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Hydrodynamic limit and large deviations of
reaction-diffusion master equations

Markus Mittnenzweig

Abstract

We derive the hydrodynamic limit of a reaction-diffusion master equation, that combines an
exclusion process with a reversible chemical master equation expression for the reaction rates.
The crucial assumption is that the associated macroscopic reaction network has a detailed bal-
ance equilibrium. The hydrodynamic limit is given by a system of reaction-diffusion equations with
a modified mass action law for the reaction rates. We provide the upper bound for large deviations
of the empirical measure from the hydrodynamic limit.

1 Introduction

Stochastic reaction-diffusion processes are model systems of interacting particles in statistical physics,
for which various aspects, such as hydrodynamic limits [DFL86, DFL85], phase transitions [Täu17], tur-
bulence [CC∗08] or stationary non-equilibrium states [BD∗07] have been studied. Moreover, stochastic
reaction - diffusion models are widely used for the simulation of biochemical reaction networks in cel-
lular biology, where copy numbers of molecules can be small and concentrations can vary across
different regions of a cell [AnB04, ErC09].

In this work, we consider the reaction-diffusion master equation for multiple species in the diffusive
scaling limit, where particles can react with each other when they find themselves at the same lattice
site. The stochastic reaction rates follow a modified chemical master equation expression [GM∗76,
Isa08]. Furthermore, we will only allow a maximal number of M particles per species per lattice point.
Particle jumps between different sites are therefore modeled by an exclusion process. We show that
if the associated reaction network satisfies detailed balance, the hydrodynamic limit of the reaction -
diffusion master equation is given by a reaction-diffusion partial differential equation with mass action
law kinetics. In the second part of this work, we study large deviations from the hydrodynamic limit and
prove rigorously the large-deviation upper bound. Our work is a generalization of [JLLV93], in which
the authors established a dynamic large deviations principle for a scalar reaction-diffusion master
equation. Further results for two species models were obtained in [Per00, BoČ07].

The crucial observation in this work is, that if the macroscopic reaction network satisfies detailed
balance with respect to an equilibrium concentration w = (w1, . . . , wI), then the generator L of the
reaction - diffusion master equation is as well in detailed balance with respect to a product binomial
distribution. For M = ∞, i.e. no restriction on the number of particles per lattice site, the analogous
result for the Poisson distribution is known to hold for chemical reaction networks satisfying a complex
balance condition (which is a weaker condition than the detailed balance condition). As a result of
the detailed balance property for finite M , we can apply the well-developed entropy method of Guo,
Papanicalou and Varadhan [GPV88] to derive the macroscopic hydrodynamic limit of the reaction-
exclusion process. More precisely, we consider I different species with R different reactions

αr1X1 + · · ·+ αrI 
 βr1X1 + · · ·+ βrIXI (1)
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M. Mittnenzweig 2

between them, where αr,βr ∈ NI are the stoichiometric coefficients of the rth reaction. This reaction
network satisfies the (macroscopic) detailed balance condition if

∃w ∈ RI+ : κfwr wαr = κbwr wβr ∀r = 1, . . . , R, (2)

with wα =
∏I

i=1 w
αi

i being the mass action law rate associated to the stoichiometric vector α. The
microscopic model on the discrete torus TdN = Zd/NZd is a stochastic reaction-exclusion process
ηt(·) of particle configurations ηt : TdN → NI with 0 ≤ ηit(x) ≤ M for all i. The generator of the
process is given by

Lf (η) =
∑
x,|e|=1

N2Diηi(x)
(
1−ηi(x+e)

M

)[
f
(
ηx,x+e
i )−f(η)

]
+M

∑
x,r

gfwr (η(x))
[
f
(
ηγr
x

)
−f(η)

]
+ gbwr (η(x))

[
f
(
η−γrx

)
−f(η)

] (3)

where ηx,x+e
i is the new configuration where one particle of type i jumped from x to x+ e and η

γr
x is

the configuration where reaction r took place at lattice site x, i.e. ηγr
x (x) = η(x) + γr. The reaction

rates gfwr (n) have the form

gfwr (n) = κfwr CM
r

I∏
i=1

ni!
(ni−αir)!

· (M−ni)!
(M−ni−βir)!

,

with the equivalent expression for gbwr (n) with exchanged indices αr and βr. The constant CM
r is

some normalization constant, see (16). The rates gfw/bwr are modified versions of the chemical master
equation (CME). The standard CME rate for a general reaction of the form (1) would be tαr(n) =∏I

i=1
ni!

(ni−αir)!
times a constant prefactor. However, the rate tαr(n) can lead to more thanM particles

per lattice site and therefore it needs to be adapted accordingly. The modified rate gfwr (n) not only
takes into account the number ni of particles available, but also the number of holes M−ni available
for each species i.

The central object in the study of the hydrodynamic limit is the empirical measure πN
t associated to a

stochastic trajectory ηt(·) and defined as

πN
t =

1

MNd

∑
x∈TdN

ηt(x)δx/N .

We show that if the chemical reaction network satisfies the detailed balance condition (2), then the
empirical measure πN

t converges for N → ∞ in a weak sense to a reaction-diffusion system. More
precisely, we show that for all δ > 0 and G ∈ C1,2([0, T ]× Td,RI),

lim sup
N→∞

PµN
(∣∣∣∣∫ T

0

〈πN
t ,G(t, ·)〉 − 〈c(t, ·),G(t, ·)〉dt

∣∣∣∣ > δ

)
= 0.

where c(t, x) is the solution of the reaction-diffusion system

ċ = D∆c−
R∑
r=1

(αr−βr)(κfwr cαr(1−c)βr − κbwr cβr(1−c)αr) (4)

with D = diag (D1, . . . , DI) and 1 = (1, . . . , 1). Because of the prefactors cαr(1−c)βr , the solu-
tions c(t, x) of (4) are uniformly bounded by 0 ≤ c(t, x) ≤ 1, which is the macroscopic equivalent of
the microscopic constraint 0 ≤ ηt(x) ≤M.
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Hydrodynamic limit and large deviations of reaction-diffusion master equations 3

In the last part, we study dynamic large deviations from the hydrodynamic limit. Because the reaction-
exclusion process is reversible with respect to the equilibrium product binomial distribution, we can
derive a superexponential estimate and obtain a large-deviation upper bound. LetMI

+ be the space of
positive vector-valued measures on Td, i.e. πN

t ∈MI
+ and letD([0, T ];MI

+) be the corresponding
Skorohod path space for trajectories t 7→ πN

t . Then we show that

lim sup
N→∞

N−d logPN(πN
· ∈ C) ≤ − inf

c∈C
I(c) ∀C closed.

The rate functional I consists of a static and dynamic part

I(c) = I0(c(0, ·)) + I1(c).

I0 characterizes large deviations of the initial distribution µ0 of η0(·) from the stationary product
binomial distribution. It is given by I0(c) =

∫
Td F (c(x)|w)dx with the Fermi-Dirac-type entropy

F (c|w) =
I∑
i=1

ci log
ci
wi

+ (1−ci) log
1−ci
1−wi

that is typical for simple exclusion processes. The dynamic rate functional I1(c) has the implicit rep-
resentation

I1(c) = sup
H∈C1,2([0,T ];Td)

Jlin(c,H)− Jre(c,H)− Jex(c,H)

where Jlin(c,H) is linear in the function H and Jex(c,H) and Jre(c,H) are convex in H:

Jex(c,H) =
I∑
i=1

∫ T

0

∫
Td
|∇Hi(t, x)|2 ci(t, x)

(
1−ci(t, x)

)
dxdt

Jre(c,H) =
∑
r

∫ T

0

∫
Td

Rf
r (c(t, x))

(
eγr·H(t,x)−1

)
+ Rf

r (c(t, x))
(
e−γr·H(t,x)−1

)
dxdt.

Jex(c,H) is the typical contribution from the exclusion process [KOV89]. The exponential form of the
reaction part Jre(c,H) agrees with the large deviations functional for the chemical master equation
without spatial degrees of freedom [MP∗17]. We do not give a rigorous proof of a large deviations
lower bound here. However, it seems reasonable that the lower bound of [JLLV93] for d = 1 and
I = 1 can be generalized to arbitrary d and I . For d = 1 and I = 1, density large deviations where
also extended to joint large deviation principles for the empirical density and empirical current [BoL12]
as well as to static large deviations from non-equilibrium stationary states [LaT18].

It remains an open, if one can relax the detailed balance condition (2). ForM =∞, the central Propo-
sition 2.4 holds also true for chemical reaction networks satisfying only the weaker complex balanced
condition [ACK10, HoJ72, Fei72]. This work leaves also open the convergence to hydrodynamic limit
in the case ofM =∞, for which particle numbers per lattice site can become arbitrarily large. For the
macroscopic reaction-diffusion PDE, weak solutions do globally exist in time in the case of detailed
balance and arbitrary quadratic reactions [DF∗07].

The paper is structured as follows: In Section 2, we introduce the reaction-diffusion models in detail.
In Section 3, we prove the hydrodynamic limit and Section 4 establishes the large deviations upper
bound.
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M. Mittnenzweig 4

Notation

� I is the number of species, R the number of reactions.

� M ∈ N is the maximal number of particles per lattice site for each species.

� Bold letters always represent vectors with I components. The bold letters 1 = (1, . . . , 1),
M = (M, . . . ,M) as well as c = (c1, . . . , cI) for concentrations and h = 1−c for hole
concentrations will be used throughout the paper.

� Td = Rd/[0, 1]d is the d-dimensional torus.

� TdN = Zd/NZd is the discrete, N -periodic, d-dimensional torus.

� πN
t = M−1N−d

∑
x∈TdN

ηt(x)δx/N is the empirical measure associated to the particle con-

figuration ηt(x) at time t.

� NM = {n ∈ NI |n ≤M} is the space of allowed lattice site occupation numbers.

� XN = {η(·)|η : TdN → NM} space of allowed particle configurations η(·).

� MI
+ is the space of vector-valued positive probability measures on Td, i.e. for π ∈ MI

+ with
π = (π1, . . . , πI), each πi is a positive measure on Td.

� D([0, T ];M+) is the Skorohod path space for empirical measures πN
t

� ηx,yi is the configuration where a particle of species i moved from point x to point y, see (11).

� ηγ
x is the configuration where η(x) is replaced by η(x) + γ, see (10).

� H(µ|ν) =
∑

η µ(η) log µ(η)
ν(η)

is the relative entropy.

� PµN is the probability measure for empirical measures πN
· ∈ D([0, T ];M+) as well as parti-

cle configurations ηt(·).

2 Microscopic and macroscopic reaction-diffusion models

2.1 Chemical reaction networks

We consider I different particle species X1, . . . , XI with concentrations c = (c1, . . . , cI) ∈ RI+ that
can react with each other according to r = 1, . . . , R different possible reactions

αr1X1 + · · ·+ αrI 
 βr1X1 + · · ·+ βrIXI . (5)

where βr,αr ∈ NI are the corresponding stoichiometric vectors. In the following γr = βr −αr will
always denote the difference between the two. The prototypical example is a bimolecular reaction of
the form

A+B 
 C +D, (6)

for instance H2 + Cl2 
 2HCl. When particle numbers are large enough and the whole system is
well-mixed, rate equations of the form

ċ = −T(c)
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Hydrodynamic limit and large deviations of reaction-diffusion master equations 5

are typically used to model the dynamics of the system. For elementary reactions such as (6), the
mass-action law is a good approximation to the kinetics of the reaction. When every reaction (5)
follows the mass action law, the reaction rate T(c) of the reaction network is given by

T(c) =
R∑
r=1

(αr−βr)(κfwr cαr − κbwr cβr) with cα =
I∏
i=1

cαii . (7)

Here κfwr cα is the mass action rate associated to the stoichiometric vector α of the rth forward re-
action. Typically, the number of reactions R is smaller than the number of species I and the stoichio-
metric vectors (βr−αr)

R
r=1 do not span the full spaceRI . In that case, there exist globally conserved

quantities
S = span {βr−αr|r = 1, . . . , R} S⊥ = {ξ|ξ · c = 0 ∀c ∈ S}

that correspond to atomic species in applications. In the following, we will consider a variation of the
mass action kinetics (7), that incorporates an exclusuion rule and that guarantees that the concentra-
tions ci are uniformly bounded by 1, i.e. ci ≤ 1 for every i. One possibility is to introduce for every
particle type Xi a hole species Hi.

αr ·X + βr ·H� βr ·X + αr ·H (8)

since for every removed particle Xi a corresponding hole Hi is created and vice versa. At any time,
the particle and the hole concentrations ci(t) and hi(t) satisfy the constraint ci(t) + hi(t) = 1. The
mass action law reaction rate associated to (8) is then given by

R(c) =
R∑
r=1

(αr−βr)(κfwr cαrhβr − κbwr cβrhαr), h = 1−c.

This reaction rate clearly preserves the positivity of both c and h. Next, we will introduce the central
notion of a detailed balanced equilibrium of a chemical reaction network.

Definition 2.1. (Detailed balance condition) A chemical reaction network (5) with mass action law
reaction rates (7) satisfies the detailed balance condition if

∃w ∈ RI+ : κfwr wαr = κbwr wβr ∀r. (9)

Proposition 2.2. If the reaction network (5) without hole species Hi is in detailed balance for w > 0,
then the reaction network with holes (8) is in detailed balance for w∗ with w∗,i = wi

1+wi
and vice versa.

Proof. The chemical reaction network with holes is in detailed balance if

∃w∗ ∈ RI+ : κfwr wαr
∗ (1−w∗)βr = κbwr wβr

∗ (1−w∗)αr ∀r.

By dividing by (1−w∗)βr and (1−w∗)αr , we see that this expression is equivalent to

∃w∗ ∈ RI+ : κfwr wαr = κbwr wβr ∀r

with wi =
w∗,i

1−w∗,i .

Proposition 2.2 shows that the existence of a detailed balance equilibrium of the chemical reaction
network with holes is equivalent to the existence of a detailed balance equilibrium of the chemical
reaction network without holes. An equivalent characterization of detailed balance uses the matrix

W =
(
(βr −αr)r=1,...,R

)T ∈ ZR×I
DOI 10.20347/WIAS.PREPRINT.2521 Berlin 2018



M. Mittnenzweig 6

which is called Wegscheider matrix due its first use in [Weg02], see also [GlM12, MHM15]. The de-
tailed balance condition (9) is then equivalent to

W log w =
(

log
κfwr
κbwr

)
r=1,...,R

with log w = (logwi)i=1,...,I .

By Fredholm’s alternative, this equation is solvable if and only if

ξ ·
(

log
κfwr
κbwr

)
r=1,...,R

= 0 ∀ξ ∈ S⊥

where
S = RanWT S⊥ = kerW.

The last conditions are called Wegscheider conditions [VlR09, ScS89, Weg02] and give polynomial
relations on the rates κfwr and κbwr if the stoichiometric vectors (βr−αr) are not linearly independent.
See [Fei89] for more details on necessary and sufficient conditions of detailed balancing.

2.2 The reaction-diffusion master equation

The reaction-diffusion master equation is a continuous-time Markov chain, where particles can hop
on a given lattice and two or more particles can react with each other, when they are at the same
lattice position [Isa09, Isa08, WiS16]. In this article, the lattice will always be the discrete torus TdN =
Zd/NZd. A particle configuration η(·) is a function

η : TdN → NI ,

where the value ηi(x) ∈ N describes the number of particles of species i at the lattice point x. We will
distinguish between the two cases that either particle numbers per lattice site can be arbitrarily large
or that they are uniformly bounded by an integer M , i.e. ηi(x) ≤ M . As explained in the previous
section, a reaction is characterized by its stoichiometric vectors αr,βr ∈ NI . If the reaction r takes
place at the lattice point x, then the particle configuration η(x) will change to η(x) → η(x)+γr
where γr = βr−αr. We will write η

γr
x for this new configuration, i.e.

ηγr
x (y) =

{
η(x) + γr if y = x

η(y) else.
(10)

If a particle of species i jumps from x to y, the new configuration will be denoted by

ηx,yi (z) =


η(y) + ei if z = y

η(x)− ei if z = x

η(z) else

(11)

where ei = (0, . . . , 1, . . . , 0) is the ith unit vector. The generator of the reaction-diffusion master
equation is given by

Lf (η) =
∑
x,|e|=1

N2Diηi(x)
[
f(ηx,x+e

i )−f(η)
]

+
∑
x,r

κfwr tαr(η)
[
f(ηγr

x )−f(η)
]

+ κbwr tβr(η)
[
f(η−γrx )−f(η)

] (12)

DOI 10.20347/WIAS.PREPRINT.2521 Berlin 2018



Hydrodynamic limit and large deviations of reaction-diffusion master equations 7

withDi being the diffusion constant of species i, κfw/bwr the forward and backward reaction rates and

tα(n) =

{
n!

(n−α)!
for n ≥ α

0 for n � α
where n! :=

I∏
i=1

ni!. (13)

The above generator contains a diffusion and a reaction part

L = N2Ldiff + Lreact. (14)

Note that because tα(n) = 0 for n � α, particle numbers η(x) will always remain non-negative.
Without spatial diffusion, the Kolmogorov forward equation of the above generator is commonly re-
ferred to as chemical master equation in the physical literature [Gil07, Gil92]. The specific form of
tα(n) relies on the following combinatorial argument. The idea is, that each lattice point represents a
well-mixed volume, in which these particles move rapidly around. Then, the probability that a reaction
occurs must be proportional to the number of possibilities to choose a tuple α out of the n particles.
But this is exactly

I∏
i=1

ni(ni − 1) · . . . (ni − αi + 1) =
n!

(n−α)!

for distinguishable particles. Next, we introduce a variant of the reaction-diffusion process (12), for
which only a maximum of M particles is allowed per species per lattice site. Let

NM =
{
n ∈ NI | 0 ≤ ni ≤M ∀i = 1, . . . , I

}
denote the state of allowed lattice occupations n ∈ NI and let

XN =
{
η(·)|η(x) ∈ NM ∀x ∈ TdN

}
be the space of all allowed particle configurations η : TdN → NM . For each η ∈ XN , we define then
the generator L of the reaction-exclusion process through

Lf (η) =
∑
x,|e|=1

N2Diηi(x)
(
1−ηi(x+e)

M

)[
f(ηx,x+e

i )−f(η)
]

+M
∑
x,r

gfwr (η(x))
[
f(ηγr

x )−f(η)
]

+ gbwr (η(x))
[
f(η−γrx )−f(η)

] (15)

with the reaction rates
gfwr (n) = κfwr CM

r tαr(n)tβr(M−n)

gbwr (n) = κbwr C
M
r tβr(η)tαr(M−n)

(16)

where M = (M, . . . ,M) and CM
r =

[
tαr+βr(M)

]−1
. As before, we can write

L = N2Lexcl + Lreact. (17)

Up to a prefactor, the rates gfw/bwr are the chemical master equation rate for reactions with holes (8).
The prefactor CM

r is chosen in such a way that the associated macroscopic reaction rates will be of
the form κfwr cαr(1 − c)βr , see (4) and Proposition 2.7. The hopping of a particle of species i from
lattice point x to x+ e can also be written as a reaction

Xi,n +Hi,m � Xi,m +Hi,n. (18)

DOI 10.20347/WIAS.PREPRINT.2521 Berlin 2018



M. Mittnenzweig 8

Note that particle jumps between neighboring lattice sites are by a factor N2 faster than the other
reactions. Depending on the size of M , the reaction-exclusion master equation (12) can either be
viewed as a microscopic description chemical reactions, where only a few particles are allowed on
each site, or as a mesoscopic description, where each lattice site is a well-mixed container with several
particles in it.

Next, we introduce onNM for some c ∈ [0, 1]I the binomial distribution

νc(n) :=
I∏
i=1

(
M

ni

)
cnii (1−ci)M−ni for n ∈ NM

as well as the Poisson distribution

χc(n) := e−
∑I
i=1 ci · c

n

n!
=

I∏
i=1

χci(ni) (19)

for some c ∈ RI+. We will also write νc(n) and χc(n) for the one-dimensional binomial and Poisson
distributions. Moreover, for particle configurations η(·) ∈ XN , we define the product distributions

νNc (η(·)) :=
∏
x∈TdN

νc(η(x)) χNc (η(·)) :=
∏
x∈TdN

χc(η(x)). (20)

They play an important role, because they are the equilibrium distributions of the pure exclusion and
the diffusion processes.

Lemma 2.3. For every c ∈ [0, 1]I the product binomial distribution νNc is an equilibrium distribution
of Lexcl and for every c̃ ∈ RI+, the product Poisson distribution χNc̃ is an equilibrium of the diffusion
process, i.e.

L∗exclν
N
c = 0 L∗diffχ

N
c = 0.

The next proposition shows that if the chemical reaction network satisfies the detailed balance condi-
tion (9) for some w∗ ∈ RI+, then the distributions νNw (η(·)) (with wi =

w∗,i
1+w∗,i

) and χNw∗(η(·)) are
equilibria of the reaction-exclusion (15) and the reaction-diffusion master equation (12) respectively.
For the Poisson distribution, this result is contained inï£¡Theorem 4.1 of [ACK10].

Proposition 2.4. Suppose the reaction network (5) satisfies the detailed balance condition (9) for the
concentration w∗, i.e.

κfwr wαr = κbwr wβr ∀r.

Then the reaction-diffusion process (12) is reversible with respect to the product Poisson distribution
χw∗(η(·)) and the reaction-exclusion process (15) is reversible with respect to the product binomial
distribution νw∗(η(·)) with wi =

w∗,i
1+w∗,i

. In particular, both distributions χNw∗(η(·)) and νNw (η(·)) are
equilibrium distributions of the respective processes.

Proof. Let us start with the binomial distribution. For a general jump process on a finite state space of
the form

Lf (η) =
∑
η′ 6=η

r(η,η′)
(
f(η′)− f(η)

)
,

reversibility of L with respect to a distribution µ(η) is defined as

µ(η)r(η,η′) = µ(η′)r(η′,η) ∀η,η′.

DOI 10.20347/WIAS.PREPRINT.2521 Berlin 2018



Hydrodynamic limit and large deviations of reaction-diffusion master equations 9

Thus we need to show the two conditions

νNw (η) · ηi(x)(M−ηi(y)) = νNw (ηx,yi )(ηi(y)+1)(M − (ηi(x)−1))

νNw (η) · gfwr (η(x)) = νNw (ηγr
x ) · gbwr (η(x) + γr).

For the first line, we use that

νNw (η(·))
νNw (ηx,yi (·))

=
νwi(ηi(x)) · νwi(ηi(y))

νwi(ηi(x)−1) · νwi(ηi(y)+1)

where νwi(n) is the scalar binomial distribution νwi(n) =
(
M
n

)
wni (1−wi)M−n. An explicit calculation

for the binomial distribution shows that

νw(n)

νw(n− 1)
=
M − (n−1)

n
· w

1− w

which proves the first line. For the reaction part we note first that

νNw (η)

νNw (η
γr
x )

=
νw(η(x))

νw(η(x)+γr)
.

Thus, using wγ

(1−w)γ
= wγ

∗ , we obtain

νw(n)

νw(n+γr)
=

(
M
n

)
wn(1−w)M−n(

M
n+γr

)
wn+γr(1−w)M−n−γr

=
(n + γr)!(M−n−γr)!

n!(M−n)!
·w−γr∗ .

On the other hand, using the definition (16) of the reaction rates gfw/bwr , which contain the function
tα(n) = n!

(n−α)!
, it follows that

κfwr
κbwr
· g

bw
r (n + γr)

gfwr (n)
=
tβr(n+γr) · tαr(M−n−γr)

tαr(n) · tβr(M−n)

=

(n+γr)!
(n−αr)! ·

(M−γr−n)!
(M−βr−n)!

n!
(n−αr)! ·

(M−n)!
(M−n−βr)!

=
(n+γr)!(M−n−γr)!

n!(M−n)!
.

Finally, by using the detailed balance condition κbwr
κfwr

= w
−γr
∗ , we thus showed gbwr (n+γr)

gfwr (n)
= νw(n)

νw(n+γr)
,

which concludes the proof of reversibility for the binomial distribution. The analogous computation for
the Poisson distribution is

κfwr · χw∗(n)

κbwr · χw∗(n + γr)
=
κfwr wn

∗ · (n + γr)!

κbwr w
n+γr
∗ · n!

=
tβr(n + γr)

tαr(n)

which shows reversibility of the reaction part with respect to χw∗ . Reversibility of the diffusion part
follows in the same way.

Remark 2.5. For chemical reaction networks, there also exists the notion of a complex balanced equi-
librium. Every detailed balance equilibrium is also in complex balance, but not vice versa. The authors
of [ACK10] show for the chemical master equation without diffusion, that the Poisson distribution χw∗

is an equilibrium of the process if w∗ is a complex balanced equilibrium of the chemical reaction net-
work. It is unclear if a similar statement holds true for the binomial distribution. The notion of complex
balanced equilibria might also be more natural if one introduces only one hole species, see Appendix
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C. For chemical reaction networks with mass action kinetics, there exists a well-developed theory for
complex balanced equilibria [Fei87]. We do not know if a similar theory, such as the deficiency zero
theorem, can be developed for reaction rate equations of the form

ċ =
∑
r,l

(αl −αr)κrlc
αr(1−c)αl

for reactions αr ·X→ αl ·X.

Remark 2.6. A variant of the exclusion process considered here puts a bound M on the total number
of particles, i.e.

∑I
i=1 ηi(x) ≤M. Particles jump between different lattice sites with the rate

r(η,ηx,x+e
i ) = ηi(x)

(
1−

∑I
i=1 ηi(x)

M

)
.

If reaction rates are also adapted accordingly, then the whole reaction-diffusion process is reversible
with respect to a multinomial distribution for some parameter w. See Appendix C for further details.

Proposition 2.4 makes it possible to derive the hydrodynamic limit as well as a superexponential es-
timate [KiL98]. The macroscopic reaction rate as a function of c will be given by an average of the
microscopic reaction rates gfw/bwr (n) with respect to the binomial distribution νc(n) with parameter
c. The binomial distribution for general c appears here, because the binomial product distributions
νNc (η(·)) are the equilibrium measures of the exclusion process part Lexcl. The heuristics is that lo-
cally, in the neighborhood of a macroscopic concentration c(x), the system is ergodic with respect to
the fast process on small spatial scales, which is the exclusion part Lexcl. Therefore, the macroscopic
rates are the ergodic averages of the microscopic rates with respect to equilibrium measures of the
fast process. For later usage, we calculate the macroscopic reaction rates Eνc [gfwr (n)] in the next
proposition.

Proposition 2.7. The average reaction rates follow the mass-action law form

Eχc

[
tα(n)

]
= cα Eνc

[
tα(n)tβ(M−n)

]
= tα+β(M) · cα(1−c)β.

Thus
Eνc [gfwr (n)] = κfwr cαr(1−c)βr Eνc [gbwr (n)] = κbwr cβr(1−c)αr .

Proof. The calculation in the Poisson case reads

Eχc

[
tα(η)

]
= cαe−|c|

∑
n≥α

cn−α

(n−α)!
= cα.

For the binomial distribution, we find

Eνc
[
tα(n)tβ(M−n)

]
=

K∑
n>α,M−n>β

cn(1−c)M−n
M!

(M−n)!n!
· n!

(n−α)!
· (M−n)!

(M−n−β)!

= cα(1−c)βtα+β(M)

M−β∑
n≥α

cn−α(1−c)M−n−β
(
M−α−β
n−α

)
= cα(1−c)βtα+β(M).
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2.3 Entropy bounds

We next introduce the relative entropy and the Dirichlet form of a probability distribution as well as an
entropy-dissipation inequality relating the two. This inequality will give an a priori bound on both quan-
tities, which will be needed in the derivation of the hydrodynamic limit. For two probability measures
µN , νN on XN , the space of all particle configurations η(·), we define the relative entropy

H(µN |νN) =
∑
η∈XN

µN(η(·)) log
µN(η(·))
νN(η(·))

.

We will write µN0 for the probability distribution of η0(·), i.e. the initial distribution of the Markov process
ηt(·) and µNt for the distribution of ηt(·), i.e.

µNt = P ∗t µ
N
0

where P ∗t is the generated semigroup of L∗. The relative entropy between two states is monotonically
decreasing under the action of P ∗t , i.e.

H(µNt |νNt ) ≤ H(µN0 |νN0 ).

In particular, the relative entropy H(µNt |νNw ) to the equilibrium distribution νNw is monotonically de-
creasing and therefore the entropy production is always positive:

− d

dt
H(µNt |νw) ≥ 0.

A related object is the Dirichlet form D(µN) of a probability distribution defined through

D(µ) := −
∑
η∈XN

f(η)(Lf)(η)νNw (η(·)) f(η) =

√
µN(η)

νNw (η)
. (21)

Because L is reversible with respect to νNw , D(µ) is a symmetric quadratic form as a function of

f(η) =
√

µN (η)
νNw (η)

. We define D here as a function of the probability measure µN , because we will
only need it in this form. Furthermore, we will write

D(µ) = N2Dexcl(µ) +Dreact(µ)

for the exclusion and reaction process parts. The Dirichlet form of any probability probability distribution
is always bounded from above by the entropy production:

D(µN) ≤ − d

dt

∣∣∣
t=0
H(µNt |νw).

Thus, the following entropy-dissipation inequality holds true.

Proposition 2.8. The relative entropy and the Dirichlet form satisfy the inequality

H(µNt |νNw ) +

∫ t

0

D(µNs )ds ≤ H(µN0 |νNw ).

In particular, if H(µN0 |νw) ≤ CNd, then

H(µNt |νw) ≤ CNd

∫ t

0

Dexcl(µ
N
s )ds ≤ CNd−2. (22)
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3 The Hydrodynamic limit

In this section, we show convergence of the reaction-exclusion process

Lf (η) =
∑
x,|e|=1

N2Diηi(x)
(
1−ηi(x+e)

M

)[
f
(
ηx,x+e
i )−f(η)

]
+M

∑
x,r

gfwr (η(x))
[
f
(
ηγr
x

)
−f(η)

]
+ gbwr (η(x))

[
f
(
η−γrx

)
−f(η)

] (23)

to the reaction-diffusion equation

ċ = div(D∇c)−
R∑
r=1

(αr−βr)
(
κfwr cαr(1−c)βr − κbwr cβr(1−c)αr

)
(24)

with D = diag(D1, . . . , DI) and 1 = (1, . . . , 1) using the entropy method of Guo, Papanicolaou
and Varadhan [GPV88]. The central object in this approach is the empirical measure

πN =
1

MNd

∑
x∈TdN

η(x)δx/N (25)

that can be associated to any particle configuration η(·) ∈ XN . We will denote by

MI
+ =

{
π = (π1, . . . , πI

}
| πi is a positive measure on Td

}
,

the space of vector-valued positive measures on Td and write

〈πN ,G〉 =
1

MNd

∑
x∈TdN

I∑
i=1

ηi(x)Gi(x/N)

for the pairing of a measure πN with a function G ∈ C2(Td,RI). The central theorem of this section
is the following.

Theorem 3.1. Let G ∈ C1,2([0, T ] × Td;RI) and let the initial distribution µN0 satisfy for all δ > 0
that

lim sup
N→∞

PµN0
(∣∣〈πN

0 ,G(0, ·)〉 − 〈c(0, ·),G(0, ·)〉
∣∣ > δ

)
= 0

for some c(0, ·) ∈ C(Td,RI+). Furthermore, let the entropy of the initial distribution µN0 be bounded
by H(µN0 |νw) ≤ CNd. Then, for every δ > 0,

lim sup
N→∞

PµN

(∣∣∣∣∫ T

0

〈πN
t ,G(t, ·)〉 − 〈c(t, ·),G(t, ·)〉dt

∣∣∣∣ > δ

)
= 0.

where c(t, x) solves the reaction-diffusion equation (24).

The theorem states that if the initial distribution µN0 satisfies an entropic bound and the empirical
measure πN

0 converges to an initial profile c0(x), then πN
t converges in a weak sense to c(t, x). For

a scalar reaction diffusion model, such a hydrodynamic limit was first derived in [DFL85, DFL86] using
the BBGKY hierarchy for correlation functions. Below, we will introduce the main steps of the entropy
method for the derivation of the hydrodynamic limit in the vector-valued case. The proof of Theorem
(3.1) will be given at the end of this section.
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The first step consists in showing that the sequence πN
t of empirical measures is compact in a suitable

space. As explained in [KiL98], Chapters 4 and 5, the Skorohod space

D([0, T ],MI
+)

of cadlag trajectories π· : [0, T ]→MI
+, equipped with the Skorohod topology, is a possible choice. It

turnsD([0, T ],MI
+) into a complete separable metric space. Let PN be the sequence of probability

measures on D([0, T ],MI
+) induced by the empirical measures πN

t , i.e. PN(O) = P (πN
· ∈ O).

On that space, the following compactness result holds true.

Proposition 3.2. The sequence of probability measures PN is tight and therefore relatively compact in
the space of probability measures onD([0, T ];MI

+) (endowed with the weak topology for probability
measures).

We refer to [KiL98, Chapter 4] for a detailed exposition of the proof. Given the existence of a limit
probability measure P∗ on D([0, T ];MI

+), the entropy method proceeds in showing that the proba-
bility measure P∗ is concentrated on points πt ∈ D([0, T ],MI

+) that are weak solutions of (24). The
principal idea is to decompose the pairing 〈πN

t ,G(t, ·)〉 into a predictable part and a martingale part
and to show that the martingale part converges to zero, while the predictable part must converge to a
weak solution of (24).

More precisely, to every time-dependent real-valued function f(t,ηt) of a Markov process ηt on a
finite state space, one can associate the two martingales M f

t and N f
t defined through

M f
t = f(t,ηt)− f(0,η0)−

∫ t

0

(∂s + L)f(s,ηs)ds

N f
t =

(
M f

t

)2 −
∫ t

0

(
Lf 2

)
(s,ηs)− 2f(ηs)Lf(s,ηs)ds

(26)

We will call 〈
M f
〉
t

:=

∫ t

0

(
Lf 2

)
(s,ηs)− 2f(s,ηs)Lf(s,ηs)ds (27)

the (predictable) quadratic variation of M f
t . We prove in Appendix B that the two functions M f

t and
N f
t are indeed martingales, see also [Pro05] for more details on quadratic variations of cadlag mar-

tingales. We us the martingale decomposition for the linear function f(t,η) = 〈π,G(t, ·)〉 with
G ∈ C1,2([0, T ]×Td;RI). Let ∆N denote the discrete Laplacian

(∆NG)(
x

N
) := N2

∑
e:|e|=1

G(
x+ e

N
)−G(

x

N
).

Lemma 3.3. The martingale decomposition of 〈πN
t ,G(t, ·)〉 is given by

〈πN
t ,G(t, ·)〉 = 〈πN

0 ,G(0, ·)〉+

∫ t

0

〈πN
s , ∂sG〉+ L〈πN

s ,G〉ds+MG
t .

with L = N2Lexcl + Lreact and

N2Lexcl〈πN
s ,G(s, ·)〉 = M−1N−d

I∑
i=1

∑
x

Diηs,i(x)∆NGi(s,
x

N
)

Lreact〈πN
s ,G(s, ·)〉 = N−d

∑
x,r

(G(s, x
N

) · γr)
(
gfwr (η)−gbwr (η)

)
.

(28)
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The quadratic variation of both terms equals〈
MG

t

〉
excl

=
1

M2N2d−2

∫ t

0

∑
x,e,i

DiE [ηs,i(x)]
(
Gi(s,

x+e
N

)−Gi(s,
x
N

)
)2

ds

〈
MG

t

〉
react

=
1

MN2d

∫ t

0

∑
x,r

E
[
gfwr (ηs(x))+gbwr (ηs(x))

](
G(s, x

N
)·γr

)2
ds.

(29)

Proof. We need to calculate (Lf)(η) for f(t,η) = 〈π,G(t, ·)〉. Since

f(t,ηx,x+e
i )− f(t,η) =

1

MNd
(Gi

(
t, x+e

N
)−Gi

(
t, x
N

))

one obtains

Lexcl〈πN
s ,G(s, ·)〉 =

1

MNd

∑
x,e,i

Diηs,i(x)
(
1−ηs,i(x+e)

M

)
(Gi(t,

x+e
N

)−Gi

(
t, x
N

))

=
1

MNd−2

I∑
i=1

∑
x

Diηs,i(x)∆NGi(s,
x

N
).

In going from the first to second line, it was used that the terms with prefactor ηs,i(x)(1−ηs,i(x+e)

M
)

cancel each other. The form of the reaction part Lreact

〈
πN
s ,G(s, ·)

〉
, follows from

f(t,ηγr
x )− f(t,η) = G

(
t, x
N

)
·γr =

I∑
i=1

Gi

(
t, x
N

)
γir.

It remains to derive the expressions for the quadratic variation. A general Markov jump process of the
form

Lf (η) =
∑
η′

r(η, η′)(f(η′)− f(η))

always satisfies the identity

2f(η)(Lf)(η)− (Lf 2)(η) =
∑
η′

r(η, η′)
(
f(η′)− f(η)

)2
.

This proves the form (29) for the quadratic variation.

The important point about the expression for the quadratic variation is that it vanishes for N → ∞.
Since (

Gi(s,
x+e
N

)−Gi(s,
x
N

)
)2 ≤ C(G)N−2

for G ∈ C1,2([0, T ]×Td;RI) and since all the other terms inside the sums of (29) are of orderO(1),
the quadratic variation decays on the order〈

MG
〉
t,react

+
〈
MG

〉
t,diff
≤ C ·N−d.

As a result, by Doob’s martingale inequality, one can conclude that

PµN
(

sup
t≤T
|MG

t | > δ
)
≤ 4

δ2
E[
〈
MG

〉
T

] ≤ 4C

δ2Nd
.

In summary, the above reasoning shows the following proposition.
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Proposition 3.4. For every δ > 0 and G ∈ C1,2([0, T ]×Td;RI)

lim
N→∞

PµN
(

sup
t≤T

∣∣〈πN
t ,G(t, ·)〉 − 〈πN

0 ,G(0, ·)〉 −
∫ t

0

(
〈πN

s , ∂sG〉

− Lreact〈πN
s ,G(s, ·)〉 − Lexcl〈πN

s ,G(s, ·)〉
)
ds
∣∣ > δ

)
= 0. (30)

The next natural step would be to pass to the limit πN
t → πt inside the supremum. However, the part

Lreact〈πN
s ,G(s, ·)〉 cannot be written as a function of the empirical measure πN

s , since it contains

the functions gfw/bwr (η) which are nonlinear in η(x). The remedy to this problem is the replacement
lemma. which is the crucial part of the entropy method. In order to state it we need to introduce some
notation. For a microscopic function ψ : NM → R, let Ψ(c) denote the average of ψ(n) with respect
to the binomial distribution νc:

Ψ(c) := Eνc [ψ(n)].

Furthermore, let ηl(x) be the block average

ηl(x) =
1

M(2l + 1)d

∑
|y−x|≤l

η(y) (31)

of a configuration η(·) over a cube of length l. Let τx denote the shift operator on XN defined by

(τxη)(y) := η(y + x).

Theorem 3.5. (Replacement lemma) For every δ > 0 and every function ψ : NM → R

lim sup
ε→0

lim sup
N

PµN
[ ∫ T

0

1

Nd

∑
x∈TdN

VεN(τxηs)ds ≥ δ
]

= 0 (32)

where

Vl(η) =
∣∣ 1

(2l + 1)d

∑
|y|≤l

ψ(η(y))−Ψ(ηl(0))
∣∣.

The replacement lemma says, that one can replace a term of the form∫ T

0

N−d
∑
x∈TdN

F (s, x
N

)ψ(ηs(x))ds

by the Block average ∫ T

0

N−d
∑
x∈TdN

F (s, x
N

)Ψ(ηls(x))ds

for large N and l without making a large error. The replacement lemma states in fact, that this error is
arbitrarily small for l = εN and N →∞ for ε small enough. We refer to [Spo91, Lemma II.3.4] for a
proof of the replacement that also applies to our model or alternatively to [KiL98, Lemma 5.1.10] where
the replacement lemma is shown under more general assumptions. The proof of the replacement
lemma is entirely based on the following entropy bounds that were derived for the reaction-exclusion
-process in Proposition 2.8:

H(µNt |νNw ) ≤ CNd and

∫ t

0

Dexcl(µ
N
s )ds ≤ CNd−2. (33)
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The replacement lemma is useful because it replaces the term∫ T

0

N−d
∑
x∈TdN

F (s, x
N

)ψ(ηs(x))ds

by a term that can be written as a function of the empirical measure. Indeed, let

ιε(·) := (2ε)−d1[−ε,ε]d

be the normalized indicator function of the small cube [−ε, ε]d. Then the block average ηεN(·) is a
convolution of η(·) with ιε and the whole sum can be written as∫ T

0

N−d
∑
x∈TdN

F (s, x
N

)Ψ(ηεNs (x))ds =

∫ T

0

∫
Td
F (s, y)Ψ((πN

s ∗ ιε)(y))dyds+ o(1)

forN →∞. Note that the right hand side is now a continuous function of the empirical measure in the
Skorohod topology and one can pass to the limit πN

s ∗ ιε → πs ∗ ιε. Let us try to explain heuristically
why the function

Ψ(c) := Eνc [ψ(n)]

appears. Remember from Proposition 2.4, that the product binomial distributions with parameter

νc(η(·)) =
∏
x∈TdN

νc(η(x))

are the equilibrium distributions of the pure exclusion process

(Lexclf)(η) =
∑
x,|e|=1

Diηi(x)
(
1−ηi(x+e)

M

)[
f
(
ηx,x+e
i )−f(η)

]
.

The whole reaction-exclusion process has the generator L = N2Lexcl + Lreact. On small scales,
the exclusion process is very fast and the reaction part is only a small perturbation. In particular, on
small spatial scales and averaged over short timeO(1), the exclusion process should be ergodic. This
means that if we look at the time-averaged marginal distribution of µNt over a block

(η(x−l),η(x−l+1), . . . ,η(x+l−1),η(x+l))

then this distribution should be very close to an equilibrium distribution of the exclusion process, i.e.

1

∆t

∫ t+∆t

t

µNs
(
(η(x−l),η(x−l+1), . . . ,η(x+l−1),η(x+l)

)
ds ≈

∏
|y−x|≤l

νc(η(y)).

In other words, the average of a local function ψ(ηt(x)) over small blocks of size l and small macro-
scopic times ∆t should be equal to∫ t+∆t

t

∑
|y−x|≤l

ψ(ηs(y))ds ≈ ∆t · Eνc [ψ(n)].

for some parameter c, due to ergodicity of the exclusion process What is the value of the parameter
c? Since the exclusion process is also ergodic in space, at a given time t, the value c(x, t) should
approximately be equal to block averages of ηt(x) for large enough l. This means

c(t, x) ≈ 1

(2l + 1)d

∑
x∈TdN

ηt(y)

M
for large l
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and therefore the block averages ηl(x) appears. The replacement lemma makes this averaging pro-
cedure rigorous up to macroscopic blocks of size εN . The main idea is that due to the O(Nd−2)
bound and a subadditivity property of the Dirichlet form, it can be shown that the Dirichlet form of the
time-averaged marginal distributions of µNt on blocks of a fixed size l disappears for N →∞ and re-
mains small for small macroscopic blocks εN . This establishes locally convergence to some product
binomial distribution with parameter c, because these are the only distributions for which the Dirichlet
form is equal to zero.

Let us now finish the proof the hydrodynamic limit. Remember from Proposition 2.7 that the macro-
scopic averages of gfw/bwr (η) are given by

Rfw
r (c) = κfwr cαr(1−c)βr and Rbw

r (c) = κbwr cβr(1−c)αr .

The difference between the two will be denoted by Rr(c) = Rfw
r (c)−Rbw

r (c).

Proof. (Proof of Theorem 3.1) Let

AεN = 〈πN
T ,G(T, ·)〉 − 〈πN

0 ,G(0, ·)〉 −
∫ T

0

〈πN
s , ∂sG〉+

〈
πN
s ,

N∑
i=1

Di(∆NG)(s, ·)
〉
ds

−N−d
∑
x,r

(G(s, x
N

) · γr)
(
Rfw
r ((πN

s ∗ ιε)( xN ))−Rbw
r ((πN

s ∗ ιε)( xN ))
)
.

By a combination of the martingale estimate (30) on
∣∣MG

t

∣∣ with the replacement lemma Thm. 3.5, it
follows that

lim sup
ε→0

lim sup
N→∞

PµN (|AεN | > δ) = 0.

Since G ∈ C1,2([0, T ]×Td,RI), we can replace in AεN the discrete Laplacian ∆NG by ∆G, i.e.
∆NG = ∆G + oN(1), which means limN→∞ oN(1) = 0. . Similarly, because Rfw

r (·) ≤ C for
some C and because G ∈ C1,2([0, T ]×Td,RI), we can replace the discrete sum over x ∈ TdN∫ T

0

∑
x∈TdN

(
G(s, x

N
) · γr

)
Rr

(
(πN

s ∗ ιε)( xN )
)
ds

by the integral ∫ T

0

∫
Td

(
G(s, y) · γr

)
Rr

(
(πN

s ∗ ιε)(y))dyds

modulo an error oN(1). From Proposition 3.2 we know that the probability measures PN are compact
on D(0, T ;MI

+). Since all the above integral expressions are continuous in the Skorohod topology,
we can pass to the limit πN

t → πt inside the probability estimates. Thus, the limit probability measure
P∗ must be concentrated on trajectories πt satisfying

lim sup
ε→0

P∗
(∣∣〈πT ,G(T, ·)〉 − 〈π0,G(0, ·)〉 −

∫ T

0

〈πs, ∂sG〉+ 〈πs,D∆G(s, ·)〉ds

−
∑
r

∫ T

0

∫
Td

(
G(s, x) · γr

)
Rr

(
(πs ∗ ιε)(x))dxds

∣∣ > δ
)

= 0.

The only remaining step is the passage ε → 0. Let us first remark that every limit measure πt(dx)
must have a density c(t, x) with 0 ≤ c(t, x) ≤ 1, because 0 ≤ ηt(x) ≤ M and every πt in
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the support of P∗ must be the limit of some sequence of empirical measures πN
t . For any integrable

function f ∈ L1(Td), f∗ιε converges pointwise to f inL1. Thus (πt∗ιε)(·) withπt(dx) = c(t, x)dx
converges pointwise to c(t, x)dx and by Lebesgue’s dominated convergence theorem we know that
the whole integral ∑

r

∫ T

0

∫
Td

(
G(s, x) · γr

)
Rr

(
(πs ∗ ιε)(x))dxds

converges to
∑

r

∫ T
0

∫
Td
(
G(s, x) ·γr

)
Rr(c(s, x))dxds. Thus, we can conclude that the limit prob-

ability measure P∗ is supported on functions c(t, x) that satisfy

P∗
(∣∣〈c(T, ·),G(T, ·)〉 − 〈c(0, ·),G(0, ·)〉 −

∫ T

0

〈c(s, ·), (∂sG)(s, ·)〉ds

−
∫ T

0

∫
Td

c(s, x) · D∆G(s, x) +
(
G(s, x) · γr

)
Rr

(
c(s, x)) dxds

∣∣ > δ
)

= 0.

This shows that any limit point πt(dx) = c(t, x)dx is a weak solution of 24.

We conclude this section with some remarks on the case M = ∞. Heuristically one expects trajec-
tories of the reaction-diffusion process (12) to converge to solutions of the reaction-diffusion equation

ċ = div(D∇c)−
R∑
r=1

(αr−βr)(κfwr cαr − κbwr cβr). (34)

The problem is that concentrations c(x, t) as well as particle numbers ηt(x) can now be arbitrarily
large. Although we do have global conservation laws at hand, locally, particle numbers ηt(x) can still
become very large. As a consequence, we cannot show compactness of the probability measures
PN in the Skorohod space D([0, T ],MI

+). The greater difficulty of the problem is also reflected on
the PDE level. For finite M , reaction rates Rr(c) are bounded in L∞ which gives existence and
uniqueness of strong solutions globally in time [Pie10]. However, for M = ∞ , concentrations can
blow up locally in space and time [PiS00]. Nonetheless global existence of weak solutions was estab-
lished in [DF∗07] for quadratic reaction-diffusion equations that satisfy the detailed balance condition.
The existence of weak solutions [DF∗07] uses an L2([0, T ] × Td) a priori bound that is available
for reaction-diffusion equations with a mass conservation property. A similar stochastic version of the
bound can also be obtained for the reaction-diffusion master equation (12), i.e. one can show that

N−d
∫ T

0

I∑
i=1

∑
x∈TdN

EµN [ηit(x)2]dt ≤ C.

However this seems not good enough to establish compactness of the probability measures PN with
respect to a strong enough topology. For general non-quadratic reaction-diffusion equations that sat-
isfy a detailed balance condition, global existence of renormalized solutions was obtained recently in
[Fis15].

4 Large deviations from the hydrodynamic limit

In this section, PN will always denote the probability measure on the Skorohod spaceD([0, T ];MI
+)

generated by the empirical measures πN
t of the reaction-exclusion process with initial distribution
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Hydrodynamic limit and large deviations of reaction-diffusion master equations 19

µN0 (η0(·)). In the previous section, we established a law of large numbers for the empirical measures
πN
t and showed that they converge for N → ∞ to the solution c(t, x) of a reaction-diffusion PDE.

Thus the probability distribution of PN on the Skorohod spaceD([0, T ];MI
+) will concentrate around

the solution c(t, x) with initial condition c(0, x). If for some closed subset C ⊂ D([0, T ];MI
+), the

hydrodynamic limit c(t, x) is not an element of C, then

lim
N→∞

PN(C) = 0.

Large deviation theory has the goal to characterize this decay of PN(C) - which is typically exponential
in some power of N - in a precise way. A full large deviations principle consists of a large-deviation
upper bound

lim sup
N→∞

N−d logPN(C) ≤ − inf
c∈C
I(c) ∀C closed

and a large-deviation lower bound

lim inf
N→∞

N−d logPN(O) ≥ − inf
c∈O
I(c) ∀O open.

Below, we will show a large-deviation upper bound for the probability distributions PN . We conjecture,
that similar to [JLLV93], a partial large-deviation lower bound of the form

lim inf
N→∞

N−d logPN(O) ≥ − inf
c∈O∩S

I(c) ∀O open

should be true, where S ⊂ D([0, T ];MI
+) is a subspace containing sufficiently smooth functions

c(t, x) that are bounded away from 0 and 1, e.g. c ∈ C2,3([0, T ]×Td;RI+) with ε ≤ ci(t, x) ≤ 1−ε
for some ε > 0 and all i. Before stating the main theorem concerning the upper bound, let us introduce
the rate function I . Remember that w ∈ RI+ denoted the detailed balance equilibrium of the chemical
reaction network (8). The large deviations principle is typically stated for the process ηt(x) starting
from the equilibrium distribution. Thus, from now on, we will assume that the initial configuration η0(·)
is distributed according to the equilibrium distribution νNw :

µN0 (η0(·)) =
∏
x∈Td

νw(η0(x)). (35)

The rate function I contains a static and a dynamic part

I(c) = I0(c) + I1(c). (36)

The static part is given by

I0(c) =

∫
Td
F (c(x)|w)dx

with F being the Fermi-Dirac type entropy

F (c|w) =
I∑
i=1

ci log
ci
wi

+ (1−ci) log
1−ci
1−wi

.

It depends only on the initial distribution µN0 . The dynamic part I1 has the form

I1(c) = sup
H∈C1,2([0,T ]×Td;Td)

J (c,H) (37)
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with J (c,H) = Jlin(c,H)− Jex(c,H)− Jre(c,H) and

Jlin(c,H) = 〈H(T, ·), c(T, ·)〉 − 〈H(0, ·), c(0, ·)〉 −
∫ T

0

〈∂sH(s, ·) + D∆H(s, ·), c(s, ·)〉ds

Jre(c,H) =

∫ T

0

∫
Td

R∑
r=1

Rfw
r (c)

(
eγr·H(s,x)−1

)
+Rbw

r (c)
(

e−γr·H(s,x)−1
)

dxds

Jex(c,H) =
I∑
i=1

Di

∫ T

0

∫
Td
ci(t, x)

(
1−ci(t, x)

)
|∇Hi(t, x)|2 dxdt

where Rfw
r (c) = κfwr cαr(1−c)βr and Rbw

r (c) = κbwr cβr(1−c)αr were the forward and backward
reaction rates. The functionalJlin is linear in H. The termsJex andJre are both nonlinear and convex
in H and come from the exclusion and reaction part of the Markov process. In order to get the above
stated form for the static part, it is important that the initial configuration are distributed according to
the equilibrium distribution νNw :

µN0 (η(·)) =
∏
x∈Td

νw(η(x)).

Theorem 4.1. (Upper bound for large deviations) The probability measures PN satisfy for every set
closed C ⊂ D([0, T ],MI

+) the large-deviation upper bound

lim sup
N→∞

1

MNd
logPN(C) ≤− inf

c∈C
I(c)

with rate function (36).

Let us explain how to obtain the supremum form (37) for the large deviations functional. The main idea
goes back to Donsker and Varadhan and consists in comparing the probability distribution PN with the
probability distribution PN

H of a perturbed version of the original Markov process with time-dependent
generator LH for some H ∈ C1,2([0, T ]×Td;RI). The perturbation is chosen in such a way that one

can can calculate explicitly the Radon-Nikodym derivative
dPNH ({ηNt }0≤t≤T )

dPN ({ηNt }0≤t≤T )
of trajectories {ηNt }0≤t≤T .

In the following, we will shortly write
dPNH (ηN )

dPN (ηN )
for the Radon-Nikodym derivative

dPNH (ηN )

dPN (ηN )
, which is just

the ratio between the two probabilitiy. In fact, as we shall see below, the quotient of the two probabilities
is approximately a function of the empirical measure πN , namely

dPN
H (ηN)

dPN(ηN)
' eN

dJ (πN ,H).

As a result we can estimate the probability PN(O) for some O ⊂ D([0, T ];MI
+) in terms of the

probability PN
H (O) of the perturbed process:

PN(O) = EµN [1{πN∈O}] . e−N
d infπ∈O J (π,H)EµN

[PNH (πN )

PN (πN )
1{πNt ∈O}

]
= e−N

d infπ∈O J (π,H)PN
H (O) ≤ e−N

d infπ∈O J (π,H)
(38)

Thus, by taking the infimum over all possible H, we will obtain the following upper bound

lim sup
N→∞

N−d logPN(O) ≤ − sup
H

inf
π∈O
J (π,H). (39)

The remaining steps are standard in large deviation theory. By a minimax lemma, one can exchange
supremum and infimum in (39) for compact sets C. The upper bound for compact sets can then be
extended to arbitrary closed sets C, by showing that the family of measures PN is exponentially tight.
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4.1 Change-of-measure formula

The main tool for the construction of tilted versions of the original Markov process with generator L
is the following lemma for arbitrary continuous time Markov chains on a finite state space.We give an
elementary proof of the lemma in Appendix A. Please see also [KiL98, Appendix 1], for a proof using
the Feynman-Kac formula.

Lemma 4.2. Let Lf (x) =
∑

y r(x, y)
(
f(y)− f(x)

)
be the generator of a continuous time Markov

chain Xt on a finite state space E with initial distribution ν0(x). For a given F ∈ C1([0, T ]×E,R)
let

(LF,µf) (x) =
∑
y

r(x, y)eF (t,y)−F (t,x)
(
f(y)− f(x)

)
be a time-dependent perturbation of L with the initial distribution µ(x). Then the Radon-Nikodym

derivative dPF,µ(X(·))
dP (X(·)) for trajectories X(·) ∈ D([0, T ];E) is given by

dPF,µ(X(·))
dP (X(·))

=
µ(X0)

ν0(X0)
exp

{
F (T,XT )− F (0, X0)−

∫ T

0

∂sF (s,Xs)ds

−
∑
y

∫ T

0

r(Xs, y)
(
eF (s,y)−F (s,Xs) − 1

)
ds
}
.

We will use Lemma 4.2 for the process ηt(·) with

F (t,η) = MNd〈H(t, ·),π〉 =
I∑
i=1

∑
x∈TdN

Hi(t,
x
N

)ηi(x) (40)

for some H ∈ C1,2([0, T ] × Td;RI) and a perturbed initial distribution characterized by a function
b ∈ C(Td,RI+) as explained below. The tilted generator LH then reads(

LHf
)

(η) =
∑

x,i,|e|=1

N2Die
Hi(t,x+e)−Hi(t,x)ηi(x)

(
1−ηi(x+e)

M

)[
f
(
ηx,x+e
i )−f(η)

]
+M

∑
x,r

eH(t,x)·γrgfwr (η(x))
[
f
(
ηγr
x

)
−f(η)

]
+ e−H(t,x)·γrgbwr (η(x))

[
f
(
η−γrx

)
−f(η)

]
.

(41)

The initial distribution of the perturbed Markov process is given by the product binomial distribution
νNb(·) on TdN defined through

νNb(·)(η(·)) :=
∏
x∈TdN

ν
b(

x
N

)
(η(x)) (42)

where b(·) ∈ C1(Td,RI+) is some continuous function with 0 ≤ bi(x) ≤ 1 for all i. Finally, we
denote by PN

H,b the probability distribution on the path space D([0, T ],XN) generated by the initial

distribution νNb(·) and the tilted process (41). By Lemma 4.2, the Radon-Nikodym derivative
dPNH,b(η)

dPN (η)
is

given by

dPN
H,b(η)

dPN(η)
= exp

{
log

νNb(·)(η0)

νNw (η0)
+MNd

(
〈H(T, ·),πN

T 〉 − 〈H(0, ·),πN
0 〉

−
∫ T

0

〈∂sH(s, ·),πN
s 〉ds−

1

MNd

∑
η′

∫ T

0

r(ηs,η
′)
(
e〈H(s,·),π′−πs〉−1

)
ds
)}
. (43)
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The last term contains the contributions from the exclusion process and the reaction process. The
exclusion process part was first derived in [KOV89]. By a Taylor expansion up to second order of the
exponential, i.e.

eHi(s,
x+e
N

)−Hi(s, xN )−1 = Hi(s,
x+e
N

)−Hi(s,
x
N

) +
1

2

(
Hi(s,

x+e
N

)−Hi(s,
x
N

)
)2

+O(N−3),

one obtains

1

MNd

∫ T

0

∑
x,i,e

N2Diηs,i(x)
(
1−ηs,i(x+e)

M

)(
eHi(s,

x+e
N

)−Hi(s, xN )−1
)
ds

=

∫ T

0

N−d
∑
x,i,e

Di
ηs,i(x)

M

(
1−ηs,i(x+e)

M
)
∣∣∂eHi(s,

x
N

)
∣∣2ds+

∫ T

0

〈πN
s ,D∆H(s, ·)〉ds+ oN(1).

(44)

where oN(1) only depends on H and other constants and means lim supN→∞ oN(1) = 0. In the
above formula, we also replaced the discrete gradients and the discrete Laplacian by their continuous
counterparts, i.e.

∆NH = ∆H + oN(1) and
(
Hi(s,

x+e
N

)−Hi(s,
x
N

)
)2

=
∣∣∂eHi(s,

x
N

)
∣∣2 + oN(1)

The contribution of the reaction process is∫ t

0

∑
x,r

gfwr (ηs(x))
(
eH(s,

x
N

)·γr−1
)

+ gbwr (ηs(x))
(
e−H(s,

x
N

)·γr−1
)
ds. (45)

Similarly as in the proof of the hydrodynamic limit, both terms (44) and (45) are nonlinear in ηt(·)
and therefore not a function of the empirical measure πN

t . Thus, they need to be replaced by block
averages ηεNt (x). The technical tool that allows to do this is the following superexponential estimate.
By a local function ψ(η(·)), we mean a function that only depends on finitely many coordinates η(xi),
for instance η(0) and η(e).

Theorem 4.3. (Superexponential estimate) For each G ∈ C([0, T ]×Td), each local function ψ and
each ε > 0, let

V G,ψ
N,ε (t,η) = N−d

∑
x∈TdN

G(t, x
N

)
[
ψ(τxη)−Ψ(ηεN(x))

]
.

Then, for any δ > 0,

lim sup
ε→0

lim sup
N→∞

N−d logPN

[∣∣∣∣∫ T

0

VN,ε(t,ηt)dt

∣∣∣∣ > δ

]
= −∞. (46)

The superexponential estimate is a strengthened version of the replacement lemma (32). It says, that
the probability for a large difference V G,ψ

N,ε decays superexponentially fast in Nd. Such a superexpo-
nentially small error is needed, because we want to apply the replacement lemma for events PN(O)
that are exponentially small.

We will give a detailed proof of the superexponential estimate below. It is exactly the same proof as for
the simple exclusion process [KOV89]. It is based on a Feynman-Kac formula, on the reversibility of
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the generator L with respect to the invariant measure νNw and on the replacement lemma in its non-
superexponential form.By L2(XN , νNw ), we denote the space of real-valued functions f(η) equipped
with the weighted inner product

〈f, g〉νNw =
∑
η∈XN

f(η)g(η)νNw (η).

Because of the detailed balance condition, the generator L of the reaction-exclusion process is sym-
metric in L2(XN , νNw ).

Proof. Throughout the proof remember that the state space XN is a discrete, finite set of config-
urations η(·), so all the operators appearing in the proof are finite-dimensional matrices. For any
N, ε,G, ψ as indicated in Theorem 4.3 and any a < ∞, consider the operator L + aNdV G,ψ

N,ε on

L2(XN , νNw ), where V G,ψ
N,ε is to be understood as a multiplication operator (V f)(η) = V (η)f(η).

The operator L + aNdV G,ψ
N,ε is symmetric in L2(XN , νNw ). Denote by λN,ε(a) its largest eigenvalue.

By the Feynman-Kac formula and the spectral theorem for symmetric matrices, we obtain

EµN
[
eaN

d
∫ t
0 V

G,ψ
N,ε (ηs)ds

]
=
〈
P t
V 1,1

〉
νNw
≤ etλN,ε(a).

Thus, it follows from the exponential Chebychev inequality that

PN(

∫ t

0

V G,ψ
N,ε (ηs) ≥ δ) ≤ etλN,ε(a)−aNdδ.

Therefore, in order to prove the superexponential estimate, it suffices to show

lim sup
ε→0

lim sup
N→∞

N−dλN,ε(a) = 0.

The largest eigenvalue of any symmetric matrix A can be calculated through

λmax(A) = sup
〈f,f〉

νNw
=1

〈f, Af〉νNw .

Remember that the Dirichlet form of a probability measure µ was defined as DN(µ) = −〈f, Lf〉νNw
with µ(η) =

(
f(η)

)2
νNw (η). Thus, by using A = L + aNdV G,ψ

N,ε in the above variational formula
for the largest eigenvalue and by using the probability distribution µ(η) instead of f(η), we obtain the
following variational expression for λN,ε(a) :

N−dλN,ε(a) = sup
‖µ‖1=1

{ ∑
η∈XN

aV G,ψ
N,ε (η)µ(η)−N−dDN(µ)

}
where the supremum is over all probability measures µ on XN . Since a · V G,ψ

N,ε (η) ≤ C for some C ,
we can restrict the supremum to all µ such that DN(µ) ≤ CNd. Moreover, remember that

DN(µ) = Dreact(µ) +N2Dexcl(µ) ≥ N2Dexcl(µ).

Taken together, this means that

lim sup
ε→0

lim sup
N→∞

N−dλN,ε(a)

≤ max
{

0, lim sup
ε→0

lim sup
N→∞

sup
‖µ‖1=1

Dexcl(µ)≤CNd−2

∑
η∈XN

aV G,ψ
N,ε (η)µ(η)− CN−d+2Dexcl(µ)

}
.

Finally, by the replacement lemma, the second term within the maximum must be less or equal zero.
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4.2 Proof of the upper bound

We first consider the static large deviations that arise from the term log
νN
b(·)(η0(·))
νNw (η0(·)) in (43). Since both

measures are product measures and since νc(n) =
(
M
n

)
cn(1−c)M−n, we find

log
νNb(·)(η0(·))
νNw (η0(·))

=
∑
x∈TdN

log
νN
b(

x
N

)
(η0( x

N
))

νNw (η0( x
N

))

=
I∑
i=1

∑
x∈TdN

η0,i(
x
N

) log
bi(

x
N

)

wi
+
(
M−η0,i(

x
N

)
)

log
1−bi( xN )

1−wi
= MNdFN

b(·)(π
N
0 )

where FN
b(·) denotes the function

FN
b(·)(π) =

I∑
i=1

〈
πi, log

bi(·)
wi

〉
+
〈
λN − πi, log

1−bi(·)
1−wi

〉
, λN = N−d

∑
x∈TdN

δ x
N

(47)

Here λN is a discrete approximation of the Lebesgue measure, that converges to the Lebesgue mea-
sure for N →∞. The corresponding functional for N =∞ is

Fb(·)(π) =
I∑
i=1

〈
πi, log

bi(·)
wi

〉
+
〈
1− πi, log

1−bi(·)
1−wi

〉
.

For a fixed b(·), the difference between both functionals is of order oN(1), i.e.

FN
b(·)(π) = Fb(·)(π) + oN(1).

Remember that every limit point π of an empirical measure πN has a density, because only a max-
imum of M particles is allowed per species per lattice site. For measures with a density π(dx) =
c(x)dx, the above function Fb(·) can be written as

Fb(·)(c(·)) =
I∑
i=1

∫
Td
ci(x) log

bi(x)

wi
+ (1−ci(x)) log

1−bi(x)

1−wi
.

In the beginning of this section, we claimed that the static rate function I0(c(·)) is the Fermi-Dirac
entropy

I0(c(·)) =
I∑
i=1

∫
Td
ci(x) log

ci(x)

wi
+ (1−ci(x)) log

1−ci(x)

1−wi
dx.

It appears because of the following variational representation of I0.

Lemma 4.4. I0 has the variational representation

I0(c(·, ·)) = sup
b(·)∈C(Td,RI+)

Fb(·)(c(·)). (48)

Proof. The concave function

f(b) = c log b+ (1− c) log(1− b)

attains its unique maximum for b = c.
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Theorem 4.5. For every compact set K ⊂ D([0, T ],MI
+),

lim sup
N→∞

1

MNd
logPN(K) ≤ − inf

c∈K
I(c). (49)

For the proof of the upper bound, we will need the following minimax lemma, the proof of which can
be found in the Appendix 2 of [KiL98].

Lemma 4.6. (Minimax lemma) Consider a polish space E and a sequence of probability measures
PN on E . Let

{
Js : E → R, s ∈ S

}
be a family of upper semi-continuous functions indexed by

some set S. Assume that we are able to prove upper bounds for every open subsetO of E :

lim sup
N→∞

N−d logPN(O) ≤ inf
s∈S

sup
π∈O
Js(π).

Then, for every compact set K,

lim sup
N→∞

N−d logPN(K) ≤ sup
π∈O

inf
s∈S
Js(π).

Proof. (Proof of Theorem 4.5) Remember that Rfw/bw
r (c) = Eνc [g

fw/bw
r (n)] and

EνNc [ηi(x)
(
1−ηi(x)

M

)
] = ci(1−ci) = cihi.

Let BH,δ,ε,N be the set

BH,δ,ε,N =
{
η ∈ D([0, T ],XN) :

∫ T

0

V H
N,ε(t,ηt)dt ≤ δ

}
with

V H
N,ε(t,ηt) =

R∑
r=1

∣∣∣ ∑
x∈TdN

(
gfwr (ηt(x))−Rfw

r (ηεNt (x))
)(

eH(s,x)·γr−1
)∣∣∣

+
R∑
r=1

∣∣∣ ∑
x∈TdN

(
gbwr (ηt(x))−Rbw

r (ηεNt (x))
)(

e−H(s,x)·γr−1
)∣∣∣

+
∑
i,e

Di

∣∣∣ηt,i(x)

M

(
1−ηt,i(x+e)

M

)
− ηεNt,i (x)

(
1−ηεNt,i (x)

)∣∣∣(∂eHi(
x
N

)
)2

where ηεNt,i (x) = M−1(2εN + 1)−d
∑
|x−y|≤εN ηt,i(y) was the block average of length εN of ηt,i.

Define
U(H, δ, ε) = lim sup

N→∞
N−d logPN(Bc

H,δ,ε,N)

By the superexponential estimate, it follows that

lim sup
ε→0

U(H, δ, ε) = −∞.

For any measurableO ∈ D((0, T );M+) we have

PN(O) ≤ PN(O ∩BH,δ,ε,N) + PN(Bc
H,δ,ε,N).
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Thus

lim sup
N→∞

N−d logPN(O) ≤ max
{

lim sup
N→∞

N−d logPN(O ∩BH,δ,ε,N), U(H, δ, ε)
}
.

and we can restrict ourselves to O ∩ BH,δ,ε,N . On BH,δ,ε,N , we can replace functions by their block
averages by making only an error O(δ). Remember from the introduction, that the main strategy of
the proof consists in using the following inequality

N−d logPN(O ∩BH,δ,ε,N) ≤ − inf
πN∈O∩BH,δ,ε,N

N−d log
PN
H,b(ηN)

PN(ηN)
.

Since there is a one-to-one correspondence between empirical measures πN and configurations ηN ,
we can use the two interchangeably. Next we insert above the precise expression (43) for the Radon-

Nikodym derivative
PNH,b(ηN )

PN (ηN )
. The contributions (44) and (45) from the exclusion and reaction process

are replaced by their block averages and therefore an the error term O(δ) appears. Thus

1

MNd
log

PN
H,b(η)

PN(η)
= Jlin(πN ,H) + FN

b(·)(π
N
0 )

+N−d
∫ T

0

∑
x,r

Rfw
r (ηεNt (x))

(
eH(t,

x
N

)·γr−1
)

+Rbw
r (ηεNt (x))

(
e−H(t,

x
N

)·γr−1
)
ds

+N−d
∫ T

0

∑
i,e

Diη
εN
t,i (x)

(
1−ηεNt,i (x)

)(
∂eHi(t,

x
N

)
)2

ds+O(δ) + oN(1).

Next we proceed as in the proof of the hydrodynamic limit. The block average over macroscopic blocks
of length εN can be written as a convolution of the empirical measure with ιε = (2ε)−d1[−ε,ε]d , i.e.

ηεN(x) = (πN∗ιε)( xN ).

Replacing the sums by integrals with respect to (πN∗ιε)(·) produces an error oN(1). Moreover we
have

Jlin(πN ,H) = Jlin(πN∗ιε,H) + o(ε)

where o(ε) depends only on H and other constants, but not on πN . Thus, in conclusion

1

MNd
logPN(O∩BH,δ,ε,N) ≤ − inf

πN∈O

(
J (πN∗ιε,H)+Fb(·)(π

N
0 )
)

+O(δ)+o(ε)+oN(1).

Note that we replaced the infimum over O ∩ BH,δ,ε,N by a larger infimum over O. Thus, the infimum
does not depend on N anymore and after letting N → ∞, and minimizing over H, b, ε and δ, we
obtain

lim sup
N→∞

N−d logPN(O) ≤ inf
H,b,δ,ε

sup
π∈O
JH,b,δ,ε(π)

with
JH,b,δ,ε(π) = max{−J (π∗ιε,H)− Fb(·)(π0) +O(δ) + o(ε), U(H, δ, ε)}.

For each H ∈ C1,2([0, T ] × Td,RI) and b ∈ C(Td,RI) and δ, ε > 0, the function JH,b,δ,ε is
upper semi-continuous. Thus we can apply the minimax lemma 4.6 and obtain for every compact set
K ⊂ D([0, T ],M+) that

lim sup
N→∞

N−d logPN(K) ≤ sup
π∈K

inf
H,b,δ,ε

JH,b,δ,ε(π).
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Since −J (π) is upper semicontinuous,

lim
ε→0
−J (π∗ιε,H) ≤ −J (π,H).

From this we deduce, using limε→0 U(H, δ, ε), that for fixed π,H,b, δ

lim
ε→0
JH,b,δ,ε(π) ≤ −J (π,H)− Fb(·)(π0) +O(δ).

After taking the limit δ → 0, we conclude

lim sup
N→∞

1

MNd
logPN(K) ≤ − inf

π∈K
sup
H,b
J (π,H) + Fb(·)(π).

By Lemma 4.4, we can perform the supremum over b(·) explicitly and obtain the static rate functional
I0. This finishes the proof of the theorem.

The last step consists in extending the upper bound from compact sets to closed sets. This is typically
done by showing that the family of probability measures PN is exponentially tight.

Lemma 4.7. (Exponential tightness) The family PN of probability measures on the Skorohod space
D([0, T ];MI

+) is exponentially tight, i.e. for every α < ∞ there exists a compact set Kα ⊂
D([0, T ];MI

+) such that
lim sup
N→∞

N−d log µN(Kcα) < −α. (50)

Exponential tightness of the simple exclusion process is shown in Theorem 4.1 of [KOV89] or [KiL98,
page 271 ff.]. Since the proof of exponential tightness the reaction-diffusion process is exactly the
same, we do not reproduce it here but refer to the above sources. We conclude this section by showing
how to extend the upper bound for compact sets to arbitrary closed sets C using exponential tightness.

Proof. (Large-deviation upper bound for general closed sets C). Let C ⊂ D((0, T );MI
+) be a closed

set and let Kα be a compact set satisfying (50). Then

PN(C) ≤ PN(C ∩ Kα) + PN(Kcα).

Thus

lim sup
N→∞

N−d logPN(C) ≤ max(lim sup
N→∞

N−d logPN(C ∩ Kα),−α)

≤ max(− inf
c∈C∩Kα

I(c),−α).

A Radon-Nikodym formula

Lemma A.1. Let Lf (x) =
∑

y r(x, y)
(
f(y)− f(x)

)
be the generator of a continuous time Markov

chain Xt on a finite state space E with initial distribution ν0(x). For a given F ∈ C1([0, T ]×E,R)
let

(LF,µf) (x) =
∑
y

r(x, y)eF (t,y)−F (t,x)
(
f(y)− f(x)

)
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be a time-dependent perturbation of L with the initial distribution µ(x). Then the Radon-Nikodym

derivative dPF,µ(X(·))
dP (X(·)) for trajectories X(·) ∈ D([0, T ];E) is given by

dPF,µ(X(·))
dP (X(·))

=
µ(X0)

ν0(X0)
exp

{
F (T,XT )− F (0, X0)−

∫ T

0

∂sF (s,Xs)ds

−
∑
y

∫ T

0

r(Xs, y)
(
eF (s,y)−F (s,Xs) − 1

)
ds
}
.

Proof. Any trajectory X(·) of a continuous time Markov chain is characterized by a sequence

X(·) ∧= (x0, t1, x1, . . . , tn, xn)

which means that X(t) jumps from the point xi−1 to the point xi at time ti. If transition rates r(x, y)
between two states do not depend on time, then the probability for the trajectory X(·) is given by

P (X(·)) = ν0(x0)
n∏
i=1

r(xi−1, xi)e
−

∑
y r(xi−1,y)(ti−ti−1).

Let us explain this expression. For every transition x→ y, we have an independent exponential clock
with rate r(x, y). For any exponential random variable T with rate λ, we have

P (T = t) = λe−λt P(T > t) = e−λt.

If xi=1 jumps to the point xi at time ti, then this means that Txi = ti and Ty > ti for all y 6= xi. The
probability density of that event is given by

P (Ty = t ∧ Ty′ > t∀y′ 6= y) = r(xi−1, y)e−
∑
y′ r(xi−1,y

′)t.

This explains the above expression for P (X(·)). In the case of an exponential clock with time-
dependent rate λ(t), the probability distribution follows the law

P(T > t) = e−
∫ t
0 λ(s)ds.

Thus, in the case of many time-dependent exponential clocks Ti with rates λi(t), we obtain the prob-
ability

P (Ti = t ∧ Tj > t∀j 6= i) = λi(t)e
−

∑n
j=1

∫ t
0 λj(s)ds.

Let us now look at the specific time-dependent generator LF given by

LFf (x) =
∑
y

r(x, y)eF (t,y)−F (t,x)
(
f(y)− f(x)

)
with initial distribution µ(·). Then the quotient of the probabibility densities dPF,µ(X(·))

dP (X(·)) of a trajectory

X(·) is given by

dPH(X(·))
dP (X(·))

=
µ(x0)

ν0(x0)

N∏
i=1

eF (ti,xi)−F (ti,xi−1)

· exp
{
−
∫ ti

ti−1

∑
y

r(xi−1, y)
(
eF (s,y)−F (s,xi−1) − 1

)
ds
}
.
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By using that X(s) = xi for s ∈ [ti, ti+1) and introducing the times t0 = 0 and tN+1 = T , we can
rewrite

∏N
i=1 eF (ti,xi)−F (ti,xi−1) as

N∑
i=1

F (ti, xi)−F (ti, xi−1) = F (tN+1, xN)−F (t0, x0)−
N∑
i=0

F (ti+1, xi)−F (ti, xi)

= F (T,X(T ))−F (0, X(0))−
∫ T

0

∂sF (s,X(s))ds.

In the last step we use Thus we managed to bring the Radon-Nikodym derivative into a form that does
not depend on the jump times ti. In summary it equals

dPF,µ(X(·))
dP (X(·))

=
µ(x0)

ν0(x0)
exp

{
F (T,XT )− F (0, X0)−

∫ T

0

∂sF (s,Xs)ds

−
∑
y

∫ T

0

r(Xs, y)
(
eF (s,y)−F (s,Xs) − 1

)
ds
}

which proves the lemma.

B Martingale Decomposition

Lemma B.1. Let Xt be a Markov process on finite state space S with generator L and f(t,Xt) be a
time-dependent function of the process. Then the functions

M f
t = f(t,Xt)− f(0, X0)−

∫ t

0

(∂s + L)f(s,Xs)ds,

N f
t =

(
M f

t

)2 −
∫ t

0

(
Lf 2

)
(s,Xs)− 2f(Xs)

(
Lf
)
(s,Xs)ds

are martingales. We write

〈
M f
〉
t

:=

∫ t

0

(
Lf 2

)
(s,Xs)− 2f(Xs)

(
Lf
)
(s,Xs)ds

for the predictable quadratic variation of M f
t .

Proof. Without loss of generality, we assume f(X0) = 0 in the following. In the following, the partial
derivatives ∂rf(r,Xr) or ∂sf(s,Xs) will always be with respect to the first variable of f(u,Xt). Let

Pt be the semigroup of the generator L. By definition of a martingale, we have to show E
[
M f

t |Fs
]

=

M f
s . This is equivalent to

E [f(t,Xt)− f(s,Xs)|Fs] =

∫ t

s

(∂r + L)f(r,Xr)dr. (51)

For any parametric function f(u,Xt), the conditional expectation with respect to Fs equals

E[f(u,Xt)|Fs] = Pt−sf(u,Xs),
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where the semigroup Pτ acts only on the second value. More precisely, let pτ (x, y) be the Markov
transition kernel of Pτ . Then

Pτf(u, x) :=
∑
y

f(u, x)pτ (x, y).

Thus, the left hand side of (51) equals

E [f(t,Xt)− f(s,Xs)|Fs] = Pt−sf(t,Xs)− f(s,Xs)

The right hand side equals

E
[∫ t

s

(∂r + L)f(r,Xr)dr|Fs
]

=

∫ t

s

Pr−s
(
(∂r + L)f

)
(r,Xs)dr

=

∫ t

s

d

dr

[(
Pr−sf

)
(r,Xs)

]
dr = (Pt−sf)(t,Xs)− f(s,Xs)

which shows that M f
t is a martingale. Regarding the martingale property of N f

t , we first observe that

(
M f

t

)2
=f 2(t,Xt)− 2f(t,Xt)

∫ t

0

(∂s + L)f(s,Xs)ds+
(∫ t

0

(∂s + L)f(s,Xs)ds
)2

=f 2(t,Xt)− 2M f
t

∫ t

0

(∂s + L)f(s,Xs)ds−
( ∫ t

0

(∂s + L)f(s,Xs)ds
)2

The next crucial step is a martingale integration by parts which gives

M f
t

∫ t

0

(∂s + L)f(s,Xs)ds =

∫ t

0

∫ s

0

(∂r + L)f(r,Xr)dM f
s +

∫ t

0

M f
s (∂s + L)f(s,Xs)ds.

The martingale integration by parts can be avoided by working with conditional expectations instead.
Though more elementary, it makes the calculations lengthier. The first term on the right hand side
is a martingale since it is an Ito integral with respect to the martingale M f

t . By reinserting the full
expression for M f

s in the second term and using(∫ t

0

(∂s + L)f(s,Xs)ds
)2

= 2

∫ t

0

∫ s

0

(∂s + L)f(s,Xs) · (∂r + L)f(r,Xr)drds

we obtain (
M f

t

)2
= f 2(t,Xt)− 2

∫ t

0

f(s,Xs)(∂s + L)f(s,Xs)ds+ martingale

where martingale stands for some remaining martingale terms. Finally, by using

f 2(t,Xt) = M f2

t +

∫ t

0

(∂s + L)f 2(s,Xs)ds

we see that the time derivatives cancel and obtain(
M f

t

)2
=

∫ t

0

Lf 2(s,Xs)− 2f(s,Xs)Lf(s,Xs)ds+ martingale.
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C Exclusion process with a multinomial equilibrium distribution

A variant of the exclusion process used in this paper puts a bound on the sum of all particles ηi(x)
per lattice site, i.e.

I∑
i=1

ηi(x) ≤M.

In this model, there is only one hole species X0 defined by η0(x) = M −
∑I

i=1 ηi(x). The rate
r(η,ηx,x+e

i ) for particle jumps is modified to

r(η,ηx,x+e
i ) = N2Diηi(x)(M − η0(x+ e)).

A reaction must be complemented by the hole species

αr0X0 + αr1X1 + · · ·+ αrI 
 βr0X0 + βr1X1 + · · ·+ βrIXI (52)

in such a way that the number of all particles including the holes is conserved by every reaction. This
means that the stoichiometric vectors have to satisfy

∑I
i=0 α

r
i =

∑I
i=0 β

r
i . The generator of the

corresponding reaction-exclusion process is

Lf (η) =
∑
x,|e|=1

N2Diηi(x)
(
1− η0(x+e)

M

)[
f
(
ηx,x+e
i )− f(η)

]
+
∑
x,r

κfwr CM tαr(η(x))
[
f
(
ηγr
x

)
−f(η)

]
+ κbwr CM tηr(η(x))

[
f
(
η−γrx

)
−f(η)

]
.

(53)

There exist similar statements to Propositions 2.4 and 2.2, but with the binomial distribution replaced
by the multinomial distribution. More precisely, for c ≤ 1 with

∑I
i=0 ci = 1 we define the multinomial

distribution

ωc(n) :=
∑

n:|n|1=M

(
M

n

) I∏
i=0

cnii

(
M

n

)
:=

M !

n0! · · · · · nI !

and the product multinomial distribution ωNc (η(·)) =
∏

x∈TdN
ωc(η(x)) on configurations η(·) ∈ XN .

Then the analogue of Proposition (2.4) for the reaction-exclusion process (53) holds true with respect
to the multinomial distribution.

Proposition C.1. If the chemical reaction network (52) satisfies detailed balance with respect to w ∈
RI+1

+ , i.e.
κfwr cαr = κbwr cαr .

Then the product multinomial distribution ωNc is a reversible equilibrium of the reaction-exclusion pro-
cess (53).

The hydrodynamic limit of (53) should be of the form

ċ = div(D(c)∇c) +
R∑
r=1

(βr −αr)(κ
fw
r cαr − κbwr cβr) (54)

with a nonlinear diffusion tensor D(c) involving crossdiffusion terms. Similar to [Qua92], see also
[KiL98, Chapter 7], it might be possible to prove the hydrodynamic limit (54) and to obtain a variational
formula for D(c).
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