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Stochastic homogenization of Λ-convex gradient flows

Martin Heida, Stefan Neukamm, Mario Varga

Abstract. In this paper we present a stochastic homogenization result for a class of Hilbert
space evolutionary gradient systems driven by a quadratic dissipation potential and a Λ-
convex energy functional featuring random and rapidly oscillating coefficients. Specific ex-
amples included in the result are Allen-Cahn type equations and evolutionary equations
driven by the p-Laplace operator with p ∈ (1,∞). The homogenization procedure we apply
is based on a stochastic two-scale convergence approach. In particular, we define a stochastic
unfolding operator which can be considered as a random counterpart of the well-established
notion of periodic unfolding. The stochastic unfolding procedure grants a very convenient
method for homogenization problems defined in terms of (Λ-)convex functionals.

1. Introduction. Homogenization theory deals with the derivation of effective, macroscopic
models for problems that involve two or more length (or time) scales. In stochastic homoge-
nization the considered models are described in terms of coefficient fields that are randomly
varying on a small scale, say 0 < ε � 1. A typical situation involves stationary random
coefficient fields of the form Rd 3 x 7→ a(ω, x

ε
) = a0(τx

ε
ω) where ω ∈ Ω stands for a “random

configuration” and a0 is defined on a probability space (Ω,F , P ) that is equipped with a
measure preserving action τx : Ω → Ω, see Section 2 for the precise description of random
coefficients.

In this paper we consider stochastic homogenization of gradient flows defined in terms of
two integral functionals with random and rapidly-oscillating integrands—a quadratic dissi-
pation functional Rε : Y → R and a Λ-convex energy functional Eε : Y → R ∪ {∞}. In
particular, these functionals are defined on a state space Y = L2(Ω × Q) (the dual space is
denoted by Y ∗), where Q ⊂ Rd is open and bounded, and they admit the form

Rε(ẏ) =
1

2

∫

Ω

∫

Q

r(τx
ε
ω, x)|ẏ(ω, x)|2dxdP (ω),

Eε(y) =

∫

Ω

∫

Q

V (τx
ε
ω, x,∇y(ω, x)) + f(τx

ε
ω, x, y(ω, x))dxdP (ω).

Besides usual measurability statements, the main assumptions for V (ω, x, ·) are convexity
and p-growth conditions with p ∈ (1,∞), and we assume that f(ω, x, ·) has θ-growth with
θ ∈ [2,∞) and it is λ-convex, i.e., there exists λ ∈ R such that f(ω, x, ·) − λ

2
| · |2 is convex.

The latter implies that Eε(·)−ΛRε(·) is convex for suitable Λ ∈ R, i.e., Eε is Λ-convex w.r.t.
Rε. For the precise definitions and assumptions, see Section 2.

The evolution of the gradient flow is described by a state variable y ∈ H1(0, T ;Y ) and it
is determined by the following differential inclusion

0 ∈ DRε(ẏ(t)) + ∂FEε(y(t)) for a.e. t ∈ (0, T ), y(0) = y0 ∈ Y. (1)

Above, ∂FEε : Y → 2Y
∗

denotes the Frechét subdifferential (see [25]), which is, in the specific
case of a Λ-convex energy Eε, given by: ξ ∈ ∂FEε(y) if

Eε(y) ≤ Eε(ỹ) + 〈ξ, y − ỹ〉Y ∗,Y − ΛRε(ỹ − y) for all ỹ ∈ Y.
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M. Heida, S. Neukamm, M. Varga 2

In this regard, the differential inclusion from (1) is equivalent to the evolutionary variational
inequality (EVI )

〈DRε(ẏ(t)), y(t)− ỹ〉Y ∗,Y ≤ Eε(ỹ)− Eε(y(t))− ΛRε(y(t)− ỹ), (EVI)

for all ỹ ∈ Y . We refer to the textbooks [10, 51, 42, 3] for a general and detailed theory
of gradient flows. In the simple case V (ω, x, F ) = A(ω, x)F · F and f(ω, x, α) = α4 − α2,
(1) corresponds to the weak formulation of an Allen-Cahn equation. Also, in the case that
V (ω, x, F ) = a(ω, x)|F |p with p ∈ (1,∞), the evolution is driven by the p-Laplace operator
with oscillatory coefficients.

In the limit ε → 0, we derive an effective gradient flow given in terms of a state space
Y0 = L2

inv(Ω) ⊗ L2(Q) and homogenized functionals Rhom : Y0 → R, Ehom : Y0 → R ∪ {∞},
see Section 2 for the specific definitions. In particular, we obtain the following well-prepared
E-convergence statement for the limit ε→ 0:

If yε(0)→ y(0) strongly in Y, Eε(yε(0))→ Ehom(y(0)),

then for all t ∈ [0, T ], yε(t)→ y(t) strongly in Y, Eε(yε(t))→ Ehom(y(t)),

where yε and y denote the unique solutions to the gradient flows given in terms of (Y, Eε,Rε)
and (Y0, Ehom,Rhom), respectively (see Theorem 2.3).

The proof of this homogenization result relies on a general approach for asymptotic analysis
of gradient flows and on the stochastic unfolding procedure, which we briefly explain in the
following:

General approach. In the last decades, a number of general strategies for asymptotic
analysis of sequences of abstract gradient systems were developed, we refer to [30] for a
comprehensive overview. In particular, an early contribution in this field is obtained in [5, 6],
where gradient flows on an abstract Hilbert space with fixed dissipation potential Rε = R
and convex energy functionals Eε are considered. In this setting, e.g., Mosco convergence

Eε M→ E0 is sufficient to conclude well-prepared E-convergence. Novel strategies have been
developed in [43, 45] and [32], which allow the treatment of very general problems with varying
(nonquadratic, convex) dissipation potentials Rε and possibly nonconvex energy functionals
Eε. They are based on De Giorgi’s (R,R∗) formulation (see, e.g., [30, Introduction]). Also,
using an integrated version of the (EVI) formulation, in [15] a method for sequences with
Λ-convex energies is proposed (see also [29]). In [47], the Brezis-Ekeland-Nayroles principle
is utilized for the development of a procedure for E-convergence for convex dissipation and
energy functionals.

Many approaches for proving E-convergence for problems with nonconvex energy function-
als rely on the relative compactness in Y of the energy “sublevels” {y ∈ Y : Eε(y) ≤ c, ∀ε}
(or a similar strong-type compactness property). In our specific problem (which involves a
nonconvex, Λ-convex energy functional) we only have compactness in weak topologies at our
disposal. The lack of compactness in a strong topology is due to two reasons. The first
reason comes from the fact that we consider convergence in the L2-probability space: While
in the deterministic periodic case (i.e., when x 7→ τxω is periodic almost surely), the compact
embedding H1(Q) ⊂⊂ L2(Q) yields strong compactness of the energy sublevels if p = 2,
in the general stochastic setting, the embedding of L2(Ω) ⊗ H1(Q) into L2(Ω × Q) is not
compact. The second reason is a possible mismatch between the growth of f and the growth
control via V : If p < 2 and d is large, then even in the deterministic periodic case we are not
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Stochastic homogenization of gradient flows 3

able to obtain apriori strong L2-type compactness. For this reason, we consider a modified
approach that we briefly describe in the following and we refer to Sections 2 and 4 for details.

We define a new time-dependent energy functional Ẽε : [0, T ]× Y → R ∪ {∞},
Ẽε(t, u) = e2ΛtEε(e−Λtu)− ΛRε(u),

for which Ẽε(t, ·) is convex. If yε satisfies (EVI) a.e., then using the Fenchel equivalence the
new variable uε(t) := eΛtyε(t) fulfills (cf. Lemma 4.1)

〈DRε(u̇ε(t)), uε(t)〉Y ∗,Y + Ẽε(t, uε(t)) + Ẽ∗ε (t,−DRε(u̇ε(t))) = 0, (2)

where Ẽ∗ε (t, ·) denotes the convex conjugate of Ẽε(t, ·). Using the chain rule and the quadratic
structure of Rε in form of (DRε)

∗ = DRε, we have d
dt
Rε(uε(t)) = 〈DRε(uε(t)), u̇ε(t)〉Y ∗,Y =

〈DRε(u̇ε(t)), uε(t)〉Y ∗,Y . Hence, an integration of (2) over (0, T ) yields

Rε(uε(T )) +

∫ T

0

Ẽε(t, uε(t)) + Ẽ∗ε (t,−DRε(u̇ε(t)))dt = Rε(uε(0)). (3)

This formulation is equivalent to (EVI) and it is convenient for passing to the limit ε → 0
by only using weak convergence of the solution yε (resp. uε). In fact, (3) is the analogue
of the formulation used in the general convex case in [5, 6] with the difference that in our
case the energy functionals are time dependent and that the dissipation functionals feature
oscillations on scale ε.

Stochastic unfolding. In order to conduct the limit passage ε → 0 in (3), we are
required to treat objects with random and rapidly oscillating coefficients. For this task,
we introduce the stochastic unfolding method that allows a straightforward analysis and it
presents a random counterpart of the well-established periodic unfolding method.

The notion of periodic two-scale convergence [38, 2] (see also [27]) and the periodic un-
folding procedure [13] (see also [14, 49, 33]) are prominent and useful tools in multiscale
modeling and homogenization suited for problems involving periodic coefficients. We refer
to some of the many problems treated using these methods [27, 12, 20, 33, 34, 31, 26, 21].
In the stochastic setting, the notion of two-scale convergence is generalized in [9] (see also
[4, 44]) and in [53] (see also [28, 18, 22]). Yet, as far as we know, the concept of unfolding
has not been investigated earlier in the stochastic case.

We extend the idea of the periodic unfolding procedure to the stochastic case. Namely,
we introduce a linear isometric operator, the stochastic unfolding operator, that enjoys many
similarities to the periodic unfolding operator. Also, similarly as in the periodic case, sto-
chastic two-scale convergence in the mean from [9] might be equivalently characterized as
weak convergence of the unfolded sequence. In this respect, we develop a general procedure
for stochastic homogenization problems, see also [48] for a detailed analysis of this method,
and [36] for an extension to abstract, linear evolution systems in an operator theoretic frame-
work. Stochastic unfolding has first been introduced by the second and third author in a
discrete version in [35] where the discrete-to-continuum limit of a rate-independent evolution
is analyzed.

Related results. In the periodic setting homogenization results of this type are obtained for
quasilinear parabolic equations, e.g., in [37, 50, 19] (via two-scale convergence and unfolding),
for reaction-diffusion systems with different diffusion length scales in [31] (via unfolding), for
Cahn-Hilliard type gradient flows in [26] (via unfolding). In the stochastic case, parabolic
type equations are treated in [52, 16, 23, 17]. However, the approach we consider is different,
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M. Heida, S. Neukamm, M. Varga 4

it relies on the more general gradient flow formulation and we do not rely on differentiability
of the integrands V and f and on continuity assumptions on their derivatives.

Structure of the paper. In Section 2 we present the main stochastic homogenization
result of this paper. Section 3 is dedicated to the introduction of the stochastic unfolding
procedure. In Section 4 we present the proof of the main Theorem 2.3.

Notation. (Ω,F , P ) denotes a complete and separable probability space, the corresponding
mathematical expectation is denoted by 〈·〉 =

∫
Ω
·dP (ω). For Q ⊂ Rd open, we denote

by L(Q) the Lebesgue σ-algebra. For a Banach space X, its dual space is denoted by X∗

and the Borel σ-algebra on X is given by B(X). For p ∈ (1,∞), Lp(Ω) and Lp(Q) are the
usual Banach spaces of p-integrable functions defined on (Ω,F , P ) and Q, respectively. We
introduce function spaces for functions defined on Ω × Q as follows: For closed subspaces
X ⊂ Lp(Ω) and Z ⊂ Lp(Q), we denote by X ⊗ Z the closure of

X
a
⊗ Z :=

{
n∑

i=1

ϕiηi : ϕi ∈ X, ηi ∈ Z, n ∈ N

}

in Lp(Ω × Q). Note that in the case X = Lp(Ω) and Z = Lp(Q), we have X ⊗ Z =
Lp(Ω × Q). Up to isometric isomorphisms, we may identify Lp(Ω × Q) with the Bochner
spaces Lp(Ω;Lp(Q)) and Lp(Q;Lp(Ω)). Slightly abusing the notation, for closed subspaces
X ⊂ Lp(Ω) and Z ⊂ W 1,p(Q), we denote by X ⊗ Z the closure of

X
a
⊗ Z :=

{
n∑

i=1

ϕiηi : ϕi ∈ X, ηi ∈ Z, n ∈ N

}

in Lp(Ω;W 1,p(Q)). In this regard, we may identify u ∈ Lp(Ω) ⊗ W 1,p(Q) with the pair
(u,∇u) ∈ Lp(Ω×Q)1+d. We mostly focus on the space Lp(Ω×Q) and the above notation is
convenient for keeping track of its various subspaces.

2. Homogenization of gradient flows. First, we briefly recall the standard functional
analytic setting for stochastic homogenization introduced by Papanicolaou and Varadhan in
[39] (see also [24]). In the second part of this section we present the main homogenization
result.

Assumption 2.1. Let (Ω,F , P ) be a complete and separable probability space. Let τ =
{τx}x∈Rd denote a group of invertible measurable mappings τx : Ω→ Ω such that:

(i) (Group property). τ0 = Id and τx+y = τx ◦ τy for all x, y ∈ Rd.
(ii) (Measure preservation). P (τxE) = P (E) for all E ∈ F and x ∈ Rd.

(iii) (Measurability). (ω, x) 7→ τxω is
(
F ⊗ L(Rd),F

)
-measurable.

Throughout the paper we assume that (Ω,F , P, τ) satisfies Assumption 2.1. The separabil-
ity assumption on the measure space implies that Lp(Ω) is separable. We say that (Ω,F , P, τ)
is ergodic (〈·〉 is ergodic), if

every shift invariant E ∈ F (i.e., τxE = E for all x ∈ Rd) satisfies P (E) ∈ {0, 1} .
We introduce two auxiliary subspaces of Lp(Ω) that are important for the homogenization

procedure. We consider the group of isometric operators {Ux}x∈Rd , Ux : Lp(Ω) → Lp(Ω)
defined by Uxϕ(ω) = ϕ(τxω). This group is strongly continuous (see [24, Section 7.1]). For
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Stochastic homogenization of gradient flows 5

i = 1, ..., d, we consider the one-parameter group of operators {Uhei}h∈R ({ei} being the usual
basis of Rd) and its infinitesimal generator Di : Di ⊂ Lp(Ω)→ Lp(Ω),

Diϕ = lim
h→0

Uheiϕ− ϕ
h

,

which we refer to as the stochastic derivative. Di is a linear and closed operator and its
domain Di is dense in Lp(Ω). We set W 1,p(Ω) = ∩di=1Di and define for ϕ ∈ W 1,p(Ω) the
stochastic gradient as Dϕ = (D1ϕ, ..., Ddϕ). In this manner, we obtain a linear, closed and
densely defined operator D : W 1,p(Ω)→ Lp(Ω)d, and we denote by

Lppot(Ω) := ran(D) ⊂ Lp(Ω)d

the closure of the range of D in Lp(Ω)d. We denote the adjoint of D by D∗ : D∗ ⊂ Lq(Ω)d →
Lq(Ω) which is a linear, closed and densely defined operator, D∗ denotes the domain of D∗

and q = p
p−1

. Note that W 1,q(Ω)d ⊂ D∗ and for all ϕ ∈ W 1,p(Ω) and ψ ∈ W 1,q(Ω) we have

the integration by parts formula, i = 1, ..., d,

〈ψDiϕ〉 = −〈ϕDiψ〉 ,
and thus D∗ψ = −∑d

i=1 Diψi for ψ ∈ W 1,q(Ω)d. We define the subspace of shift-invariant
functions in Lp(Ω) by

Lpinv(Ω) =
{
ϕ ∈ Lp(Ω) : Uxϕ = ϕ for all x ∈ Rd

}
,

and denote by Pinv : Lp(Ω) → Lpinv(Ω) the conditional expectation with respect to the σ-
algebra of shift invariant sets

{
E ∈ F : τxE = E for all x ∈ Rd

}
. Pinv is a contractive pro-

jection and for p = 2 it coincides with the orthogonal projection onto L2
inv(Ω). Also, if 〈·〉 is

ergodic, then it holds Lpinv(Ω) ' R and Pinvϕ = 〈ϕ〉.
Heterogeneous system. Let Q ⊂ Rd be open and bounded. Let p ∈ (1,∞) and θ ∈ [2,∞).
The system that we consider is defined on a state space

Y = L2(Ω×Q).

The dissipation functional is given by Rε : Y → [0,∞),

Rε(ẏ) =
1

2

〈∫

Q

r(τx
ε
ω, x)|ẏ(ω, x)|2dx

〉
.

The energy functional Eε : Y → R ∪ {∞} is defined as

Eε(y) =

〈∫

Q

V (τx
ε
ω, x,∇y(ω, x)) + f(τx

ε
ω, x, y(ω, x))dx

〉
,

for y ∈ (Lp(Ω) ⊗ W 1,p
0 (Q)) ∩ Lθ(Ω × Q) =: dom(Eε) and Eε = ∞ otherwise. Above, r :

Ω × Q → R, V : Ω × Q × Rd → R and f : Ω × Q × R → R and we consider the following
assumptions: There exists c > 0 such that:

(A1) r is F ⊗ L(Q)-measurable and for a.e. (ω, x) ∈ Ω×Q, we have 1
c
≤ r(ω, x) ≤ c.

(A2) V (·, ·, F ) is F ⊗ L(Q)-measurable for all F ∈ Rd, V (ω, x, ·) is convex for a.e. (ω, x) ∈
Ω×Q and

1

c
|F |p − c ≤ V (ω, x, F ) ≤ c(|F |p + 1) (4)

for a.e. (ω, x) ∈ Ω×Q and all F ∈ Rd.
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(A3) f(·, ·, α) is F ⊗ L(Q)-measurable for all α ∈ R. There exists λ ∈ R such that for a.e.
(ω, x) ∈ Ω×Q

f(ω, x, ·) is λ-convex, i.e., α 7→ f(ω, x, α)− λ

2
|α|2 is convex,

1

c
|α|θ − c ≤ f(ω, x, α) ≤ c(|α|θ + 1) for all α ∈ R. (5)

We remark that the above assumptions imply that there exists Λ ∈ R such that y 7→ Eε(y)−
ΛRε(y) is convex, i.e. Eε is Λ-convex w.r.t. Rε. In particular, if λ < 0, then we set Λ = λc,
and in the case λ ≥ 0, Λ = λ

c
.

Let T > 0 be a finite time horizon. We consider the evolutionary variational inequality
(EVI) formulation of the gradient flow (Y, Eε,Rε): Find y ∈ H1(0, T ;Y ) such that for a.e.
t ∈ (0, T ),

〈DRε(ẏ(t)), y(t)− ỹ〉Y ∗,Y ≤ Eε(ỹ)− Eε(y(t))− ΛRε(y(t)− ỹ) for all ỹ ∈ Y. (6)

Remark 2.2 (Existence and uniqueness). Assumptions (A1)-(A3) imply that Eε is proper,
l.s.c., coercive and Λ-convex w.r.t. Rε. In this respect, the classical theory of maximal
monotone operators with Lipschitz perturbations implies that for an initial datum y0 ∈
dom(Eε), there exists a unique y ∈ H1(0, T ;Y ) which satisfies (6) and y(0) = y0, see [10, 7],
where the Yosida regularization technique is used for the proof of this result. In view of the
continuous embedding H1(0, T ;Y ) ⊂ C([0, T ], Y ), we identify functions in H1(0, T ;Y ) by
their continuous representatives. Moreover, the following standard apriori estimate holds

∫ t

0

Rε(ẏ(s))ds ≤ Eε(y0)− Eε(y(t)) for all t ∈ [0, T ], (7)

which follows by testing (1) with ẏ(s) and by the chain rule for the Λ-convex functional Eε.
(7) in combination with the growth conditions (4) and (5) yields

‖y(t)‖p
Lp(Ω)⊗W 1,p

0 (Q)
+ ‖y(t)‖θLθ(Ω×Q) ≤ c

(
Eε(y0) + 2c

)
. (8)

Effective system. In the limit ε→ 0, we derive an effective gradient flow which is described
as follows. The state space is given by

Y0 = L2
inv(Ω)⊗ L2(Q).

The effective dissipation potential is given by Rhom : Y0 → [0,∞),

Rhom(ẏ) =

〈∫

Q

r(ω, x)|ẏ(ω, x)|2dx
〉
.

The energy functional is Ehom : Y0 → R ∪ {∞},

Ehom(y) = inf
χ∈Lppot(Ω)⊗Lp(Q)

〈∫

Q

V (ω, x,∇y(ω, x) + χ(ω, x)) dx

〉

+

〈∫

Q

f(ω, x, y(ω, x))dx

〉 (9)

for y ∈ (Lpinv(Ω)⊗W 1,p
0 (Q))∩

(
Lθinv(Ω)⊗ Lθ(Q)

)
=: dom(Ehom) and Ehom =∞ otherwise. We

remark that Ehom(·)− ΛRhom(·) is convex with the same Λ ∈ R as for Eε.

DOI 10.20347/WIAS.PREPRINT.2594 Berlin 2018



Stochastic homogenization of gradient flows 7

The gradient flow (Y0, Ehom,Rhom) in the EVI formulation also admits a unique solution,
i.e., for an initial datum y0 ∈ dom(Ehom), there exists a unique y ∈ H1(0, T ;Y0) such that
y(0) = y0 and for a.e. t ∈ (0, T ),

〈DRhom(ẏ(t)), y(t)− ỹ〉Y ∗0 ,Y0 ≤ Ehom(ỹ)− Ehom(y(t))− ΛRhom(y(t)− ỹ), (10)

for all ỹ ∈ Y0.
The main result of this paper is the following homogenization theorem. In particular,

the proof relies on the modified abstract strategy discussed in the introduction and on the
stochastic unfolding procedure that is explained in Section 3.

Theorem 2.3 (Homogenization). Let p ∈ (1,∞), θ ∈ [2,∞) and Q ⊂ Rd be open and
bounded. Assume (A1)-(A3), and consider y0 ∈ dom(Ehom), y0

ε ∈ dom(Eε) such that, as
ε→ 0,

y0
ε → y0 strongly in Y, lim sup

ε→0
Eε(y0

ε) <∞.

Let yε ∈ H1(0, T ;Y ) be the unique solution to the EVI (6) with yε(0) = y0
ε . Then, for all

t ∈ (0, T ], as ε→ 0,

yε(t)→ y(t) strongly in Y,

where y ∈ H1(0, T ;Y0) is the unique solution to the EVI (10) with y(0) = y0. Moreover, if we
additionally assume that Eε(y0

ε)→ Ehom(y0), then it holds that ẏε → ẏ strongly in L2(0, T ;Y )
and Eε(yε(t))→ Ehom(y(t)) for all t ∈ [0, T ].
(For the proof see Section 4.)

Remark 2.4 (Convergence of gradients). We remark that in the proof we additionally show

that yε(t)
2
⇀ y(t) in Lθ(Ω × Q) and in Lp(Ω × Q), where “

2
⇀” is weak stochastic two-scale

convergence in the mean defined in Definition 3.2. Also, it holds Pinv∇yε(t) ⇀ ∇y(t) weakly
in Lp(Ω × Q)d. If we additionally assume that V (ω, x, ·) is strictly convex, we may obtain
that for all t ∈ (0, T ] it holds

∇yε(t) 2
⇀ ∇y(t) + χ(t) in Lp(Ω×Q)d,

where χ(t) ∈ Lppot(Ω)⊗ Lp(Q) is the unique minimizer in the corrector problem

inf
χ∈Lppot(Ω)⊗Lp(Q)

〈∫

Q

V (ω, x,∇y(t, ω, x) + χ(ω, x))dx

〉
.

Remark 2.5 (Ergodic case). If we additionally assume that 〈·〉 is ergodic, the limit system
is driven by deterministic functionals. In particular, the state space reduces to Y0 = L2(Q).
The dissipation potential is given by

Rhom(ẏ) =

∫

Q

rhom(x)|ẏ(x)|2dx,

where rhom(x) = 〈r(ω, x)〉. The energy functional boils down to

Ehom(y) =

∫

Q

Vhom (x,∇y(x)) + fhom(x, y(x))dx

in W 1,p
0 (Q) ∩ Lθ(Q) and otherwise ∞. Above, fhom(x, α) = 〈f(ω, x, α)〉 for x ∈ Q and

α ∈ R, and Vhom(x, F ) = infχ∈Lppot(Ω) 〈V (x, ω, F + χ(ω))〉 for x ∈ Q, F ∈ Rd. Moreover, Vhom

satisfies analogous p-growth conditions as V . The identification of Ehom can be obtained by
a measurable selection argument from Remark A.5 (cf. proof of Lemma 4.4).
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3. Stochastic unfolding method. In this section we introduce the stochastic unfolding
method. In particular, in Section 3.1 we define the unfolding operator and present its main
properties. In Section 3.2 we obtain weak two-scale type compactness statements and we
construct suitable recovery sequences. To keep the exposition simple, the proofs are presented
in the end, in Section 3.3.

3.1. Stochastic unfolding operator and two-scale convergence in the mean.

Lemma 3.1. Let ε > 0, p ∈ (1,∞), q = p
p−1

, and Q ⊂ Rd be open. There exists a unique

linear isometric isomorphism

Tε : Lp(Ω×Q)→ Lp(Ω×Q)

which satisfies

for all u ∈ Lp(Ω)
a
⊗ Lp(Q), (Tεu)(ω, x) = u(τ−x

ε
ω, x) a.e. in Ω×Q.

Moreover, its adjoint is the unique linear isometric isomorphism T ∗ε : Lq(Ω×Q)→ Lq(Ω×Q)

that satisfies for all u ∈ Lq(Ω)
a
⊗ Lq(Q), (T ∗ε u)(ω, x) = u(τx

ε
ω, x) a.e. in Ω×Q.

(For the proof see Section 3.3.)

Definition 3.2 (Unfolding operator and two-scale convergence in the mean). The operator
Tε : Lp(Ω×Q)→ Lp(Ω×Q) from Lemma 3.1 is called the stochastic unfolding operator. We
say that a sequence (uε) ⊂ Lp(Ω×Q) weakly (strongly) two-scale converges in the mean in
Lp(Ω×Q) to u ∈ Lp(Ω×Q) if, as ε→ 0,

Tεuε → u weakly (strongly) in Lp(Ω×Q).

In this case we write uε
2
⇀ u (resp. uε

2→ u) in Lp(Ω×Q).

The below lemma directly follows from the isometry property of Tε and the usual properties
of weak and strong convergence in Lp(Ω×Q); therefore, we do not present its proof.

Lemma 3.3 (Basic properties). Let p ∈ (1,∞), q = p
p−1

and Q ⊂ Rd be open. Consider

sequences (uε) in Lp(Ω×Q) and (vε) in Lq(Ω×Q).

(i) If uε
2
⇀ u in Lp(Ω×Q), then supε∈(0,1) ‖uε‖Lp(Ω×Q) <∞ and

‖u‖Lp(Ω×Q) ≤ lim inf
ε→0

‖uε‖Lp(Ω×Q) .

(ii) If lim supε→0 ‖uε‖Lp(Ω×Q) < ∞, then there exist a subsequence ε′ and u ∈ Lp(Ω × Q)

such that uε′
2
⇀ u in Lp(Ω×Q).

(iii) uε
2→ u in Lp(Ω×Q) if and only if uε

2
⇀ u in Lp(Ω×Q) and ‖uε‖Lp(Ω×Q) → ‖u‖Lp(Ω×Q).

(iv) If uε
2
⇀ u in Lp(Ω×Q) and vε

2→ v in Lq(Ω×Q), then
〈∫

Q

uε(ω, x)vε(ω, x)dx

〉
→
〈∫

Q

u(ω, x)v(ω, x)dx

〉
.

For homogenization of variational problems, in particular problems driven by convex inte-
gral functionals, the following transformation and (lower semi-)continuity properties are very
useful.
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Proposition 3.4. Let p ∈ (1,∞) and Q ⊂ Rd be open and bounded. Let V : Ω×Q×Rm → R
be such that V (·, ·, F ) is F⊗L(Q)-measurable for all F ∈ Rm and V (ω, x, ·) is continuous for
a.e. (ω, x) ∈ Ω×Q. Also, we assume that there exists c > 0 such that for a.e. (ω, x) ∈ Ω×Q

|V (ω, x, F )| ≤ c(1 + |F |p), for all F ∈ Rm.

(i) For all u ∈ Lp(Ω×Q)m, we have
〈∫

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
=

〈∫

Q

V (ω, x, Tεu(ω, x))dx

〉
. (11)

(ii) If uε
2→ u in Lp(Ω×Q)m, then

lim
ε→0

〈∫

Q

V (τx
ε
ω, x, uε(ω, x))dx

〉
=

〈∫

Q

V (ω, x, u(ω, x))dx

〉
.

(iii) We additionally assume that for a.e. (ω, x) ∈ Ω × Q, V (ω, x, ·) is convex. Then, if

uε
2
⇀ u in Lp(Ω×Q)m,

lim inf
ε→0

〈∫

Q

V (τx
ε
ω, x, uε(ω, x))dx

〉
≥
〈∫

Q

V (ω, x, u(ω, x))dx

〉
.

(For the proof see Section 3.3.)

Remark 3.5 (Comparison to the notion of [9]). The notion of weak two-scale convergence in
the mean of Definition 3.2, i.e., weak convergence of unfolded sequences, coincides with the
convergence notion introduced in [9] (see also [4]). More precisely, for a bounded sequence

(uε) ⊂ Lp(Ω × Q) we have uε
2
⇀ u in Lp(Ω × Q) (in the sense of Definition 3.2) if and only

if uε stochastically two-scale converges in the mean to u in the sense of [9], i.e.

lim
ε→0

〈∫

Q

uε(ω, x)ϕ(τx
ε
ω, x)dx

〉
=

〈∫

Q

u(ω, x)ϕ(ω, x)dx

〉
, (12)

for any ϕ ∈ Lq(Ω×Q) that is admissible (in the sense that the mapping (ω, x) 7→ ϕ(τx
ε
ω, x)

is well-defined). Indeed, with help of Tε (and its adjoint) we might rephrase the integral on
the left-hand side in (12) as

〈∫

Q

uε(T ∗ε ϕ) dx

〉
=

〈∫

Q

(Tεuε)ϕdx
〉
, (13)

which proves the equivalence. For the reason of this equivalence, we use the terms weak and
strong stochastic two-scale convergence in the mean instead of talking about weak or strong
convergence of unfolded sequences.

The arguments in this paper are inspired by both, the unfolding approach—we transform
intregrals with oscillations into integrals without (or controlable) oscillations—and two-scale
convergence in the sense that we make use of oscillating test-functions.

3.2. Two-scale limits of gradients. The following proposition presents a weak two-scale
compactness statement for sequences of gradient fields.

Proposition 3.6 (Compactness). Let p ∈ (1,∞) and Q ⊂ Rd be open. Let (uε) be a
bounded sequence in Lp(Ω) ⊗W 1,p(Q). Then, there exist u ∈ Lpinv(Ω) ⊗W 1,p(Q) and χ ∈
Lppot(Ω)⊗ Lp(Q) such that, up to a subsequence,

uε
2
⇀ u in Lp(Ω×Q), ∇uε 2

⇀ ∇u+ χ in Lp(Ω×Q)d. (14)
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If, additionally, 〈·〉 is ergodic, then u = Pinvu = 〈u〉 ∈ W 1,p(Q) and 〈uε〉 ⇀ u weakly in
W 1,p(Q).
(For the proof see Section 3.3.)

We remark that the above result is already established in [9] in the context of two-scale
convergence in the mean in the L2-space setting. We recapitulate its short proof from the
perspective of stochastic unfolding, see Section 3.3.

Remark 3.7. Note that the proof of the above proposition reveals that Pinvuε ⇀ u weakly
in Lpinv(Ω) ⊗ W 1,p(Q) (see Lemma 3.12). If we consider a closed subspace X ⊂ W 1,p(Q)
and assume that uε(ω) ∈ X P -a.e., then Pinvuε ∈ Lpinv(Ω) ⊗ X. Therefore, it follows that
u ∈ Lpinv(Ω)⊗X. This observation is useful if we consider boundary value problems, e.g., if
X = W 1,p

0 (Q). We may argue similarly for closed convex subsets in W 1,p(Q).

Lemma 3.8 (Recovery sequence). Let p, θ ∈ (1,∞) and Q ⊂ Rd be open. For χ ∈ Lppot(Ω)⊗
Lp(Q) and δ > 0, there exists a sequence gδ,ε(χ) ∈ Lp(Ω)⊗W 1,p

0 (Q) such that

‖gδ,ε(χ)‖Lθ(Ω×Q) ≤ εc(δ), lim sup
ε→0

‖Tε∇gδ,ε(χ)− χ‖Lp(Ω×Q)d ≤ δ,

where c(δ) > 0 does not depend on ε.
(For the proof see Section 3.3.)

3.3. Proofs of the statements in Section 3. Before presenting the proofs, we recall some
basic facts from functional analysis which will be helpful in the following.

Remark 3.9. Let p ∈ (1,∞) and q = p
p−1

.

(i) 〈·〉 is ergodic ⇔ Lpinv(Ω) ' R ⇔ Pinvf = 〈f〉.
(ii) The following orthogonality relations hold (for a proof see [11, Section 2.6]): We identify

the dual space Lp(Ω)∗ with Lq(Ω), and define for a set A ⊂ Lq(Ω) its orthogonal
complement A⊥ ⊂ Lp(Ω) as

A⊥ = {ϕ ∈ Lp(Ω) : 〈ϕψ〉 = 0 for all ψ ∈ A} .

It holds

ker(D) = ran(D∗)⊥, Lppot(Ω) = ran(D) = ker(D∗)⊥. (15)

Above, ker(·) denotes the kernel and ran(·) the range of an operator.

Proof of Lemma 3.1. We first define Tε on A := {u(ω, x) = ϕ(ω)η(x) : ϕ ∈ Lp(Ω), η ∈
Lp(Q) } ⊂ Lp(Ω × Q) by setting (Tεu)(ω, x) = ϕ(τ−x

ε
ω)η(x) for all u = ϕη ∈ A. In view of

Assumption 2.1 (iii), Tεu is F ⊗L(Q)-measurable and using the measure preserving property
of τ , we have

‖Tεu‖pLp(Ω×Q) =

∫

Q

〈
|ϕ(τ−x

ε
ω)|p

〉
|η(x)|p dx = ‖ϕ‖pLp(Ω)‖η‖

p
Lp(Q) = ‖u‖pLp(Ω×Q).

Since span(A) is dense in Lp(Ω × Q), Tε extends to a linear isometry from Lp(Ω × Q) to
Lp(Ω × Q). We define a linear isometry T−ε : Lq(Ω × Q) → Lq(Ω × Q) analogously as Tε,
with ε replaced by −ε. Then for any ϕ ∈ Lp(Ω)

a
⊗ Lp(Q) and ψ ∈ Lq(Ω)

a
⊗ Lq(Q) we have
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(thanks to the measure preserving property of τ and Fubini):
〈∫

Q

(Tεϕ)ψ dx

〉
=

∫

Q

〈
ϕ(τ−x

ε
ω, x)ψ(ω, x)

〉
dx

=

∫

Q

〈
ϕ(ω, x)ψ(τx

ε
ω, x)

〉
dx =

〈∫

Q

ϕ(T−εψ)dx

〉
.

Since Lp(Ω)
a
⊗ Lp(Q) and Lq(Ω)

a
⊗ Lq(Q) are dense in Lp(Ω×Q) and Lq(Ω×Q), respectively,

we conclude that T ∗ε = T−ε. Since T ∗ε is an isometry, it follows that Tε is surjective (see [11,
Theorem 2.20]). Analogously, T ∗ε is also surjective.

Proof of Proposition 3.4. We first note that V is a Carathéodory integrand in the sense of
Remark A.2 (if necessary we tacitly redefine it by V (ω, x, ·) = 0 for (ω, x) in a set of measure
0) and therefore it follows that V is a normal integrand (see Appendix A). For fixed ε > 0, the
mapping (ω, x) 7→ (τx

ε
ω, x) is (F ⊗ L(Q),F ⊗ L(Q))-measurable and therefore (ω, x, F ) 7→

V (τx
ε
ω, x, F ) defines as well a Carathéodory and thus normal integrand. Hence, with the help

of the growth condition, all the integrals in the statement of the proposition are well-defined.

Proof of (i): We first consider the case u ∈ Lp(Ω)
a
⊗ Lp(Q)m. By Fubini’s theorem, the

measure preserving property of τ , and by the transformation ω 7→ τ−x
ε
ω, we have

〈∫

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
=

∫

Q

〈
V (τx

ε
ω, x, u(ω, x))

〉
dx

=

∫

Q

〈
V (ω, x, u(τ−x

ε
ω, x))

〉
dx.

Since u ∈ Lp(Ω)
a
⊗ Lp(Q), we have u(τ−x

ε
ω, x) = Tεu(ω, x), and thus (11) follows. The general

case follows by an approximation argument. Indeed, for any u ∈ Lp(Ω×Q)m we can find a

sequence uk ∈ Lp(Ω)
a
⊗Lp(Q)m such that uk → u strongly in Lp(Ω×Q)m, and by passing to a

subsequence (not relabeled) we may additionally assume that uk → u pointwise a.e. in Ω×Q.
By continuity of V in its last variable, we thus have V (τx

ε
ω, x, uk(ω, x))→ V (τx

ε
ω, x, u(ω, x))

for a.e. (ω, x) ∈ Ω × Q. Since |V (τx
ε
ω, x, uk(ω, x))| ≤ c(1 + |uk(ω, x)|p) a.e. in Ω × Q, the

dominated convergence theorem ([8, Theorem 2.8.8]) implies that

lim
k→∞

〈∫

Q

V (τx
ε
ω, x, uk(ω, x))dx

〉
=

〈∫

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
.

In the same way we conclude that

lim
k→∞

〈∫

Q

V (ω, x, Tεuk(ω, x))dx

〉
=

〈∫

Q

V (ω, x, Tεu(ω, x))dx

〉
.

Since the integrals on the left-hand sides are the same, (11) follows.

Proof of (ii): We get
〈∫

Q
V (τx

ε
ω, x, uε(ω, x))dx

〉
=
〈∫

Q
V (ω, x, Tεuε(ω, x))dx

〉
by part

(i). Since by assumption Tεuε → u strongly in Lp(Ω × Q)m, using the growth condi-
tions of V and the dominated convergence theorem, it follows, similarly as in part (i), that

limε→0

〈∫
Q
V (ω, x, Tεuε(ω, x))dx

〉
=
〈∫

Q
V (ω, x, u(ω, x))dx

〉
.

Proof of (iii): The functional Lp(Ω × Q)m 3 u 7→
〈∫

Q
V (ω, x, u(ω, x))dx

〉
is convex and

lower semi-continuous, therefore it is weakly lower semi-continuous (see [11, Corollary 3.9]).
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Combining this fact with the transformation formula from (i) and the weak convergence
Tεuε ⇀ u (by assumption), the claim follows.

Before stating the proof of Proposition 3.6, we present some auxiliary lemmas.

Lemma 3.10. Let p ∈ (1,∞) and q = p
p−1

.

(i) If ϕ ∈
{
D∗ψ : ψ ∈ W 1,q(Ω)d

}⊥
, then ϕ ∈ Lpinv(Ω).

(ii) If ϕ ∈
{
ψ ∈ W 1,q(Ω)d : D∗ψ = 0

}⊥
, then ϕ ∈ Lppot(Ω).

Proof. Proof of (i). First, we note that

ϕ ∈ Lpinv(Ω) ⇔ UheiUyϕ = Uyϕ for all y ∈ Rd, h ∈ R, i = 1, ..., d.

We consider ϕ ∈
{
D∗ψ : ψ ∈ W 1,q(Ω)d

}⊥
and we show that ϕ ∈ Lpinv(Ω) using the above

equivalence. Let ψ ∈ W 1,q(Ω) and i ∈ {1, ..., d}. Then by the group property we have

U−heiψ − ψ =
∫ h

0
U−teiD

∗
iψdt and therefore

〈(Uheiϕ− ϕ)ψ〉 = 〈ϕ(U−heiψ − ψ)〉 = 〈ϕ
∫ h

0

U−teiD
∗
iψdt〉 =

∫ h

0

〈ϕD∗i (U−teiψ)〉 dt.

Since U−teiψ ∈ W 1,q(Ω) for any t ∈ [0, h], we obtain 〈ϕD∗i (U−teiψ)〉 = 0 and thus Uheiϕ = ϕ.
Furthermore, for any y ∈ Rd, we have 〈(UheiUyϕ− Uyϕ)ψ〉 = 〈(Uheiϕ− ϕ)U−yψ〉 = 0 by the
same argument.

Proof of (ii). In view of Lppot(Ω) = ker(D∗)⊥ (see (15)), it is sufficient to prove that the set{
ϕ ∈ W 1,q(Ω)d : D∗ϕ = 0

}
is dense in ker(D∗). This follows by an approximation argument

as in [24, Section 7.2]. Let ϕ ∈ ker(D∗) and we define for t > 0

ϕt(ω) =

∫

Rd
pt(y)ϕ(τyω)dy, where pt(y) =

1

(4πt)
d
2

e−
|y|2
4t .

Then the claimed density follows, since ϕt ∈ W 1,q(Ω)d, D∗ϕt = 0 for any t > 0 and ϕt → ϕ
strongly in Lq(Ω)d as t → 0. The last statement can be seen as follows. By the continuity
property of Uy, for any ε > 0 there exists δ > 0 such that 〈|ϕ(τyω)− ϕ(ω)|q〉 ≤ ε for any
y ∈ Bδ(0). It follows that

〈
|ϕt − ϕ|q

〉
=

〈∣∣∣∣
∫

Rd
pt(y) (ϕ(τyω)− ϕ(ω)) dy

∣∣∣∣
q〉

≤
∫

Rd
pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy

=

∫

Bδ

pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy +

∫

Rd\Bδ
pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy.

The first term on the right-hand side of the above inequality is bounded by ε as well as the
second term for sufficiently small t > 0.

Lemma 3.11. Let p ∈ (1,∞) and Q ⊂ Rd be open. Let uε ∈ Lp(Ω)⊗W 1,p(Q) be such that

uε
2
⇀ u in Lp(Ω×Q) and ε∇uε 2

⇀ 0 in Lp(Ω×Q)d. Then u ∈ Lpinv(Ω)⊗ Lp(Q).

Proof. Consider a sequence vε = εT ∗ε (ϕη) such that ϕ ∈ W 1,q(Ω) and η ∈ C∞c (Q). Note that
Tεvε = εϕη and we have, for i = 1, ..., d and as ε→ 0,〈∫

Q

∂iuεvεdx

〉
=

〈∫

Q

(Tε∂iuε)(Tεvε)dx
〉

=

〈∫

Q

(Tε∂iuε)εϕηdx
〉
→ 0.
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Moreover, it holds that ∂ivε = T ∗ε (Diϕη + εϕ∂iη) and therefore
〈∫

Q

∂iuεvεdx

〉
= −

〈∫

Q

uε∂ivεdx

〉
= −

〈∫

Q

uεT ∗ε (Diϕη + εϕ∂iη)dx

〉

= −
〈∫

Q

(Tεuε)Diϕη + ε(Tεuε)ϕ∂iηdx
〉
.

The last expression converges to −
〈∫

Q
uDiϕηdx

〉
as ε→ 0. As a result of this, 〈u(x)Diϕ〉 =

0 for almost every x ∈ Q and therefore u ∈ Lpinv(Ω)⊗ Lp(Q) by Lemma 3.10 (i).

Lemma 3.12. Let p ∈ (1,∞) and Q ⊂ Rd be open. Let uε be a bounded sequence in
Lp(Ω)⊗W 1,p(Q). Then there exists u ∈ Lpinv(Ω)⊗W 1,p(Q) such that (up to a subsequence)

uε
2
⇀ u in Lp(Ω×Q), Pinvuε

2
⇀ u in Lp(Ω×Q), Pinv∇uε 2

⇀ ∇u in Lp(Ω×Q)d.

In particular, it holds that Pinvuε ⇀ u weakly in Lpinv(Ω)⊗W 1,p(Q).

Proof. Step 1. Proof of the identity Pinv ◦ Tε = Tε ◦Pinv = Pinv. The second identity holds by
definition of Pinv. To show that Pinv ◦ Tε = Pinv, we consider v ∈ Lp(Ω×Q), ϕ ∈ Lq(Ω) and
η ∈ Lq(Q). We have

〈∫

Q

(PinvTεv)(ϕη)dx

〉
=

〈∫

Q

(Tεv)P ∗inv(ϕη)dx

〉
=

〈∫

Q

vP ∗inv(ϕη)dx

〉

=

〈∫

Q

(Pinvv)(ϕη)dx

〉
,

where we use the fact that T ∗ε P ∗inv = P ∗inv since the adjoint P ∗inv of Pinv satisfies ran(P ∗inv) ⊂
Lqinv(Ω). The claim follows by an approximation argument since Lq(Ω)

a
⊗ Lq(Q) is dense in

Lq(Ω×Q).
Step 2. Convergence of Pinvuε. Pinv is bounded and it commutes with ∇, and therefore

lim sup
ε→0

〈∫

Q

|Pinvuε|p + |∇Pinvuε|pdx
〉
<∞.

As a result of this and with help of Lemma 3.3 (ii) and Lemma 3.11, it follows that Pinvuε
2
⇀ v

and ∇Pinvuε
2
⇀ w (up to a subsequence), where v ∈ Lpinv(Ω) ⊗ Lp(Q) and w ∈ Lpinv(Ω) ⊗

Lp(Q)d.
Let ϕ ∈ W 1,q(Ω) and η ∈ C∞c (Q). On the one hand, we have, as ε→ 0,

〈∫

Q

(∂iPinvuε)T ∗ε (ϕη)dx

〉
=

〈∫

Q

Tε(∂iPinvuε)(ϕη)dx

〉
→
〈∫

Q

wiϕηdx

〉
.

On the other hand, using ∂iT ∗ε (ϕη) = 1
ε
T ∗ε (ηDiϕ) + T ∗ε (ϕ∂iη) and TεPinv = Pinv,

〈∫

Q

(∂iPinvuε)T ∗ε (ϕη)dx

〉
= −1

ε

〈∫

Q

(Pinvuε)(Diϕη)dx

〉
−
〈∫

Q

(Pinvuε)ϕ∂iηdx

〉
.

The first term on the right-hand side vanishes since Pinvuε(·, x) ∈ Lpinv(Ω) for almost every

x ∈ Q and by (15). The second term converges to −
〈∫

Q
vϕ∂iηdx

〉
as ε→ 0. Consequently,

we obtain w = ∇v and therefore v ∈ Lpinv(Ω) ⊗W 1,p(Q). Moreover, using Step 1, we have
Pinvuε ⇀ u weakly in Lpinv(Ω)⊗W 1,p(Q).
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Step 3. Convergence of uε. Since uε is bounded, by Lemma 3.3 (ii) and Lemma 3.11 there

exists u ∈ Lpinv(Ω)⊗Lp(Q) such that uε
2
⇀ u in Lp(Ω×Q). Also, Pinv is a linear and bounded

operator which, together with Step 1, implies that Pinvuε ⇀ u. Using this, we conclude that
u = v.

Proof of Proposition 3.6. Lemma 3.12 implies that uε
2
⇀ u in Lp(Ω × Q) (up to a subse-

quence), where u ∈ Lpinv(Ω)⊗W 1,p(Q). Moreover, it follows that there exists v ∈ Lp(Ω×Q)d

such that ∇uε 2
⇀ v in Lp(Ω×Q)d (up to another subsequence). We show that χ := v−∇u ∈

Lppot(Ω)⊗ Lp(Q).

Let ϕ ∈ W 1,q(Ω)d with D∗ϕ = 0 and η ∈ C∞c (Q). We have, as ε→ 0,
〈∫

Q

∇uε · T ∗ε (ϕη)dx

〉
=

〈∫

Q

Tε∇uε · ϕηdx
〉
→
〈∫

Q

v · ϕηdx
〉
. (16)

On the other hand,
〈∫

Q

∇uε · T ∗ε (ϕη)dx

〉
= −

〈∫

Q

uε

d∑

i=1

T ∗ε (
1

ε
ηDiϕi + ϕi∂iη)dx

〉

=
1

ε

〈∫

Q

(Tεuε)(ηD∗ϕ)dx

〉
−
〈∫

Q

(Tεuε)
d∑

i=1

ϕi∂iηdx

〉
.

(17)

Above, the first term on the right-hand side vanishes by assumption and the second converges

to
〈∫

Q
∇u · ϕη

〉
as ε→ 0. Using (17), (16) and Lemma 3.10 (ii) we complete the proof.

Proof of Lemma 3.8. For χ ∈ Lppot(Ω)⊗Lp(Q) and δ > 0, by definition of the space Lppot(Ω)⊗
Lp(Q) and by density of ran(D) in Lppot(Ω), we find gδ =

∑n(δ)
i=1 ϕ

δ
iη
δ
i with ϕδi ∈ W 1,p(Ω) and

ηδi ∈ C∞c (Q) such that
‖χ−Dgδ‖Lp(Ω×Q)d ≤ δ.

Note that we can choose ϕδi above so that ϕδi ∈ Lθ(Ω). This can be seen by a standard
truncation and mollification argument (see [9, Lemma 2.2] for the L2-case) that we present
here for the convenience of the reader. For a given ϕ ∈ W 1,p(Ω), by density of L∞(Ω) in
Lp(Ω), we find a sequence ϕk ∈ L∞(Ω) such that ϕk → ϕ in Lp(Ω). For a sequence of
standard mollifiers ρn ∈ C∞c (Rd), ρn ≥ 0, we define

ϕnk =

∫

Rd
ρn(y)Uyϕkdy, ϕn =

∫

Rd
ρn(y)Uyϕdy.

It holds that ϕnk ∈ L∞(Ω) ∩W 1,p(Ω), Diϕ
n
k =

∫
Rd −∂iρn(y)Uyϕkdy and

Diϕ
n =

∫

Rd
−∂iρn(y)Uyϕdy =

∫

Rd
ρn(y)UyDiϕdy

. Similarly as in the proof of Lemma 3.10 (ii), it follows that Dϕn → Dϕ in Lp(Ω)d as
n → ∞. In the following we show that for fixed n ∈ N, Diϕ

n
k → Diϕ

n in Lp(Ω) as k → ∞,
which yields the claim (up to extraction of a subsequence k(n)). We have, as k →∞,

〈|Diϕ
n
k −Diϕ

n|p〉 =

〈∣∣
∫

Rd
−∂iρn(y) (Uyϕk − Uyϕ) dy

∣∣p
〉
≤ c(n) 〈|ϕk − ϕ|p〉 → 0,

where in the last inequality we use that ∂iρn is compactly supported and L∞, and Jensen’s
inequality. This means that in the definition of gδ above, we can choose ϕδi ∈ Lθ(Ω)∩W 1,p(Ω).
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Stochastic homogenization of gradient flows 15

We define gδ,ε = εT −1
ε gδ and note that gδ,ε ∈ Lp(Ω) ⊗W 1,p

0 (Q) ∩ Lθ(Ω × Q) and ∇gδ,ε =
T −1
ε Dgδ + T −1

ε ε∇gδ. As a result of this and with help of the isometry property of T −1
ε , the

claim of the lemma follows.

4. Proof of Theorem 2.3. Before presenting the main proof, we provide three auxiliary
lemmas. Lemma 4.1 provides the reduction of the Λ-convex gradient flows to convex gradi-
ent flows. Lemmas 4.3 and 4.4 provide a suitable recovery sequence that is helpful in the

treatment of the term
∫ T

0
Ẽ∗ε (t,−DRε(u̇ε(t)))dt in (3) (cf. (18)).

Lemma 4.1 (Convex reduction). Let the assumptions of Theorem 2.3 be satisfied. Let Ẽε :

[0, T ]× Y → R ∪ {∞} and Ẽhom : [0, T ]× Y0 → R ∪ {∞} be given by

Ẽε(t, u) = e2ΛtEε(e−Λtu)− ΛRε(u), Ẽhom(t, u) = e2ΛtEhom(e−Λtu)− ΛRhom(u).

Then:

(i) Ẽε and Ẽhom are convex normal integrands (see Definition A.1).
(ii) y ∈ H1(0, T ;Y ) satisfies (6) if and only if u(t) := eΛty(t) satisfies

Rε(u(T )) +

∫ T

0

Ẽε(t, u(t)) + Ẽ∗ε (t,−DRε(u̇(t)))dt = Rε(u(0)), (18)

where Ẽ∗ε (t, ·) denotes the convex conjugate of Ẽε(t, ·).
(iii) y ∈ H1(0, T ;Y0) satisfies (10) if and only if u(t) := eΛty(t) satisfies

Rhom(u(T )) +

∫ T

0

Ẽhom(t, u(t)) + Ẽ∗hom(t,−DRhom(u̇(t)))dt = Rhom(u(0)),

where Ẽ∗hom(t, ·) denotes the convex conjugate of Ẽhom(t, ·).

Proof. Proof of (i). For fixed t, convexity of Ẽε(t, ·) follows from Λ-convexity of Eε. Ẽε(t, ·)
is proper and l.s.c. Indeed, this follows by continuity of Rε and by the fact that Eε is

proper and l.s.c. In the following we show that Ẽε is L(0, T ) ⊗ B(Y )-measurable that im-

plies the claim for Ẽε. First, we note that −ΛRε is B(Y )-measurable since it is continuous,
therefore it is sufficient to show that the mapping (t, u) 7→ e2ΛtEε(e−Λtu) is L(0, T )⊗ B(Y )-
measurable. We note that Eε(e−Λtu) is the composition of the continuous mapping (t, u) 7→
e−Λtu (thus (B(0, T )⊗ B(Y ),B(Y ))-measurable) and the l.s.c. functional Eε that is, thus,
B(Y )-measurable. As a result of this, it is B(0, T ) ⊗ B(Y )-measurable. Finally, the expres-
sion e2ΛtEε(e−Λtu) is a product of a continuous and a measurable functional and therefore it

is L(0, T )⊗ B(Y )-measurable. For Ẽhom, the claim follows analogously.
Proof of (ii). Since Rε is quadratic we have Rε(ỹ) = 1

2
〈DRε(ỹ), ỹ〉Y ∗,Y . Combined with

(6), a simple rearrangement yields for all ỹ ∈ Y ,

〈DRε (ẏ(t) + Λy(t)) , y(t)− ỹ〉Y ∗,Y + Eε(y(t))− ΛRε(y(t)) ≤ Eε(ỹ)− ΛRε(ỹ).

We multiply the above inequality with e2Λt and use linearity of DRε (resp. quadratic struc-
ture of Rε) to obtain,

〈
DRε

(
eΛtẏ(t) + ΛeΛty(t)

)
, eΛt(y(t)− ỹ)

〉
Y ∗,Y

+e2ΛtEε(e−ΛteΛty(t))− ΛRε(e
Λty(t))

≤ e2ΛtEε(e−ΛteΛtỹ)− ΛRε(e
Λtỹ) for all ỹ ∈ Y.
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M. Heida, S. Neukamm, M. Varga 16

With u(t) = eΛty(t), the definition of Ẽε, and with the test-function ỹ = e−Λtŷ, the above
inequality reads

〈DRε(u̇(t)), u(t)− ŷ〉Y ∗,Y + Ẽε(t, u(t)) ≤ Ẽε(t, ŷ) for all ŷ ∈ Y,

where we used that u̇(t) = eΛtẏ(t) + ΛeΛty(t). Since Ẽε(t, ·) is convex for each t, the Fenchel
equivalence implies that u satisfies for a.e. t ∈ (0, T ),

〈DRε(u̇(t)), u(t)〉Y ∗,Y + Ẽε(t, u(t)) + Ẽ∗ε (t,−DRε(u̇(t))) = 0. (19)

Since d
dt
Rε(u(t)) = 〈DRε(u(t)), u̇(t)〉Y ∗,Y = 〈DRε(u̇(t)), u(t)〉Y ∗,Y , integration of the above

identity over (0, T ) yields (18). On the other hand, if (18) holds, then we have

∫ T

0

〈DRε(u̇(t)), u(t)〉Y ∗,Y + Ẽε(t, u(t)) + Ẽ∗ε (t,−DRε(u̇(t)))dt = 0.

The integrand on the left-hand side is nonnegative by the definition of the convex conjugate
and therefore it follows that u satisfies (19). This completes the proof.

Proof of (iii). The argument is the same as in part (ii).

Remark 4.2 (Extended unfolding). For p ∈ (1,∞), the stochastic unfolding operator
Tε : Lp(Ω × Q) → Lp(Ω × Q) can be extended to a (not relabeled) linear isometry Tε :
Lp(0, T ;Lp(Ω×Q))→ Lp(0, T ;Lp(Ω×Q)). In particular, for functions of the form u = ηϕ ∈
Lp(0, T ;Lp(Ω×Q)) with η ∈ Lp(0, T ) and ϕ ∈ Lp(Ω×Q), we define the unfolding by

Tεu(t, ·) = η(t)Tεϕ(·).

By the density of {∑i ηiϕi : ηi ∈ Lp(0, T ), ϕi ∈ Lp(Ω×Q)} in Lp(0, T ;Lp(Ω×Q)) we may
extend the unfolding operator to a uniquely determined isometry on Lp(0, T ;Lp(Ω×Q)). In
the following, we use this extension.

Lemma 4.3 (Recovery sequence). Let p ∈ (1,∞), θ ∈ [2,∞) and Q ⊂ Rd be open and
bounded. Let

w ∈ Lp(0, T ;Lpinv(Ω)⊗W 1,p
0 (Q))∩Lθ(0, T ;Lθinv(Ω)⊗Lθ(Q)) and χ ∈ Lp(0, T ;Lppot(Ω)⊗Lp(Q))

. Then, there exists wε ∈ Lp(0, T ;Lp(Ω)⊗W 1,p
0 (Q))∩Lθ(0, T ;Lθ(Ω×Q)) such that, as ε→ 0,

Tεwε → w strongly in Lθ(0, T ;Lθ(Ω×Q)),

Tε∇wε → ∇w + χ strongly in Lp(0, T ;Lp(Ω×Q)d).

Proof. Since χ ∈ Lp(0, T ;Lppot(Ω) ⊗ Lp(Q)), we find a sequence ψk =
∑k

i=1 η
k,iχk,i with

ηk,i ∈ C∞c (0, T ) and χk,i ∈ Lppot(Ω)⊗ Lp(Q), such that

‖ψk − χ‖Lp(0,T ;Lp(Ω×Q)d) → 0 as k →∞.

In view of Lemma 3.8, for each χk,i we find gk,iδ,ε ∈ (Lp(Ω)⊗W 1,p
0 (Q)) ∩ Lθ(Ω×Q) such that

‖gk,iδ,ε‖Lθ(Ω×Q) ≤ εck,i(δ), lim sup
ε→0

‖Tε∇gk,iδ,ε − χk,i‖Lp(Ω×Q)d ≤ δ.
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Stochastic homogenization of gradient flows 17

We define wkδ,ε = w +
∑k

i=1 η
k,igk,iδ,ε and we estimate

‖Tεwkδ,ε − w‖Lθ(0,T ;Lθ(Ω×Q)) + ‖Tε∇wkδ,ε − (∇w + χ)‖Lp(0,T ;Lp(Ω×Q)d)

≤ ‖
k∑

i=1

ηk,igk,iδ,ε‖Lθ(0,T ;Lθ(Ω×Q)) + ‖
k∑

i=1

ηk,i
(
Tε∇gk,iδ,ε − χk,i

)
‖Lp(0,T ;Lp(Ω×Q)d)

+
∥∥ψk − χ

∥∥
Lp(0,T ;Lp(Ω×Q)d)

≤ ε

k∑

i=1

ck,i(δ) +
k∑

i=1

ck,i

∥∥∥Tε∇gk,iδ,ε − χk,i
∥∥∥
Lp(Ω×Q)d

+
∥∥ψk − χ

∥∥
Lp(0,T ;Lp(Ω×Q)d)

.

Letting first ε→ 0, secondly δ → 0, and finally k →∞, the right-hand side above vanishes.

As a result of this, we can extract diagonal sequences k(ε) and δ(ε) such that wε := w
k(ε)
δ(ε),ε

satisfies the claim of the lemma.

Lemma 4.4 (Measurable selection). Let the assumptions of Lemma 4.1 be satisfied. Let
ξ ∈ L2(0, T ;Y ∗0 ). There exists w ∈ Lp(0, T ;Lpinv(Ω) ⊗W 1,p

0 (Q)) ∩ Lθ(0, T ;Lθinv(Ω) ⊗ Lθ(Q))
such that ∫ T

0

Ẽ∗hom(t, ξ(t))dt =

∫ T

0

〈ξ(t), w(t)〉Y ∗0 ,Y0 dt−
∫ T

0

Ẽhom(t, w(t))dt.

Moreover, there exists χ ∈ Lp(0, T ;Lppot(Ω)⊗ Lp(Q)) such that
∫ T

0

inf
χ∈Lppot(Ω)⊗Lp(Q)

〈∫

Q

e2ΛtV (ω, x, e−Λt∇w(t) + χ)dx

〉
dt

=

∫ T

0

〈∫

Q

e2ΛtV (ω, x, e−Λt∇w(t) + χ(t))dx

〉
dt. (20)

Proof. First we note that Ẽhom is a convex normal integrand by Lemma 4.1 (i) and∫ T
0
Ẽhom(t, 0)dt <∞. Therefore, Proposition A.4 in Appendix A implies that

∫ T

0

Ẽ∗hom(t, ξ(t))dt

= sup
w∈L2(0,T ;Y0)

(∫ T

0

〈ξ(t), w(t)〉Y ∗0 ,Y0 dt−
∫ T

0

Ẽhom(t, w(t))dt

)
.

(21)

Using the direct method of the calculus of variations, with the help of the growth conditions
of V and f , we conclude that the supremum on the right-hand side is attained by some

w ∈ L2(0, T ;Y0). As a result of this, we have
∫ T

0
Ẽhom(t, w(t))dt < ∞, which implies that

w ∈ Lp(0, T ;Lpinv(Ω)⊗W 1,p
0 (Q)) ∩ Lθ(0, T ;Lθinv(Ω)⊗ Lθ(Q)).

To show (20), we define an integrand I : [0, T ]×
(
Lppot(Ω)⊗ Lp(Q)

)
→ R∪{∞} by I(t, χ) =

e2Λt
〈∫

Q
V (ω, x, e−Λt∇w(t)(ω, x) + χ(ω, x)dx

〉
. We remark that I is finite everywhere (up to

considering a suitable representative of ∇w) and for all t ∈ [0, T ], I(t, ·) is convex and l.s.c.
(using the growth conditions of V ), in fact, I(t, ·) is continuous. Moreover, for each fixed
χ ∈ Lppot(Ω) ⊗ Lp(Q), I(·, χ) is L(0, T )-measurable. Indeed, this follows by the observation

that I(·, χ) is a composition of the mappings g1 : [0, T ] → [0, T ] × Lp(Ω × Q)d, g1(t) =(
t, e−Λt∇w(t) + χ

)
, and g2 : [0, T ]×Lp(Ω×Q)d → R, g2(t, ϕ) = e2Λt

〈∫
Q
V (ω, x, ϕ(ω, x))dx

〉
.
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g1 is
(
L(0, T ),L(0, T )⊗ B(Lp(Ω×Q)d)

)
-measurable and g2 is a Carathéodory integrand and

therefore
(
L(0, T )⊗ B(Lp(Ω×Q)d)

)
-measurable. The above statements imply that I is a

convex Carathéodory integrand, thus a normal convex integrand (see Appendix A). As a
result of this, Proposition A.4 (and in particular Remark A.5) in Appendix A implies that

∫ T

0

inf
χ∈Lppot(Ω)⊗Lp(Q)

I(t, χ)dt = inf
χ∈Lp(0,T ;Lppot(Ω)⊗Lp(Q))

∫ T

0

I(t, χ(t))dt.

The infimum on the right-hand side is attained at some χ ∈ Lp(0, T ;Lppot(Ω)⊗Lp(Q)), using
the direct method of the calculus of variations. This concludes the proof.

Proof of Theorem 2.3. Step 1. Compactness. The apriori estimate (8) and the boundedness
of Eε(y0

ε) yield, for all t ∈ [0, T ],

‖yε(t)‖pLp(Ω)⊗W 1,p(Q) + ‖yε(t)‖θLθ(Ω×Q) ≤ c. (22)

Also, by the isometry property of Tε and since θ ≥ 2, the above implies that ‖Tεyε(t)‖θY ≤ c.

We remark that Tεyε ∈ H1(0, T ;Y ) since ˙(·) and Tε commute, i.e., d
dt

(Tεyε) = Tεẏε, where
on the left-hand side Tεyε is pointwise defined as Tεyε(t) and on the right-hand side Tε is the
extension defined on L2(0, T ;Y ). As a result of this and using the isometry property of Tε,
the apriori estimate (7) implies that

‖Tεyε‖2
H1(0,T ;Y ) ≤ c, ‖Tεyε(t)− Tεyε(s)‖2

Y ≤ c|t− s| for all s, t ∈ [0, T ].

We extract a (not relabeled) subsequence and y ∈ H1(0, T ;Y ) such that Tεyε ⇀ y weakly in
H1(0, T ;Y ), and this implies that Tεẏε ⇀ ẏ weakly in L2(0, T ;Y ). We apply the Arzelà-Ascoli
theorem to the sequence Tεyε to obtain that (up to another subsequence) for all t ∈ [0, T ],

Tεyε(t) ⇀ y(t) weakly in Y. (23)

Using (22) and Proposition 3.6, we conclude that y(t) ∈ (Lpinv(Ω)⊗W 1,p
0 (Q))∩

(
Lθinv(Ω)⊗ Lθ(Q)

)

and Tεyε(t) ⇀ y(t) weakly in Lθ(Ω×Q) and in Lp(Ω×Q) (see also Remark 3.7). This also
implies that y ∈ H1(0, T ;Y0). Moreover, for each t ∈ [0, T ] we find χ(t) ∈ Lppot(Ω) ⊗ Lp(Q)

and a subsequence ε(t) such that Tε(t)∇yε(t)(t) ⇀ ∇y(t) + χ(t) weakly in Lp(Ω × Q)d. This
implies that Pinv∇yε(t) ⇀ ∇y(t) weakly in Lp(Ω×Q)d for the whole (sub)sequence ε. Note
that the assumption on the initial data implies that Tεyε(0) → y0 strongly in Y and hence
we have y(0) = y0.

In the following step, using Lemma 4.1, we restate (6) as a convex problem. For this
reason, we define the new variables uε(t) = eΛtyε(t) and u(t) = eΛty(t). Note that u̇ε(t) =
ΛeΛtyε(t) + eΛtẏε(t) and analogously for u̇. The above convergence statements result in

Tεuε ⇀ u weakly in H1(0, T ;Y ),

Tεuε(t) ⇀ u(t) weakly in Lθ(Ω×Q) and Lp(Ω×Q), for all t ∈ [0, T ].
(24)

Step 2. Reduction to a convex problem. In view of Lemma 4.1 (ii), we have

Rε(uε(T )) +

∫ T

0

Ẽε(t, uε(t)) + Ẽ∗ε (t,−DRε(u̇ε(t)))dt = Rε(uε(0)). (25)

Step 3. Passage to the limit ε → 0 in (25). Note that uε(0) = y0
ε

2→ y0 = u(0) in Y and
therefore using Proposition 3.4 (ii), for the right-hand side of (25), we have

lim
ε→0
Rε(uε(0)) = Rhom(u(0)). (26)
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The first term on the left-hand side is treated similarly, using Proposition 3.4 (iii) and
(24), we have

lim inf
ε→0

Rε(uε(T )) ≥ Rhom(u(T )). (27)

We treat the second term on the left-hand side of (25) as follows. By Fatou’s lemma we
have

lim inf
ε→0

∫ T

0

Ẽε(t, uε(t))dt

≥
∫ T

0

lim inf
ε→0

〈∫

Q

e2ΛtV (τx
ε
ω, x, e−Λt∇uε(t))dx

〉
dt

+

∫ T

0

lim inf
ε→0

〈∫

Q

e2Λtf(τx
ε
ω, x, e−Λtuε(t))−

Λ

2
r(τx

ε
ω, x)|uε(t)|2dx

〉
dt.

For fixed t, the lim inf in the first term is a limit for a subsequence ε(t) and as in Step 1 we
find χ(t) ∈ Lppot(Ω) ⊗ Lp(Q) such that, up to another (not relabeled) subsequence, it holds

∇uε(t)(t) 2
⇀ ∇u(t) + eΛtχ(t) in Lp(Ω×Q)d. Also, we notice that e2ΛtV (ω, x, e−Λt·) is convex

and has p-growth properties and therefore Proposition 3.4 (iii) implies that

lim inf
ε→0

〈∫

Q

e2ΛtV (τx
ε
ω, x, e−Λt∇uε(t))dx

〉

≥
〈∫

Q

e2ΛtV (ω, x, e−Λt∇u(t) + χ(t))dx

〉

≥ inf
χ∈Lppot(Ω)⊗Lp(Q)

〈∫

Q

e2ΛtV (ω, x, e−Λt∇u(t) + χ)dx

〉
.

On the other hand, we remark that the integrand e2Λtf(ω, x, e−Λt·)− Λ
2
r(ω, x)| · |2 is convex

and satisfies θ-growth conditions. As a result of this and by (24), Proposition 3.4 (iii) yields

lim inf
ε→0

〈∫

Q

e2Λtf(τx
ε
ω, x, e−Λtuε(t))−

Λ

2
r(τx

ε
ω, x)|uε(t)|2dx

〉

≥
〈∫

Q

e2Λtf(ω, x, e−Λtu(t))− Λ

2
r(ω, x)|u(t)|2dx

〉
.

Using the above two statements we conclude that

lim inf
ε→0

∫ T

0

Ẽε(t, uε(t))dt ≥
∫ T

0

Ẽhom(t, u(t))dt. (28)

In order to complete the limit passage, it is left to treat the third term on the left-hand side
of (25). Using Lemma 4.4, we find w ∈ Lp(0, T ;Lpinv(Ω)⊗W 1,p

0 (Q))∩Lθ(0, T ;Lθinv(Ω)⊗Lθ(Q))
such that

∫ T

0

Ẽ∗hom(t,−DRhom(u̇(t)))dt =

∫ T

0

〈−DRhom(u̇(t)), w(t)〉Y ∗0 ,Y0 − Ẽhom(t, w(t))dt.
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Moreover, by the second claim of Lemma 4.4, we find χ ∈ Lp(0, T ;Lppot(Ω) ⊗ Lp(Q)) such
that

∫ T

0

Ẽhom(t, w(t))dt =

∫ T

0

e2Λt

〈∫

Q

V (ω, x, e−Λt∇w(t) + χ(t)) + f(ω, x, e−Λtw(t))

〉

− ΛRhom(w(t))dt. (29)

For the pair
(
w, eΛ·χ(·)

)
(eΛ· denotes the function t 7→ eΛt) Lemma 4.3 implies the existence

of wε ∈ Lp(0, T ;Lp(Ω)⊗W 1,p
0 (Q)) ∩ Lθ(0, T ;Lθ(Ω×Q)) such that

Tεwε → w strongly in Lθ(0, T ;Lθ(Ω×Q)),

Tε∇wε → ∇w + eΛ·χ strongly in Lp(0, T ;Lp(Ω×Q)d).
(30)

Using the definition of the convex conjugate Ẽ∗ε , we have

∫ T

0

Ẽ∗ε (t,−DRε(u̇ε(t)))dt ≥
∫ T

0

〈−DRε(u̇ε(t)), wε(t)〉Y ∗,Y − Ẽε(t, wε(t))dt.

For the first term on the right-hand side we have, using the fact that the extended unfolding
operator is unitary, as ε→ 0,

∫ T

0

〈−DRε(u̇ε(t)), wε(t)〉Y ∗,Y dt = −
∫ T

0

〈∫

Q

r(ω, x)Tεu̇ε(t)Tεwε(t)dx
〉
dt (31)

→ −
∫ T

0

〈∫

Q

r(ω, x)u̇(t)w(t)dx

〉
dt =

∫ T

0

〈−DRhom(u̇(t)), w(t)〉Y ∗0 ,Y0 dt.

The above convergence follows since (31) is a scalar product of a strongly and a weakly
convergent sequence. Moreover, by Proposition 3.4 (i),

∫ T

0

Ẽε(t, wε(t))dt

=

∫ T

0

e2Λt

〈∫

Q

V (ω, x, e−ΛtTε∇wε(t)) + f(ω, x, e−ΛtTεwε(t))dx
〉
dt

−
∫ T

0

〈∫

Q

Λr

2
|Tεwε(t)|2dx

〉
dt.

As ε→ 0, this expression converges to
∫ T

0

e2Λt

〈∫

Q

V (ω, x, e−Λt∇w(t) + χ(t)) + f(ω, x, e−Λtw(t))− Λr

2e2Λt
|w(t)|2dx

〉
dt.

This follows completely analogously as in the proof of Proposition 3.4 (ii) using the strong
convergences (30) and the growth conditions of the integrands (standard argument using

Fatou’s lemma). By (29), the last expression equals
∫ T

0
Ẽhom(t, w(t))dt and therefore collecting

the above statements we conclude that

lim inf
ε→0

∫ T

0

Ẽ∗ε (t,−DRε(u̇ε(t)))dt ≥
∫ T

0

Ẽ∗hom(t,−DRhom(u̇(t)))dt. (32)
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Collecting (26), (27), (28) and (32), we obtain that
∫ T

0

Ẽhom(t, u(t)) + Ẽ∗hom(t,−DRhom(u̇(t)))dt

≤ −Rhom(u(T )) +Rhom(u(0)) =

∫ T

0

〈−DRhom(u̇(t)), u(t)〉Y ∗0 ,Y0 dt.

This inequality is, in fact, an equality by the Fenchel-Young inequality. Since u(t) = eΛty(t),
Lemma 4.1 (iii) implies that y is the unique solution to (10) with y(0) = y0. Furthermore,
using (26) and (27) we obtain

lim sup
ε→0

(−Rε(uε(T )) +Rε(uε(0))) ≤ −Rhom(u(T )) +Rhom(u(0)).

Also, exploiting the equality (25) and the liminf inequalities (28), (32), we obtain

lim inf
ε→0

(−Rε(uε(T )) +Rε(uε(0))) ≥
∫ T

0

Ẽhom(t, u(t)) + Ẽ∗hom(t,−DRhom(u̇(t)))dt

= −Rhom(u(T )) +Rhom(u(0)).

This results in

lim
ε→0

e2ΛT

2

〈∫

Q

r(ω, x)|Tεyε(T )|2dx
〉

= lim
ε→0
Rε(uε(T )) = Rhom(u(T )),

where we use that Rε(uε(0)) converges to Rhom(u(0)). Noting that

Rhom(u(T )) =
e2ΛT

2

〈∫

Q

r(ω, x)|y(T )|2dx
〉
,

the above and (23) imply that Tεyε(T ) → y(T ) strongly in Y . Since Tεy(T ) = y(T ) by
shift-invariance of y(T ), we obtain that yε(T ) → y(T ) strongly in Y . We may replace T by
any t ∈ (0, T ] in the above procedure to obtain yε(t)→ y(t) strongly in Y . Convergence for
the entire sequence is obtained by a standard contradiction argument using the uniqueness
of the solution for the limit problem.

Step 4. Convergence of ẏε and Eε(yε(t)). The EVI (6) is equivalent to the differential
inclusion (cf. (1) in the Introduction)

0 ∈ DRε(ẏε(t)) + ∂FEε(yε(t)) for a.e. t ∈ (0, T ).

This and the chain rule for the Λ-convex functional Eε (see, e.g., [41]) imply that d
dt
Eε(yε(t)) =

−〈DRε(ẏε(t)), ẏε〉Y ∗,Y . An integration over (0, t), for an arbitrary t ∈ (0, T ], yields
∫ t

0

〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds = Eε(yε(0))− Eε(yε(t)).

Since yε(t)→ y(t) strongly in Y and by (24), we obtain that lim infε→0 Eε(yε(t)) ≥ Ehom(y(t)),
which follows using Proposition 3.4 (cf. (28)). As a consequence, using the additional
assumption Eε(yε(0))→ Ehom(y(0)), we obtain

lim sup
ε→0

∫ t

0

〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds ≤ Ehom(y(0))− Ehom(y(t))

=

∫ t

0

〈DRhom(ẏ(s)), ẏ(s)〉Y ∗0 ,Y0 ds,
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where in the last equality we use that y is the solution to the limit problem. Note that it

holds
∫ t

0
〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds =

∫ t
0

〈∫
Q
r|Tεẏε(s)|2dx

〉
ds and since Tεẏε ⇀ ẏ weakly in

L2(0, T ;Y ), it follows that

lim inf
ε→0

∫ t

0

〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds ≥
∫ t

0

〈DRhom(ẏ(s)), ẏ(s)〉Y ∗0 ,Y0 ds.

Combining the last two inequalities and the weak convergence Tεẏε ⇀ ẏ, we conclude that
for all t ∈ (0, T ],

ẏε → ẏ strongly in L2(0, t;Y ), Eε(yε(t))→ Ehom(y(t)).

Appendix A. Normal integrands and integral functionals. In the following we recall
some key facts about measurable integrands and conjugates of integral functionals. A detailed
and more general theory can be found in [40].

Let (S,Σ, µ) be a complete measure space with a σ-finite measure µ and let X be a
separable reflexive Banach space with dual space X∗. The product-σ-algebra of Σ and B(X)
(Borel σ-algebra on X) is denoted by Σ ⊗ B(X). In the following we refer to a function
f : S ×X → R∪ {∞} as an integrand. For s ∈ S, we denote the function x 7→ f(s, x) by fs.

Definition A.1 (Normal integrand). We say that an integrand f is normal if the following
two conditions hold:

(i) f is Σ⊗ B(X)-measurable.
(ii) For each s ∈ S, the function fs is proper and l.s.c.

If additionally, for each s ∈ S, fs is convex, we say that f is a convex normal integrand.

Note that if f is a normal integrand and x : S → X is a (Σ,B(X))-measurable function,
then s 7→ f(s, x(s)) defines a Σ-measurable mapping.

Remark A.2 (Carathéodory integrand). We call an integrand f Carathéodory if f is finite
everywhere, f(·, x) is Σ-measurable for all x ∈ X, and f(s, ·) is continuous for all s ∈ S. If
an integrand is Carathéodory, then it is normal (for the proof see, e.g., [1, Lemma 4.51]).

Let f be a normal integrand. We define f ∗ : S×X∗ → R∪{∞} to be the convex conjugate
of f in its second variable, i.e., f ∗(s, ξ) = f ∗s (ξ) is defined by

f ∗s (ξ) = sup
x∈X

(
〈ξ, x〉X∗,X − fs(x)

)
.

Proposition A.3 ([40, Proposition 2]). Let f be a normal integrand. If for each s ∈ S, f ∗s
is proper (this is true if, e.g., f ≥ −c for some c > 0), then f ∗ is a convex normal integrand.
If f is a convex normal integrand, then (f ∗)∗ = f .

Let p ∈ (1,∞) and q = p
p−1

be its dual exponent of integrability. Since µ is σ-finite, we

may identify Lp(S;X)∗ with Lq(S;X∗) (see [46, Theorem 1.5]). For a given normal integrand
f , we define an integral functional If : Lp(S;X)→ R ∪ {±∞} by

If (x) =

∫

S

f(s, x(s))dµ(s),

if s 7→ f(s, x(s)) is integrable and otherwise we set If to be +∞. Analogously, we define
If∗ : Lq(S;X∗)→ R ∪ {±∞}.
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Proposition A.4 ([40, Theorem 2]). Let p ∈ (1,∞), q = p
p−1

. Let f be a normal integrand.

If there is an element x ∈ Lp(S;X) such that If (x) <∞, then for all ξ ∈ Lq(S;X∗), it holds

If∗(ξ) = sup
x∈Lp(S;X)

(∫

S

〈ξ(s), x(s)〉X∗,X dµ(s)− If (x)

)
. (33)

Remark A.5 (Measurable selection). The above theorem implies a measurable selection
principle for parametrized minimization problems. Namely, setting ξ = 0 above, we have∫

S

inf
x∈X

f(s, x)dµ(s) = inf
x∈Lp(S;X)

∫

S

f(s, x(s))dµ(s).

In particular, if the minimum on the right-hand side is attained, the latter equality implies
that there exists a (Σ,B(X))-measurable function x : S → X such that infx∈X f(s, x) =
f(s, x(s)) µ-a.e.
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