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Generalized gradients
for probabilistic/robust (probust) constraints

Wim van Ackooij, René Henrion, Pedro Pérez-Aros

Abstract

Probability functions are a powerful modelling tool when seeking to account for uncertainty in
optimization problems. In practice, such uncertainty may result from different sources for which
unequal information is available. A convenient combination with ideas from robust optimization
then leads to probust functions, i.e., probability functions acting on generalized semi-infinite in-
equality systems. In this paper we employ the powerful variational tools developed by Boris Mor-
dukhovich to study generalized differentiation of such probust functions. We also provide explicit
outer estimates of the generalized subdifferentials in terms of nominal data.

1 Introduction

The theory of optimization and optimal control has enormously benefitted from the pioneering work of
Boris Mordukhovich in the areas of variational analysis and generalized differentiation. Starting with
his introduction of the fundamental limiting normal cone [11] - being small (nonconvex) and robust at
the same time -, new tools of generalized differentiation (subdifferential, coderivative etc.) grew out of
this initial concept in a natural way and opened a powerful perspective for more efficient characteriza-
tions of stability or necessary conditions in set-valued analysis and optimization. A striking account of
this progress has been given in Mordukhovich’s celebrated two-volume monograph [12] on the Theory
and Applications of Variational Analysis and Generalized Differentiation. An update of recent develop-
ments, for instance in hierarchical or semi-infinite optimization problems, can be found in [13]. Not to
the least, the theory developed by Boris Mordukhovich has also found fruitful applications in proba-
bilistic programming, be it for the stability theory of probabilistic constraints [9] or be it for the derivation
of ’small’ subdifferential formulae for probability functions [7,21].

The current work is devoted to the characterization of the Mordukhovich subdifferential of probability
functions as they arise in optimization problems with probabilistic constraints or in problems of relia-
bility maximization. The classical form of a probability function considered in operations research is

ϕ(x) = P(gi(x, ξ) ≤ 0, (i = 1, . . . ,m)), (1)

where x is a finite dimensional decision vector, ξ is a finite dimensional random vector, and g rep-
resents a constraint mapping defining some finite random inequality system. The probability function
assigns to each decision x the probability of satisfying the given random inequality system. Typically,
they are embedded into optimization problems in one of the two ways

min{f(x) | ϕ(x) ≥ p} (probabilistic constraint);

max{ϕ(x) | x ∈ X} (reliability maximization)

Applications are abundant in engineering and particularly in power management (see, e.g., [14]). It is
well recognized that such probability function are inherently nonsmooth even if all input data (mapping
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g and distribution of ξ) are smooth (see, e.g., [7, Ex. 1], [20, Prop. 2.2], [21, Ex. 1.1]). Without further
conditions, just continuity can be expected to hold true by imposing some standard constraint qualifi-
cation. There are basically two reasons for inherent nonsmoothness: first, even for a single stochastic
inequality (i.e., m = 1 in (1)), the effect of an unbounded support for the distribution may cause a
failure of differentiability for the parameter dependent improper integral defining ϕ; second, even in
the case of bounded support but in the presence of several inequalities, some constraint qualifica-
tion (additional to that ensuring continuity) has to be imposed (e.g., the so-called ’rank-2-constraint
qualification’ [10, Th. 3.1], [21, Lemma 4.3]) .

In order to figure out those additional conditions finally guaranteeing differentiability, it turned out to be
useful to investigate probability functions by means of tools from variational analysis and generalized
differentiation ([7], [17], [18], [21]). A powerful tool to carry out this investigation in the context of
Gaussian or Gaussian like distributions of ξ is the so-called spheric-radial decomposition of an m-
dimensional Gaussian random vector ξ ∼ (µ,Σ), which allows to represent the Gaussian probability
of a Borel measurable set M as

P(ξ ∈M) =

∫
Sm−1

µη({r ≥ 0 | µ+ rLv ∈M})dµζ(v), (2)

where µη is the one-dimensional Chi-distribution with m degrees of freedom, µζ is the uniform dis-
tribution on the unit sphere Sm−1 and L originates from a factorization Σ = LLT of the covariance
matrix of ξ. This decomposition has been used in the computation of Gaussian probabilities in early
papers by Deák [2,3]. However, in the context of optimization problems, the set M would depend on
the decision vector x and so, in addition to the computation of probabilities, one would also be in-
terested in the sensitivity of this probability with respect to the decision vector. In [16] it was shown
that the gradient with respect to x of the probability (2) (with M replaced by some explicitly described
moving set M(x)) can be represented - just by differentiation under the integral sign - as a spheric
integral much like (2) but with a modified integrand. This allows for a simultaneous sampling scheme
of the uniform distribution on the sphere in order to determine probabilities and sensitivities at a time
in the framework of some nonlinear optimization solver.

While in [16] more general constraints (finite unions of finite intersections of smooth inequalities) were
admitted than in (1), the authors make a boundedness assumption which may be quite restrictive for
applications. In [20] it was shown for a single inequality constraint, how to circumvent this boundedness
assumption by verifying some growth condition which turns out to apply in almost all practically relevant
situations. In [21] the analogous result was proven for several inequalities and a general (Clarke-)
subgradient formula provided for the probability function in absence of further constraint qualifications.
If, however, the rank-2-constraint qualification mentioned above, applies to the stochastic inequality
system, then ϕ could be shown to be differentiable and its gradient represented in the form of a spheric
integral again (without relying on a boundedness assumption). Further improvements concerning the
application of spheric radial decomposition to probabilistic programming were obtained by extending
the setting to infinite-dimensional decisions [7], to the class of elliptical distributions [18] and to the
derivation of second-order derivative formulae for ϕ [22].

The aim of this work is to characterize the Mordukhovich subdifferential of probability functions of the
type

ϕ(x) = P(g(x, y, ξ) ≤ 0 ∀y ∈ T (x)), (3)

where g : Rn×Rp×Rm → R is a constraint function, T : Rn ⇒ Rp is a multifunction representing
some moving index set for the inequality system g(x, y, ξ) ≤ 0, and ξ is an m-dimensional random
vector. We note first, that ϕ is correctly defined by justifying that the set, of which the probability
is taken, is Borel measurable. Indeed, it is closed as an intersection of sets which are closed by
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continuity of g. Observe that the stochastic inequality system, over which the probability is taken in (3)
has the typical form of a constraint set in generalized semi-infinite programming [24]. Such probability
functions have recently attracted much attention in optimization problems with so-called probust (=
probabilistic/robust) constraints (see [5], [6],[8], [19], [23]). These arise in a quite natural way, when
uncertainty parameters in the inequalities of some constraint system have a mixed nature with some
parameters being endowed with stochastic information and others not. Such is the case for instance in
gas transport optimization, where the loads at the exits of the gas networks are random (and modeled
by multivariate statistical distributions based on historical data) while friction coefficients of the pipes
underground are just uncertain within some given range [6]. Then it makes sense, to model both types
of uncertainty in a single joint model which is a probabilistic constraint with respect to the stochastic
parameter ξ over an infinite inequality system reflecting the robust part of uncertainty.

A recent investigation of model (3) specialized to the setting of a constant (yet continuous) index set
T (x) ≡ T can be found in [23]. The consideration of decision-dependent index sets as in (3) adds
another twist to the nonsmooth character of the probability function ϕ. Our (first) practical motivation
for analyzing this model comes again from optimization problems in gas transportation as, for instance,
the maximization of free capacities by the owner of a gas network (see [8] for details). As in previous
work, our intention is - starting with tools from generalised differentiation - to provide explicit conditions
under which ϕ is differentiable along with a gradient formula as a spheric integral in the vein of the
discussion above.

This paper has the following organisation. In section 2 we provide a brief overview of the employed
concepts and background information. Our derivation involves an auxiliary mapping, which can be
represented as a “marginal function”. The careful study of its continuity, representation as a marginal
function and derivation of subdifferential estimates are the topic of section 3. The final section 4 is
devoted to the study of subdifferential estimates for the probability function itself, carefully discusses
the employed assumptions and provides an application.

2 Basic assumptions and concepts

We start with the following definitions of well-known properties of multifunctions:

Definition 2.1 Let S : Rn ⇒ Rp be a set-valued mapping. Then,

1 S is closed if its graph gphS := {(x, y) ∈ Rn × Rp|y ∈ S(x)} is a closed set.

2 S is locally bounded if for every x ∈ Rn there exists a neighbourhoodU of x such that S(U) :=
∪x′∈US(x′) is bounded.

3 S is inner (or: lower) semicontinuous at (x̄, ȳ) ∈ gphS if for every sequence xk → x̄ there
exists a sequence yk ∈ S(xk) with yk → ȳ. Moreover, we say that S is inner semicontinuous
at x̄ if it is inner semicontinuous at every (x̄, ȳ) ∈ gphS.

Throughout this paper, we make the following standing assumptions on (3):

g is continuously differentiable and it is convex with respect to (4)

the third variable.

T is a closed and locally bounded multifunction. (5)

ξ has an elliptical distribution according to ξ ∼ E(µ,Σ, θ) (6)

(see Def. 2.8 below) with continuous generator θ.
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We note that (5) implies T to have compact values, i.e., T (x) is compact for all x ∈ Rn. Moreover,
we have the following immediate observation:

Proposition 2.2 From (5) it follows that, if T (x̄) = ∅ for some x̄ ∈ Rn, then T (x) = ∅ and ϕ = 1
locally around x̄ for ϕ in (3).

Proof. Assume that there exists some sequence xn → x̄ with T (xn) 6= ∅ and choose yn ∈ T (xn).
Then, by local boundedness of T , one has that ynk

→k ȳ for some subsequence and for some ȳ.
The closedness of T now implies the contradiction ȳ ∈ T (x̄) with T (x̄) = ∅. Consequently, there is
some neighbourhood U of x̄ such that T (x) = ∅ for all x ∈ U . This entails that for every x ∈ U the
inequality system

g(x, y, z) ≤ 0 ∀y ∈ T (x) = ∅
is trivially satisfied for all z ∈ Rm. Therefore, ϕ(x) = 1. �

Clearly, the last proposition shows, that our probability function ϕ in (3) behaves trivially around ar-
guments at which T is empty. That is why we will exclude this case from the corresponding results
below.

In the following, we collect some basic concepts of variational analysis and generalized differentiation
used in the paper (see, e.g., [13,15]).

Definition 2.3 Let C ⊆ Rn be a closed set and x̄ ∈ C . The contingent cone TC(x̄), the Fréchet
normal cone N̂C(x̄) and the Mordukhovich normal coneNC(x̄) to C at x̄ are respectively defined as:

TC(x̄) :=
{
d ∈ Rn|∃tn ↓ 0, ∃xn ∈ C, t−1

n (xn − x̄) = d
}

N̂C(x̄) := {x∗ ∈ Rn| 〈x∗, d〉 ≤ 0 ∀d ∈ TC(x̄)}
NC(x̄) := {x∗ ∈ Rn|∃(xn, x∗n)→ (x̄, x∗), xn ∈ C, x∗n ∈ N̂C(xn)}.

We recall that the Mordukhovich normal cone (unlike the Fréchet normal cone) has closed graph [15,
Prop. 6.6]. The normal cones above induce the following subdifferentials for lower semicontinuous
functions f : Rn → R ∪ {∞}:

Definition 2.4 The Fréchet subdifferential ∂̂f(x̄), the Mordukhovich subdifferential ∂f(x̄) and the
singular Mordukhovich subdifferential ∂∞f(x̄) of f at x̄ are respectively defined as:

∂̂f(x̄) := {x∗ ∈ Rn|(x∗,−1) ∈ N̂epi f (x̄, f(x̄))}
∂f(x̄) := {x∗ ∈ Rn|(x∗,−1) ∈ Nepi f (x̄, f(x̄))}

∂∞f(x̄) := {x∗ ∈ Rn|(x∗, 0) ∈ Nepi f (x̄, f(x̄))},

where epi f := {(x, t) ∈ Rn+1|f(x) ≤ t} refers to the epigraph of f .

The following representation of ∂f in terms of ∂̂f is well known [13, Proposition 1.20]:

∂f(x̄) = {x∗ ∈ Rn|∃(xn, x∗n)→ (x̄, x∗), f (xn)→ f (x̄) , x∗n ∈ ∂̂f(xn)} (7)

The Mordukhovich normal cone provides the possibility to introduce a derivative concept for general
set-valued mappings:

Definition 2.5 Let S : Rn ⇒ Rp be a set-valued mapping with closed graph. The coderivative of S
at (x̄, ȳ) ∈ gphS is defined as

D∗S(x̄, ȳ)(y∗) := {x∗ ∈ Rn|(x∗,−y∗) ∈ NgphS(x̄, ȳ)}.
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The fact that N is a cone implies immediately the following simple rule:

D∗S(x̄, ȳ)(λy∗) = λD∗S(x̄, ȳ)(y∗) ∀λ ≥ 0 ∀y∗. (8)

The following concept is a Lipschitz like property of set-valued mappings:

Definition 2.6 The set-valued mapping S : Rn ⇒ Rp has the Aubin property at (x̄, ȳ) ∈ gphS if
there exists K > 0 together with neighbourhoods U of x̄ and V of ȳ such that

d (y, S(x2)) ≤ Kd (x1, x2) ∀y ∈ S(x1) ∩ V ∀x1, x2 ∈ U,

where, on the left-hand side, ’d’ refers to the usual point-to-set distance.

In finite dimensions, the Aubin property can be equivalently characterized by means of the co-derivative.
This is the object of the so-called Mordukhovich criterium (see, e.g., [15, Theorem 9.40]):

Theorem 2.7 Let S : Rn ⇒ Rp be a set-valued mapping with closed graph and (x̄, ȳ) ∈ gphS.
Then S has the Aubin property at (x̄, ȳ) if and only if D∗S(x̄, ȳ)(0) = {0}.

In this work we will consider elliptically distributed random vectors [4]:

Definition 2.8 We say that the m-dimensional random vector ξ is elliptically distributed with mean µ,
positive definite covariance matrix Σ and generator θ : R+ → R+ (ξ ∼ E(µ,Σ, θ) for short) if and
only if its density fξ : Rm → R+ is given by

fξ(z) = (det Σ)−1/2 θ
(
(z − µ)>Σ−1(z − µ)

)
,

where the generator must satisfy
∫∞

0
t
m
2 θ(t)dt <∞.

The class of elliptical distributions contains, for instance, the multivariate Gaussian, Student (t-), sym-
metric multivariate stable, symmetric multivariate Laplace and multivariate logistic distributions. Now,
consider a decomposition

Σ = LLT (9)

of Σ (e.g., Cholesky decomposition). Then, it can be shown that ξ admits a representation as

ξ = µ+RLζ,

which we will refer to as the spherical radial decomposition. Herein ζ has a uniform distribution over
the m-dimensional Euclidean unit sphere Sm−1 := {z ∈ Rm :

∑m
i=1 z

2
i = 1} and R - being

stochastically independent of ζ - possesses a density, which is given by

fR(r) :=

{
2π

m
2

Γ(m
2

)
rm−1θ(r2) if r ≥ 0

0 if r < 0
. (10)

Let us consider the probability function (3) with ξ ∼ E(µ,Σ, θ). Then, similar to the previously dis-
cussed representation (2) in the special case of Gaussian distributions, one has that

P(ξ ∈M) =

∫
Sm−1

µR({r ≥ 0 | µ+ rLv ∈M})dµζ(v)
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for any Borel measurable subset M ⊆ Rm, where µζ refers to the uniform measure on Sm−1 and µR
to the one-dimensional probability measure induced by the density (10) (which would reduce to the
Chi-distribution in (2)). Applying this representation to the set

M := {z ∈ Rm|g(x, y, z) ≤ 0 ∀y ∈ T (x)},

one derives the corresponding form of the probability function (3):

ϕ(x) =

∫
v∈Sm−1

µR({r ≥ 0 : g(x, y, µ+ rLv) ≤ 0 ∀y ∈ T (x)})dµζ(v)

=

∫
v∈Sm−1

e(x, v)dµζ(v) (x ∈ Rn) . (11)

The study of the integrand e : Rn × Sm−1 → [0, 1] defined by

e(x, v) := µR({r ≥ 0|g(x, y, µ+ rLv) ≤ 0, ∀y ∈ T (x)}). (12)

will be of great importance in this paper. We will to refer to it as the radial probability function.

3 Continuity properties

3.1 (Semi-) continuity of the probability function

When studying the infinite inequality system [g(x, y, z) ≤ 0 ∀y ∈ T (x)], it will be useful to consider
the following maximum function gT : Rn × Rm → R̄ given by:

gT (x, z) :=

{
max
y∈T (x)

g(x, y, z) if T (x) 6= ∅

−∞ if T (x) = ∅
(13)

Note that writing ’max’ in this definition is justified from assumptions (4)-(5) by g being continuous and
T having compact values. Clearly, gT is convex in the second argument as a consequence of our
convexity assumption in (4). The following equivalence is immediate:

g(x, y, z) ≤ 0 ∀y ∈ T (x)⇐⇒ gT (x, z) ≤ 0. (14)

In particular, our probability function ϕ in (3) may be equivalently written as

ϕ (x) = P (gT (x, ξ) ≤ 0) . (15)

The results of the following Lemma are well known (see, e.g., [24, p. 401]):

Lemma 3.1 Let (x̄, z̄) ∈ Rn × Rm be arbitrary such that T (x̄) 6= ∅. Then, under our assumptions
(4)-(5) it holds that

1 gT is upper semicontinuous at (x̄, z̄).

2 If, in addition, T is inner semicontinuous at x̄ (i.e., inner semicontinuous at every (x̄, y) ∈
gphT ), then gT is also lower semicontinuous, hence continuous at (x̄, z̄).

From here, we derive the following properties for the probability function ϕ in (3):
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Proposition 3.2 Let x̄ ∈ Rn be arbitrary such that T (x̄) 6= ∅. Then, under our assumptions (4)-(6)
it holds that

1 If there is some z̄ ∈ Rm and some ε > 0 such that

g(x̄, y, z̄) ≤ −ε ∀y ∈ T (x̄), (16)

then ϕ is lower semicontinuous at x̄.

2 If T is inner semicontinuous at x̄, then ϕ is upper semicontinuous at x̄.

Proof. Observe first, that (16) implies z̄ to be a strong Slater point for the convex inequality system
g(x̄, y, z) ≤ 0 (y ∈ T (x)) in the variable z. It follows that gT (x̄, z̄) ≤ −ε < 0 by compactness of
T (x̄), whence z̄ is a Slater point of the (single) convex inequality gT (x̄, z) ≤ 0 in the variable z. This
provides that (with ’bd’ = boundary)

{z ∈ Rm|gT (x̄, z) = 0} ⊆ bd {z ∈ Rm|gT (x̄, z) ≤ 0} .

Since the boundary of a convex set has Lebesgue measure zero, the set on the left-hand side itself
has Lebesgue measure zero. Since our random vector ξ is absolutely continuous with respect to the
Lebesgue measure (by having a density according to (6)), one infers that

P (gT (x̄, ξ) = 0) .

Moreover, we know from 1. in Lemma 3.1 that gT is upper semicontinuous at (x̄, z) for any z ∈ Rm.
Then, taking into account (15), it follows from [5, Lemma 2] (with the inequality system and thus lower
and upper semicontinuity reversed there), that ϕ is lower semicontinuous at x̄ as claimed in 1. As for
2., 2. in Lemma 3.1 yields that gT is lower semicontinuous at (x̄, z) for any z ∈ Rm. Then, again from
[5, Lemma 2], one derives that ϕ is upper semicontinuous at x̄. �

Of course, joining all assumptions in the previous Proposition would ensure the continuity of the prob-
ability function ϕ in (3).

We complete this section by an openness result for the Aubin property needed later:

Proposition 3.3 Fix x̄ ∈ Rn. Assume that our set-valued index set mapping T : Rn ⇒ Rp satisfies
the Aubin property at all (x̄, y) ∈ gphT . Then, under assumption (5) there is a neighbourhood U
of x̄, such that T has the Aubin property at all (x, y) ∈ gphT with x ∈ U and with some common
(independent of x and y) modulus K ≥ 0. Moreover,

‖x∗‖ ≤ K ‖y∗‖ ∀y∗ ∀x∗ ∈ D∗T (x, y) (y∗) ∀y ∈ T (x) ∀x ∈ U . (17)

Proof. Since T satisfies the Aubin property at all (x̄, y) with y ∈ T (x̄), a standard compactness argu-
ment with respect to the set T (x̄) (which is compact by (5)) yields the existence of a neighbourhood
U of x̄ of a neighbourhood V of the compact set T (x̄) and of a constant K ≥ 0 such that

d (y, T (x2)) ≤ Kd (x1, x2) ∀y ∈ T (x1) ∩ V ∀x1, x2 ∈ U. (18)

We claim that T has the Aubin property at all (x, y) ∈ gphT with x ∈ U with the common modulus
K . Assuming the contrary would provide us with a sequence (xk, yk) ∈ gphT such that xk →k x̄
and T fails to have the Aubin property at (xk, yk) with modulus K . The local boundedness of T at x̄
(see (5)) implies that for ykl →l ȳ for some subsequence and some ȳ. By gphT being closed (see
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(5)), we have that (x̄, ȳ) ∈ gphT . Since T fails to have the Aubin property at (xkl , ykl) with modulus
K , we may find a sequence (x̃l, x̂l, ỹl) satisfying

d (x̃l, xkl) , d (x̂l, xkl) , d (ỹl, ykl) ≤ l−1, ỹl ∈ T (x̃l) , d (ỹl, T (x̂l)) > Kd (x̃l, x̂l) ∀l.
(19)

Clearly, x̃l, x̂l →l x̄ and ỹl →l ȳ ∈ T (x̄) ⊆ V . In particular, for l large enough, we have that
ỹl ∈ T (x̃l) ∩ V and x̃l, x̂l ∈ U . Hence, d (ỹl, T (x̂l)) ≤ Kd (x̃l, x̂l) for l large enough by (18)
which contradicts (19).

It remains to prove (17). From [13, (3.10)] we infer with the result proven so far, that

‖x∗‖ ≤ K ∀x∗ ∈ D∗T (x, y)(y∗) : ‖y∗‖ ≤ 1 ∀y ∈ T (x) ∀x ∈ U.

Combining this with (8) yields

‖x∗‖
‖y∗‖

≤ K ∀y∗ 6= 0 ∀x∗ ∈ D∗T (x, y)(y∗) ∀y ∈ T (x) ∀x ∈ U.

On the other hand, D∗T (x, y)(0) = {0} by Theorem 2.7. Altogether, this proves (17). �

3.2 (Lipschitz-) continuity and subdifferential of the radius function and of the
radial probability function

We define the following function ρ : Rn × Rp × Rm → R+ ∪ {∞}:

ρ(x, y, v) := sup{r ≥ 0|g(x, y, µ+ rLv) ≤ 0}. (20)

(compare (12)). If the set of r ≥ 0 with g(x, y, µ+rLv) ≤ 0 is empty, then we define ρ(x, y, v) := 0.
It follows immediately from the definition that

ρ(x, y, tv) = t−1ρ(x, y, v) ∀t > 0. (21)

Let x̄ ∈ Rn, ȳ ∈ Rp and v̄ ∈ Rm be given. Suppose that g(x̄, ȳ, µ) < 0. Then, by continuity and
convexity of g(x̄, ȳ, ·) as assumed in (4), either ρ(x̄, ȳ, v̄) =∞ - in which case g(x̄, ȳ, µ+rLv̄) < 0
for all r ≥ 0 - or ρ(x̄, ȳ, v̄) <∞ is the unique solution of g(x̄, ȳ, µ+rLv̄) = 0. The following lemma
follows from Lemmas 3.1, 3.2 and 3.3 in [20]. The latter ones were proven just in case of a single
constraint g(x, z) ≤ 0, i.e., with missing variable y for indexing the inequality in our possibly infinite
system. It turns out, however, that by treating the couple (x, y) exactly as the single variable x has
been treated in [20], one may copy the original proofs to get the following results:

Lemma 3.4 Assume that x̄ ∈ Rn, ȳ ∈ Rp and v̄ ∈ Sm−1 are such that g(x̄, ȳ, µ) < 0. Then,
the extended-valued function ρ is continuous at (x̄, ȳ, v̄) with respect to the topology of R+ ∪ {∞}.
Moreover, if ρ(x̄, ȳ, v̄) <∞, then, ρ is continuously differentiable on a neighbourhood W of (x̄, ȳ, v̄)
and

∇x/yρ(x, y, v) = −
∇x/yg(x, y, µ+ ρ(x, y, v)Lv)

〈∇zg(x, y, µ+ ρ(x, y, v)Lv), Lv〉
(22)

〈∇zg(x, y, µ+ ρ(x, y, v)Lv), Lv〉 ≥ −g(x, y, µ)

ρ(x, y, v)
> 0 (23)

holds true for all (x, y, v) ∈ W .
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As an immediate consequence of Lemma 3.4 and of (21), we have

Corollary 3.5 Assume that x̄ ∈ Rn, ȳ ∈ Rp are such that g(x̄, ȳ, µ) < 0. Then, the extended-
valued function ρ is continuous at (x̄, ȳ, v̄) for every v̄ ∈ Rm\{0} with respect to the topology of
R+ ∪ {∞}.

Next, we define the radius function ρT : Rn × Rm → R+ ∪ {∞} by

ρT (x, v) := inf
y∈T (x)

ρ(x, y, v). (24)

Proposition 3.6 Under (4)-(6), for every v ∈ Sm−1 and every x with gT (x, µ) < 0 it holds that

{r ≥ 0|gT (x, µ+ rLv) ≤ 0} = [0, ρT (x, v)], (25)

where [0,∞] = [0,∞) is intended. Moreover, if ρT (x, v) is finite, then it is the unique solution r of
the equation gT (x, µ+ rLv) = 0.

Proof. If T (x) = ∅, then, by definitions in (13) and (24) we have that ρT (x, v) = ∞ and gT (x, µ +
rLv) = −∞ for every r ≥ 0, hence both sets in (25) coincide. Next, assume that T (x) 6= ∅. If
ρT (x, v) = ∞, then, ρ(x, y, v) = ∞ for all y ∈ T (x) which entails that g(x, y, µ + rLv) ≤ 0 for
all r ≥ 0 and all y ∈ T (x). It follows that gT (x, µ + rLv) ≤ 0 for all r ≥ 0 and, hence, (25) holds
true again. Therefore, we may assume now in addition that ρT (x, v) <∞.

Let r ∈ [0, ρT (x, v)] be given. Then, by (24) and (20)

sup{r′ ≥ 0|g(x, y, µ+ r′Lv) ≤ 0} = ρ(x, y, v) ≥ r ∀y ∈ T (x).

Let y ∈ T (x) be arbitrary. If there existed some r∗ ≥ r with g(x, y, µ + r∗Lv) ≤ 0, then by our
assumption gT (x, µ) < 0 and by convexity of g(x, y, ·) it would follow that g(x, y, µ + rLv) ≤ 0.
Otherwise, the relation above entails the existence of some sequence rk ↑ r such that g(x, y, µ +
rkLv) ≤ 0. Then, again g(x, y, µ + rLv) ≤ 0. Since y ∈ T (x) was arbitrary, one infers that
gT (x, µ+ rLv) ≤ 0 which establishes the inclusion ′ ⊇′ of (25).

Conversely, let gT (x, µ + rLv) ≤ 0 for some r ≥ 0. Then, g(x, y, µ + rLv) ≤ 0 and, hence,
r ≤ ρ(x, y, v) for all y ∈ T (x) which entails that ρT (x, v) ≥ r. This finally proves (25).

Concerning the final statement of the proposition, note first that the assumption ρT (x, v) <∞ along
with the already proven identity (25) yields that

gT (x, µ+ ρT (x, v)Lv) ≤ 0; gT (x, µ+ (ρT (x, v) + 1/k)Lv) > 0 ∀k.

The assumption ρT (x, v) <∞ implies that T (x) 6= ∅. Consequently, Lemma 3.1 ensures the upper
semicontinuity of gT . Thus,

gT (x, µ+ ρT (x, v)Lv) ≥ lim sup
k

gT (x, µ+ (ρT (x, v) + 1/k)Lv) ≥ 0,

so that ρT (x, v) is a solution r of the equation gT (x, µ+ rLv) = 0. Uniqueness of this solution now
follows from the convexity of gT (x, ·) along with our assumption gT (x, µ) < 0. �

Corollary 3.7 Assume that (4)-(6) holds true. If gT (x, µ) < 0, then the radial probability function in
(12) can be represented as

e(x, v) =

{
FR(ρT (x, v)) if ρT (x, v) <∞

1 if ρT (x, v) =∞ ∀x ∈ Rn ∀v ∈ Sm−1, (26)

where FR is the cumulative distribution function of the one-dimensional probability measure µR.
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Proof. From (12), (14) and (25), we derive

e(x, v) = µR({r ≥ 0|gT (x, µ+ rLv) ≤ 0}) = µR([0, ρT (x, v)]).

If ρT (x, v) =∞, then [0, ρT (x, v)] = R+, and so

e(x, v) = µR(R+) =

∫ ∞
0

fR(t)dt = 1,

where the last identity follows from the fact that the density fR takes value zero for negative arguments
(see (10)). If, in contrast, ρT (x, v) < ∞, then µR([0, ρT (x, v)]) = FR(ρT (x, v)) by definition of a
distribution function and again by (see (10)). �

The next result characterizes the continuity of the radial function ρT .

Theorem 3.8 Assume that (4)-(6) hold true. Let x be such that gT (x, µ) < 0. Then, ρT (as a possibly
extended-valued function) is lower semicontinous at (x, v) for every v ∈ Sm−1 in the topology of
R+ ∪ {∞}. If, moreover, T is inner semicontinuous at x, then ρT is also upper semicontinous, hence,
continuous at (x, v) for every v ∈ Sm−1 in the topology of R+ ∪ {∞}.

Proof. As for the verification of lower semicontinuity, consider a sequence (xk, vk)→ (x, v) with

ρT (xk, vk)→ α := lim inf
(x′,v′)→(x,v)

ρT (x′, v′).

We have to show that ρT (x, v) ≤ α. This is trivial if α = ∞, hence assume that α < ∞. Con-
sequently, ρT (xk, vk) < ∞ for k large enough. This entails, on the one hand, that T (xk) 6= ∅ by
(24), whence T (x) 6= ∅ according to Proposition 2.2. On the other hand, by the last statement of
Proposition 3.6,

gT (xk, µ+ ρT (xk, vk)Lvk) = 0

for k large enough. Now, we may exploit the upper semicontinuity of gT at (x, αLv), which is guaran-
teed by Lemma 3.1, in order to derive that

0 = lim
k
gT (xk, µ+ ρT (xk, vk)Lvk) ≤ gT (x, µ+ αLv). (27)

If ρT (x, v) =∞, then gT (x, µ+rLv) ≤ 0 for all r ≥ 0 by (25). In particular gT (x, µ+αLv) ≤ 0 and
also gT (x, µ+ (α+ 1)Lv) ≤ 0, whence gT (x, µ+αLv) = 0 by (27). This provides a contradiction
with gT (x, µ) < 0 and the convexity of gT (x, ·). Therefore, ρT (x, v) < ∞, and so, by the last
statement of Proposition 3.6, gT (x, µ+ρT (x, v)Lv) = 0. The assumption ρT (x, v) > α would then
imply with gT (x, µ) < 0 and the convexity of gT (x, ·) that gT (x, µ + αLv) < 0 contradicting (27).
Hence, ρT (x, v) ≤ α, as was to be shown.

The upper semicontinuity of ρT at (x, v) is trivial in case that ρT (x, v) = ∞, hence we assume that
ρT (x, v) < ∞ which in particular implies that T (x) 6= ∅. Then, by (13), for an arbitrary ε > 0 there
exists some yε ∈ T (x) such that

g(x, µ+ yε, (ρT (x, v) + ε)Lv) = gT (x, µ+ (ρT (x, v) + ε)Lv) > 0,

where the strict inequality follows from (25). Let (xk, vk)→ (x, v) be a sequence with

ρT (xk, vk)→ β := lim sup
(x′,v′)→(x,v)

ρT (x′, v′).
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By the inner semicontinuity of T at x, there exists a sequence yk → yε with yk ∈ T (xk). Then, by
continuity of g,

lim
k
g(xk, yk, µ+ (ρT (x, v) + ε)Lvk) = g(x, yε, µ+ (ρT (x, v) + ε)Lv) > 0.

It follows that

gT (xk, µ+ (ρT (x, v) + ε)Lvk) ≥ g(xk, yk, µ+ (ρT (x, v) + ε)Lvk) > 0

for k large enough. Therefore, again by (25), one has that ρT (x, v)+ε > ρT (xk, vk) for k sufficiently
large. Hence, β ≤ ρT (x, v)+ε. Since ε > 0 was chosen arbitrarily, the claimed upper semicontinuity
of ρT at (x, v) follows. �

Corollary 3.9 Assume that (4)-(6) hold true. Let x be such that gT (x, µ) < 0. Then, for every v ∈
Sm−1, e is lower semicontinuous at (x, v). If, moreover, T is inner semicontinuous at x, then for every
v ∈ Sm−1, e is also upper semicontinous, hence continuous at (x, v).

Proof. Let v ∈ Sm−1 be arbitrarily given. Observe first that gT (x′, µ) < 0 holds locally around x by
gT (x, µ) < 0 and by upper semicontinuity of gT at (x, µ), (see Prop. 3.1). Suppose that e fails to
be lower semicontinuous at (x, v). Then, there exist sequences xk →k x and vk →k v such that
e (x, v) > limk e (xk, vk). Observe first that, for k large enough,

e (xk, vk) < e (x, v) ≤ 1

because e, as a probability function, takes values not larger than one. In particular, for k large enough,
Corollary 3.7 implies that

ρT (xk, vk) <∞, e (xk, vk) = FR (ρT (xk, vk)) .

In the case of ρT (x, v) = ∞, the lower semicontinuity of ρT at (x, v) guaranteed by Theorem
3.8 entails that lim infk ρT (xk, vk) = ∞, whence ρT (xk, vk) →k ∞. FR, as a one-dimensional
distribution function, satisfies limt→∞ FR(t) = 1. This allows us to derive the contradiction

e (x, v) > lim
k
e (xk, vk) = lim

k
FR (ρT (xk, vk)) = 1 ≥ e (x, v) .

Consequently, we may assume that ρT (x, v) <∞. Then, once more, we establish a contradiction

e (x, v) > lim
k
e (xk, vk) = lim

k
FR (ρT (xk, vk)) ≥ FR (lim infk ρT (xk, vk))

≥ FR (ρT (x, v)) = e (x, v) .

Here we exploited the fact that FR as a one-dimensional distribution function having a density, is
nondecreasing and continuous, so that the liminf of the function can be estimated from below by the
function value at the liminf. The remaining relations follow once more from the lower semicontinuity of
ρT at (x, v) and from Corollary 3.7. Altogether, this shows the claimed lower semicontinuity of e at
(x, v). The verification of continuity of e at (x, v) under the additional assumption of T being inner
semicontinuous at x follows similar lines upon exploiting the continuity of ρT thanks to Theorem 3.8.
�

Our next step is to provide an upper estimate for the Mordukhovich subdifferential of our radius function
ρT . To this aim, we will apply the following result:
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Theorem 3.10 ([13], Theorem 4.1) We consider the marginal function β : Rn1 → R̄ defined by

β (z) := inf {α (z, y) |y ∈ G(z)} ,

where α : Rn1×Rn2 → R̄ is a lower semicontinuous extended-valued function andG : Rn1 ⇒ Rn2

is a multifunction with closed graph. Define the argmin-mapping Ψ : Rn1 ⇒ Rn2 by

Ψ (z) := {y ∈ G(z)|β (z) = α (z, y)} .

Fix some z̄ ∈ Rn1 with β (z̄) <∞ and Ψ (z̄) 6= ∅. Assume that Ψ is locally bounded around z̄ and
that the condition

∂∞α (z̄, y) ∩ −NgphG (z̄, y) = {0} ∀y ∈ Ψ (z̄) (28)

is satisfied (see Def. 2.4). Then, the following inclusion holds true:

∂β (z̄) ⊆
⋃
{z∗ +D∗G (z̄, y) (y∗)| (z∗, y∗) ∈ ∂α (z̄, y) , y ∈ Ψ (z̄)} .

Before applying this result, we introduce the argmin mapping M : Rn × Rm ⇒ Rp associated with
our problem and defined by

M(x, v) := {y ∈ T (x)|ρT (x, v) = ρ (x, y, v)}. (29)

Proposition 3.11 Assume that (4)-(6) hold true. Let (x̄, v̄) ∈ Rn×Sm−1 be such that gT (x̄, µ) < 0,
T (x̄) 6= ∅ and ρT (x̄, v̄) <∞. Then,

∂ρT (x̄, v̄) ⊆
⋃

y∈M(x̄,v̄)

[{∇xρ (x̄, y, v̄)}+D∗T (x̄, y) (∇yρ (x̄, y, v̄))]× {∇vρ (x̄, y, v̄)} .

Proof. By upper semicontinuity of gT (see 1. in Lemma 3.1), there exists a compact neighbourhood Ū
of x̄ such that gT (x, µ) < 0 for all x ∈ Ū . Then,

g(x, y, µ) < 0 ∀x ∈ Ū ∀y ∈ T (x). (30)

Define B :=
(
Ū × Rp

)
∩ gphT which is closed since gphT is so (see (5)). By local boundedness

of T (see (5)), we may assume Ū to be small enough, such that T (x) ⊆ W for all x ∈ Ū and
some bounded set W . Consequently, B is a closed subset of the bounded set Ū ×W and, hence, is
compact. Since (30) may be written as g(x, y, µ) < 0 for all (x, y) ∈ B, the continuity of g and the
compactness of B ensure the existence of some compact set V̄ with B ⊆ int V̄ and

g(x, y, µ) < 0 ∀ (x, y) ∈ V̄ .

Then, by Corollary 3.5, ρ is continuous on the compact set

A := V̄ ×
{
v ∈ Rm|1

2
≤ ‖v‖ ≤ 2

}
with respect to the topology of R+ ∪ {∞}. Observe that B × Sm−1 ⊆ intA. We define the function
ρ̃ : Rn×Rp×Rm → R+ ∪ {∞} as ρ̃ := ρ+ iA where iA is the indicator function of A. Then, ρ̃ is
lower semicontinuous. Define ρ̃T : Rn × Rm → R+ ∪ {∞} by

ρ̃T (x, v) := inf
y∈T (x)

ρ̃ (x, y, v) . (31)
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For x ∈ Ū , y ∈ T (x) and v with 1
2
≤ ‖v‖ ≤ 2, one has that (x, y, v) ∈ A, so that ρ(x, y, v) =

ρ̃(x, y, v). Consequently

ρT (x, v) = inf
y∈T (x)

ρ(x, y, v) = inf
y∈T (x)

ρ̃(x, y, v) = ρ̃T (x, v) ∀x ∈ Ū ∀v :
1

2
≤ ‖v‖ ≤ 2. (32)

Now, ρ̃T above can be formally written as

ρ̃T (x, v) = inf
y∈K(x,v)

ρ̃(x, y, v), (33)

where the multifunctionK : Rn×Rm ⇒ Rp is defined asK(x, v) := T (x) for all (x, v) ∈ Rn×Rm.
In this form, ρ̃T is a marginal function as is β in Theorem 3.10. We check that the assumptions of
that Theorem are fulfilled for the setting of z := (x, v), β(z) := ρ̃T (x, v), α (z, y) := ρ̃(x, y, v),
G(z) := K(x, v) and Ψ(z) := M̃(x, v), where M̃ : Rn × Rm ⇒ Rp is defined by

M̃(x, v) := {y ∈ K(x, v)|ρ̃T (x, v) = ρ̃ (x, y, v)}.

First, recall that ρ̃ is lower semicontinuous and that gphK is closed due to gphT being closed.
Moreover, we easily observe from the respective definitions and (32) that

M̃(x, v) = M(x, v) ⊆ T (x) ∀x ∈ Ū ∀v :
1

2
≤ ‖v‖ ≤ 2. (34)

for M introduced in (29). As a consequence, M̃ is locally bounded at (x̄, v̄) because T is so by (5).
Next, since T (x̄) 6= ∅ by assumption, there exists a sequence yk ∈ T (x̄) with ρ (x̄, yk, v̄) →k

ρT (x̄, v̄). By compactness of T (x̄), one has that ykl →l ȳ for some subsequence and some ȳ ∈
T (x̄). Now, the continuity of ρ on A with respect to the topology of R+ ∪ {∞} ensures that

ρ (x̄, ykl , v̄)→l ρ (x̄, ȳ, v̄) = ρT (x̄, v̄) .

Hence, M(x̄, v̄) 6= ∅ and M̃(x̄, v̄) 6= ∅ by (34). Finally, ρ̃T (x̄, v̄) = ρT (x̄, v̄) < ∞ by assumption
and by (32). Therefore, it remains to check condition (28). Clearly it would be sufficient to show that

∂∞ρ̃ (x̄, y, v̄) = {0} ∀y ∈ M̃(x̄, v̄) = M(x̄, v̄).

Fix an arbitrary such ȳ ∈M(x̄, v̄). By definition and assumption,

ρ (x̄, ȳ, v̄) = ρT (x̄, v̄) <∞.

Moreover, our assumption gT (x̄, µ) < 0 implies that g(x̄, ȳ, µ) < 0. This allows us to invoke Lemma
3.4, in order to derive that ρ is continuously differentiable in a neighbourhood of (x̄, ȳ, v̄). In particular,
it is locally Lipschitz there, which implies that ∂∞ρ(x̄, ȳ, v̄) = {0} (see [13, Theorem 1.22]). On the
other hand (see above),

(x̄, ȳ, v̄) ∈ B × Sm−1 ⊆ intA.

Since ρ̃ and ρ agree on A, they agree on a neighbourhood of (x̄, ȳ, v̄). Hence,

∂∞ρ̃(x̄, ȳ, v̄) = ∂∞ρ(x̄, ȳ, v̄) = {0}.

Summarizing, all assumptions of Theorem 3.10 applied to the marginal function (33) are satisfied and
we derive the upper estimate

∂ρ̃T (x̄, v̄) ⊆
⋃{

(x∗, v∗) +D∗K (x̄, v̄, y) (y∗)| (x∗, y∗, v∗) ∈ ∂ρ̃ (x̄, y, v̄) , y ∈ M̃(x̄, v̄)
}
.

(35)
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Once more we exploit that ρ is continuously differentiable and agrees with ρ̃ in a neighbourhood of
(x̄, y, v̄) for an arbitrary y ∈ M̃(x̄, v̄) = M(x̄, v̄). Similarly, ρ̃T and ρT coincide on a neighbourhood
of (x̄, v̄) by (32).Therefore,

∂ρ̃ (x̄, y, v̄) = ∂ρ (x̄, y, v̄) = {∇ρ (x̄, y, v̄)} ; ∂ρ̃T (x̄, v̄) = ∂ρT (x̄, v̄) .

Furthermore, the definition of the coderivative and K(x, v) = T (x) immediately yield that

D∗K (x̄, v̄, y) (y∗) = D∗T (x̄, y) (y∗)× {0} .
Summarizing, (35) implies the inclusion claimed in this proposition. �

Theorem 3.12 If, in addition to the assumptions of Proposition 3.11, T has the Aubin property at
every (x̄, y) ∈ gphT , then ρT is locally Lipschitz continuous around (x̄, v̄). Moreover, the partial
subdifferential (subdifferential of partial function) of ρ satisfies

∂xρT (x̄, v̄) ⊆
⋃

y∈M(x̄,v̄)

{∇xρ (x̄, y, v̄)}+D∗T (x̄, y) (∇yρ (x̄, y, v̄)).

Proof. Referring to the marginal function ρ̃T in (31) and to the derivations made in Proposition 3.11, it
follows from Corollary 4.3. in [13] that ρ̃T is locally Lipschitzian at (x̄, v̄) if it is lower semicontinuous
around this point. From (32) we know that ρ̃T and ρT coincide on a neighbourhood of (x̄, v̄). On the
other hand, ρT is lower semicontinuous on a neighbourhood of (x̄, v̄). To see this, observe first that
ρT is lower semicontinuous on Ū × Sm−1 for Ū defined in the beginning of the proof of Proposition
3.11. Since, by (24) and (21), ρT (x, rv) = r−1ρT (x, v) for any r > 0, we conclude that ρT is lower
semicontinuous on Ū × (Rm\{0}) with respect to the topology of R+ ∪ {∞}. As a consequence ρ̃T
is lower semicontinuous itself around (x̄, v̄). This proves the local Lipschitz continuity of ρ̃T at (x̄, v̄).
Conversely, as ρ̃T and ρT coincide locally around (x̄, v̄), ρT itself must be locally Lipschitzian around
(x̄, v̄) which also implies that ∂∞ρT (x̄, v̄) = {(0, 0)} (see [13, Theorem 1.22]). Now, [15, Cor. 10.11]
yields the inclusion

∂xρT (x̄, v̄) ⊆ {x∗ ∈ Rn|∃v∗ ∈ Rm : (x∗, v∗) ∈ ∂ρT (x̄, v̄)} .
Then, the desired formula follows from the upper estimate obtained in Proposition 3.11. �

Corollary 3.13 Under the assumptions of Theorem 3.12, the partial radial probability function e (·, v)
is locally Lipschitz around x̄ for every v ∈ Sm−1 close to v̄ with some common Lipschitz constant
independent of v. Moreover,

∂xe (x, v) ⊆ fR(ρT (x, v))∂xρT (x, v)

for x and v ∈ Sm−1 locally around (x̄, v̄), where fR refers to the density in (10).

Proof. By assumption (3), the generator θ of the density fR and, hence, fR itself is continuous. Con-
sequently, the associated one-dimensional cumulative distribution function FR is continuously differ-
entiable with F ′R = fR. Since, moreover, ρT is locally Lipschitz around (x̄, v̄) by Theorem 3.12, it
follows from ρT (x̄, v̄) <∞ that ρT (x, v) <∞ locally around (x̄, v̄). Hence, by Corollary 3.7,

e(x, v) = FR(ρT (x, v)) (36)

for x and v ∈ Sm−1 locally around (x̄, v̄). In particular, since FR is locally Lipschitz and ρT is locally
Lipschitz around (x̄, v̄), it follows that e (·, v) is locally Lipschitz around x̄ for every v ∈ Sm−1 close
to v̄ with some common Lipschitz constant independent of v. Then, the chain rule for subdifferentials
[12, Corollary 3.43] yields for x and v ∈ Sm−1 locally around (x̄, v̄):

∂xe (x, v) = ∂e (·, v) (x) = F ′R(ρT (x, v))∂ρT (·, v) (x) = fR(ρT (x, v))∂xρT (x, v) .

�
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4 Subdifferential of the probability function ϕ

In this section, we present the main result of this paper, namely a fully explicit (in terms of the problem
data) subdifferential formula for the (total) probability function ϕ defined in (3). We start by collecting
the necessary preparations.

4.1 Preparatory Results

As observed in [7,20] the probability function ϕ can not be expected to be differentiable, actually not
even locally Lipschitzian, even in the simplest possible settings. This is mainly due to the unbounded-
ness of the support of the given random vector ξ. The missing data property can be formulated as the
following growth condition:

Definition 4.1 (Growth condition) We say that our problem data (g, T ) from (3) satisfies the ψ-
growth condition at x̄ if for some R, ε > 0 it holds that:

‖∇(x,y)g(x, y, z)‖ ≤ ψ(‖z‖) ∀y ∈ T (x) ∀x ∈ B(x̄, ε) ∀‖z‖ ≥ R.

Here ψ : R+ → R is a nondecreasing function such that (with fR from (10)):

lim
r→∞

rfR(r)ψ(δr) = 0 ∀δ > 0.

For the existence and verification of such growth condition in concrete settings, we refer to the discus-
sion of Section 4.3. The key for proving our main result in the next section is the following statement
on the partial Fréchet subdifferential of the radial probability function:

Lemma 4.2 Assume that (4)-(6) hold true. Let x̄ ∈ Rn be such that gT (x̄, µ) < 0 and T (x̄) 6= ∅.
In addition, assume that T has the Aubin property at (x̄, ȳ) for every ȳ ∈ T (x̄) and that the data
couple (g, T ) satisfies the ψ-growth condition at x̄ according to Definition 4.1. Then, there exists a
neighbourhood U of x̄ and a constant K ≥ 0 such that, with B denoting the unit ball in Rn,

∂̂xe (x, v) ⊆ KB ∀ (x, v) ∈ U × Sm−1. (37)

Proof. We recall first, that the assumed Aubin property of T at every (x̄, ȳ) with ȳ ∈ T (x̄) entails the
inner semicontinuity of T at x̄. The assertion will follow from a standard compactness argument (w.r.t.
Sm−1) if we are able to show that for every v̄ ∈ Sm−1 there exist neighbourhoods Uv̄ of x̄ and Wv̄ of
v̄ as well as a constant Kv̄ ≥ 0 such that

∂̂xe (x, v) ⊆ Kv̄B ∀ (x, v) ∈ Uv̄ ×
[
Wv̄ ∩ Sm−1

]
. (38)

In order to verify (38), fix an arbitrary v̄ ∈ Sm−1. Consider first the case ρT (x̄, v̄) < ∞. Then,
Corollary 3.13 implies that e (·, v) is locally Lipschitz in a neighbourhood Uv̄ of x̄ for every v ∈ Sm−1

in a neighbourhoodWv̄ of v̄ and with Lipschitz constant L not depending on v. By [12, Theorem 3.52],

∂̂xe (x, v) ⊆ LB ∀ (x, v) ∈ Uv̄ ×
[
Wv̄ ∩ Sm−1

]
.

This yields (38) with Kv̄ := L.

We now turn to the more involved case ρT (x̄, v̄) =∞. We will show a slightly stronger property than
needed in (38), namely that for each η > 0 there exist neighbourhoods Uv̄ of x̄ andWv̄ of v̄ such that

∂̂xe (x, v) ⊆ ηB ∀ (x, v) ∈ Uv̄ ×
[
Wv̄ ∩ Sm−1

]
, (39)
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Of course, this will imply (38) and finally prove our Proposition. Now, let η > 0 be arbitrary. As a first
part of (39), we show that

∂̂xe (x, v) ⊆ ηB ∀ (x, v) ∈ Uv̄ ×
[
Wv̄ ∩ Sm−1

]
: ρT (x, v) =∞. (40)

Thanks to the upper semicontinuity at (x, µ) of gT (1. in Lemma 3.1) we may assume that gT (x, µ) <
0 for all x ∈ Uv̄. Corollary 3.9 then guarantees that e (·, v) is lower semicontinuous on Uv̄ for any
v ∈ Sm−1 and Corollary 3.7 yields that

e (x, v) = 1 ∀ (x, v) ∈ Uv̄ × Sm−1 : ρT (x, v) =∞.

Since e is a probability function and as such takes values not larger than one, x must be a (global)
maximizer of the function e (·, v) for every x ∈ Uv̄ and every v ∈ Sm−1 such that ρT (x, v) = ∞.
However, it is easily shown that the Fréchet subdifferential of a lower semicontinuous function at a
local maximizer must be contained in zero (possibly empty), see, e.g., Proof of [7, Corollary 1 (ii)]. In
other words, we actually have that ∂̂xe (x, v) ⊆ {0}. This proves (40). It remains to verify the relation

∂̂xe (x, v) ⊆ ηB ∀ (x, v) ∈ Uv̄ ×
[
Wv̄ ∩ Sm−1

]
: ρT (x, v) <∞. (41)

By virtue of the upper semicontinuity at (x, µ) of gT (1. in Lemma 3.1) we may define a neighbourhood
Uv̄ of x̄ such that

gT (x, µ) ≤ 1

2
gT (x̄, µ) < 0, ∀x ∈ Uv̄. (42)

We next address Definition 4.1: Thanks to the continuity of ρT at (x̄, v̄) with ρT (x̄, v̄) = ∞ in the
topology of R+ ∪ {∞} (see Theorem 3.8) we may further shrink Uv̄ and also find a neighbourhood
Wv̄ of v̄ such that, for R appearing in Definition 4.1, for L from (9) and for η fixed above,

‖µ+ ρT (x, v)Lv‖ ≥ R, ρT (x, v) ‖L‖ ≥ ‖µ‖
ρT (x, v)fR(ρT (x, v))ψ(2‖L‖ρT (x, v)) ≤ η, (43)

for all (x, v) ∈ Uv̄ × [Wv̄ ∩ Sm−1]. Here, in the first relation, we used the fact that the covariance
matrix Σ (see Definition 2.8) and, hence, L from (9) are regular, so that

‖Lv‖ ≥ c := min
w∈Sm−1

Lw > 0 ∀v ∈ Sm−1.

Next, we shrink Uv̄ once more such that, thanks to Proposition 3.3, T has the Aubin property at all
(x, y) ∈ gphT with x ∈ Uv̄ and with some common (independent of x and y) modulus K ≥ 0. In
particular, (17) is satisfied then with U := Uv̄.

Now, consider arbitrary (x, v) ∈ Uv̄ × [Wv̄ ∩ Sm−1] such that ρT (x, v) < ∞ and x∗ ∈ ∂̂xe (x, v).
In particular, T (x) 6= ∅ by (24). Then, by our previous definitions of neighbourhoods, the assumptions
of Theorem 3.12 are satisfied at (x, v), hence, along with Corollary 3.13, we derive the existence of
some y ∈M(x, v) (with M defined in (29), hence ρ(x, y, v) = ρT (x, v)) and some

w∗ ∈ D∗T (x, y) (∇yρ (x, y, v))

such that
x∗ = fR(ρT (x, v)) (∇xρ (x, y, v) + w∗) . (44)

For the purpose of abbreviation, we put (see (23))

λ := 〈∇zg(x, y, µ+ ρT (x, v)Lv), Lv〉 > 0.
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Then (8) yields λw∗ ∈ D∗T (x, y) (λ∇yρ (x, y, v), which along with (17) and (22) gives

‖λw∗‖ ≤ K ‖λ∇yρ (x, y, v)‖ = K ‖∇yg(x, y, µ+ ρ(x, y, v)Lv)‖ . (45)

Recall, that the constant K does not depend on x and y. Next, (42) and (23) lead to the estimate

0 < λ−1 =
1

〈∇zg(x, y, µ+ ρ(x, y, v)Lv), Lv〉
≤ −ρ(x, y, v)

g(x, y, µ)
≤ −ρT (x, v)

gT (x, µ)
≤ 2ρT (x, v)

|gT (x̄, µ)|
.

Now, (44), (22) and (45) provide

‖x∗‖ ≤ λ−1fR(ρT (x, v)) (‖∇xg(x, y, µ+ ρ(x, y, v)Lv)‖+ ‖λw∗‖)

≤ 2ρT (x, v)

|gT (x̄, µ)|
fR(ρT (x, v)) (K + 1)

∥∥∇(x,y)g(x, y, µ+ ρ(x, y, v)Lv)
∥∥ .

From the first two relations of (43) and Definition 4.1 (recalling that ψ is nondecreasing) we infer that∥∥∇(x,y)g(x, y, µ+ ρ(x, y, v)Lv)
∥∥ =

∥∥∇(x,y)g(x, y, µ+ ρT (x, v)Lv)
∥∥

≤ ψ (‖µ+ ρT (x, v)Lv)‖)
≤ ψ (‖µ‖+ ρT (x, v) ‖L‖) ≤ ψ (2 ‖L‖ ρT (x, v)) .

Consequently, there is a constant C := 2(K+1)
|gT (x̄,µ)| > 0 such that, along with the third relation of (43),

‖x∗‖ ≤ CρT (x, v)fR(ρT (x, v))ψ (2 ‖L‖ ρT (x, v)) ≤ Cη.

Since η > 0 was arbitrary and since C does not depend on η (becauseK doesn’t), we may apply the
result to η̃ := η/C . Hence, we find neighbourhoods Uv̄ ×Wv̄ such that ‖x∗‖ ≤ Cη̃ = η for every
x∗ ∈ ∂̂xe (x, v) and every (x, v) ∈ Uv̄ × [Wv̄ ∩ Sm−1] such that ρT (x, v) < ∞. This proves (41)
and the whole Lemma. �

Corollary 4.3 The assertion of Lemma 4.2 remains true if the ψ-growth condition is replaced by the
following assumption: There exists some y ∈ T (x̄) such that the set {z ∈ Rm|g(x̄, y, z) ≤ 0} is
bounded.

Proof. The assumption implies by definition that ρ (x̄, y, v) < ∞ for every v ∈ Sm−1. Hence,
ρT (x̄, v) < ∞ for every v ∈ Sm−1. In that case, the proof of Lemma 4.2 does not rely on the
ψ-growth condition and is finished after the first paragraph upon proving (38). �

Corollary 4.4 Under the assumptions of Lemma 4.2 one has that ∂xe (x̄, v̄) = {0} for every v̄ ∈
Sm−1 such that ρT (x̄, v̄) =∞.

Proof. The inclusion (37) yields, by virtue of [12, Theorem 3.52], that e (·, v̄) is locally Lipschitzian at
x̄. As a consequence, ∂xe (x̄, v̄) 6= ∅. From the proof of Lemma 4.2, we know the following result in
the case of ρT (x̄, v̄) =∞ (see (39)): For each η > 0 there exist neighbourhoods Uv̄ of x̄ and Wv̄ of
v̄ such that

∂̂xe (x, v) ⊆ ηB ∀ (x, v) ∈ Uv̄ ×
[
Wv̄ ∩ Sm−1

]
.

Then, it follows from (7) that x∗ ∈ ∂xe (x̄, v̄) implies x∗ = 0. �
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4.2 Main Result

We are now in a position to formulate the main result of this paper, namely a subdifferential estimate
for the (total) probability function ϕ in (3):

Theorem 4.5 Assume that (4)-(6) hold true. Let x̄ ∈ Rn be such that gT (x̄, µ) < 0 and T (x̄) 6= ∅.
In addition, assume that T has the Aubin property at (x̄, ȳ) for every ȳ ∈ T (x̄). Finally let one of the
following conditions be satisfied:

1 There exists some y ∈ T (x̄) such that the set {z ∈ Rm|g(x̄, y, z) ≤ 0} is bounded.

or:

2 the data couple (g, T ) satisfies the ψ-growth condition at x̄ according to Definition 4.1.

Then, ϕ in (3) is locally Lipschitzian at x̄ and the following upper estimate for its subdifferential holds
true:

∂ϕ(x̄) ⊆
∫

F (x̄)

fR(ρT (x̄, v)) ·

 ⋃
y∈M(x̄,v)

{∇xρ (x̄, y, v)}+D∗T (x̄, y) (∇yρ (x̄, y, v))

 dµζ(v),

(46)
where F (x̄) := {v ∈ Sm−1|ρT (x̄, v) <∞}.

Proof. According to Lemma 4.2 and Corollary 4.3, either of the assumptions 1. or 2. imply the estimate
(37) which in turn, by virtue of [12, Theorem 3.52], entails that there exists a neighbourhood U of x̄
such that for every v ∈ Sm−1 the partial function e (·, v) is locally Lipschitzian on U with a common
modulus K (independent of v). Clearly, this modulus (considered as a constant function) is integrable
with respect to the uniform measure on the sphere since the latter is compact. Moreover, for every
x ∈ U , the function e (x, ·) is lower semicontinuous, hence measurable on Sm−1.

Altogether, this allows us to apply Clarke’s Theorem for subdifferentiation of integral functionals [1,
Theorem 2.7.2] to (11). First this Theorem guarantees that ϕ is locally Lipschitzian at x̄. Second, it
allows to interchange subdifferentiation and integration in the following way:

∂Cϕ(x̄) = ∂C
∫

v∈Sm−1

e(x̄, v)dµζ(v) ⊆
∫

v∈Sm−1

∂Cx e(x̄, v)dµζ(v).

Here, the upper index ’C’ is meant to indicate Clarke’s subdifferential. In the following we make use of
the well known relation ∂Cf(x̄) = co ∂f(x̄) (with ’co’ referring to the convex hull) for functions being
locally Lipschitzian at x̄ [13, (1.83)]. In particular, Corollary 4.4 yields that

∂Cx e(x̄, v) = co ∂xe (x̄, v) = co {0} = {0}

for every v ∈ Sm−1 such that ρT (x̄, v) =∞. Hence, the inclusion above simplifies to

∂Cϕ(x̄) ⊆
∫

{v∈Sm−1|ρT (x̄,v)<∞}

∂Cx e(x̄, v)dµζ(v).

On the other hand, the same inclusion is obtained for the Mordukhovich subdifferential due to

∂ϕ(x̄) ⊆ co ∂ϕ(x̄) = ∂Cϕ(x̄) ⊆
∫

{v∈Sm−1|ρT (x̄,v)<∞}

∂Cx e(x̄, v)dµζ(v)

=

∫
{v∈Sm−1|ρT (x̄,v)<∞}

co ∂xe (x̄, v) dµζ(v) =

∫
{v∈Sm−1|ρT (x̄,v)<∞}

∂xe (x̄, v) dµζ(v),
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where the last equality is a consequence of Aumann’s Theorem. Now, taking into account that for
(x̄, v) with ρT (x̄, v) < ∞ the assumptions of Theorem 3.12 and Corollary 3.13 are satisfied, we
may derive our desired formula from the resulting inclusion

∂xe (x̄, v) ⊆ fR(ρT (x̄, v)) ·
⋃

y∈M(x̄,v)

{∇xρ (x̄, y, v)}+D∗T (x̄, y) (∇yρ (x̄, y, v)).

�

The interpretation of (46) is as follows: For every x∗ ∈ ∂ϕ(x̄), there exists a measurable function
β : Sm−1 → R such that

β(v) ∈ ∂xe (x̄, v) µζ − a.e. and x∗ =

∫
{v∈Sm−1|ρT (x̄,v)<∞}

β(v)dµζ(v).

We conclude this section by formulating a condition for the differentiability of the probability function:

Corollary 4.6 In addition to the assumption of Theorem 4.5, suppose that at x̄ we have µζ (V2\V1) =
0 for the two sets

V2 : =
{
v ∈ Sm−1|ρT (x̄, v) <∞

}
,

V1 : = {v ∈ V2|∃ (ȳ, x∗) ∈ Rp × Rn : M(x̄, v) = {ȳ}, D∗T (x̄, y) (∇yρ (x̄, y, v)) = x∗} .

Then ϕ in (3) is (strictly) differentiable at x̄ and the following (exact) gradient formula applies:

∇ϕ(x̄) =

∫
{v∈Sm−1|ρT (x̄,v)<∞}

fR(ρT (x̄, v)) · (∇xρ (x̄, ȳ(v), v) + x∗(v)) dµζ(v),

where ȳ(v) is the unique element ofM(x̄, v) and x∗(v) = D∗T (x̄, ȳ(v)) (∇yρ (x̄, ȳ(v), v)). More-
over, ϕ is continuously differentiable if the measure zero condition above holds true locally around x̄.

Proof. The assumption implies that the integrand in (46) is single-valued µζ − a.e. and, hence, the
whole integral on the right-hand side reduces to a singleton. On the other hand, ∂ϕ(x̄) on the left-
hand side is nonempty due to the already shown Lipschitz continuity of ϕ at x̄. Hence, the only way for
∂ϕ(x̄) being included in the right-hand side is to coincide with it. Consequently ∂ϕ(x̄) is a singleton
too. This implies first, that ϕ is strictly differentiable at x̄ [13, Theorem 4.17] and second that the
asserted gradient formula comes as consequence of (46). �

4.3 Discussion of hypotheses

In this section we provide a short discussion of the assumptions we imposed in order to derive the
results of the previous section:

� The assumption gT (x̄, µ) < 0 expresses the fact that the mean of the random parameter
should be strictly feasible for the infinite inequality system g (x̄, y, z) ≤ 0 (y ∈ T (x̄)). It can be
easily seen (see, e.g., [20, Prop. 3.11] that, thanks to the convexity of g with respect to the third
variable and thanks to the symmetry of elliptic distributions around their mean, this assumption
will fulfilled be satisfied if ϕ(x̄) ≥ 0.5, i.e., if under the fixed decision x̄ the probability (3) is not
smaller than one half. This assumption is by no means restrictive when taking into account that
in probabilistic programming probabilities close to one are required.
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� The assumption T (x̄) 6= ∅ is not restrictive either since the case T (x̄) = ∅ entails the trivial
situation∇ϕ(x̄) = 0 as pointed out in Proposition 2.2.

� For T to have the Aubin property at (x̄, ȳ) for every ȳ ∈ T (x̄) is a central stability require-
ment for the whole analysis. For the case of T describing a smooth finite parameter-dependent
inequality system - as discussed in the following section - it is well-known to be equivalent
with the classical Mangasarian-Fromovitz Constraint Qualification in nonlinear programming.
Without this assumption we could not hope for the local Lipschitz continuity ϕ so that also the
subdifferential formula (46) for a just continuous ϕ would become much more involved (see,
e.g., [7] for fixed index mapping T ).

� As for the ψ-growth condition, this is necessary to impose only if the set {z ∈ Rm|g(x̄, y, z) ≤
0} is unbounded for all y ∈ T (x̄), see Theorem 4.5. If so, then it turns out that the ψ-growth
condition is satisfied in basically all practical applications. We refer to the discussion in [18,
Section 4.2], which was done, however, in the context of a fixed and finite index mapping T .
Nonetheless, the cases considered there, referring to a situation where the dependence on z
of the mapping g is separable with respect to the second variable x can be carried over to the
setting of this paper by keeping separability of g between z and the two remaining variables
(x, y).

� The measure zero condition µζ (V2\V1) = 0 in Corollary 4.6 is indispensable in order to derive
(strict or continuous) differentiability of ϕ at x̄. An similar condition can be already found in the
early paper [16, Assumption 2.2 (iv)]. Of course, such condition with respect to the measure of
the uniform distribution on the sphere may be hard to verify from the originally given inequality
system. In the context again of a fixed and finite index mapping T , this issue could be reduced to
the verification of the so-called rank-2-constraint qualification for the original inequality system
induced by g [21, Lemma 4.3]. This CQ is well-known and easy to check. It is in particular
weaker than the standard Linear Independence Constraint Qualification considered in nonlinear
programming. In the context of our infinite and moving index set T (x) a corresponding result
seems much harder to prove and will be the subject of further investigations.

4.4 Application

In many applications the moving index set T (x) will have the concrete description as a finite paramet-
ric inequality system:

T (x) := {y ∈ Rp|hj(x, y) ≤ 0 (j = 1, . . . , q)}. (47)

Our aim is to ensure all assumptions of the main result related with T by means of concrete assump-
tions with respect to the description (47):

Theorem 4.7 Consider the probability function (3) with a moving index set given by (47). Let x̄ ∈ Rn

be such that gT (x̄, µ) < 0. Apart from (4) and (6), we suppose that

1 The hj in (47) are continuously differentiable and they are convex with respect to y.

2 There exists some ȳ ∈ Rp such that hj(x̄, ȳ) < 0 (j = 1, . . . , q) (Slater point).

3 T (x̄) is bounded.
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4 One of the assumptions 1. or 2. in Theorem 4.5 applies.

Then, ϕ is locally Lipschitzian at x̄ and the following upper estimate for its subdifferential holds true:

∂ϕ(x̄) ⊆
∫

F (x̄)

fR(ρT (x̄, v)) ·

 ⋃
y∈M(x̄,v)

{∇xρ (x̄, y, v)}+
⋃

λ∈Λ(y,v)

q∑
j=1

λj∇xhj(x̄, y)

 dµζ(v), (48)

where, F (x̄) := {v ∈ Sm−1|ρT (x̄, v) <∞} and for y ∈ T (x̄) and v ∈ Sm−1

Λ (y, v) :=
{
λ ∈ Rq

+

∣∣∇yρ (x̄, y, v) = −∇T
y h(x̄, y)λ, λTh(x̄, y) = 0

}
. (49)

Proof. Our assumptions imply by well-known arguments that T (x̄) 6= ∅ (due to 2.), that T has closed
graph and is locally bounded (due to being bounded at x̄ by 3. and convex-valued by 1.). Moreover,
T has the Aubin property at (x̄, ȳ) for every ȳ ∈ T (x̄) thanks to the existence of a Slater point in 2.
Altogether, this allows us to derive the inclusion (46). The claimed formula then follows upon using the
representation

D∗T (x̄, y) (∇yρ (x̄, y, v)) =
⋃

λ∈Λ(y,v)

q∑
j=1

λj∇xhj(x̄, y) (50)

of the coderivative of T with the set Λ (y, v) introduced in the statement of this Theorem. This repre-
sentation follows from [12, Corollary 4.35] upon noting that our Slater point assumption is equivalent
with the so-called Mangasarian-Fromovitz Constraint Qualification in the setting of (47). �

The previous result can be slightly improved if the Slater Condition is strengthened:

Corollary 4.8 If, in Theorem 4.7, condition 2. is replaced by the Linear Independence Constraint
Qualification (LICQ)

{∇yhj(x̄, y)}{j|hj(x̄,y)=0} is linearly independent for all y ∈ T (x̄)

and, in addition, µζ
(
V2\Ṽ1

)
= 0 for V2 as defined in Corollary 4.6 and

Ṽ1 := {v ∈ V2|#M(x̄, v) = 1} ,

then ϕ is (strictly) differentiable at x̄ and the following (exact) gradient formula applies:

∇ϕ(x̄) =

∫
{v∈Sm−1|ρT (x̄,v)<∞}

fR(ρT (x̄, v)) ·

(
∇xρ (x̄, ȳ(v), v) +

q∑
j=1

λj(y, v)∇xhj(x̄, y)

)
dµζ(v),

where λ (y, v) is the unique element in Λ (y, v) as defined in (49).

Proof. The stronger (LICQ) yields that the Lagrange multiplier in Theorem 4.7 is uniquely defined, i.e.,
Λ (y, v) = {λ (y, v)} for all y ∈ T (x̄) and v ∈ Sm−1. Then, by (50),

D∗T (x̄, y) (∇yρ (x̄, y, v)) =

q∑
j=1

λj(y, v)∇xhj(x̄, y) =: x∗(v)

As a consequence, the sets Ṽ1 and V1 introduced above and in Corollary 4.6 coincide and, thus, this
Corollary provides the claimed gradient formula. �
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