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Recent trends and views on elliptic quasi-variational inequalities
Amal Alphonse, Michael Hintermüller, Carlos N. Rautenberg

Abstract

We consider state-of-the-art methods, theoretical limitations, and open problems in elliptic
Quasi-Variational Inequalities (QVIs). This involves the development of solution algorithms in
function space, existence theory, and the study of optimization problems with QVI constraints.
We address the range of applicability and theoretical limitations of fixed point and other popular
solution algorithms, also based on the nature of the constraint, e.g., obstacle and gradient-type.
For optimization problems with QVI constraints, we study novel formulations that capture the
multivalued nature of the solution mapping to the QVI, and generalized differentiability concepts
appropriate for such problems.

1 Introduction

Quasi-Variational Inequalities represent a specific subclass of quasi-equilibrium problems in which
non-convexity and non-smoothness are present. They play an important role in the modelling of com-
plex phenomena in applied sciences, engineering, and economy, where compliancy or other state
dependent bound constraints have to be taken care of. The nonlinear nature of the constraint set
challenges the derivation of existence results and the design and analysis of associated solution algo-
rithms.

In the majority of available models, the state dependent constraint is of the form

ψ(Gy)≤Φ(y),

where ψ is a real-valued nonlinear function, G a linear operator, and Φ a nonlinear operator that is of
superposition type or it is defined by the solution mapping of a nonlinear partial differential equation
(PDE). For example, in the case of unilateral constraints, ψ(x) = x and G = id, and for gradient con-
straints, ψ(x) = |x| and G = ∇ is the weak gradient. Applications involving these restrictions include,
but are not limited to, the magnetization of superconductors, Maxwell systems, thermohydraulics, im-
age processing, game theory, surface growth of granular (cohensionless) materials, hydrology, and
solid and continuum mechanics. For more details, we refer the reader to [21, 25, 34, 52, 54, 56, 64, 65]
and the monographs [14,53].

The goal of this paper is to present state-of-the-art results including mathematical limitations and
open questions that arise in the treatment of QVIs. Specific focus topics involve existence of solutions,
development of appropriate solvers together with some problematic issues found in the literature,
optimal control, and directional differentiability of the QVI solution map.

Due to our aim of keeping the paper compact, we have not been able to include certain important
approaches. In particular, in the case of gradient constraints, the QVI can be rewritten as a generalized
equation. It then follows that these QVIs become a particular instance of a more general problem class;
see, e.g., [48,51]. The latter approach was pioneered by Kenmochi and collaborators, and further work
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can be found in [24, 26, 46, 47]. Also, we have not included the L∞ contraction results from Hanouzet
and Joly which are well documented in [31, 32] and [15]. As we focus on the infinite dimensional
setting in this paper, we have not included recent finite dimensional solvers associated with KKT-
type and augmented Lagrangian methods; see [22, 23, 35, 49, 50]. In a similar vein, we have avoided
discretization issues of closed convex sets which are required for consistency of numerical schemes
and are deeply related to the density of smooth functions on the aforementioned sets; see [41,43].

The paper is organized as follows. The class of problems under consideration is described in section
1.1, where the basic functional analytic framework is established, and solutions to the QVIs of interest
are equivalently described as fixed points of a specific nonlinear map T . In section 2, we consider
some existence results involving compactness or increasing properties of the map T . Furthermore,
we provide sufficient conditions for both properties and mention open questions concerning both ap-
proaches. Section 3 concerns iterative methods for solving QVIs. We state some results for obstacle,
gradient, and more general constraints. Also, we focus on an unfortunate trend of the QVI literature
that intends to extend the technique of the Lions–Stampacchia existence result to the QVI setting.
We show that in general the approach is rather restrictive and that the assumption of the Lipschitz
continuity of the projection map K 7→ PK, frequently made, does not hold in general. Subsequently,
we consider iterations that converge in case of multiple solutions and regularization approaches of
Moreau–Yosida and Gerhardt type. We finalize the section by addressing drawbacks associated with
the simple fixed point iteration yn = T (yn−1). In section 4, we state optimal control problems with QVI
constraints that take into account the multivalued nature of the solution set. In particular, utilizing a
control reduced form of the problem leads to a formulation in terms of minimum and maximum solu-
tions to the QVI. A newly established directional differentiability result for the QVI map is provided in
section 5, where the classical result of Mignot is extended accordingly to the QVI framework.

1.1 The basic setting and problem formulation

We consider V to be a reflexive real Banach space of (equivalence) classes of maps of the type
v : Ω→R for some Lipschitz domain Ω⊂RN with N ∈N and norm denoted by ‖·‖V . Its topological
dual is denoted by V ′ and the pairing between V ′ and V is given by 〈·, ·〉. If V is a Hilbert space, then
(·, ·) denotes its inner product. For a sequence {vn} in V , strong and weak convergence to v ∈V are
written as “vn→ v” and “vn ⇀ v”, respectively.

For a map K : V →W , where W is a Banach space, we say that K is completely continuous if vn ⇀ v
in V implies K(vn)→ K(v) in W . Since V is reflexive, a completely continuous map is compact;
see [71, Chapter II, Lemma 1.1].

Throughout the paper we consider a (possibly nonlinear) operator A : V →V ′ that is Lipschitz contin-
uous and uniformly monotone, i.e., there exist constants c > 0 and C > 0 such that for all u,v ∈V ,

‖A(u)−A(v)‖V ′ ≤C‖u− v‖V , (A1)

and
〈A(u)−A(v),u− v〉 ≥ c‖u− v‖r

V , (A2)

for some constant r > 1. If V is a Hilbert space, then r = 2. In addition, we assume that A(0) = 0.

The typical setting that we consider here is with V := W 1,p
0 (Ω), with Ω ⊂ RN a bounded Lipschitz

domain, 2≤ p <+∞, and A :=−∆p, the p−Laplacian, given by

〈−∆p(u),v〉 :=
∫

Ω

|∇u|p−2
∇u ·∇v dx, for u,v ∈W 1,p

0 (Ω).
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In this case, c = 1 and r = p.

The general problem class under consideration is given as follows.

Problem (PQVI) : Given f ∈V ′,

find y ∈ K(y) : 〈A(y)− f ,v− y〉 ≥ 0, ∀v ∈ K(y). (PQVI)

The general structure of v 7→ K(v) is given by

K(v) := {w ∈V : ψ(Gw)≤Φ(v)}, (1)

where Φ(v) : Ω→ R is a measurable function for each v and “v ≤ w” means that v(x) ≤ w(x) for
almost all (f.a.a.) x ∈ Ω, unless stated otherwise. We assume that G ∈ L (V,Lp(Ω)d) for some
1 < p < +∞ and d ∈ N, that is, G : V → Lp(Ω)d is linear and bounded. Additionally, we suppose
that ψ : Rd → R is convex. For the sake of simplicity, we assume that K(v) is always non-empty for
each v. The closedness and convexity of K(v) follow from the assumptions invoked here. Additionally,
we assume that v 7→ max(0,v), and v 7→ min(0,v) are continuous with respect to the weak and
strong topologies of V .

We distinguish at least two notable cases both for V = W 1,p
0 (Ω). If ψ(Gw) = w, we refer to the

problem as the obstacle case. If ψ(x) = |x| and G = ∇ is the weak gradient so that G : W 1,p
0 (Ω)→

Lp(Ω), we refer to the problem as the gradient case.

We denote the solution set to (PQVI) for a given f ∈ V ′ by Q( f ), and note that in general Q( f )
contains more than one element. It is convenient to characterize Q( f ) as the set of fixed points of a
certain map. In this light, consider K ⊂ V non-empty, closed and convex. Then for any f ∈ V ′, we
define S( f ,K) as the unique solution to:

Find y ∈ K : 〈A(y)− f ,v− y〉 ≥ 0, ∀v ∈ K. (2)

Also, for the map v 7→ K(v) given as above, we consider

T (v) := S( f ,K(v)). (3)

It then follows that solutions to (PQVI) are equivalently defined as solutions to

T (v) = v.

In general for an operator R, we denote the set of fixed points by Fix(R).

2 Some existence theory

In this section we provide an overview of techniques available to prove existence of solutions to QVIs
and the limitations and caveats associated with the utilized techniques. We focus on compactness
results and ordering approaches. Contraction methods, however, are left for the section on solution
algorithms.

DOI 10.20347/WIAS.PREPRINT.2518 Berlin 2018



A. Alphonse, M. Hintermüller, C. N. Rautenberg 4

2.1 Compactness and Mosco convergence

One approach to prove existence of a fixed point of T is based on compactness of the map T . In
particular, since V is reflexive, it is enough to consider the complete continuity of T , i.e., given vn ⇀ v,
then T (vn)→ T (v) in V ; see [71, Chapter II, Lemma 1.1.]. Then, a suitable fixed point theorem yields
existence. Note, however, that this is directly associated with a notion of set convergence for {K(vn)},
as introduced by Mosco; see [62].

Definition 1 (MOSCO CONVERGENCE) Let K and Kn, for each n ∈N, be non-empty, closed and con-
vex subsets of V . Then the sequence {Kn} is said to converge to K in the sense of Mosco as n→∞,

denoted by Kn
M−→ K, if the following two conditions are fulfilled:

(i) For each w ∈ K, there exists {wn′} such that wn′ ∈ Kn′ for n′ ∈ N′ ⊂ N and wn′ → w in V .

(ii) If wn ∈ Kn and wn ⇀ w in V along a subsequence, then w ∈ K.

The importance of Mosco convergence lies in the following continuity result: Let fn→ f in V ′, then

Kn
M−−→ K implies S( fn,Kn)→ S( f ,K) in V.

The proof can be found in [66]. The above fact implies that if vn ⇀ v in V yields K(vn)
M−−→ K(v),

then T : V →V is compact. Using v = 0 in (2), we observe that T (V )⊂ Bc−1‖ f‖V ′ (0;V ), the closed

ball in V of radius c−1‖ f‖V ′ and center at 0. Hence by Schauder’s fixed point theorem, the equation
T (y) = y has solutions in V .

The full characterization of Mosco convergence of {K(vn)} based on properties of Φ,ψ , and G, is a
complex task and to this day, only partial answers are available. Specifically, condition (i) in Definition
1, commonly referred to as the recovery sequence condition, is delicate to check in applications, while
(ii) admits the following simple and general characterization.

Proposition 2.1 Suppose that Φ : V → Lq(Ω), for some 1 ≤ q ≤ +∞, is completely continuous,
and vn ⇀ v in V . Then (ii) in Definition 1 holds true for Kn = K(vn) and K = K(v).

Proof. For wn ∈ K(vn), we have ψ(Gwn) ≤ Φ(vn), and if wn ⇀ w in V , it follows that Gwn ⇀

Gw in Lp(Ω)d . By Mazur’s lemma, there exists zn = ∑
N(n)
k=n α(n)kGwk where ∑

N(n)
k=n α(n)k = 1 and

α(n)k ≥ 0 such that zn→ Gw in Lp(Ω)d . Since ψ : Rd → R is convex,

ψ(zn)≤
N(n)

∑
k=n

α(n)kψ(Gwk)≤Φ(vn).

As vn ⇀ v in V , we have Φ(vn)→ Φ(v) in Lq(Ω). Hence, we obtain w ∈ K(v) by taking the limit
above (over some subsequence converging in the pointwise almost everywhere sense). �

Perhaps the simplest situation in which (i) holds is the obstacle case with Φ : V → V completely
continuous. Let w ≤ Φ(v) be arbitrary and vn ⇀ v in V , and define wn := min(w,Φ(vn)) so that
wn ≤ Φ(wn). Since Φ(vn)→ Φ(v) in V , it follows that wn→ w in V . Consequently (i) holds true.
Note that we assume that V 3 z 7→ min(0,z) ∈ V is continuous. The relaxation of the complete
continuity assumption for Φ is an arduous task that we consider in what follows.
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2.1.1 The result of Boccardo and Murat

A typical function space setting for our focus problem (PQVI) is given by V =W 1,p
0 (Ω) , for 1 < p <

+∞, and obstacle-type constraints. As seen above, if Φ : W 1,p(Ω)→W 1,p(Ω) is completely con-
tinuous, then the map T is compact. This can be relaxed substantially by means of the compactness
result of Murat in [63]. It states that if Fn ⇀ F in H−1(Ω) with Fn ≥ 0 for all n ∈ N, then Fn→ F in
W−1,q(Ω) with q < 2. Here, Fn ≥ 0 refers to 〈Fn,σ〉 ≥ 0 for all σ ∈ V with σ ≥ 0. Moreover, the
regularity of ∂Ω can be dropped and the result still remains intact [19]. In our setting, this result leads
to the following useful assertion; see [17,18].

Theorem 2.1 (Boccardo-Murat) Suppose that vn ⇀ v in W 1,p
0 (Ω) implies Φ(vn)⇀Φ(v) in W 1,q(Ω)

or W 1,q
0 (Ω) for some q > p. Then K(vn)

M−−→ K(v).

We note that counterexamples can be constructed for q = p. In words, the above result relies on the
fact that Φ realizes an increase in regularity and preserves weak continuity.

Open problems. For QVIs with similar constraint types as considered here but with fractional order
operators A, a result analogous to the one in Theorem 2.1 appears unavailable. For this kind of oper-
ators, the QVI can be equivalently formulated in weighted Sobolev spaces, see [4]. In this context, it is
an open question whether it is possible to extend the above result of Boccardo and Murat to weighted
Sobolev spaces W 1,p

0 (Ω;w) for some w in a Muckenhoupt class.

2.1.2 Gradient and further cases

The cases other than the obstacle one are significantly more difficult, mainly due to the possible
nonlinearity ψ : Rd → R. Here, we consider the setting where V =W 1,p

0 (Ω) with 1 < p <+∞. The
following result is based on [12,40,54]

Proposition 2.2 Let G ∈ L (W 1,p
0 (Ω),Lp(Ω)d) for some d ∈ N, and let ψ : Rd → R be (posi-

tive) homogeneous of degree one, i.e., ψ(tx) = tψ(x) for any x ∈ Rd and t > 0. Suppose that

Φ : W 1,p
0 (Ω)→ L∞

η (Ω) ⊂ L∞(Ω) is completely continuous, where L∞
η (Ω) := {v ∈ L∞(Ω) : v ≥

η> 0 a.e.}. Then, we have that

vn ⇀ v in W 1,p
0 (Ω) implies K(vn)

M−−→ K(v).

Proof. First note that by assumption, Φ : W 1,p
0 (Ω)→ Lp(Ω) is also completely continuous. Thus,

by Proposition 2.1 we only need to prove the recovery sequence part for Mosco convergence. For this
purpose and for vn ⇀ v in W 1,p

0 (Ω), define

βn :=
(

1+
‖Φ(vn)−Φ(v)‖L∞

η

)−1

.

If ψ(Gw) ≤ Φ(v), then it follows for wn := βnw that wn → w in W 1,p
0 (Ω) and ψ(Gwn) ≤ Φ(vn)

(see [40]) which finishes the proof. �

We note that the previous result only provides sufficient conditions for Mosco convergence; this leads
to another open problem.
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Open problems. Find sufficient and necessary conditions on φn,φ such that

{w ∈W 1,p
0 (Ω) : ψ(Gw)≤ φn} M−−→ {w ∈W 1,p

0 (Ω) : ψ(Gw)≤ φ}.

Similarly, it is an open question whether φn ⇀ φ in W 1,q(Ω) for some q suffices to guarantee the
above Mosco convergence in the gradient case by other means than embeddings.

2.2 Order approaches

We consider now an approach based on order that was pioneered by Tartar; see [72] and also [8,
Chapter 15, §15.2]. Let (V,H,V ′) be a Gelfand triple of Hilbert spaces, that is, we have V ↪→H ↪→V ′,
where the embedding V ↪→ H is dense and continuous, and H is identified with its topological dual
H ′ so that the embedding H ↪→ V ′ is also dense and continuous. Within this section, (·, ·) denotes
the inner product in H.

We assume that H+ ⊂ H is a convex cone with

H+ = {v ∈ H : (v,y)≥ 0 for all y ∈ H+}.

Based on this, we use the following ordering denoted by “≤”:

x≤ y if and only if y− x ∈ H+.

For x ∈ H, we have the decomposition x = x+− x− ∈ H+−H+ with (x+,x−) = 0 such that x+

denotes the orthogonal projection onto H+ and x− = x− x+ the one onto H− =−H+. The infimum
and supremum of two elements x,y ∈ H are defined as sup(x,y) := x+(y− x)+ and inf(x,y) :=
x− (x− y)+ respectively.

The supremum of an arbitrary subset of H that is bounded (in the order) above is also correctly defined
since H is Dedekind complete: A set {xi}i∈J where J is completely ordered and bounded from above
implies that {xi}i∈J is a generalized Cauchy sequence in H (see [9, Chapter 15, §15.2, Proposition
1]). From this Dedekind completeness follows (see [2, Chapter 4, Theorem 4.9 and Corollary 4.10]).
This additionally implies that norm convergence preserves order. Indeed, if zn ≤ yn for each n ∈ N
and zn→ z and yn→ y both in H, then z≤ y.

Finally, we assume that

y ∈V ⇒ y+ ∈V and ∃µ > 0 : ‖y+‖V ≤ µ‖y‖V ,∀y ∈V.

Then the order in H induces one in V ′, as well. In fact, for f ,g ∈V ′, we write f ≤ g if 〈 f ,φ〉 ≤ 〈g,φ〉
for all φ ∈V+ :=V ∩H+ and define V ′+ := { f ∈V ′ : f ≥ 0}.
The typical example in this framework is given by the Gelfand triple
(V,H,V ′) = (H1

0 (Ω),L2(Ω),H−1(Ω)). Here, H+ = L2(Ω)+, the set of almost everywhere (a.e.)
non-negative functions, and v≤ w denotes that v(x)≤ w(x) for almost all (f.a.a.) x ∈Ω.

In this section, we assume that the operator A : V →V ′ is strictly T-monotone, i.e.,

〈A(y)−A(z),(y− z)+〉> 0, ∀y,z ∈V : (y− z)+ 6= 0. (A3)

In particular, if A is linear, then the above is equivalent to 〈Ay−,y+〉 ≤ 0 for all y ∈ V , and we have
maximum principles available for A. In addition, consider the following definition.
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Definition 2 A map R : V →V is said to be increasing if for y,z ∈V we have that

y≤ z implies R(y)≤ R(z).

The following general result concerning existence of fixed points for increasing maps is the fundamen-
tal tool to prove existence of solutions to problem (PQVI).

Theorem 2.2 (Tartar–Birkhoff) Let R : V → V be increasing, and suppose that there exist y,y ∈ V
such that

y≤ y, y≤ R(y), and R(y)≤ y.

Then the set Fix(R)∩ [y,y] is non-empty. Furthermore, there exist y1,y2 ∈ Fix(R)∩ [y,y] such that

y ∈ Fix(R)∩ [y,y] ⇒ y ∈ Fix(R)∩ [y1,y2].

The above theorem mainly states that if a map is increasing, has a subsolution y1 and a supersolution
y2, then it has a fixed point between (with respect to the order induced in H) y1 and y2. Moreover,
there are minimal and maximal fixed points in [y1,y2].

For the map T : V → V to be increasing, some assumptions are required on the structure of K. For
this purpose consider the obstacle case and assume that Φ : V → H is increasing. Also, suppose
that fmin ≤ f ≤ fmax for some fmin, fmax ∈ V ′, and that Φ(A−1 fmin) ≥ A−1 fmin. Then, it follows
that

y = A−1 fmin and y = A−1 fmax

are sub- and supersolutions, respectively, of T , and all assumptions of the previous theorem are
satisfied. Hence, defining Aad = {g ∈V ′ : fmin ≤ g≤ fmax}, we have the operators

m : Aad→V and M : Aad→V

that take elements of Aad to minimal and maximal solutions to (PQVI) in the interval
[y,y] = [A−1 fmin,A−1 fmax].

Open problems. Characterize the stability of the maps f 7→ m( f ) and f 7→ M( f ). Specifically, if
{ fn} is in Aad, identify conditions on the sequence { fn} so that

m( fn)→m( f ) and M( fn)→M( f )

in H and in V .

3 Solution methods and algorithms

Next we concentrate on solution methods for problem (PQVI) which are constructive in the sense that
they can also be used to show existence of solutions. We focus first on contraction results without
the aid of T-monotonicity properties of A, i.e., assumption (A3). In section 3.2, we focus on some
problematic tendencies in the literature that attempt to generalize the Lions–Stampacchia existence
result on VIs [57] to QVIs. We show that in general, such approaches provide worse results than a
simple change of variables and the direct use of (A1). In section 3.3, we exploit ordering properties
and consider iterations that converge to m( f ) and M( f ) under appropriate assumptions. Additionally,
we consider regularization methods for the constraint y ∈ K(y) of the Moreau–Yosida and Gerhardt-
type in section 3.4. In the former case, we show how the approach is suitable for Newton-type solvers.
We end this section with considerations of the iteration yn+1 = T (yn) when only compactness of T is
available.

DOI 10.20347/WIAS.PREPRINT.2518 Berlin 2018
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3.1 Contraction results for T

Uniqueness of solutions to (PQVI) is rarely available. However, in some cases it is possible to obtain
that v 7→ S( f ,K(v)) is contractive for a sufficiently small f and with Φ Lipschitz with sufficiently small
Lipschitz constant. The interpretation of these prerequisites is as follows: If the Lipschitz constant of Φ

satisfies LΦ� 1, then Φ(·)' constant, and hence it is expected that (PQVI) is close to a variational
inequality and admits a unique solution under such assumptions.

3.1.1 Obstacle case

We provide first a simple example associated to the obstacle case that arises when Φ preserves the
regularity of the state space (the reason to describe such a simple case is related to the digression in
section 3.2).

In the obstacle case, provided that Φ : V → V is Lipschitz, we can consider the change of variable
z = y−Φ(v). Hence, it is straightforward to prove, via the monotonicity of A, that T satisfies

‖T (v1)−T (v2)‖V ≤
1
c
‖AΦ(v1)−AΦ(v2)‖V ′ ≤

C
c

LΦ‖v1− v2‖V .

Consequently, for
C
c

LΦ < 1,

the map T has a unique fixed point and the iteration yn+1 = T (yn) converges to this fixed point for
any initial y0 ∈V . The extent of the usage of this technique is limited to the very case described here.
Note also that if V = H1

0 (Ω), then the assumptions here also imply that Φ(v) = 0 on ∂Ω in the sense
of the trace.

The case LΦ = 1 may lead to a degenerate situation: Consider Φ(y) = y. Then y ∈ K(y) is always
satisfied and v≤K(y) implies v−y≤ 0, so that (PQVI) is equivalent to the problem: Find y ∈V such
that Ay≤ f in V ′. This implies that A−1g is a solution to this problem for every g≤ f in V ′.

3.1.2 Gradient and further cases

In other than the obstacle case, contraction results are far more elusive and when available, the con-
traction rates depend heavily on the regularity and magnitude of the data as we see next. The result
is a slight generalization of [40,42].

We consider the case V =W 1,p
0 (Ω) with A : W 1,p

0 (Ω)→W−1,p′(Ω) not necessarily linear, but ho-

mogeneous with degree β ≥ 1 , i.e., A(ty) = tβ A(y) for t > 0 and y∈W 1,p
0 (Ω), and with monotonic-

ity exponent r ≤ min(2, p) in (A2). We consider f ∈ Lr′(Ω) ⊂W−1,p′(Ω) where 1/r+ 1/r′ = 1
and 1/p+1/p′ = 1.

Let G ∈ L (W 1,p
0 (Ω),Lp(Ω)d) for some d ∈ N, and ψ : Rd → R such that ψ(tx) = tψ(x) for

t > 0. Many examples fit this setting. For instance G := ∇, the weak gradient, or G := div, the weak
divergence, together with ψ(x) = |x| corresponding to the Euclidian norm in RN or the absolute value

respectively. Consider the map Φ : W 1,p
0 (Ω)→ L∞

ν (Ω) defined as Φ(u) = λ (u)φ where λ is a
nonlinear Lipschitz continuous functional and φ ∈ L∞(Ω).

Theorem 3.1 ( [40]) In the above described setting, we have

‖T (v1)−T (v2)‖W 1,p
0
≤ L( f )‖v1− v2‖W 1,p

0
,
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where L( f )→ 0 as ‖ f‖Lr′ → 0.

Hence, for small data we observe existence of a unique fixed point of T , and thus a unique solution to
(PQVI). A proof is given in [40, Theorem B.1].

Relaxing the hypothesis on the structure of Φ typically rules out contraction or even Lipschitz continu-
ity. In order to see this, note that if φ1,φ2 ∈ L∞(Ω) and Ki := {v ∈W 1,p

0 (Ω) : ‖∇v‖RN ≤ φi a.e.}
then

‖S( f ,K1)−S( f ,K2)‖W 1,p
0
≤M( f )‖φ1−φ2‖

1/r
L∞ (4)

where r is the constant in (A2). That is, the map is only Hölder continuous in general; see [40,70]

Open problems. The extension of the result of Theorem 3.1 from the rank one case, Φ(y) = λ (y)φ ,
to the finite rank case, Φ(y) = λ1(y)φ1 +λ2(y)φ2 + · · ·+λm(y)φm, is still an open task.

Additionally, improvements (if possible) on the exponent 1/r in (4) have yet to be found, although the
Lipschitz continuity result seems unattainable; see also section 3.2.

3.2 The map K 7→ PK and extensions to Lions–Stampacchia

We restrict ourselves in this section to the Hilbert space setting and describe now a common mis-
leading approach found in the literature. This unfortunate technique is based on aiming to extend the
theorem of Lions and Stampacchia in [57] to the QVI framework.

Let i : V → V ′ denote the duality operator, that is, the canonical isomorphism defined as 〈iu,v〉 :=
(u,v), and its inverse i−1 := j is the Riesz map for V . Here, problem (PQVI) can be equivalently
written as

Find y ∈ K(y) : (y− jHρ(y),v− y)≥ 0, ∀v ∈ K(y)

for Hρ(w) = iw− ρ(A(w)− f ) with w ∈ V , and any ρ > 0. Then, the existence of a solution to
(PQVI) can be transferred to finding y ∈V satisfying y = Bρ(y) with

Bρ(y) := PK(y)(y−ρ j(A(y)− f ))

for some ρ > 0. Here PK(y) : V →V ⊂K(y) is the projection map, i.e., for any v ∈V , PK(y)(v) is the
unique element in K(y) such that

‖PK(y)(v)− v‖V = inf
w∈K(y)

‖w− v‖.

In the case where Φ(y) = φ for all y, it follows that Bρ is a contraction provided that 0 < ρ < 2c/C2,
where c,C are the monotonicity and Lipschitz constant of A, respectively, given in (A1) and (A2). In
fact, we have

‖Bρ(v)−Bρ(w)‖V ≤
√

1−2ρc+ρ2C2‖v−w‖V .

A significant amount of literature on QVIs is based on trying to extend this result to the quasi-variational
setting. This approach relies on the hard assumption

‖PK(y)(w)−PK(z)(w)‖V ≤ η‖y− z‖V (5)

for some 0 < η < 1 and all y,z,w in a bounded set in V . This should not be confused with the non-
expansiveness of the map z 7→ PK(y)(z), i.e., we have that ‖PK(y)(z1)−PK(y)(z2)‖V ≤ ‖z1− z2‖V ,
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for all y,z1,z2 ∈V . In general, (5) is not valid, and the only framework (in our setting) where it seems to
work is in the obstacle type case with Φ : V →V . Indeed, in the latter case we see that the projection
map can be rewritten in simpler terms as

PK(y)(w) = Φ(y)+P{z∈V :z≤0}(w−Φ(y)). (6)

Note that it is necessary for this representation that Φ preserves the V regularity. For example if
V = H1

0 (Ω) and Φ maps V into L2(Ω) but not into H1
0 (Ω), this V -regularity requirement is no longer

valid.

In case (6) holds, a solution to the QVI is equivalently a fixed point of the map Bρ now defined as

Bρ(y) := Φ(y)+P{z∈V :z≤0}((y−ρ j(A(y)− f )−Φ(y)),

which satisfies

‖Bρ(v)−Bρ(w)‖V ≤ (2LΦ +
√

1−2ρc+ρ2C2)‖v−w‖V .

In order for Bρ to be contractive, a first observation is that we need

2LΦ +

√
1−
( c

C

)2
< 1,

which implies that
C
c

LΦ <
1
2
.

This is a much more restrictive and convoluted approach than the one described in section 3.1.1,
where only C

c LΦ < 1 is required! Furthermore, the linear convergence rate (in case of a contraction)

in this case is worse than the one in section 3.1.1, given by C
c LΦ.

There is a deep and interesting reason why condition (5) fails in a general setting. The result in question
was described by Attouch and Wets in [5–7], and it involves continuity properties of K 7→ PK. This is
given in the following section.

3.2.1 The map K 7→ PK

For any closed, non-empty and convex set K in V , we define the distance function of an element y∈V
to the set K as

d(y,K) := inf
z∈K
‖z− y‖V ,

and for two closed, non-empty, and convex sets K1,K2 we define the excess function e as

e(K1,K2) := sup
z∈K1

d(z,K2).

For any ρ ≥ 0, the ρ-Hausdorff distance between K1 and K2 is given by

hausρ(K1,K2) := sup(e(Kρ

1 ,K2),(e(K
ρ

2 ,K1)),

where Kρ

i := Ki∩ρB, i = 1,2, and B is the open unit ball centered at zero. Then, we have (see [6,
Proposition 5.3]) the following.
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Theorem 3.2 (Attouch–Wets) Let V be a Hilbert space and K1,K2 any two closed, convex, non-
empty subsets of V . For y0 ∈V , we have that

‖PK1(y0)−PK2(y0)‖V ≤ ρ
1/2hausρ(K1,K2)

1/2

for ρ := ‖y0‖+d(y0,K1)+d(y0,K2).

The 1/2 exponent in the right hand side expression is optimal, and examples (even in finite dimen-
sions) can be found where equality holds. Additionally, in Banach spaces like Lp(Ω) or `p(N), the
exponent degrades even further: it is 1/p if 2 < p < +∞ and 1/p′ if 1 < p < 2 where p′ is the
Hölder conjugate of p.

In order to understand how this result fully translates into our class of maps y 7→ K(y), consider the
following example. Let Ω = (0,1) and V = {v ∈ H1(Ω) : v(0) = 0} with norm ‖v‖2

V :=
∫

Ω
|v′|2 dx,

where v′ stands for the weak derivative of v : Ω→ R.

Suppose that Ki := {v ∈V : |∇v| ≤ φi} with φ2 > φ1 > 0 constants. Then, if vi ∈Ki for i = 1,2, we
have ∫

Ω

|v′2− v′1|2 dx≥
∫
{v′2≥φ1}

|v′2−φ1|2 dx+
∫
{v′2≤−φ1}

|v′2 +φ1|2 dx. (7)

Define ṽ1(x) =
∫ x

0 F(φ1,v′2(s))ds, where

F(φ1, t) :=
{

min(φ1, t), t ≥ 0,
max(−φ1, t), t < 0.

This implies that ṽ1 is bounded and ṽ′1 = F(φ1,v′2) in the sense of distributions, so that ṽ1 ∈ H1(Ω),
and in particular ṽ1 ∈V ; note that ṽ1(0) = limx↓0 ṽ1(x) = 0. Additionally,∫

Ω

|v′2− ṽ′1|2 dx =
∫
{v′2≥φ1}

|v′2−φ1|2 dx+
∫
{v′2≤−φ1}

|v′2 +φ1|2 dx,

so by (7), we have that

d(v2,K1)
2 = inf

v1∈K1

∫
Ω

|v′2− v′1|2 dx =
∫
{v′2≥φ1}

|v′2−φ1|2 dx+
∫
{v′2≤−φ1}

|v′2 +φ1|2 dx.

Since −φ2 ≤ v′2 ≤ φ2, for any v2 ∈ K2 we have the bound

d(v2,K1)
2 ≤

∫
Ω

|φ2−φ1|2 dx.

Further, if we choose ṽ2(x) := φ2x, we have d(ṽ2,K1)
2 =

∫
Ω
|φ2−φ1|2 dx. Therefore

e(K2,K1) = sup
v2∈K2

d(v2,K1) =

(∫
Ω

|φ2−φ1|2 dx
)1/2

= |φ2−φ1|.

Also, since K1 ⊂ K2, d(v1,K2) = 0 for any v1 ∈ K1 and hence e(K1,K2) = 0. Thus, for sufficiently
large ρ > 0, we have hausρ(K1,K2) = |φ2− φ1|. This establishes that if Φ : V → R is Lipschitz,
then

‖PK(y)(y0)−PK(w)(y0)‖V ≤ η‖y−w‖1/2
V ,

for some η > 0. Note however, that in this setting it is indeed possible to obtain a contraction for the
map T ; see section 3.1.2.
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3.3 Order approaches: solution methods for m( f ) and M( f )

We consider the Gelfand triple (V,H,V ′) and the framework of section 2.2 including the assumptions
on A ∈L (V,V ′) and Φ. Then the map T is increasing and on the interval of sub- and supersolutions
[y,y] = [A−1 fmin,A−1 fmax], there exists a minimal and a maximal solution to (PQVI), denoted m( f )
and M( f ), respectively. We follow a similar approach as in [15].

Consider the iterations

mn+1 := T (mn), m0 := y, and

Mn+1 := T (Mn), M0 := y, for n = 0,1, . . .

Since y ≤ T (y), T (y) ≤ y, and y ≤ y, the fact that T is increasing implies that mn ≤ mn+1 and
Mn+1 ≤Mn, and additionally mn,Mn ∈ [y,y].

It can be proven than {mn} and {Mn} are Cauchy sequences in H, and since they are also bounded
in V , we obtain

mn ↑ m∗, Mn ↓M∗, in H, and mn ⇀ m∗, Mn ⇀ M∗, in V.

Note that M∗ ≤Φ(Mn−1) for all n ∈ N so that

c‖Mn−M∗‖2
V ≤ 〈AMn−AM∗,Mn−M∗〉 ≤ 〈 f −AM∗,Mn−M∗〉

by the fact that Mn = S( f ,K(Mn−1)), and hence Mn→M∗ in V . Further, provided that Φ : H→ H
is continuous, it is not hard to prove that M∗ is a solution to (PQVI): from M∗ ≤ Φ(Mn−1), we have
that M∗ ≤Φ(M∗), and for any v≤Φ(M∗), we have v≤Φ(Mn−1) for any n ∈ N. Hence,

〈AM∗− f ,v−M∗〉= lim
n→∞
〈AMn− f ,v−Mn〉 ≥ 0,

i.e., M∗ = S( f ,K(M∗)). Since M( f ) is the maximum solution to (PQVI) on [y,y], M∗ ≤ M( f ).
Further, since M( f )≤ y, by repeated iteration of T on the previous inequality we have that M( f )≤
M∗, i.e., M( f ) = M∗.

In order to prove that m∗ =m( f ), additional assumptions are required. Let Φ : V →V be completely
continuous. Then vn := min(m∗,Φ(mn−1)) satisfies vn→ m∗ in V and vn ≤Φ(mn−1). Hence,

c‖mn− vn‖2
V ≤ 〈Amn−Avn,mn− vn〉 ≤ 〈 f −Avn,mn− vn〉,

where we have used that mn = S( f ,K(mn−1)). Thus, mn → m∗ in V . From mn ≤ Φ(mn−1), and
since strong convergence in H preserves order, we have m∗ ≤Φ(m∗). Choose v≤Φ(m∗) arbitrary
and define vn := min(v,Φ(mn−1)), so that vn→ m∗ in V and vn ≤Φ(mn−1). Then

〈Am∗− f ,v−m∗〉= lim
n→∞
〈Amn− f ,vn−mn〉 ≥ 0.

That is, m∗ is a solution to (PQVI) within [y,y]. Hence, by definition of m( f ), we have m( f )≤m∗, and
from y ≤ m( f ) and the consecutive iteration of T on the previous inequality, we have m∗ ≤ m( f ),
i.e., m∗ =m( f ). Overall, we have the following result.

Proposition 3.1 In addition to the assumptions for Φ in section 2.2, suppose that Φ : V → V is
completely continuous. Then mn ↑m( f ) and Mn ↓M( f ) in H and mn→m( f ) and Mn→M( f ) in
V .

Open problems. The speed of convergence of {mn} and {Mn} is, in general, slower than linear. This
hinders their applicability when addressing large scale problems, or when considering optimization
problems involving m( f ) and M( f ), as in section 4. It is an open question whether it is possible to
accelerate such iterations by combining them with intermediate steps. Additionally, it is open wether
linearly convergent methods can be designed in general when the solution is non-unique.
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3.4 Regularization methods

3.4.1 Extended Moreau–Yosida and Semismooth Newton

It is convenient to consider regularizations of QVIs by smoothing. The type of regularization or smooth-
ing that we consider in this section consists of approximating the QVI in question by a sequence of
parameter-dependent PDEs. Regularization methods are useful for numerical purposes as well as for
theoretical efforts. For example, they can be used to prove fundamental results such as existence of
solutions as well as to derive stationarity conditions for optimal control problems with QVI constraints1,
which is a subject of work under preparation by the authors. Moreover, even for VIs, obtaining mesh
independence requires regularization.

Obstacle case

For simplicity, we consider V = H1
0 (Ω) and H = L2(Ω). In this section we present some results on

the Moreau–Yosida regularization of the obstacle type (PQVI) given by the nonlinear PDE

F(y) := Ay− f +
1
β
(y−Φ(y))+ = 0 (8)

for β > 0. Under suitable assumptions it is expected that as β ↓ 0, the sequence of solutions y∗
β

converges to the solution of (PQVI). In fact, if Φ : V →V is increasing and completely continuous with
Φ(0)≥ 0 and f ∈V ′+, then {y∗

βn
} has a subsequence that converges in V to a solution of (PQVI), for

any βn ↓ 0.

Focusing on (8), we consider y0 ∈ Ṽ ⊂V , and the Newton iteration

yk+1 = yk−GF(yk)
−1F(yk), k = 0,1,2, . . . (9)

where GF(y) ∈L (V,V ′) is a (presumably invertible) Newton derivative of F [36], which is defined to
satisfy

lim
h→0

‖F(y+h)−F(y)−GF(y+h)h‖V ′
‖h‖V

= 0.

It is know that (·)+ : Lp(Ω)→ L2(Ω) is Newton differentiable for any p > 2 with Newton derivative
Gmax(y) = Heaviside(y). Suppose that Φ : V → Lq(Ω) is Fréchet differentiable for some q ≥ p,
then we have (see [45, Lemma 8.15]) that GF(y) ∈L (V,V ′) is given by

GF(y)h = Ah+
1
β

Gmax(y−Φ(y))(I−Φ
′(y))h.

Suppose that (χΩ0Φ′(y)h,h)≤ (χΩ0h,h) for any Ω0 ⊂Ω and for all y,h ∈V . Then 〈GF(y)h,h〉 ≥
c̃‖h‖2

V for some c̃ > 0 so that ‖GF(y)−1‖L (V ′,V ) ≤ 1/c̃ and hence (9) converges superlinearly to
the solution y∗

β
of (8), provided that ‖y0− y∗

β
‖V is sufficiently small; see [36–38,45].

Example on thermoforming. The production of plastic parts is in general done by thermoforming.
In this procedure, a plastic sheet is heated to its pliable temperature and then forced via air pressure
(positive or negative) towards a mold, commonly made of metal, and involving some cooling mech-
anism. Such a manufacturing process involves several scales: it is used for microfluidic structures,
plastic cups, and large parts in the automotive industry.

1Naturally optimality conditions obtained through regularization will not be as strong as those potentially obtained
through using the directional differentiability of the QVI solution mapping, see section 5.
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We consider the following time-asymptotic behaviour of the thermoforming process leading to an el-
liptic problem. We let a plastic membrane y lie over the domain Ω, and let the temperature of the
membrane be constant (this simplification frees us from considering changing rheological properties
of the heated membrane).

The mathematical problem is then given by: Find (y,Φ,T ) ∈V ×V ×W such that

y≤Φ, 〈Ay− f ,y− v〉 ≤ 0, ∀v ∈V : v≤Φ, (10)

〈kT −∆T,w〉= (g(Φ−u),w) ∀w ∈W, (11)

Φ = Φ0 +LT in V, (12)

where f ∈ H+, k > 0 is a constant, Φ0 ∈V is the desired mold, and L : W →V is a bounded linear
operator such that

for every Ω0 ⊂Ω, if u≤ v a.e. on Ω0 then Lu≤ Lv a.e. on Ω0,

and g : R→ R is decreasing with g(0) = M > 0 a constant, 0≤ g≤M and g′ bounded.

The above problem can be equivalently formulated as problem (PQVI) where Φ : W → V is defined
as follows. Let v ∈W and consider the problem: Find φ ∈V such that

〈kT −∆T,w〉= (g(φ − v),w) ∀w ∈W, (13)

φ = Φ0 +LT in V. (14)

We define Φ(v) = φ .

In Figure 1, we see the membrane y, the obstacle Φ(y), the coincidence set, and the difference
Φ(y)−Φ0, all computed with the semismooth Newton method described above for β sufficiently
large (full details of the analysis and numerical implementation of the models presented here can be
found in section 6 of [3]).
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(a) Final mould Φ(y) (b) Difference Φ(y)−Φ0

(c) Membrane y (d) Coincidence set {y = Φ(y)} (in red)

Figure 1: Results for the thermoforming example

Gradient case

We consider here V = W 1,p
0 (Ω) and H = L2(Ω). The type of regularization used in (8) is not

amenable for direct application in the gradient case. In fact, provided A is symmetric, one can consider
the minimization problem

min
y∈V

1
2
〈Ay,y〉−〈 f ,y〉+ 1

β

∥∥(|∇y|−Φ(y))+
∥∥2

H (15)

associated to the QVI with the gradient constraint. In connection with (15), it was proven in [40, Theo-
rem 3.2] that there is a sequence of β such that the associated solutions to the penalized minimization
problems converge to the solution of the minimization problem miny∈V

1
2〈Ay,y〉− 〈 f ,y〉 subject to

|∇y| ≤Φ(y) a.e in Ω, which is not in general a solution of (PQVI). This fact is in sharp contrast to the
VI setting: in fact, if Φ(y) is replaced by Φ(w) in (15) for some w ∈V , then the problem is suitable for
a semismooth Newton approach and the sequence of solutions {yβ (w)}β converges, as β ↓ 0, in V
to y∗ = S( f ,K(w)). In this case, we have that yβ (w) ∈V satisfies

F(y) := 〈A(y),v〉−〈 f ,v〉+ 1
β
((|∇y|−Φ(w))+,q(·)∇v) = 0

q(x) ∈


∇y
|∇y|(x), if |∇y(x)|> 0

B̄1(0)N , otherwise,
for all v ∈V,


(16)

where B̄1(0)N denotes the closed unit ball in RN .
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The application of the semismooth Newton method for the resolution of F(y) = 0 in this case has sev-
eral subtleties. Specifically, the existence of a Newton derivative of the map
y 7→P(y) := −divq(·)T((|∇y| −Φ(w))+ requires a delicate interplay of the domain and image
spaces. In contrast to (·)+ : Lp(Ω) → L2(Ω), which is Newton differentiable for any p > 2, the

aforementioned map is Newton differentiable when considered as P : W 1,p
0 (Ω)→W−1,s(Ω), with

3≤ 3s≤ p < ∞; see [40].

3.5 Gerhardt-type regularization for the gradient case

For simplicity we consider the gradient case where A=−∆ is simply the Laplacian. We briefly discuss
here an extension of a technique introduced by Gerhardt [30] which was developed by Rodrigues,
Santos and collaborators in a series of papers; see [10,11,61,68].

One way to regularize problem (PQVI) in the case described above is through the PDE

−∇ · (gε(|∇y|2−Φ
2(y))∇y)− f = 0 (17)

where gε : R→ R is a bounded non-decreasing function which is twice continuously differentiable
with

gε(t) =


1 : t ≤ 0,
et/ε : ε ≤ t ≤ 1

ε
− ε,

e1/ε2
: t ≥ 1

ε
,

(18)

for ε > 0. Formally, it can be be thought of as an approximation to

g0(t) =

{
1 : t ≤ 0,
∞ : t > 0.

This suggests that in the limiting process (as ε → 0) for the nonlinear term not to blow up, the ar-
gument inside the regularization function needs to be non-positive, which of course then retrieves
the gradient constraint. This type of regularization was first introduced by Gerhardt [30] with the aim
of approximating the solution to an elliptic minimization problem, and the specific form (18) was used
in [61,67] to tackle parabolic variational inequality problems. See also [13,69]. The function gε satisfies
the useful monotonicity property [13]

(gε(|x|2−a)x−gε(|y|2−a)y)(x− y)≥ 0

which allows one to pass to the limit in the weak formulation of (17) after having obtained uniform
estimates. Rigorous details of this can be found in the cited works.

This type of regularization, though powerful in the theoretical setting, has not been proven useful
yet in the development of solution algorithms. In fact, if we formulate (17) as F(y) = 0 and try to
identify a Newton derivative (as done in the previous section), we face differentiating the highest order
terms of the associated nonlinear differential operator, a complex task in its own right. Furthermore, the
Newton-type iterations would require, in the case of discretization by finite elements, a time consuming
reassembling of the stiffness matrix in each iteration.
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3.6 Drawbacks of the iteration yn+1 = T (yn)

Since problem (2) is suitable for numerical resolution via diverse methods, a first approach for com-
puting fixed points of T is to consider the iteration

yn+1 = T (yn), n = 0,1, . . . ,

with y0 ∈V given.

The properties of A determine that the sequence {un} is bounded in V and hence it contains weakly
convergent subsequences. Additionally, suppose that sufficient properties of Φ are available so that
K(vn)→ K(v) in the sense of Mosco if vn ⇀ v in V . Then it follows that T : V → V is completely
continuous: if vn ⇀ v, then T (vn)→ T (v) in V .

This seemingly amenable circumstance described above leads to the following erroneous argument
that is common in the literature: “Denote also by {yn} a weakly convergent subsequence of {yn} with
limit y∗. Then taking the limit on both sides of yn+1 = T (yn), we observe that y∗ is a fixed point of
T ”. The mistake clearly lies in assuming that if ynk ⇀ y∗, then {ynk+1} has the same weak limit. In
particular what this attemps to show is that the compactness properties of T determine that the sets
of weak and strong accumulation points of {yn} (denoted as A ) are identical, and if y ∈ A , then
T (y) ∈A .

Since T (A ) ⊂ A , we can try to extend the digression further and study the possibility of finding a
fixed point since we have now a T -invariant set. If A can be proven to be convex (it is usually not),
then T has a fixed point in A via Schauder’s fixed point. The alternative is to consider the search of a
fixed point in the closed convex hull of A denoted by coA . If T (coA )⊂ co T (A ) holds true, then
T (coA )⊂ coA and Schauder’s fixed point theorem can be used to deduce that T has a fixed point
in co A . However, for obstacle type problems, if Φ is concave, the map T is too (see [15]), so that
T (coA )≥ co T (A ).

4 Optimal control problems

There exist several applications for optimization problems where the QVI is a constraint. Then, often
solutions of the QVI are controlled in such a way that they are close to some desired state. These types
of problems have been almost completely neglected in the literature. An instance of such a problem is

Problem (P) :

minimize J(y, f ) over (y, f ) ∈V ×U,

subject to f ∈Uad ⊂U ⊂V ′, and y solves (PQVI),
(P)

where J : V×U→R is weakly lower semicontinuous and Uad is compact in V ′. Note that if K(vn)
M−−→

K(v) whenever vn ⇀ v in V , then problem (P) has a solution: Indeed, let {(yn, fn)} be an infimiz-
ing sequence. Then, there exists a subsequence, denoted also as {(yn, fn)}, such that yn ⇀ y∗ in
V , fn ⇀ f ∗ in U and fn → f ∗ in V ′. We have that yn = S( fn,K(yn)) and y∗ = S( f ∗,K(y∗)) by
taking limits on both sides, and hence limJ(yn, fn) = J(y∗, f ∗) so that (y∗, f ∗) is a minimizer of the
problem.

The literature on such problems is scarce; see [1, 20] for exceptions. Further, it falls short in tackling
the real problems in the QVI setting. The solution set of the QVI is in general not a singleton, and in
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case of industrial applications it is of interest to control the entire solution set. In view of this, we have
the following open questions.

Open problems. In the QVI context, it is sometimes important to control the full solution set Q( f )
on a certain interval of interest [y,y]. We consider the Gelfand triple setting of section 2.2. A possible
formulation for such control problems is as follows:

Problem (P̃):

minimize J(O, f ) := J1(Tsup(O),Tinf(O), f )

over (O, f ) ∈ 2H×U,

subject to f ∈Uad,

y ∈ O, O = {z ∈V : z solves (PQVI)∩ [y,y]}.

(P̃)

In the above problem we consider J1 : H×H×U → R and for y,y ∈ H we define the set map Tsup

Tsup(O) :=
{

supz∈O∩[y,y] z, O∩ [y,y] 6= /0 ;

y, otherwise.

The map Tinf defined analogously as

Tinf(O) :=
{

infz∈O∩[y,y] z, O∩ [y,y] 6= /0 ;

y, otherwise.

As explained in section 2.2, the supremum of an arbitrary subset of H that is bounded above (in the
order) is also correctly defined since H is Dedekind complete, which shows that Tinf and Tsup are well
defined in our setting.

Recall the framework of section 2.2 where y and y are respectively sub- and supersolutions of the map

T (·) = S( f ,K(·)). Then the reduced version of problem (P̃) is formulated in terms of the operators
m and M as

minimize J1(M( f ),m( f ), f )
subject to f ∈Uad.

(P̃red)

An important example is when it is required to force the solution set to be a singleton and the element
in question to be close to some desired state yd . Here, a possible choice for J1 is given by

J1(M( f ),m( f ), f ) =
1
2

∫
Ω

|M( f )−m( f )|2 dx+
σ

2

∫
Ω

|yd−m( f )|2 dx.

To the best of our knowledge, problem (P̃) (and its reduced version) has not been considered in the
literature, and it is a topic of active research by the present authors. Important (and currently still
open) subtasks for analyzing the above control problem are (i) the study of stability properties of
the maps f 7→ M( f ),m( f ) and (ii) their (generalized) differentiability properties. While (i) typically
helps to establish existence of a solution to the optimization problem, (ii) allows for suitable stationarity
conditions characterizing solutions.
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5 Differentiability

We consider in this section the differential stability of the solution map associated to (PQVI), in par-
ticular, the mapping taking the source term into the set of the solutions. Showing that this map is
differentiable (in some sense) is not only an interesting analytical task in its own right but is also of use
for optimal control, numerics and applications.

The corresponding differentiability study for variational inequalities has been thoroughly investigated
[33,59,74]. Let us set the scene and outline this theory first before moving on to QVIs.

Let X be a locally compact topological space which is countable at infinity with ξ a Radon measure
on X . Suppose V ⊂ L2(X ;ξ ) =: H is a Hilbert space with the embedding continuous and dense
and such that |u| ∈ V whenever u ∈ V , and let A : V → V ′ be now a linear operator satisfying the
boundedness, coercivity and T-monotonicity properties from before, i.e., (A1), (A2), and (A3). The
pair (V,A) falls into the class of positivity preserving coercive forms with respect to L2(X ;ξ ) [16,58].
We further assume that

V ∩Cc(X)⊂Cc(X) and V ∩Cc(X)⊂V are dense embeddings, (19)

thus (V,a) is a regular form [27, §1.1] [16, §2]2. This framework allows us to define the notions of
capacity, quasi-continuity and related objects, see [59, §3] and [33, §3]. Several concrete examples of
V and A are given in [59, §3] and [3, §1.2].

Given an obstacle φ ∈V+, we define the set

K := {w ∈V : w≤ φ},

and given a source term f ∈ V ′, we make an abuse of notation here and define by S : V ′→ V the
mapping S( f ) := S( f ,K) with the latter defined in (2). It is useful to introduce the well known notions
of the tangent cone and the critical cone associated to K, given respectively by

TK(y) := {ϕ ∈V : ϕ ≤ 0 q.e. on {y = φ}} and KK(y) := TK(y)∩ [ f −Ay]⊥. (20)

The coincidence set appearing in the tangent cone is of course calculated over X . This is worth
emphasis since for example if V is chosen to be the Sobolev space H1(Ω) on a bounded Lipschitz
domain Ω, then X should be Ω̄, the closure of the domain, and not Ω itself; see [3, §1.2].

The following result of Mignot tells us that the mapping S is directionally differentiable.

Theorem 5.1 (Theorem 3.3 of [59]) Given f ∈V ′ and d ∈V ′, there exists a function S′( f )(d) ∈V
such that

S( f + td) = S( f )+ tS′( f )(d)+o(t) ∀t > 0

holds where t−1o(t)→ 0 as t→ 0+ in V and δ := S′( f )(d) satisfies the VI

δ ∈KK(y) : 〈Aδ −d,v−δ 〉 ≥ 0 ∀v ∈KK(y), where y = S( f ).

The directional derivative δ = δ (d) is positively homogeneous in d.

2A space V under all of the previous assumptions except the second density assumption in (19) is referred to by
Mignot in [59] as a ‘Dirichlet space’ — this is rather inconsistent with the modern literature [27] where Dirichlet spaces and
Dirichlet forms are defined differently (see [27, §1.1]).
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In [44], the authors essentially extended the results of Mignot to a more general setting and turned the
question of directional differentiability for VIs with more general constraint sets (than those of obstacle
type) into a geometric question of the polyhedricity of the underlying constraint set, and more details
and background can be found in the cited text.

One says that strict complementarity holds if the critical cone simplifies to the linear subspace

KK(y) = SK(y) := {ϕ ∈V : ϕ = 0 q.e. on {y = φ}}. (21)

In this case, the VI satisfied by δ simplifies to a variational equality due to the relaxation of constraints
on the test functions for the inequality. It is not hard to see that, at least formally, strict complementarity
arises when the biactive set {Ay− f = 0}∩{y− φ = 0} is empty; see [28, 29] for some technical
details regarding biactivity that include its proper definition under low regularity of y and f . Under
strict complementarity, the derivative in Theorem 5.1 is in fact a Gâteaux derivative as the next result
shows.

Theorem 5.2 (Theorem 3.4 of [59]) In the context of Theorem 5.1, if strict complementarity holds,
then the derivative α satisfies

α ∈SK(y) : 〈Aδ −d,v−δ 〉= 0 ∀v ∈SK(y).

In this case, δ = δ (d) is linear in d.

5.1 Directional differentiability for QVIs

To formulate the QVI case, let Φ : V →V be increasing with Φ(0)≥ 0. Given f ∈V ′, consider (PQVI)
in the obstacle case (i.e., ψ ◦G≡ id):

y ∈ K(y) : 〈Ay− f ,v− y〉 ≥ 0 ∀v ∈ K(y). (22)

We consider Q : V ′+ ⇒ V , the multi-valued solution mapping taking f 7→ y. To show that this map
is directionally differentiable (in some sense), the obvious idea that springs to mind is to rewrite (22)
by transforming the obstacle onto the source term and then to apply Mignot’s theory. Indeed, the
inequality implies that the quantity ŷ := (id−Φ)y solves

ŷ ∈ K0 : 〈A(id−Φ)−1ŷ− f ,φ − ŷ〉 ≥ 0 ∀φ ∈ K0,

with K0 := {w ∈ V : w ≤ 0}; however, in general, the elliptic operator A(id−Φ)−1 is not linear,
coercive nor T-monotone, so the VI theory is not applicable and a different approach is needed.

The idea in [3] is the following: approximate the QVI solution q(t)∈Q( f + td) by a sequence qn(t) of
solutions of VIs (each of which by definition has a explicit obstacle), obtain suitable differential formulae
for those VIs and then pass to the limit to (hopefully) obtain an expansion formula relating elements of
Q( f + td) to Q( f ). There are some delicacies in this procedure:

1 derivation of the expansion formulae for the above-mentioned VI iterates qn(t); they must
relate q(t) to a solution y∈Q( f ), and recursion plays a highly nonlinear role in the relationship
between one iterate and the preceding iterates;

2 obtaining uniform bounds on the directional derivatives; even though the derivatives satisfy
a VI, it requires the handling of a recurrence inequality unless some regularity is available (see
[3, §4.3]);
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3 identifying the limit of the higher-order terms as a higher-order term; this procedure in-
volves two limits: one as t → 0+ and one as n→ ∞, and commutation of limits in general
requires an additional uniform convergence.

The main difficulty is indeed the final point above. Although the directional derivatives and higher-order
terms of the VI iterates do possess some monotonicity properties, this information unfortunately does
not help as much as one may hope.

The iteration scheme alluded to above requires some further restrictions on the data f and the di-
rection d that the derivative is taken in, and we shall outline these in the following. We assume that
f ∈V ′+ and define ȳ ∈V as the (non-negative) weak solution of the unconstrained problem Aȳ = f .
In a similar fashion to ū, define q̄(t) ∈V as the solution of the unconstrained problem with right hand
side f + td: Aq̄(t) = f + td.

Since we are considering the issue of sensitivity of QVIs with (by definition) implicit obstacles defined
through the mapping Φ, it is clear that further regularity is required of Φ. We introduce these further
assumptions below where we state the main theorem of [3], but first let us define

KK(y)(y,α) := Φ
′(y)(α)+KK(y)(y)

which can be thought as a translated critical cone.3

Theorem 5.3 (Theorem 1.6 of [3]) Let f ,d ∈V ′+. Given y ∈ Q( f )∩ [0, ȳ], assume the following:

(H1) the map Φ : V →V is Hadamard directionally differentiable4

(H2) either

(H2).1 Φ : V →V is completely continuous, or

(H2).2 V = H1(Ω), X = Ω where Ω is a bounded Lipschitz domain, Φ : L∞
+(Ω)→ L∞

+(Ω) and
is concave with Φ(0)≥ c > 0, and f ,d ∈ L∞

+(Ω)5

(H3) the map Φ′(v) : V →V is completely continuous (for fixed v ∈V )

(H4) for any b ∈V , h : (0,T )→V and λ ∈ [0,1],

‖Φ′(y+ tb+λh(t))h(t)‖V
t

→ 0 as t→ 0+ if
h(t)

t
→ 0 as t→ 0+

(H5) given T0 ∈ (0,T ) small, if z : (0,T0)→V satisfies z(t)→ y as t→ 0+, then∥∥Φ
′(z(t))b

∥∥
V ≤CΦ ‖b‖V where CΦ <

1
1+ c−1C

for all t ∈ (0,T0), where C and c are from (A1) and (A2).

3Explicitly this set is {ϕ ∈V : ϕ ≤Φ′(y)(w) q.e. on {y = Φ(y)} and 〈Ay− f ,ϕ−Φ′(y)(w)〉= 0}.
4In fact, (H1) can be weakened significantly by requiring Hadamard differentiability of Φ only at the point y, i.e., locally,

as in assumptions (H4) and (H5).
5In this case, solutions of the QVI (22) are unique [55].
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Then there exists q(t) ∈ Q( f + td)∩ [y, q̄(t)] and α = α(d) ∈V+ such that

q(t) = y+ tα +o(t) ∀t > 0

holds where t−1o(t)→ 0 as t→ 0+ in V and α satisfies the QVI

α ∈KK(y)(y,α) : 〈Aα−d,v−α〉 ≥ 0 ∀v ∈KK(y)(y,α)

The directional derivative α = α(d) is positively homogeneous in d.

It should be emphasized that the assumptions (H4) and (H5) depend on the specific function y,
i.e., these are local conditions. The assumption (H5) implies certain restrictions: in the case that Φ

is linear, it imposes a smallness condition on the operator norm of Φ which enforces uniqueness of
solutions of the QVI. However, it does not necessarily rule out the multivalued setting in the case of
nonlinear Φ.

Open problems. The result in the general multi-valued setting given in Theorem 5.3 is a differen-
tiability result for a specific selection mechanism that associates to a function y ∈ Q( f ) a function
q(t) ∈ Q( f + td) (the precise mechanism is expounded in [3, §3.2.1]). A useful variant of the theo-
rem would be to obtain the result for the mapping that selects the minimal or maximal solution to the
QVI, i.e., if M( f ) ∈ Q( f ) is the maximal solution of the QVI with source term f , is M directionally
differentiable? A difficulty lies in the approximation scheme we use; in the proof of Theorem 5.3 we
chose q0 = y; instead we could choose q0 = y0 where 0≤ y0 ≤ ȳ which leads to the equality

qn(t) = yn(t)+ tα̂n + ôn(t)

where yn = S( f ,K(yn−1)). The main problem is in dealing with the limiting behaviour of the higher-
order terms ôn(t), which now depends on the base point yn which depends on n. This fact constrains
us in this direction. For more details see [3, Remark 3.9].

It is worth restating Theorem 5.3 in the case when Q : V ′+ ⇒V is single-valued (i.e., the QVI problem
has a unique solution).

Theorem 5.4 Suppose Q is single-valued and let the hypotheses of Theorem 5.3 hold given f ,d ∈
V ′+. There exists a function Q′( f )(d) ∈V+ such that

Q( f + td) = Q( f )+ tQ′( f )(d)+o(t) ∀t > 0

holds where t−1o(t)→ 0 as t→ 0+ in V and Q′( f )(d) satisfies the QVI given in Theorem 5.3.

Similarly to Theorem 5.2, under a modification of the notion of strict complementarity, we obtain a
regularity result on the directional derivative. In this setting, strict complementarity holds if the set
KK(y)(y,w) simplifies to

KK(y)(y,w) = SK(y)(y,w)

:= {ϕ ∈V : ϕ = Φ
′(y)(w) q.e. on {y = Φ(y)}}.
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Theorem 5.5 (Theorem 1.7 of [3]) In the context of Theorem 5.3, if strict complementarity holds,
then the derivative α satisfies

α ∈SK(y)(y,α) : 〈Aα−d,α− v〉= 0 ∀v ∈SK(y)(y,α).

In this case, if h 7→Φ′(v)(h) is linear, α = α(d) satisfies α(c1d1 +c2d2) = c1α(d1)+c2α(d2) for
constants c1,c2 > 0 and directions d1,d2 ∈V ′+.

Naturally, we recover the results of [59] in the case where Φ is a constant mapping.

Open problems. A focus of ongoing work by the authors is the study of optimal control problems with
QVI constraints of the following type:

Problem (P′) :

minimize
1
2
‖y− yd‖2

H +
λ

2
‖ f‖2

U over (y, f ) ∈V ×U,

subject to f ∈Uad ⊂U ⊂V ′, and y solves (22),
(23)

Here, the data yd is a desired state and λ > 0 is a constant. Under certain assumptions on the map-
ping Φ and the spaces featured above, existence of an optimal control and state can be shown using
relatively standard methods. Obtaining stationarity conditions that explicitly characterize the optimal
control and optimal state (which would, in particular, allow for a feasible numerical resolution of the
problem) is of prime importance in optimization. Typically, strong stationarity conditions are sought
and such conditions in the VI case have been obtained [60] by making use of the differentiability of
the VI solution mapping, and we would like to extend this result also to the QVI case. A challenge lies
in the fact that, in Theorem 5.3, differentiability (in the QVI setting) is only obtained for non-negative
directions. Hence, problem (23) would contain pointwise a.e. bounds on the control. From [73] it is
however known that obtaining strong stationarity is impossible in the VI case with such pointwise a.e.
control bounds (without further restrictions on the bounds themselves). This represents a major issue.
However, there are other notions of stationarity (see [39]) that could be obtained.

6 Conclusion

We have considered a variety of key topics and we have highlighted limitations and open questions
associated to QVIs of elliptic type. For the existence results we focused on compactness approaches
and the lack of necessity and sufficiency results for Mosco convergence in cases other than con-
straint sets of obstacle type, and we also tackled some order approaches. For the simple fixed point
arguments, we provided some positive results, and showed that the popular extension approaches to
Lions–Stampacchia are in the best case scenario unnecessary. Additionally, we have provided some
second-order solution algorithms of the semismooth Newton type. Finally, we have established some
novel optimization problems that take into account the multivalued nature of the solution set of the QVI
and gave an account of the newly established directional differentiability for the QVI solution map.
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