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Patch-wise adaptive weights smoothing
Jörg Polzehl, Kostas Papafitsoros, Karsten Tabelow

ABSTRACT. Image reconstruction from noisy data has a long history of methodological development
and is based on a variety of ideas. In this paper we introduce a new method called patch-wise adaptive
smoothing, that extends the Propagation-Separation approach by using comparisons of local patches
of image intensities to define local adaptive weighting schemes for an improved balance of reduced
variability and bias in the reconstruction result. We present the implementation of the new method in
an R-package aws and demonstrate its properties on a number of examples in comparison with other
state-of-the art image reconstruction methods.

1. INTRODUCTION

One of the problems in image processing is the reduction of noise, that is often inherently connected
with the image acquisition process, deteriorates the image quality and hinders image analysis. While
the notion of images in general refers to two-dimensional data, the problem of noise reduction also
occurs in connection with data in higher dimensions, especially in the context of medical imaging
problems.

There is a vast literature on different noise reduction techniques. They typically employ an assump-
tion on the spatial structure of the imaging data. A common and simple assumption is, e.g., that the
data is characterized by spatially extended regions of homogeneity that are separated by discontinu-
ities. A more sophisticated assumption replaces local homogeneity by local smoothness (Polzehl and
Spokoiny 2008; Polzehl and Tabelow 2012). Alternatively, geometric characterizations using orienta-
tion spaces or channels in feature space are discussed, e.g., in Felsberg 2012; Felsberg, Forssén,
and Scharr 2006; Florack 2012; Duits, Fuehr, and Janssen 2012; Franken 2008.

Typically, noise reduction methods must balance the variability reduction and the bias of the recon-
struction results, realizing some kind of edge preservation. They are based on a large variety of basic
methodology, achieving this goal to a different degree. They range from kernel smoothing and local
polynomials (Wand and Jones 1995; Fan and Gijbels 1996; Simonoff 1996; Bowman and Azzalini
1997), the filter proposed by Lee 1980, bilateral filtering (Tomasi and Manduchi 1998), scale space
methods (Chaudhuri and Marron 2000), to non-linear diffusion methods (Perona and Malik 1990;
Scharr and Krajsek 2012; Weickert 1998) in a rather incomplete list.

In this paper we consider a class of noise reduction methods that has been introduced under the name
adaptive weights smoothing (AWS, Polzehl and Spokoiny 2000) and later refined as Propagation-
Separation approach (PS, Polzehl and Spokoiny 2006), which generalizes several of the concepts
above in non-parametric regression. PS has been extended to cover locally smooth images (Polzehl
and Spokoiny 2008) or color images (Polzehl and Tabelow 2007). Furthermore, it has been success-
fully applied to a number of imaging problems in neuroimaging, e.g., in functional Magnetic Resonance
Imaging (fMRI, Tabelow et al. 2006; Polzehl, Voss, and Tabelow 2010) or in Diffusion-weighted Mag-
netic Resonance Imaging (dMRI, Tabelow et al. 2008; Becker et al. 2012; Becker et al. 2014). PS
combines local comparisons of image intensities to define adaptive weighting schemes with a multi-
scale approach which iteratively inspects scale space from very local to large scales. In this paper, we
will present the implementation of PS within the R-package aws.

Buades, Coll, and Morel 2005 introduced an adaptive denoising method also extending some of the
filtering concepts above. Instead of comparing pairs of single local image intensities to define adap-
tive weighting schemes, it uses non-local comparisons of larger patches of intensities. Denoted as
non-local means (NLM) it has been successfully applied to many imaging problems, e.g., denoising
MRI data (Manjón et al. 2009). The purpose of this paper is to combine the strength of the multiscale
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approach of PS and the patch-wise comparison of image intensities of NLM to present a new algo-
rithm which we call patch-wise adaptive smoothing (PAWS). We will demonstrate its performance on
a series of two- and three-dimensional images. This will show that PAWS overcomes two of the ma-
jor drawbacks of AWS (or PS), the occurrence of artificial structure within areas of smooth intensity
changes and non-smooth borders between neighboring regions with significantly different intensity.

Furthermore, we will compare the results with those obtained considering the image reconstruction as
an energy minimizing problem with penalization, i.e., the total variation (TV, Rudin, Osher, and Fatemi
1992) and the total generalized variation (TGV, Bredies, Kunisch, and Pock 2010) approach. Even
though these two approaches belong to a different family of denoising methods than those based
on Propagation-Separation, the comparison is nevertheless very relevant. Indeed, there is a clear
analogy of the relationship between TV and TGV on the one hand and AWS and PAWS on the other.
As we will discuss in the next Section, AWS employs a structural assumption of piecewise constant
image intensity for the noise-free data. This is very similar to TV regularization where the minimization
of the `1 norm of the gradient leads to its sparsity and thus to piecewise constant reconstructions.
Hence, TV and AWS suffer from the same type of artifacts, i.e., cartoon-like structures, which are
undesirable when the underlying ground truth image contains also piecewise smooth parts. TGV is
a higher order extension of TV which was introduced with the aim to eliminate these artifacts. This
is done by incorporating an infimal convolution type combination of the `1 norms of first and second
order derivatives resulting in piecewise affine reconstructions. As we see in the following sections,
lpAWS and the new method PAWS improve AWS in a very similar way by imposing a locally smooth
structure on the denoised image. Thus, they improve AWS in the same way that TGV improves TV,
leading to more naturally looking denoised images.

The outline of the paper is as follows: We first review the basic principles of the PS approach and
the NLM method. We then introduce the new PAWS algorithm. Furthermore, we shortly review the TV
and TGV approaches before presenting extensive examples to demonstrate properties of the different
methods in various situations. The new algorithm is implemented within the R-package aws, we will
explain the corresponding functions.

2. ADAPTIVE WEIGHTS SMOOTHING

Adaptive weights smoothing for the restoration of images from noisy data was originally introduced in
Polzehl and Spokoiny 2000 and refined under the term Propagation-Separation approach in Polzehl
and Spokoiny 2006. It employs a structural assumption on the data, more specifically, a local constant
parameter model. It is designed as an iterative multi-scale approach that inspects scale space from
local to global and simultaneously infers on both the parameter value and its spatial structure.

2.1. Local constant adaptive weights smoothing (AWS). Let us assume that data Yi ∈ Y is
observed at positions xi = (xi1 , . . . , xid) in a bounded subset X of a d-dimensional metric space.
We assume Yi to be distributed as Yi ∼ Pθi , where Pθi , with density p(y, θi), depends on some
local parameter θi (typically from Rp) and is a probability distribution with support in Y from some
parametric (typically exponential) family Pθi ∈ PΘ.

The structural assumption is formulated such that there exists a partitioning X =
⋃
n=1,...,N Xn into

N subsets with Xn ∩ Xl = ∅ if n 6= l and θi ≡ θj if xi ∈ Xn and xj ∈ Xn for some n. Literally
speaking we assume that within any subset Xn the parameter θ as a function of x is constant.

The method employs both a distance δ(xi, xj) in design space X as well as a distance η(θi, θj) in
parameter space Y . A common choice in case of X ⊂ Rd is the Euclidean distance

δ(xi, xj) = ||xi − xj||2
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Data: Observations Yi ∈ Y at locations xi ∈ XG.
Initialization: Set k = 0, h(0) = 1, w(0)

ij = Kloc

(
δ(xi, xj)

)
and initialize θ̂(0)

i as weighted likelihood
or least squares estimate;

while k ≤ k? do
For all locations i and j define

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
with

l
(k)
ij =

(
δ(xi, xj)/h

(k)
)2

and
s

(k)
ij = N

(k−1)
i · η

(
θ̂

(k−1)
i , θ̂

(k−1)
j

)
/λ.

For all i define estimates
θ̂

(k)
i = arg max

θ
l(Y,W

(k)
i ; θ)

calculate
N

(k)
i =

∑
j∈XG

w
(k)
ij

end

Result: Adaptively denoised parameters θ̂(k?)
i .

Algorithm 1: Formal outline of adaptive weights smoothing (AWS).

in design space and

η(θi, θj) = KL(Pθi , Pθj) =

∫
Y
p(y, θi) log

p(y, θi)

p(y, θj)
dy

in parameter space which is the Kullback Leibler divergence between the probability distributions with
parameters θi and θj at locations xi and xj , respectively. Henceforth, we abbreviate the locations with
indices i and j.

In general, adaptive weights smoothing can be defined for regular as well as irregular designs X .
However, the patch-wise smoothing algorithm that we propose in this paper requires X to be a one,
two or three dimensional grid. Common examples include 2D or 3D images, where X ⊂ Rd (d =
2, 3) is a cube and image intensities Yi are sampled at rectangular grid points xi. Let XG denote the
set of grid points in X .

Adaptive weights smoothing employs an iterative scheme with a sequence of increasing bandwidths
h(k) for steps k = 0, . . . , k? alternating the computation of weighted maximum likelihood estimates

θ̂
(k)
i = arg max

θ
l(Y,W

(k)
i ; θ) = arg max

θ

∑
j∈XG

w
(k)
ij log(p(Yj, θ))

and the determination of adaptive weighting schemes W (k)
i = {w(k)

ij , j ∈ XG}. Specifically, the

weights w(k)
ij at iteration step k are given as the product of two terms: a kernel weight Kloc

(
l
(k)
ij

)
with

l
(k)
ij =

(
δ(xi, xj)/h

(k)
)2

and a component Kst

(
s

(k)
ij

)
depending on

s
(k)
ij = N

(k−1)
i · η

(
θ̂

(k−1)
i , θ̂

(k−1)
j

)
/λ.

denoted as statistical penalty for two kernel functions Kloc and Kst. The term N
(k−1)
i =

∑
j w

(k−1)
ij

serves as a proxy for the variance reduction achieved for θ̂(k−1)
i . Note, that the noise variance typically

enters the function η and needs to be known or has to be estimated. The adaptive weights smoothing
(AWS) is summarized by Algorithm 1.
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The sequence of bandwidths h(k) is chosen such that for λ = ∞ the variance of the estimate θ̂(k)
i

is reduced by a factor of ch compared to θ̂(k−1)
i . The specific value for ch is not very important, cf.

Li et al. 2012. However, ch = 1.25 turned out to be a good compromise between sufficient increase
of variance reduction between steps and careful increase of h(k) in order to obtain sufficiently neat
coverage of the scale space. The kernels Kloc and Kst are monotone non increasing functions on
R+ 7→ R+ preferably with compact support. Our default choice is

Kloc(x) = max(0, 1− x2), and Kst(x) = max(0,min(1, 4/3(1− x))).

The main parameters of the procedure are the number k∗ of iterations and the scale parameter λ
of the statistical penalty. λ can be chosen independently from the data at hand by checking a so-
called propagation condition for simulated data, see Becker and Mathé 2013; Becker 2014. For λ =
0 the data is not changed during the iteration, the choice λ = ∞ corresponds to a non-adaptive
kernel estimate with kernel functionKloc and bandwidth h(k∗). An optimal λ will lie between these two
extremes and provides a nearly nonadaptive kernel estimate in case of a globally constant parameter
θ.

If the structural assumption is valid AWS possesses interesting properties (Polzehl and Spokoiny
2006): Within the interior of any homogeneous region Xn the final estimate θ̂(k?)

i is similar to a non-
adaptive kernel smoother with a bandwidth h(k∗) as specified by the propagation condition (Becker
and Mathé 2013; Becker 2014). On the other hand, two different regions Xk and Xl of the partition
are separated, i.e., w(k?)

ij ' 0 if xi ∈ Xn, xj ∈ Xl, and the contrast η(θi, θj) exceeds some critical
value that depends on the size of the two regions. For details, see Polzehl and Spokoiny 2006.

2.2. Local polynomial adaptive weights smoothing (lpAWS). The final estimate θ̂(k?)
i stabilizes

for k∗ → ∞. If the structural assumption of a local constant parameter function θ(x) is not valid the
algorithm nonetheless enforces a local constant parameter map, which leads to a cartoon-like appear-
ance for the final estimate. In order to overcome this drawback and to relax the structural assumption
on the data the Propagation-Separation approach has been generalized for locally smooth functions
θ(x) (Polzehl and Spokoiny 2008; Polzehl and Tabelow 2012). Due to the increasing complexity of the
algorithm we restrict ourselves to the case d = 2 of a two-dimensional design space, i.e., imaging
data.

Specifically, we extend the structural assumption such that within a homogeneous region xi, xj ∈ Xn,
the data Yj can be modeled with Gaussian additive errors εj as

Yj = θ>i ·Ψ(xj1 − xi1 , xj2 − xi2) + εj,

where the components of Ψ(ξ1, ξ2) contain values of basis functions

ψm1,m2(ξ1, ξ2) = ξm1
1 · ξm2

2

for integers m1,m2 ≥ 0, m1 +m2 ≤ p and some polynomial order p.

For a given local model W (k)
i at iteration step k estimates θ̂(k)

i of θi are obtained by local Least
Squares as

θ̂
(k)
i =

(
B

(k)
i

)−1 ∑
j∈XG

w
(k)
ij ·Ψ(xj1 − xi1 , xj2 − xi2) · Yj,

with
B

(k)
i =

∑
j∈XG

w
(k)
ij ·Ψ(xj1 − xi1 , xj2 − xi2) ·Ψ(xj1 − xi1 , xj2 − xi2)>.

At each position xi (and xj) the estimates θ̂i (and θ̂j) are given in terms of a local set of basis functions

ψ. In order to make θ̂j and θ̂i comparable we perform a simple linear (coordinate) transformation for
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i

vl(i)

2s + 1

FIGURE 1. Schematic example of a patch Vi of size s of a location i. It contains all
locations vl(i) with a maximum l1-distance of s from i.

θ̂j using the local model and denote the result by θ̂ji. At iteration step k the statistical penalty in the
Gaussian model above can then be defined as

s
(k)
ij =

1

λ2σ2
i

(
θ̂

(k−1)
i − θ̂(k−1)

ji

)>
B

(k−1)
i

(
θ̂

(k−1)
i − θ̂(k−1)

ji

)
,

where σ2
i is the (local) variance of εi. We refer to Polzehl and Spokoiny 2008 or Polzehl and Tabelow

2012 for a more detailed description and examples using image data.

In general, local polynomial AWS improves the reconstruction results compared to the original AWS
procedure in case of locally smooth images. As by lpAWS the cartoon-like appearance of the result
is avoided, it enables larger variance reduction, i.e., the use of a larger k∗. However, it also increases
model flexibility and therefore requires more extended homogeneous regions Xn to adapt to small
contrasts in θ, i.e., to separate two regions Xn and Xl in terms of the adaptive weights w(k?)

ij ' 0 .

2.3. Non-local means (NLM). The non-local means filter has been introduced in Buades, Coll, and
Morel 2005 and is related to the adaptive weights smoothing described above. It requires a regular
grid XG as design, we will assume an isotropic grid. Instead of using only the data at locations i and j
to define adaptive weights wij it uses vectorized values in vicinities of the locations for comparison. In
order to formalize the basic idea we introduce a local patch, or vicinity, Vi = {vl(i)| ||vl(i)−i||1 ≤ s}
of a design point i, see Fig. 1. It contains all ns = (2s+ 1)d grid points xvl(i) within a d-dimensional
cube of side length 2s. The index l = 1, . . . , ns varies over the locations vl(i) in the patch Vi. We
denote by YVi the vectorized data (Yv1(i), . . . , Yvns (i)).

The method then defines local adaptive weights

wij = Kst

(
||YVj − YVi ||2/h

)
where Kst is typically chosen as a Gaussian kernel and h is some bandwidth. Thus, NLM is a single
step AWS method (k? = 1) comparing YVj and YVi instead of Yj and Yi with an adaptation bandwidth
λ = h, a uniform location kernel Kloc, and h(1) =∞, giving rise to the notion “non-local”. Estimation
is performed by a weighted mean.

Several extensions and refinements of the basic method with a large number of applications in medical
imaging context have been proposed and utilized. We refer the reader to the extensive literature on
the topic. For the comparisons in this paper we will rely on the efficient Optimized Blockwise NonLocal
Means Denoising Filter (ONLM) (Coupé et al. 2008) and the adaptive multi resolution non-local means
filter (MRONLM) (Coupé et al. 2012). For both reference implementations by the authors are available.
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Data: Observations Yi ∈ Y at locations xi ∈ XG.
Initialization: Set k = 0, h(0) = 1, w(0)

ij = Kloc

(
δ(xi, xj)

)
and initialize θ̂(0)

i as weighted likelihood
or least squares estimate;

while k ≤ k? do
For all locations i and j define

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
with

l
(k)
ij =

(
δ(xi, xj)/h

(k)
)2

and
s

(k)
ij = max

l=1,...,ns

N
(k−1)
vl(i)

· η
(
θ̂

(k−1)
vl(i)

, θ̂
(k−1)
vl(j)

)
/λ.

For all i define estimates
θ̂

(k)
i = arg max

θ
l(Y,W

(k)
i ; θ)

calculate
N

(k)
i =

∑
j∈XG

w
(k)
ij

end

Result: Adaptively denoised parameters θ̂(k?)
i .

Algorithm 2: Formal outline of patch-wise adaptive weights smoothing (PAWS).

3. PATCH-WISE ADAPTIVE WEIGHTS SMOOTHING (PAWS)

The major drawback of the original and the local polynomial AWS is that their final estimates for large
k? reflect the strict structural assumption, but do not incorporate any information on the smoothness
of boundaries between homogeneous regions. Due to the construction of the method, large noise
realizations in some location of the data can be mistaken for structure and lead to a speckled appear-
ance of the final estimate. Here, we thus develop a new extension of AWS by combining its multi-scale
approach with the use of information about the local spatial structure in terms of the local patches Vi
as defined for NLM.

This patch-wise adaptive weights smoothing (PAWS) procedure will employ a new form of the statistical
penalty s(k)

ij based on patches Vi. The variability of the estimates θ̂i at iteration step k depends on the

(local) weighting schemes W (k)
i . This is taken into account in the definition of the statistical penalty

s
(k)
ij by the use of the sum of weights N (k)

i . Depending on the unknown underlying structure Xn
the variability of the estimates θ̂vl(i) may vary considerably over grid points vl(i) ∈ Vi. Thus, when

we extend the definition s(k)
ij to comparisons between patches, it should consider accuracy of the

parameter estimates reflected byNvl(i) as achieved in former iteration steps. We thus define a suitable
statistical penalty for PAWS by

s
(k)
ij = max

l=1,...,ns

N
(k−1)
vl(i)

· η
(
θ̂

(k−1)
vl(i)

, θ̂
(k−1)
vl(j)

)
/λ.

Taking the maximum over all locations l = 1, . . . , ns in the patch enables to balances spatial differ-
ences in the variance of the estimates.

As for AWS the adaptation bandwidth λ in s(k)
ij depends only on the parametric family Pθi ∈ PΘ, the

dimension of the design space d and, additionally, on the patch size s. We choose it by a propagation
condition, see Becker 2014. The algorithm is summarized in Algorithm 2.

We illustrate the propagation of the weightsW (k)
i with k for several ground truth situations of the data.

The example image is composed of four quadrants with a constant function, two linear functions with
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FIGURE 2. Propagation of weights for PAWS. Left: Noisy image with contour lines of
the original structure added. 2nd, 3rd and 4th image (from left): reconstruction results
for k∗ = 26, 32, and 38 (hmax = 12, 25, and 50) and patch size s = 2 overlayed
with contour lines, levels .1 (dotted), .4 (dashed) and .7 (solid), of weighting schemes
in nine selected locations. Color labeling corresponds to varying scenarios, see text.

different gradient orientation and strength and a quadratic function, plus additive Gaussian noise. In
the left of Figure 2 we plotted the noisy image and contour lines of the noise-free image for guidance.
The other three plots provide the reconstruction results θ(k) after k = 26, 32 and 38 iteration steps of
the PAWS algorithm with a patch size s = 2. For these iteration steps and for nine selected locations i
we overlay contour lines of the weightsw(k)

ij corresponding to weights of .1 (dotted), .4 (dashed) and .7
(solid). We use different colors to indicate different scenarios: red for a location within a local constant
region, blue in a region with a constant gradient, yellow for locations without intensity contrast at the
border of two quadrants, green for locations at discontinuities and cyan/magenta for two locations with
quadratic intensity profile but differing distance from the intensity minimum.

It can be seen that within a local constant intensity region the weights propagate isotropically in all
directions as for a non-adaptive kernel smoother (red). For locations within a region with constant
gradient the weighting schemes are more concentrated in gradient direction while freely extending in
the orthogonal direction (blue). The behavior at discontinuities depends on the image contrast and the
distance to the discontinuity. We observe either propagation within the homogeneous region (yellow)
or only along the discontinuity if the distance is less than s (green). In case of a nonlinear intensity
map the weighting schemes extend and concentrate along level sets with propagation restricted by
their curvature.

Figure 3 provides the corresponding illustration for the original AWS procedure. Within the local smooth
regions we observe, with increasing bandwidth h(k), the emergence a local constant image recon-
struction and the propagation of weights within its constant segments.

4. ADAPTIVE SMOOTHING BASED ON REGULARIZATION

For data Y on regular Cartesian grids in two dimension, i.e., classical images, approaches based
on the numerical solution of optimization problems have been established. They often employ an `1-
regularization term that enforces sparsity of structures where the qualitative local assumptions are
violated. The penalties account for deviations from a constant image intensity or constant gradient
image. The optimization problem considered below codes similar structural assumptions as the AWS
procedures considered in the last section.

4.1. Total variation regularization (TV). Total variation is a classical energy minimizing method
(Rudin, Osher, and Fatemi 1992), where the denoised image U is obtained as a minimizer of the
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FIGURE 3. Propagation of weights for AWS. Left: Noisy image with contour lines of the
original structure added. 2nd, 3rd and 4th image (from left): reconstruction results for
k∗ = 26, 32, and 38 (hmax = 12, 25, and 50) overlayed with contour lines, levels .1
(dotted), .4 (dashed) and .7 (solid), of weighting schemes in nine selected locations.
Color labeling corresponds to varying scenarios, see text.

energy

(1) min
U

1

2
‖U − Y ‖2

2 + TVα(U).

Here ‖U − Y ‖2
2 denotes the square of the Euclidean distance between U and Y (discrepancy term),

which corresponds to the fact that the data Y is assumed to be corrupted by Gaussian noise. For an
image U defined on a Cartesian grid d1 × d2, the term TVα(U) is the total variation of U which in
this discrete formulation reads

TVα(U) = α‖∇U‖1 = α

d1∑
i1=1

d2∑
i2=1

((Ui1+1,i2 − Ui1,i2)2 + (U1,i2+1 − Ui1,i2)2)1/2.

The scalar constant α > 0 balances the two terms in (1) and determines the amount of filtering.
Minimizing the `1 norm of the gradient results in sparsity of the gradient of the denoised image. As
a result, total variation, like adaptive weights smoothing with a local constant structural assumption,
promotes piecewise constant reconstructions which on one hand leads to edge preservation and sharp
images. On the other hand it also leads to blocky artifacts (staircasing effect) which is often undesirable
in natural images. TV reconstructions are typically accompanied by a certain loss of contrast. There
is a vast literature concerning TV minimisation. Here we refer the reader to Caselles, Chambolle, and
Novaga 2007 and Ring 2000 for analytical properties, and to Hintermüller et al. 2017 for parameter
selection as well as to the references therein.

4.2. Total generalized variation regularization (TGV). Total generalized variation (Bredies, Ku-
nisch, and Pock 2010) has been proposed as a higher order extension of TV, aiming to avoid the
staircasing effect and on the same time to retain the ability of TV to preserve edges. In the case of
Gaussian noise, one minimizes the functional

min
U

1

2
‖U − Y ‖2

2 + TGVα,β(U),

where
TGVα,β(U) = min

W
α‖∇U −W‖1 + β‖EW‖1.

Here, EW is the symmetrized gradient ofW , i.e., EW = 1
2
(∇W +∇W⊥), and α, β > 0. IfW = 0

then TGVα,β(U) = TVα(U). If W = ∇U then TGVα,β(U) = β‖∇2U‖1. Thus, the TGV func-
tional can be interpreted as an optimal balance between first and second order `1-type regularization.
TGV minimization promotes piecewise affine reconstructions rather than piecewise constant, typically
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resulting in more visually pleasing results than TV. One drawback of TGV minimization is the pres-
ence of two regularizations parameters that need to be balanced, see Papafitsoros and Bredies 2015;
Reyes, Schönlieb, and Valkonen 2017, as well as the increased computational cost in comparison to
TV.

5. SOFTWARE

The three adaptive smoothing algorithms AWS, lpAWS and PAWS were implemented in the R-package
aws. The package is available under GPL (>=2) from https://cran.r-project.org/
package=aws. The version used in this paper is 2.0-4. The three methods are implemented within
the corresponding functions aws, lpaws, and paws:

R> aws(nimg, hmax, sigma2 = sig^2)
R> lpaws(nimg, degree = 1, hmax, sigma2 = sig^2)
R> paws(nimg, hmax, patchsize = 1, sigma2 = sig^2)

For all three functions nimg is the array containing the noisy data. While aws and paws allow for
one-, two-, and three-dimensional data, lpaws can be applied to two-dimensional data, only. hmax
is the value for the maximum bandwidth, the function will automatically create a suitable sequence
h(k) of bandwidths with ch = 1.25 such that h(k?) does not exceed hmax. The degree argument
of lpaws denote the degree of the local polynomials. sigma2 is a global estimate for the variance
of the noise. If omitted, a robust estimate based on the inter-quartile range of first order intensity
differences in coordinate directions is generated. In our simulation study we use the known variance
for simplicity. The adaptation bandwidth λ is predefined by a propagation condition for the utilized noise
model and dimensionality of the data. Adjustments for more or less adaptation in the reconstruction
can be achieved by the parameter ladjust for all three functions. For more information see the
man-pages of the package and the scripts accompanying this paper which have been used to do the
simulation study below.

The regularization methods TV and TGV were also implemented in the R-package aws:

R> TV_denoising(nimg, alpha, iter)
R> TGV_denoising(nimg, alpha, beta, iter)

where alpha (and beta) are the regularization parameters for TV and TGV as described above.
Iterations of the optimization algorithm are terminated if either the `1-norm or `∞-norm of the differ-
ence of two consecutive image reconstructions are less than their specified tolerance values, or the
maximum number iter of iterations is reached.

For the ONLM and MRONLM algorithms we used the original Matlab implementations by Pierrick
Coupé which are available at https://sites.google.com/site/pierrickcoupe/
softwares/denoising-for-medical-imaging/mri-denoising.

The example images and the scripts to reproduce the results and figures in this paper are available in
the online supplement.

6. EXAMPLES

We illustrate and discuss the performance of our patch-wise adaptive weights smoothing (PAWS)
algorithm in comparison to the other adaptive smoothing procedures (AWS, lpAWS, ONLM, MRONLM,
TV, TGV) in three examples with artificial Gaussian noise. For the evaluation of the reconstruction Û
in comparison to the ground truth image U we use the following common criteria
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FIGURE 4. Example 2D images: grayscale image and color (sRGB) image

� Peak Signal to Noise Ratio (PSNR):

PSNR(Û , U) = 20 log10(max(U)−min(U))− 10 log10(var(Û − U))

� Mean Absolute Error (MAE):

MAE(Û , U) = mean(|Û − U |)

� Structural Similarity (SSIM), see Wang et al. 2004:

SSIM(Û , U) =
(2 ∗mean(Û) mean(U) + c1)(2 ∗ cov(Û , U) + c2)

(mean(Û)2 mean(U)2 + c1)(var(Û)2 var(I)2 + c2)

with c1 = 10−4(max(U)−min(U))2 and c2 = 9c1.
� Mean Absolute Gradient Error (MAGE):

MAGE(Û , U) = mean(|∇Û −∇U |)

using a numeric approximation of the gradient.
� Root Mean Squared Gradient Error (RMSGE):

RMSGE(Û , U) =

√
var(∇Û −∇U).

6.1. Example 1 — Grayscale parrot image. The first example uses a greyscale image (resolution
256× 256) extracted from kodim23.png (http://r0k.us/graphics/kodak/), see the left
image in Fig. 4. Spatially independent Gaussian noise with three different standard deviations, σ =
.04, σ = .08 and σ = .16 was added after standardizing the image to a range [0, 1].

For each noise level we computed reconstructions using AWS, with k∗ optimized with respect to
PSNR; lpAWS, with polynomial degree p = 1; TV and TGV, both with parameters α (and β) opti-
mized with respect to PSNR, and our new PAWS method with patch sizes s = 1, 2 and 3. For PAWS
and lpAWS the number of iterations k∗ used was 18, 22 and 24, corresponding to a maximum band-
width h(k∗) of 4.9, 7.6 and 9.5, for the three noise levels. Default values for λ was used. These values
were determined by simulation to obey a propagation condition (Becker and Mathé 2013) and are
hard-coded in the functions aws, lpaws and paws.

Numerical results with respect to PSNR, MAE and SSIM are provided in Tables 1- 3. They suggest
a superior behavior of PAWS especially in case of low SNR. Figure 5 provides the reconstructions
achieved by AWS, PAWS with s = 2, lpAWS with a degree p = 1, TV and TGV together with the
noisy source image. The reconstructed images are projected into the range of the original for display
in order to improve comparability.
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original TV TGV AWS PAWS1 PAWS2 PAWS3 lpAWS
σ = 0.04 27.4 33.4 33.7 32.2 33.7 33.8 33.7 33.1
σ = 0.08 21.3 29.8 30.1 28.1 30.5 30.7 30.6 29.7
σ = 0.16 15.3 26.4 26.7 25.8 27.4 27.8 27.8 25.9

TABLE 1. PSNR of parrot reconstructions for the different noise levels. The index for
PAWS corresponds to the patch size (s = 1, 2, 3).

original TV TGV AWS PAWS1 PAWS2 PAWS3 lpAWS
σ = 0.04 0.0320 0.0141 0.0135 0.0166 0.0132 0.0130 0.0132 0.0138
σ = 0.08 0.0641 0.0201 0.0191 0.0239 0.0181 0.0177 0.0179 0.0191
σ = 0.16 0.1281 0.0287 0.0272 0.0295 0.0252 0.0241 0.0242 0.0279

TABLE 2. As Table 1 but reporting MAE.

original TV TGV AWS PAWS1 PAWS2 PAWS3 lpAWS
σ = 0.04 0.9843 0.9960 0.9962 0.9948 0.9963 0.9964 0.9963 0.9957
σ = 0.08 0.9400 0.9908 0.9913 0.9866 0.9922 0.9926 0.9923 0.9907
σ = 0.16 0.7966 0.9795 0.9807 0.9768 0.9840 0.9855 0.9852 0.9772

TABLE 3. As Table 1 but reporting SSIM.

Noisy (27.4) AWS (32.2) PAWS2 (33.8) lpAWS (33.1) TV (33.4) TGV (33.7)

Noisy (21.3) AWS (28.1) PAWS2 (30.7) lpAWS (29.9) TV (29.8) TGV (30.1)

Noisy (15.3) AWS (25.8) PAWS2 (27.8) lpAWS (26.1) TV (26.4) TGV (26.7)

FIGURE 5. Resulting optimal reconstruction for parrot image. The numbers is paren-
theses are the PSNR values.

6.2. Example 2 — Color image in 2D. The AWS and PAWS algorithms can be easily extended to
handle color images using η(θi, θj) = (θi−θj)>Σ−1

i (θi−θj) where θ ∈ R3 is a vector of intensities
in the RGB channels and the corresponding Σi the error covariance matrix, see Polzehl and Tabelow
2007. The extension of TV and TGV to color images is straightforward as well.
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Noisy (16.4) PAWS1(27.9) PAWS2(27.8)

AWS (26.3) TV (27.1) TGV (27.2)

FIGURE 6. Reconstruction results for the color image. For more details a zoomed
image is show. PSNR values are in parentheses, see also Table 4.

For an color image example we used the right image in Fig. 4. We added Gaussian noise with stan-
dard deviation equal to 15% of the intensity range in each of the RGB channels of the image. The
reconstructions using TV and TGV were obtained using optimized parameters α (and β) with respect
to PSNR. For AWS and PAWS we used k∗ = 24 (corresponding to h(k∗) = 9.5) and adjusted the
parameter λ to maximize PSNR. Figure 6 shows a zoom of the noisy image and its reconstructions.
The intensity values have again been projected into the range [0, 1] in each RGB channel for better
comparability. PSNR and MAE results reported in the headings of each image correspond to the full
image size of 1700×1400 pixel. Note, that the assumption of a local constant model is enforced in the
AWS reconstruction in regions with smoothly changing intensities. This effect is by far less prominent
with both the PAWS and TV/TGV reconstructions.

noisy AWS PAWS1 PAWS2 TV TGV
PSNR 16.4 26.3 27.9 27.8 27.1 27.2

MAE 7840 1920 1660 1680 1900 1880

TABLE 4. PSNR and MAE of the reconstruction results for the color image example.

6.3. Example 3 — 3D brain image. Our third example uses a 3D T1-weighted image volume with a
1mm isotropic voxel resolution from BrainWeb http://brainweb.bic.mni.mcgill.ca/
cgi/brainweb1 , see Figure 7. The image dimension is 181×217×181, image intensity ranges
between 0 and 4095 (12 Bit).
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FIGURE 7. Example 3D brain images (T1w) from BrainWeb: axial (slice #91), coronal
(slice #109) and sagittal (slice #70) view.

Images corrupted with noise were obtained by adding spatially independent Gaussian noise with a
standard deviation 200 (high SNR), 400 (medium SNR) and 800 (low SNR) to each voxel inten-
sity. For reconstruction we used AWS and PAWS with default values of λ chosen according to a
propagation condition (Becker and Mathé 2013). The value of k∗ for AWS was selected to provide
best results in terms of PSNR (specifically 11, 13 and 20 for the three situations). For PAWS we
used k∗ = 23(h(last) = 3.85) for high SNR, k∗ = 26(h(last) = 4.81) for medium SNR and
k∗ = 28(h(last) = 5.6) in case of low SNR. For comparison with the non-local means methods we
used the implementations for ONLM and MRONLM as provided by the authors.

Figure 8 illustrates the quality of reconstruction for the various methods for the central axial slice. The
values of PSNR and MAE are reported in Tables 5 and 6 and refer to all voxel within a 3D brain mask
obtained by thresholding the original 3D BrainWeb image.

noisy AWS PAWS1 PAWS2 ONLM MRONLM
σ = 200 26.2 31.4 35.4 34.3 35.6 35.7
σ = 400 20.2 28.5 32.5 32.2 31.8 32.1
σ = 800 14.2 26.3 29.3 29.6 28.1 28.6

TABLE 5. PSNR of brain reconstructions for the different noise levels.

noisy AWS PAWS1 PAWS2 ONLM MRONLM
σ = 200 160 80.2 49.1 56.4 48.8 47.7
σ = 400 319 113 68.5 72 78.4 74.6
σ = 800 639 139 99.8 98.7 124 115

TABLE 6. MAE of brain reconstructions for the different noise levels.

In Figure 9 we illustrate the accuracy of edge estimation. We show the central axial slice of a 3D image
that contains the norm of the standard numerical gradient approximation as voxel intensity.

7. DISCUSSION & CONCLUSION

In this paper, we presented a new noise reduction algorithm patch-wise adaptive weights smooth-
ing based on the Propagation-Separation approach that combines the multiscale approach of PS
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x

Noisy (26.2)

x

y

AWS(hopt) (31.4)

x

y

PAWS(s=1) (35.4)

x

y

PAWS(s=2) (34.3)

x

y

ONLM (35.6)

x

y

MRONLM (35.7)

x

Noisy (20.2)
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AWS(hopt) (28.5)
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PAWS(s=1) (32.5)
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y

PAWS(s=2) (32.2)
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y

ONLM (31.8)

x

y

MRONLM (32.1)

Noisy (14.2)

y

AWS(hopt) (26.3)

y

PAWS(s=1) (29.3)

y

PAWS(s=2) (29.6)

y

ONLM (28.1)

y

MRONLM (28.6)

FIGURE 8. Example 3D brain images (T1w) from BrainWeb: axial view (slice 91) of
noisy image, AWS, PAWS(s=1,2), ONLM and MRONLM reconstructions. Rows show
results for differing noise levels. The numbers is parentheses refer to the PSNR of the
3D reconstruction within the brain mask. Numerical values MAE over all voxel within
a brain mask are reported in Tables 5 and 6.

noisy AWS PAWS1 PAWS2 ONLM MRONLM
σ = 200 170 62.9 30.1 33.3 34 32.2
σ = 400 362 92 41.1 43 56 50.8
σ = 800 779 96.7 58.7 58.1 89.3 78.6

TABLE 7. MAGE of brain reconstructions for the different noise levels.

noisy AWS PAWS1 PAWS2 ONLM MRONLM
σ = 200 200 78.5 45.3 33.3 48.6 48.5
σ = 400 418 114 64.6 65.7 75.9 73.5
σ = 800 879 138 91.9 88.7 112 104

TABLE 8. RMSGE of brain reconstructions for the different noise levels.

with the definition of adaptive weighting schemes based on comparisons of patches of image inten-
sities. It can be easily applied for data in any dimension d. We also described an implementation of
PAWS as well as AWS and lpAWS within the R-package aws which is freely available under GPL from
https://cran.r-project.org/. We demonstrated, that the combination of both ideas, the
multiscale approach and the patch-wise comparison, leads to improved reconstruction results in com-
parison to methods based on a single ingredient. We also demonstrated how the method compares
with regularization-based methods like TV and TGV, which in general show similar properties and
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Original AWS(hopt) (62.9) PAWS(s=1) (30.1) PAWS(s=2) (33.3) ONLM (34) MRONLM (32.2)

Noisy (362) AWS(hopt) (92) PAWS(s=1) (41.1) PAWS(s=2) (43) ONLM (56) MRONLM (50.8)

Noisy (779) AWS(hopt) (96.7) PAWS(s=1) (58.7) PAWS(s=2) (58.1) ONLM (89.3) MRONLM (78.6)

FIGURE 9. Example 3D brain images (T1w) from BrainWeb: axial view (slice 91) of 3D
edge indicators for (from left to right) noisy image (2nd and 3rd row, original is used in
the first row for comparison), AWS, PAWS(s=1,2), ONLM and MRONLM reconstruc-
tions. Rows show results for differing noise levels. Numerical values in parenthesis
refer to MAGE. Numerical values for MAGE and RMSGE are reported in Tables 7 and
8.

performance to the PS methods. The R-package aws now also contains implementations for both
methods, which where also described in this paper.

The new PAWS method overcomes the problem of singular locations with extreme image intensity in
the reconstruction and the roughness of the boundaries of regions with homogeneous image intensity.
The usage of the maximum statistics in the definition of the statistical penalty automatically takes the
different variability of the estimates from the previous iteration step into account. PAWS shows also
improved performance if the image data is characterized by local smooth instead of local constant
intensity regions. It outperforms lpAWS in these cases and is, in contrast to lpAWS, easily applicable
for d-dimensional data with d > 2.
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