uµ, uϕ,
uS in L2(0, T ;H) are added to the right-hand sides of (2.28)–(2.30), we have an existence result
resembling Theorem 3.3, and, under the assumptions of Theorem 4.2, we obtain a corresponding
continuous dependence result in the norms appearing on the left-hand side of (4.34).

5 The case α↘ 0, β ↘ 0.

In this section, we investigate the asymptotic behavior of the solutions (µα,β, ϕα,β, Sα,β) as α ↘ 0
and β ↘ 0. Quite unexpectedly, in this case the additional assumption (A6) is not needed. In a sense,
this means that the presence of a strong perturbation α∂tµ as in the previous section does not just
produce an approximation but really changes the character of the unperturbed system if α is too large.
On the other hand, we have to assume:

(A7) The eigenvalue λ1 is positive.

Recall that then the mapping v 7→ ‖Aρv‖ defines a norm on V ρ
A which is equivalent to the graph

norm ‖ · ‖V ρA (see Remark 3.2).
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To begin with, let {αn}n∈N ⊂ (0, 1] and {βn}n∈N ⊂ (0, 1] be sequences such that αn ↘ 0 and
βn ↘ 0, and let (µαn,βn , ϕαn,βn , Sαn,βn) denote solutions to (2.28)–(2.31) in the sense of Theo-
rem 2.2 associated with (α, β) = (αn, βn), for n ∈ N. According to (2.36), and invoking (A7), we
may without loss of generality assume that there are limits ζ, µ0,0, ϕ0,0, S0,0 such that, as n→∞,

αn µαn,βn → 0 strongly in L∞(0, T ;H), (5.1)

βn ∂tϕαn,βn → 0 strongly in L2(0, T ;H), (5.2)

∂t(αn µαn,βn + ϕαn,βn) → ζ weakly in L2(0, T ;V −ρA ), (5.3)

µαn,βn → µ0,0 weakly in L2(0, T ;V ρ
A), (5.4)

ϕαn,βn → ϕ0,0 weakly-star in L∞(0, T ;V σ
B ), (5.5)

Sαn,βn → S0,0 weakly-star in H1(0, T ;V −τC ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V τ
C ). (5.6)

From (5.1), (5.3) and (5.5) it follows that ζ = ∂tϕ0,0 and, in addition,

αn µαn,βn + ϕαn,βn → ϕ0,0 weakly in H1(0, T ;V −ρA ), (5.7)

whence also
(αn µαn,βn + ϕαn,βn)(0)→ ϕ0,0(0) weakly in V −ρA . (5.8)

Then, in view of (5.6)–(5.8), it turns out that both the initial conditions in (2.34) are fulfilled.

Next, we observe that we can argue exactly as we did in the previous section to obtain (4.8). Hence,
we infer that the sequence {αn µαn,βn + ϕαn,βn}n∈N converges strongly in L2(0, T ;H). We thus
find from (5.1) that

ϕαn,βn → ϕ0,0 strongly in L2(0, T ;H) and

ϕαn,βn(t) → ϕ0,0(t) strongly in H , for a.e. t ∈ (0, T ), (5.9)

the latter without loss of generality. Consequently, by Lipschitz continuity, we have that

f2(ϕαn,βn) → f2(ϕ0,0) and P (ϕαn,βn) → P (ϕ0,0) strongly in L2(0, T ;H). (5.10)

From this point, we may follow the lines of the previous sections to conclude the following result.

Theorem 5.1. Assume that (A1)–(A4) and (A7) are fulfilled and let the sequences {αn}n∈N ⊂ (0, 1]
and {βn}n∈N ⊂ (0, 1] satisfy αn ↘ 0 and βn ↘ 0. Moreover, let (µαn,βn , ϕαn,βn , Sαn,βn) be
solutions to the system (2.28)–(2.31) in the sense of Theorem 2.2 for (α, β) = (αn, βn) for n ∈ N.
Then, there are a subsequence {nk}k∈N of N and a triple (µ0,0, ϕ0,0, S0,0) such that the following
holds true:

αnk µαnk ,βnk → 0 strongly in L∞(0, T ;H), (5.11)

βnk ∂tϕαnk ,βnk → 0 strongly in L2(0, T ;H), (5.12)

∂t(αnk µαnk ,βnk + ϕαnk ,βnk ) → ∂tϕ0,0 weakly in L2(0, T ;V −ρA ), (5.13)

µαnk ,βnk → µ0,0 weakly in L2(0, T ;V ρ
A), (5.14)

ϕαnk ,βnk → ϕ0,0 weakly-star in L∞(0, T ;V σ
B ) and strongly in L2(0, T ;H), (5.15)

Sαnk ,βnk → S0,0 weakly-star in H1(0, T ;V −τC ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V τ
C ). (5.16)

Moreover, F1(ϕ0,0) ∈ L∞(0, T ;L1(Ω)), and (µ0,0, ϕ0,0, S0,0) is a solution to (2.28)–(2.30) for
α = β = 0 that satisfies the initial conditions (2.34).
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It seems difficult to prove a uniqueness result for the solution to the limiting problem under rather gen-
eral assumptions. The arguments developed in [10] and [35] strongly use the fact that A2ρ, B2σ and
C2τ are the same operator (namely, the Laplace operator with zero Neumann boundary conditions),
and this kind of assumption is quite unpleasant in the context of the present paper. Thus, we prefer to
keep the operators A, B and C and the exponents ρ, σ and τ independent from each other. To do
this, we have to make restrictive assumptions and compatibility conditions on the structure of the sys-
tem. We recall that λ′j and L are the eigenvalues of B and the Lipschitz constant of f2, respectively,
and make the following requirement:

(A8) The following conditions are satisfied:

F1 ∈ C1(R), |f1(s)| ≤ ĉ5(|s|3 + 1) and (f1(s)− f1(s′))(s− s′) ≥ γ |s− s′|2

for some constants ĉ5 , γ > 0 and every s, s′ ∈ R . (5.17)

We have (λ′1)2σ + γ > L . (5.18)

It holds the continuous embedding V σ
B ⊂ L4(Ω) . (5.19)

P is a positive constant P0 . (5.20)

Remark 5.2. The first condition excludes singular potentials and holds for the regular potential Freg
given by (1.5). As for the strong monotonicity condition in (5.17), one can split F into F1+F2 according
to (2.18)–(2.20) by setting

F1(s) :=
1

4
s4 +

1

2
s2 and F2(s) := −s2 +

1

4
.

Then, f ′1(s) = F ′′1 (s) = 3s2 + 1 ≥ 1 for every s ∈ R, so that we can take γ = 1 in (5.17). The
compatibility condition (5.18) is not satisfied by double-well potentials if λ′1 = 0, since it reduces to
γ > L in this case and is satisfied only ifF is convex. On the contrary, if we consider the above splitting
of the regular potential Freg, then we see that (5.18) holds if λ′1 is large enough, namely if λ′1 > 1,
since γ = 1 and L = 2. If B is, e.g., the Laplace operator with zero Dirichlet boundary conditions,
then this kind of assumption on λ′1 is satisfied provided that Ω is small enough within a class of
domains having the same shape. Finally, embeddings similar to (5.19) have already been commented
in Remark 2.3, and (5.20) is not realistic in the framework of the tumor model, unfortunately.

Theorem 5.3. Besides (A1)–(A4), assume that (A8) is satisfied as well. Then the problem (2.28)–
(2.31) with α = β = 0 has at most one solution satisfying (2.23)–(2.27).

Proof. First of all, we prove that any solution (µ, ϕ, S) satisfies an equation like (1.2). The inequality
(2.29) with β = 0 becomes

(
Bσϕ(t), Bσ(ϕ(t)− w)

)
+

∫
Ω

F1(ϕ(t)) ≤
(
µ(t)− f2(ϕ(t)), ϕ(t)− w

)
+

∫
Ω

F1(w)

for a.e. t ∈ (0, T ) and every w ∈ V σ
B . We can take, in particular, w = ϕ(t) − εv with any v ∈ V σ

B

and ε ∈ (0, 1). We then obtain that

(
Bσϕ(t), Bσv

)
+

∫
Ω

F1(ϕ(t))− F1(ϕ(t)− εv)

ε
≤
(
µ(t)− f2(ϕ(t)), v

)
.
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Now, for fixed t, we apply the mean value theorem, the growth condition in (5.17) and the Young
inequality. Using the integral remainder, we have a.e. in Ω that

|F1(ϕ(t))− F1(ϕ(t)− εv)| =
∣∣∣∣∫ 1

0

f1(ϕ(t)− θεv)εv dθ

∣∣∣∣
≤ ĉ5

(
(|ϕ(t)|+ ε|v|)3 + 1

)
ε |v| ≤ εC(|ϕ(t)|4 + |v|4 + 1) ,

with some constant C proportional to ĉ5. Since |ϕ(t)|4 + |w|4 ∈ L1(Ω) thanks to the embed-
ding (5.19), we can apply the Lebesgue dominated convergence theorem and let ε tend to zero.
We deduce an inequality holding for every v ∈ V σ

B . Since v is arbitrary, we obtain the equality

(
Bσϕ(t), Bσv

)
+

∫
Ω

f1(ϕ(t)) v =
(
µ(t)− f2(ϕ(t)), v

)
, (5.21)

which is valid for a.e. t ∈ (0, T ) and every v ∈ V σ
B .

We notice that the integral in (5.21) cannot be written as (f1(ϕ(t)), v), since we do not know that
f1(ϕ(t)) belongs to H . However, it belongs to L4/3(Ω), since ϕ(t) ∈ V σ

B ⊂ L4(Ω) and the growth
condition in (5.17)) is in force. For this reason, if we also assume that V σ

B is dense in L4(Ω), then we
can write (1.2) in the sense of V −σB by accounting for the consequent embedding L4/3(Ω) ⊂ V −σB .
However, we will use just (5.21) as it is.

We are ready to prove uniqueness. We pick two solutions (µi, ϕi, Si), i = 1, 2, and set for conve-
nience µ := µ1 − µ2, ϕ1 − ϕ2, and S := S1 − S2. We write (2.28) and (2.30) for both solutions and
take the differences. By recalling (5.20), we arrive at the identities

〈 ∂tϕ(t), v 〉V ρA +
(
Aρµ(t), Aρv

)
= P0

(
S(t)− µ(t), v

)
,

〈 ∂tS(t), v 〉V τC +
(
CτS(t), Cτv

)
= −P0

(
S(t)− µ(t), v

)
,

which hold for every v ∈ V ρ
A and v ∈ V τ

C , respectively. Now, we integrate these equations with respect
to time and, for X Banach space and w ∈ L1(0, T ;X), we use the notation

(1 ∗ w)(t) :=

∫ t

0

w(s) ds for every t ∈ [0, T ].

Hence, we obtain(
ϕ(t), v

)
+
(
Aρ(1 ∗ µ)(t), Aρv

)
= P0

(
(1 ∗ (S − µ))(t), v

)
,(

S(t), v
)

+
(
Cτ (1 ∗ S)(t), Cτv

)
= −P0

(
(1 ∗ (S − µ))(t), v

)
,

for the same test functions v as before. At this point, we choose v = µ(t) and v = S(t) in these
identities, respectively. Then, we integrate with respect to time, sum up and rearrange. We deduce, for
every t ∈ [0, T ], that

1

2
‖Aρ(1 ∗ µ)(t)‖2 +

∫ t

0

‖S(s)‖2 ds

+
1

2
‖Cτ (1 ∗ S)(t)‖2 +

P0

2
‖1 ∗ (S − µ))(t)‖2 = −

∫ t

0

(
ϕ(s), µ(s)

)
ds. (5.22)
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Next, we write equation (5.21) for both solutions and choose v = ϕ(t) in the difference. By integrating
with respect to time, we infer that∫ t

0

‖Bσϕ(s)‖2 ds+

∫
Qt

(
f1(ϕ1)− f1(ϕ2)

)
ϕ

=

∫ t

0

(
µ(s), ϕ(s)

)
ds−

∫
Qt

(
f2(ϕ1)− f2(ϕ2)

)
ϕ.

Now, we account for the obvious inequality ‖Bσv‖2 ≥ (λ′1)2σ‖v‖2, the assumption (5.17), and the
Lipschitz continuity of f2 (cf. (2.19) and (2.22)), in order to deduce that

(λ′1)2σ

∫ t

0

‖ϕ(s)‖2 ds+ γ

∫
Qt

|ϕ|2 ≤
∫ t

0

(
µ(s), ϕ(s)

)
ds+ L

∫
Qt

|ϕ|2 (5.23)

for every t ∈ [0, T ]. Now, we add (5.22) and (5.23), note that there is a cancellation and finally apply
(5.18). Hence, we conclude in particular that ϕ = 0, S = 0, 1 ∗ (S − µ) = 0. The latter implies that
S − µ = 0, whence µ = 0 as well. We have thus proved that ϕ1 = ϕ2, S1 = S2 and µ1 = µ2.

Remark 5.4. The same assumption (A8) (possibly reinforced by also supposing that f1 and f2 are
C1 functions) can be used to prove a regularity result in the case α > 0 and β = 0. Here we sketch a
formal proof under suitable assumptions on the initial data, by observing that (A8) ensures the validity
of (5.21) also in this case. Indeed, the argument used in the proof of Theorem 5.3 to derive (5.21) only
regards the variational inequality satisfied by ϕ for β = 0 and thus still holds if α > 0. We differentiate
(2.28) and (2.30) with respect to time and test the equalities we get by ∂tµ and ∂tS, respectively. At the
same time, we test the time derivative of (5.21) by ∂tϕ. Then, we sum up and integrate over (0, t). The
terms involving the product (∂tµ, ∂tϕ) cancel each other, and we obtain (by omitting the integration
variable s to shorten the lines) the identity

α

∫ t

0

‖∂tµ‖2 ds+
1

2
‖Aρµ(t)‖2 +

∫ t

0

‖Bσ∂tϕ‖2 ds+

∫
Qt

f ′1(ϕ) |∂tϕ|2

+

∫ t

0

‖∂tS‖2 ds+
1

2
‖CτS(t)‖2 +

P0

2
‖S(t)− µ(t)‖2

=
1

2
‖Aρµ0‖2 +

1

2
‖CτS0‖2 +

P0

2
‖S0 − µ0‖2 −

∫
Qt

f ′2(ϕ) |∂tϕ|2 .

Now, from one side, we have that ‖Bσ∂tϕ‖2 ≥ (λ′1)2σ‖∂tϕ‖2. On the other hand, (5.17) and (2.19)
imply that f ′1(ϕ) ≥ γ and |f ′2(ϕ)| ≤ L a.e. in Q. Therefore, we derive, for every δ > 0, that∫ t

0

‖Bσ∂tϕ‖2 ds+

∫
Qt

f ′1(ϕ) |∂tϕ|2 +

∫
Qt

f ′2(ϕ) |∂tϕ|2

≥ δ

∫ t

0

‖Bσ∂tϕ‖2 ds+
(
(1− δ)(λ′1)2σ + γ − L

) ∫ t

0

‖∂tϕ‖2 ds .

By choosing δ > 0 such that (1− δ)(λ′1)2σ + γ > L on account of (5.18), we conclude that

‖∂tµ‖L2(0,T ;H) + ‖Aρµ‖L∞(0,T ;V ρA) + ‖∂tϕ‖L2(0,T ;V σB )

+ ‖∂tS‖L2(0,T ;H) + ‖CτS‖L∞(0,T ;H) + ‖S − µ‖L∞(0,T ;H) ≤ C ,

where C depends only on the structural assumptions and the norms of the initial data involved in the
calculation.
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