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The role of the self-steepening effect in soliton compression due
to cross-phase modulation by dispersive waves

Sabrina Pickartz

Abstract

We consider the compression and amplification of an ultrashort soliton pulse through the in-
teraction with a weaker velocity-matched dispersive wave, in the so-called optical event horizon
regime. We demonstrate that in this interaction scheme the self-steepening effect plays the key
role in producing a strong soliton compression. While the interaction between the two pulses is
mediated through cross phase modulation, the self-steepening effect produces an energy ex-
change, which enhances soliton compression. We provide numerical results and an analytical
expression for energy transfer and compression rate.

1 Introduction

We consider the compression and amplification of an ultrashort soliton pulse through the cross phase
modulation (XPM) interaction with a weaker velocity-matched dispersive wave in nonlinear optical
fibers. A soliton of high intensity creates a refractive index barrier at which a dispersive wave (DW)
of lower intensity is fully or partially trapped and accelerated. In a soliton co-moving frame this looks
like the reflection and transmission at a barrier, and it is accompanied by the according frequency
conversion of the reflected wave. This kind of wave trapping was observed in various experiments
[15, 14, 17, 22, 28, 1, 26], and it has been studied numerically in a variety of circumstances, e.g.
trapping by a single soliton [11, 27], successive reflection at a continuously decelerated soliton [10, 12],
or trapping between two solitons [29, 8]. The role of DW frequency conversion at a soliton barrier
for the generation of new frequencies has been investigated numerically, especially to explain the
appearance of certain frequencies in super-continua [25, 24, 9]. Within super-continuum generation it
was also observed, that this soliton-DW interaction can have a strong impact on the evolution of the
soliton [7]. All soliton parameters, e.g. its carrier frequency and peak power, can be manipulated in
a predictable and controlled fashion by a suitably chosen DW [19, 20]. It is a particularly intriguing
feature that a soliton can be influenced by a control pulse which is much lower in intensity, especially
as examples were found in which the soliton experienced an up to seven-fold increase in peak power
[4]. This kind of soliton amplification and manipulation has been investigated as an additional way of
producing super-continua, [6, 5], and for the generation of rogue waves [2, 3, 23].

It has been established that the interaction is mediated by XPM between soliton and dispersive wave
[7, 19]. Here we demonstrate that it is the influence of the self-steepening effect that is decisive for
the magnitude of soliton compression. In short: XPM leads to an energy-conserving reshaping of the
soliton. This reshaping is a purely parametric process. The soliton adiabatically adjusts its parameters
to the slow changes imposed by the interaction with the second wave. The main message of the
present work is that, contrary to prior perceptions, the effect of adiabatic compression alone is way to
weak to explain the extreme soliton compression rates observed. As we will see, the self-steepening
effect must be taken into account. It results in an energy exchange which generates considerably
stronger changes of soliton parameters.
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S. Pickartz 2

The paper is organized as follows. First we compare the typical picture of soliton compression through
XPM to a case in which the self-steepening is artificially switched off and the soliton compression is
consequently weakened. In section 2 we give corresponding numerical simulation results. A model for
the velocity-matched soliton-DW interaction scheme was established in [19], which we adjust to both
settings, with and without self-steepening. We can then give an analytical expression the evolution of
soliton peak power and pulse energy.

2 Soliton-DW interaction

A direct comparison of numerical simulations with and without self-steepening reveal the difference
between the two scenarios. We numerically solve the generalized nonlinear Schrödinger equation

iψz +D(i∂τ )ψ + γ0 [1 + iη0∂τ ] |ψ|2 ψ = 0. (1)

It describes the propagation of the field envelope ψ = ψ(z, τ) along an optical fiber, where z is
the propagation distance, τ = t − zβ′(ω0) the retarded time. The dispersion operator is defined by
D(i∂τ )ψ(z, τ) = F−1(D(ω)ψ̂(z, ω)) through Fourier transform of the dispersion function

D(∆ω) = β (ω0 + ∆ω)− β (ω0)− β′ (ω0) ∆ω. (2)

The nonlinear parameter γ0, and the self-steepening parameter η0 = 1/ω0 are each evaluated at
reference frequency ω0. To observe the interaction of interest, we use the initial envelope

ψ(0, τ) =

√
P0

cosh
(
τ−τ0
σ0

) +

√
P1e

−i[ωDW−ω0]τ

cosh
(
τ−τ1
σ1

) .

The soliton has initial carrier frequency ω0, initial peak power P0, initial duration σ0, and initial delay
τ0 = 0. The DW has initial carrier frequency ωDW , peak power P1, and duration σ1. Soliton and DW are
velocity matched, meaning we can find frequencies ω0 and ω1 lying in opposite dispersion regimes
yet with equal group velocities, β′(ω0) = β′(ω1). The initial DW frequency is ωDW = ω1 + ∆, with a
small initial frequency offset ∆. Only for small enough values of ∆ soliton and DW will interact. The
specific range of an effective ∆-interval was derived in [20]. Furthermore the initial DW peak power
P1 is chosen much below the initial soliton peak power P0. These conditions are necessary for the
adiabatic soliton-feeding effect seen in Figure 4.

Figure 1 shows the typical interaction picture of soliton compression by a DW. The DW approaches
the soliton, and is reflected in the co-moving frame. During this reflection process, the soliton is ac-
celerated, which is recognized by the deflection of its trajectory in the temporal domain. In the shown
example the soliton is compressed, its peak power multiplies almost 4-fold. In the spectral domain,
we can the solitons frequency upshift and broadening of the spectral envelope, and the frequency
conversion of the reflected DW.

Figure 2 shows the numerical solution of (1) with self-steepening artificially switched off using the
same set of initial parameters as used in Figure 1. The soliton still traps parts of the approaching DW,
yet becomes transparent very soon. The soliton is sightly accelerated, and its peak power multiplies by
a mere factor 1.2. So the typical traits of the interaction are retained, but are much less pronounced.
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Figure 1: Interaction of soliton (ω0 = 0.67 rad fs−1, σ0 = 30 fs) and DW (ω1 = 3.586 rad fs−1,
σ1 = 100 fs, initially 25% of initial soliton peak power) in silica fiber. (a) In temporal domain the DW
is reflected at the soliton, which is then deflected. (b) Soliton peak power multiplies by a factor 3.5.
(c) Solitons frequency is up-shifted, and the DW frequency is converted down during the reflection
process.
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Figure 2: Interaction of soliton and DW in silica fiber. The same initial values as is Figure 1, yet the
GNLS equation (1) is numerically solved with self-steepening artificially switched off (η0 ≡ 0). (a)
The DW is still partially reflected at the soliton. (b) The soliton is only slightly compressed, its peak
power amplifies by only a factor 1.2. (c) The upshift in soliton frequency is very small. We can see the
frequencies of incoming and transmitted parts of the DW and the down-converted frequency of the
reflected DW parts.
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3 Model equations for soliton-DW interaction (Recap)

Here we briefly recap the analytical description of the soliton-DW interaction, which was first intro-
duced in [19]. The model can be adapted to provide explicit expressions for soliton peak power and
pulse energy depending on propagation distance, for either of the two scenarios with and without
self-steepening.

The model is derived on the basis of two coupled NLS equations for the envelopes ψ and ψDW of
soliton and DW, respectively:

i∂zψ +D(i∂τ )ψ + γ0
[
|ψ|2 + 2 |ψDW|

2]ψ = 0 (3)

i∂zψDW −
β′′1
2
∂2τψDW + γ1

[
|ψDW|

2 + 2 |ψ|2
]
ψDW = 0 (4)

The equations are evaluated at the initial soliton frequency ω0, and the velocity matched frequency
ω1. Thus both equations can use the retarded time τ defining a frame co-moving with the initial soliton
group velocity, vg = 1/β′(ω0) = 1/β′(ω1). The frequency offset ∆ from ω1 is hidden in the initial
condition of the DW envelope. Note that the soliton equation (3) must contain higher order dispersion
terms to reflect the steep anomalous dispersion profile.

Equations (3) and (4) are solved analytically by different means. The soliton equation (3) is rearranged
as perturbed NLS equation in which the XPM by the DW is treated as a perturbation, while the DW
equation (4) is treated as a scattering problem of a plane wave reflected and transmitted at a solitonic
barrier. The key to the success of the presented model lies in a generalization of the soliton perturba-
tion theory which allows all material parameters to adapt to a changing soliton carrier frequency.

3.1 Setup

The soliton equation (3) is rearranged as perturbed standard NLS equation:

i∂zψ −
β′′0
2
∂2τψ + γ0 |ψ|2 ψ = iF, (5)

where the higher order dispersion and XPM terms are gathered in the perturbation term

F = F (ψ, ψ∗, ψDW , ψ
∗
DW

) = i
M∑

m=3

β
(m)
0

m!
[i∂τ ]

mψ + i2γ0|ψDW|2ψ. (6)

This is based on the assumption that the soliton reacts to small changes in its environment and adapts
to it while retaining its soliton character. The unperturbed NLS equation (5) (F ≡ 0) can be derived
from the Lagrangian

LNLS =
i

2

[
ψ∗
∂ψ

∂z
− ψ∂ψ

∗

∂z

]
+
γ0
2
|ψ|4 − β′′0

2

∣∣∣∣
∂ψ

∂τ

∣∣∣∣
2

by means of the variational derivative δ
δψ∗LNLS = 0. A variational approximation of the soliton envelope

is calculated by stating an ansatz function, e.g.

ψ0(z, τ) =
1

σ

√
|β′′0 |
γ0

exp (−iν [τ − τS] + iθ)

cosh
(
τ−τS

σ

) (7)
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and integratingL(ψ0) over τ . The resulting effective LagrangianLeff = −
[
ν dτS

dz
+ dθ

dz

] 2β′′0
γ0σ
− [β′′0 ]

2ν2

γ0σ
+

[β′′0 ]
2

3γ0σ3 is a function of the z-dependent free soliton parameters, i.e. soliton duration σ(z), frequency
shift ν(z), time delay τS(z) and phase θ(z). Variational derivatives by the soliton parameters result
in a set of ordinary differential equations describing in total the evolution of soliton envelope (7). For
example

δLeff

δθ
= 0 results in the energy conservation dE

dz
= 0.

The influence of a non-vanishing perturbation onto the evolution of the soliton parameters can be
calculated to be

δLeff

δrj
= −2

∫
dτ Im

(
F
∂ψ∗0
∂rj

)
(8)

for any soliton parameter rj = σ, ν, τS , θ (cf. [13]).

The solution of equation (4) provides an explicit expression for ψDW(z, τ) which can be used directly
in the perturbation term F of the solitons equation. Assuming that the DW is of much lower intensity
compared to the soliton, equation (4) can be linearized, and higher order dispersion and nonlinear
phenomena can be ignored as they do not affect a low-intensity monochromatic DW. The soliton
ansatz (7) is plugged in, so that is can be solved as the scattering of a plain wave at a soliton barrier.
We get not only an analytical expression for ψDW , but also reflection and transmission coefficients
depending on the changing soliton parameters.

3.2 Adaptation to varying soliton frequency

The way the soliton equation is solved above is pretty much according to the standard soliton pertur-
bation theory, e.g. [13]. Yet in fact, it will fail to predict any changes in the soliton amplitude, as has
been pointed out before. A generalization of the standard perturbation theory was introduced [19].
This generalization uses a perturbation equation in which all coefficients are functions depending on
the varying soliton frequency

ωS = ω0 + ν(z).

This is not merely the key to a proper prediction of soliton amplitude changes, but it also allows a better
understanding of the importance of the self-steepening effect in soliton compression, as we shall see
shortly.

The new soliton envelope

ψS(z, τ) = ψ0 exp

(
−iν(z)τ + i

∫ z

0

D (ω0 + ν(z′)) dz′
)

(9)

is introduced. When plugged into (3) it yields a new soliton equation

i∂zψ0 + τ

[
dν

dz

]
ψ0 + i [β′(ω0 + ν(z))− β′(ω0)] ∂τψ0

+
M∑

m=2

β(m)(ω0 + ν(z))

m!
[i∂τ ]

m ψ0 + γ0
[
|ψS|

2 + 2 |ψDW|
2] = 0. (10)

To derive (10) first the following property of the dispersion operator was used:

D(i∂τ )
[
ψ0e

−iντ] = e−iντD(ν + i∂τ )ψ0. (11)
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Then the dispersion operator is expanded around ν:

D(i∂τ + ν) =
∑

m≥0

D(m)(ν)

m!
[i∂τ ]

m (12)

and rewritten in terms of the propagation constant β according to (2). The dispersion coefficients are
now dependent on the soliton frequency shift ν(z). Because the dispersion coefficients, especially
the GVD coefficient, are now evaluated accurately at any soliton frequency ω0 + ν, the higher order
dispersion terms become less important in the new equation. It is sufficient to set M = 4.

The introduction of the additional shift ν is mathematically equivalent to the introduction of an acceler-
ated coordinate system in quantum mechanics [16], hence the new term involving dν/dz appears in
(10).

For the new soliton equation we can now evaluate a variational approximation of the soliton envelope
ψ0. Equation (10) is again reformulated as perturbation equation

i∂zψ0 + i [β′(ω0 + ν(z))− β′(ω0)] ∂τψ0

− β′′(ω0 + ν(z))

2
∂2τψ0 + γ0 |ψ0|2 ψ0 + τ

dν

dz
ψ0 = iF (13)

in which higher order dispersion and XPM terms are collected into a perturbation function

F (ψ0, ψDW) = i
4∑

m=3

β(m)(ω0 + ν(z))

m!
[i∂τ ]

m ψ0 + i2γ0 |ψDW|
2 ψ0. (14)

The Lagrangian

LEq.(13) =
i

2

[
ψ∗
∂ψ

∂z
− ψ∂ψ

∗

∂z

]
+ τ

dν

dz
|ψ|2

+
i

2
[β′(ω0 + ν(z))− β′(ω0)]

[
ψ∗
∂ψ

∂τ
− ψ∂ψ

∗

∂τ

]

− β′′(ω0 + ν(z))

2

∣∣∣∣
∂ψ

∂τ

∣∣∣∣
2

+
γ0
2
|ψ|4 . (15)

reproduces unperturbed equation (13). Given a suitable soliton ansatz function

ψ0(z, τ) =
1

σ

√
|β′′(ω0 + ν)|

γ0

exp (iθ)

cosh
τ−τS

σ

, (16)

the procedure explained in the previous section can be directly applied to derive evolution equations
for the soliton parameters.

4 Adiabatic soliton compression

The soliton scheme outlines in the previous section is here used to predict how the soliton evolves
along the fiber with self-steepening ignored. We are interested primarily in the solitons compression
rate, therefor we focus on prediction of soliton duration and peak power. Equation (8) with variational
derivative by θ results in

d

dz

[
1

σ

β′′(ω0 + ν)

γ0

]
=

∫ ∞

−∞
dτ Re (Fψ∗0) = 0. (17)
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Figure 3: Interaction of a soliton (ω0 = 0.67 rad fs−1, σ0 = 40 fs) with a continuous DW (∆ =
0.1 rad fs−1, and 1% initial soliton peak power), if self-steepening is ignored. Comparison of numerical
and analytical results in temporal domain (a) and spectral domain (b). White dashed lines indicate
predictions by the model equations, cf. [18].

The right hand side of the equation evaluates to zero for the given perturbation (14). It provides a
simple relation for the change in soliton duration

σ(z)

σ(0)
=
β′′(ω0 + ν(z))

β′′(ω0)
. (18)

Thus peak power PS(z)/PS(0) = β′′(ω0)/β
′′(ω0 +ν(z)) only changes adiabatically due to a shifted

carrier frequency. As there should be no energy exchange between soliton and DW through XPM, the
soliton is expected to be unchanged. Consistent with this expectation the adiabatic model predicts
soliton energy to be preserved:

ES(z)

ES(0)
=
σ(0)

σ(z)

β′′(ω0 + ν(z))

β′′(ω0)
= 1. (19)

The energy ES =
∫
|ψ0(z, τ

′)|2dτ ′ = 2
σ
|β′′(ω0+ν)|

γ0
is calculated using the soliton ansatz function.

Figure 3 shows the numerical solution to the NLS equation (1) with η0 ≡ 0 and initial condition

ψ(0, τ) =

√
P0

cosh
(
τ−τ0
σ0

) +
√
P1e

−i[ωDW−ω0]τ .

The continuous DW is initially fully reflected at the soliton barrier, yet only after about 5 cm of propa-
gation the soliton becomes transparent to the DW. Soliton peak power only increases minimally. The
dashed lines resulting from the adiabatic model equations are in good agreement with the numerical
results.

5 Effect of self-steepening on soliton-DW interaction

The soliton behavior changes drastically when the self-steepening term is included into the calcula-
tions. To that end the self steepening term is introduced into the soliton equation (3),

i∂zψ +D(i∂τ )ψ + γ0 [1 + iη0∂τ ]
[
|ψ|2 + 2 |ψDW|

2]ψ = 0.
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The introduction of the new soliton envelope (9) produced z−dependend dispersion coefficients. The
extra derivative by τ of the self-steepening term applied to the new envelope results in a nonlinear
coefficient which is also dependent on z:

γ0 [1 + iη0∂τ ]
[
ψ0(z, τ)e−iν(z)τ

]
=
n2,0ω0

c

[
1 +

i

ω0

∂τ

] [
ψ0(z, τ)e−iν(z)τ

]

= e−iν(z)τ
n2,0[ω0 + ν]

c

[
1 +

i

ω0 + ν
∂τ

]
ψ0(z, τ)

All additional terms are collected in the perturbation function:

F (ψ0, ψDW) = i

4∑

m=3

β(m)(ω0 + ν)

m!
[i∂τ ]

m ψ0

− γSηS∂τ
[
|ψ0|2 ψ0

]
+ i2γS [1 + iηS∂τ ]

[
|ψDW|

2 ψ0

]
(20)

with nonlinear and self-steepening coefficients

γS(z) =
n2,0[ω0 + ν(z)]

c
, (21)

ηS(z) = 1/[ω0 + ν(z)]. (22)

For this perturbation function, equation (8) with variational derivatives by θ and τS results in the follow-
ing two ordinary differential equations for soliton duration:

d

dz

[
β′′(ω0 + ν)

σγS

]
= −2ηS

β′′(ω0 + ν)

σ3

∫
dτ

tanh
τ−τS

σ

cosh2 τ−τS

σ

|ψDW(z, τ)|2 (23)

and frequency shift:

dν

dz
= −2γS

σ2

∫
dτ

tanh
τ−τS

σ

cosh2 τ−τS

σ

|ψDW(z, τ)|2 . (24)

Independent of the explicit form of ψDW both equations can be combined to

d

dz

[
β′′(ω0 + ν)

σγS

]
=
β′′(ω0 + ν)

σγS

ηS

dν

dz
(25)

and integrated. This results in an an explicit expression for soliton duration σ as a function of frequency
shift ν:

σ(z)

σ(0)
=
β′′(ω0 + ν(z))

β′′(ω0)

γS(0)

γS(z)

ηS(z)

ηS(0)
=
β′′(ω0 + ν(z))

β′′(ω0)

[
1 +

ν(z)

ω0

]−2
. (26)

Also soliton peak power changes no longer just adiabatically:

PS(z)

PS(0)
=

[
σ(0)

σ(z)

]2
γS(0)

γS(z)

β′′(ω0 + ν(z))

β′′(ω0)
=

[
1 +

ν(z)

ω0

]3
β′′(ω0)

β′′(ω0 + ν(z))
. (27)

and the soliton energy now changes with z:

ES(z)

ES(0)
=
σ(0)

σ(z)

β′′(ω0 + ν(z))

β′′(ω0)
= 1 +

ν(z)

ω0

. (28)
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Figure 4: Interaction of a soliton with a continuous DW for the same initial values as used in Figure
3, yet here self-steepening is taken into account. Comparison of numerical and analytical results in
temporal domain (a) and in spectral domain (b). White dashed lines indicate predictions by the model
equations, cf. [18].
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model equations including the self-steepening term. The soliton is only effectively compressed when
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soliton with ω0 = 0.67 rad fs−1 and σ0 = 40 fs. The bottom frame shows the initial impact of a certain
DW on the soliton. Red solid lines represent calculations ignoring self-steepening, black dashed lines
result from those with self-steepening included. The disagreement is due to the artificially removed
self-steepening term, cf. [18].

Figure 4 compares the results of these extended model equations with numerical solution to NLS
equation (1). Initial values are the same in used in Figure 3. The DW is fully reflected for a much
longer distance, only after about 50 cm the soliton becomes transparent. Again the agreement be-
tween model and numerics is quite accurate.

In Figure 5 the evolution of soliton parameters for the example shown in Figure 3 is directly compared
to the results shown in 4 for the case with self-steepening ignored. Without self-steepening, the soliton
energy stays unchanged. With self-steepening, the soliton only gains a small amount of energy, yet
the gain in peak power heavily depends on this small increase in energy, as is confirmed by (27) and
(28). Over the course of a much longer interaction length, the soliton’s peak power almost doubles.

6 Result

It is not immediately apparent that the self-steepening effect should have a strong impact on either
pulse, soliton or DW. Therefore it has often been neglected in investigations of soliton-DW interactions.
If the focus lies on the evolution of the DW and the soliton is considered unchanged by the interaction,
this may be justified, but one must bear in mind that the picture is incomplete, as it neglects the
important implications of an energy exchange between the pulses. When the focus lies on the soliton
compression or manipulation by a DW, self-steepening must be included into considerations. We have
demonstrated the apparent difference in soliton compression for the two scenarios of included vs.
ignored self-steepening effect. The expressions derived for the evolutiion of soliton peak power and
energy confirm that the energy exchange between DW and soliton resulting form the self-steepening
effect is a crucial factor in a strong soliton compression.

Figure 6 (top frame) shows the initial reflection coefficient versus initial DW frequencies for the initial
soliton with carrier frequency ω0 = 0.67 rad fs−1 and duration σ0 = 40 fs. The DW frequency should
be chosen, such that the DW is initially fully reflected. For a given soliton, the plotted reflection coeffi-
cient determines the DW frequency interval, which will result in an effective interaction. Another option
is to evaluate the righthand side the frequency ODEs (24) at the beginning of the fiber for varying
DW frequencies. The resulting curve is shown in Figure 6 (bottom frame). The curve shows the DW
frequency interval of interaction, which coincides with the frequency interval predicted by the reflec-
tion coefficient (top frame). The shape of the curve should indicate how strong the soliton is initially
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affected by a DW of a certain frequency. At the peaks of the curve the strongest initial effect on the
soliton should be found. Looking at the interaction interval, it is clear, that the range of possible DW
frequencies for an effective interaction is much smaller if self-steepening is ignored. These findings
confirm again that the self-steepening term plays an essential role in a possibly strong impact on soli-
ton evolution. The model for soliton feeding by dispersive waves proofs to be robust and versatile, as
it is easily adjusted to accurately predict evolution behavior from the simples interactions schemes of
pure XPM interaction focussing on the DW, to situations in which self-steepening results in strong soli-
ton compression. Even the effect of Raman scattering can be described in a straight forward manner
[21].
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