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Leap-frog patterns in systems of two coupled
FitzHugh–Nagumo units

Sebastian Eydam, Igor Franović, Matthias Wolfrum

Abstract

We study a system of two identical FitzHugh-Nagumo units with a mutual linear coupling in
the fast variables. While an attractive coupling always leads to synchronous behavior, a repulsive
coupling can give rise to dynamical regimes with alternating spiking order, called leap-frogging.
We analyze various types of periodic and chaotic leap-frogging regimes, using numerical path-
following methods to investigate their emergence and stability, as well as to obtain the complex
bifurcation scenario which organizes their appearance in parameter space. In particular, we show
that the stability region of the simplest periodic leap-frog pattern has the shape of a locking
cone pointing to the canard transition of the uncoupled system. We also discuss the role of the
timescale separation in the coupled FitzHugh-Nagumo system and the relation of the leap-frog
solutions to the theory of mixed-mode oscillations in multiple timescale systems.

1 Introduction

The FitzHugh-Nagumo system is a classical model of neuronal dynamics. As the simplest, yet paradig-
matic example of a coupled neuronal system, we investigate here a pair of two identical FitzHugh-
Nagumo units with a weak mutual coupling. Such a network motif of two coupled neurons has been
considered as a basic building block of central pattern generators [1] and the complex neural networks
of the cortex [2, 3, 4, 5]. The dynamics of such systems has typically been investigated in the frame-
work of the synchronization paradigm [6, 7], focusing on the stability of states with phase-locked firing
and their potential role in rhythmogenesis [8]. A further remarkable property of these simple circuits
is that they are able to generate complex activity patterns where the inter-spike intervals show com-
plex dynamics. A typical example of such patterns is the so-called leap-frog dynamics [9], sometimes
also called leader-switching dynamics [10], where the units exchange their order of firing within each
oscillation cycle. Such a regime has so far been associated exclusively to class I neural oscillators
coupled via strong synapses with complex nonlinear dynamics. In the present paper, we investigate
the emergence of leap-frogging dynamics in a system of two classical FitzHugh-Nagumo units inter-
acting only via a small linear coupling. The emerging complex dynamical patterns can be explained
as a result of the timescale separation between the activator and the recovery variable. For a single
unit, the timescale separation is crucial for the mechanism inducing the rapid change in the amplitude
from small subthreshold oscillations to large relaxation oscillations. Introducing a repulsive coupling in
the fast variables, the leap-frog patterns emerge in locking cones generated by a complex bifurcation
scenario immediately at this transition. The alternation in the spiking order of the units arises from
trajectories containing both the small-amplitude subthreshold oscillations and the large-amplitude re-
laxation oscillations. Such a behavior involving interspersed small- and large-amplitude oscillations is
a typical phenomenon in certain classes of slow-fast systems, referred to as mixed-mode oscillations
[11, 12, 13]. However, due to the symmetry of our system, a vanishing coupling causes an additional
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degeneracy, such that the standard theory for mixed-mode oscillation does not apply. For this reason,
our study is rather based on numerical bifurcation analysis using path-following methods.

The dynamics of the considered system of two identical Fitzhugh-Nagumo units is given by

dv1,2
dt

= v1,2 − v31,2/3− w1,2 + c(v2,1 − v1,2) (1)

dw1,2

dt
= ε(v1,2 + b),

where the symmetric linear coupling acts in the fast variables v1,2. The small parameter ε facilitates
the timescale separation between the fast variables vi and the slow variables wi. In the context of
neuroscience, the former represent the neuronal membrane potentials, whereas the latter correspond
to the coarse-grained activities of the membrane ion-gating channels. For a single unit, the parameter b
mediates the transition from the quiescent regime for b > 1 to the oscillatory regime for−1 < b < 1.
Due to the timescale separation, this is accompanied by a canard transition from small-amplitude
subthreshold oscillations to the large-amplitude relaxation oscillations. We invoke some basic results
derived from singular perturbation theory about the slow-fast structure of the uncoupled FitzHugh-
Nagumo unit in Section 2.

Since the parameters b and ε are taken to be identical for both units, system (1) possesses a Z2-
symmetry, being equivariant with respect to exchanging the indices by

σ : (v1, w1, v2, w2) 7→ (v2, w2, v1, w1).

This leads to the appearance of solutions with different symmetry types, reflecting the different states
of in-phase and anti-phase synchronization, which will be discussed in Section 2 which concerns the
basic types of solutions bifurcating from the stationary regime. Close to the canard transition of the
uncoupled system, there appear various types of periodic and chaotic leap-frog patterns in the system
with repulsive coupling. Using the software package AUTO [14] for numerical bifurcation analysis by
continuation methods, in Section 3 we investigate in detail the complex bifurcation scenarios respon-
sible for the onset of the different types of leap-frogging dynamics. We conclude the paper with an
outlook in section 4, discussing the relation of our results to earlier findings on leap-frog dynamics in
models of neuronal systems.

2 Basic dynamical regimes

We begin our investigation of system (1) by collecting simple stationary and periodic solutions to-
gether with their stability and symmetry properties. In the symmetric regime v1 = v2 and w1 = w2,
the coupling term vanishes and the dynamics (1) is governed by a single FitzHugh-Nagumo system,
where the units display simultaneously the well known transition from the quiescent regime with a
unique stable equilibrium for b > 1 to the oscillatory regime for b < 1, mediated by a supercritical
Hopf bifurcation at b = 1. Due to the timescale separation 0 < ε � 1, the bifurcating branch of
periodic solutions displays a characteristic transition from small-amplitude harmonic oscillations of pe-
riod O(

√
ε) to large-amplitude relaxation oscillations of period O(1), called canard transition. This

scenario has been extensively studied within the framework of singular perturbation theory, viz. in the
limit ε → 0, see e.g. [12] for a recent overview. In Fig. 1 we illustrate the canard transition in the
symmetric regime, showing numerical results obtained by path-following methods [14]. In panel (a) we
have fixed ε = 0.05, displaying the varying period along the branch of periodic orbits emerging from
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Figure 1: (Color online) (a) Variation of the period T along the branch of synchronous periodic solutions
for varying b an fixed ε = 0.05. (b) Phase portraits of selected periodic solutions: a subthreshold
oscillation for bc < b < bH (blue), the canard trajectory bc = b (green), and a relaxation oscillations
with bc > b (red). The corresponding values of b are indicated by the colored dots in (a). (c) Location
of the canard transition bc for varying ε. Numerical path-following of the periodic solution with maximal
period (green line) is compared to asymptotic formula (2), shown dashed.

the Hopf-bifurcation at b = bH = 1. Note the nearly vertical transition from small to large periods
at the canard transition b = bc. The phase portraits of the three orbits shown in panel (b), selected
before, after, and immediately at the transition, indicate that the change in the period is accompanied
by a transition from small to large amplitudes via canard trajectories that follow the unstable part of
the slow manifold w = v− v3/3. From the neuroscience perspective, this corresponds to a transition
route from the quiescent state to the spiking regime via subthreshold oscillations. A detailed asymp-
totic analysis reveals that the leading order approximation for the location bc of the canard transition is
given by

bc ≈ (1− ε/8), (2)

see [15]. In Fig. 1(c) we show that for small ε > 0 this expression (dashed line) provides indeed a
good approximation for the actual location of the canard transition (solid green line), which we obtained
numerically by path-following in ε the trajectory of maximal period (green curve in Fig. 1(b)). Recall
that both the regimes of stable equilibrium and of subthreshold oscillations are excitable [16, 17] in
a sense that a strong enough perturbation may elicit a large excursion in phase space, i.e. a spiking
response in the form of a single relaxation oscillation.

It can be easily seen that the only stationary state of (1) is the symmetric equilibrium

(v1, w1, v2, w2) = (−b,−b+ b3/3,−b,−b+ b3/3), (3)

obtained from the single FitzHugh-Nagumo unit. While the symmetry-preserving Hopf bifurcation at
b = 1 in the coupled system is analogous to the Hopf bifurcation of the single FitzHugh-Nagumo unit
and does not depend on the coupling parameter c, in the coupled system the symmetric equilibrium
may also undergo symmetry-breaking bifurcations. In particular, it may become unstable via a Hopf
bifurcation to anti-phase synchronized periodic solutions of the form

v1(t) = v2(t+
T

2
), w1(t) = w2(t+

T

2
), (4)
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Figure 2: (Color online) Stability region (shaded) of the symmetric equilibrium (3) in the (b, c)-plane,
bounded by in-phase Hopf instability (blue line) and anti-phase Hopf instability (red line). The anti-
phase Hopf bifurcation changes from supercritical to subcritical in a generalized Hopf point (GH),
where a fold curve of the anti-phase synchronous limit cycles emerges (green line). DH denotes the
resonant double Hopf point for decoupled system at (b, c) = (1, 0).

where T > 0 is the period. Straightforward calculations provide the bifurcation condition

c =
1− b2

2
(5)

for this anti-phase Hopf instability of the synchronous equilibrium (3). In Fig. 2, the associated bifurca-
tion curve is shown in the (b, c)-plane together with the in-phase Hopf instability at b = 1. For attractive
coupling c > 0, the shaded stability region of the symmetric equilibrium (3) is bounded by the in-phase
Hopf instability, shown by the blue line, while for repulsive coupling c < 0, the stability boundary is
given by the anti-phase Hopf (5). For larger negative values of c, this bifurcation is subcritical, such
that no stable branch of anti-phase synchronized oscillations emerges. The criticality changes in a
generalized Hopf (Bautin) point, labeled as GH in Fig. 2. From this point emanates a curve of folds of
limit cycles, shown by the green line in Fig. 2. The two Hopf bifurcation curves intersect in the resonant
double Hopf point (DH) located at (b, c) = (1, 0). Note that this point belongs to the line c = 0 where
the system decouples, thus behaving neutral with respect to all symmetry-breaking perturbations.

In Fig. 3 are shown the stability regions of the bifurcating periodic solutions. For attractive coupling
c > 0, all synchronous oscillations are stable (blue shaded region), undergoing at b = bc the ca-
nard transition from small- to large-amplitude oscillations as in the case of a single unit, cf. Fig. 1. For
repulsive coupling c < 0, the situation is more complicated. There is a small region (red shaded in
Fig. 3) above the generalized Hopf point and the emanating fold of limit cycles (green curve) where
one finds stable anti-phase synchronized oscillations. Surprisingly, there are also stable in-phase syn-
chronized solutions for repulsive coupling c < 0. They are confined to a narrow region immediately
below the canard transition, which is bounded by a curve of period doubling (purple line) and a curve
of symmetry-breaking pitchfork bifurcations (light blue line). In particular, for small negative coupling,
one encounters a region of bistability, where both the in-phase and anti-phase synchronized oscilla-
tions are stable (purple shaded region in Fig. 3). In Fig. 4 are illustrated coexisting stable in-phase and
anti-phase synchronous solutions computed for the parameters (ε, b, c) = (0.1, 0.9885,−0.0005)
from this region. Note that the coexistence region is confined to subthreshold oscillations prior to the
canard transition at b = bc.

Apart from the in-phase and anti-phase synchronous regimes, there may also appear periodic solu-
tions without any symmetry. For repulsive coupling c < 0 and beyond the canard transition, i.e. b < bc,
there is a large parameter region admitting a stable regime of successive spiking, with both units per-
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Figure 3: (Color online) Stability regions of basic periodic solutions in the (b, c) plane for ε = 0.1:
in-phase synchronous oscillations (blue); anti-phase synchronous subthreshold oscillations (red); co-
existence of in-phase and anti-phase subthreshold oscillations (purple); asynchronous oscillations –
successive spiking (yellow). Bifurcation curves: in-phase Hopf instability (blue); anti-phase Hopf insta-
bility (red); fold of anti-phase synchronous limit cycles (green); subcritical period doubling of in-phase
subthreshold oscillations (purple); subcritical symmetry breaking pitchfork of in-phase subthreshold
oscillations (light blue); supercritical period doubling of asynchronous oscillations (orange).
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Figure 4: (Color online) Time traces and phase portraits of stable coexisting in-phase syn-
chronous (a) and anti-phase synchronous (b) subthreshold oscillations. Parameters (ε, b, c) =
(0.1, 0.9885,−0.0005) belong to the coexistence region (purple in Fig. 3). Variables v1,2(t) are
shown in red and blue, whereas the coupling term ∆v = c(v2 − v1) is indicated in green color.
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forming relaxation oscillations shifted in phase. The stability region of this successive spiking, shown
in yellow in Fig. 3, is bounded by a curve of supercritical period doubling (orange line). In Fig. 5(a) and
Fig. 5(b) are provided the time traces and phase portraits for the regime of successive spiking before
period doubling and after several period doubling bifurcations, respectively.

Note that in Fig. 3 several bifurcation curves point towards the canard transition, thus creating a com-
plex scenario where the different dynamical regimes with different symmetry properties bifurcate and
interchange their stability. Moreover, there is a region, indicated in white in Fig. 3, where none of the
periodic solutions described above is stable. We demonstrate below that in this region the system
exhibits several periodic or chaotic regimes characterized by the fact that the trajectory of each unit
comprises large relaxation oscillation loops as well as smaller loops of a size comparable to that of
subthreshold oscillations. Such type of behavior conforms to mixed-mode oscillations, which have
been extensively studied for slow-fast systems with a folded node singularity, using geometric singular
perturbation methods for the limit ε → 0. However, due to the phase shift degeneracy at c = 0, the
system (1) does not satisfy the necessary genericity assumptions for these general theoretical results.
Hence, we will investigate these mixed-mode type dynamics without invoking the singular limit and
instead use simulations and numerical path-following techniques to describe the bifurcation scenario
for finite values of ε.

3 Complex dynamical regimes at the canard transition

In order to numerically examine the different types of solutions of system (1), we have performed a
parameter sweep with respect to b at fixed c = −0.01 and ε = 0.1, see Fig. 6. After each increment
in the sweeping parameter b, we have discarded a transient and then have sampled the return times
between consecutive crossings of the Poincaré section w1 = −2/3. Sweeping has been carried out
in forward (red points) and backward direction (blue points), allowing us to detect potential coexisting
stable regimes. Note that the return times Tn ≈ 50 correspond to a single round trip of the unit
j = 1 along the relaxation oscillation orbit, while the return times Tn < 30 correspond to a round trip
following a subthreshold oscillation orbit. In Fig. 6, one can identify the regime of successive spiking in
regions I and II, the in-phase subthreshold oscillations in regions II–IV, and the anti-phase subthreshold
oscillations in region VII. In addition, we find the periodic regime displayed in Fig. 7(a), which is the
only attractor in region V and coexists with the in-phase subthreshold oscillations in region IV. Note that
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Figure 5: (Color online) Time traces and phase portraits of stable asymmetric successive spiking: (a)
– before period doubling (b = 0.98625) and (b) – after several period doubling bifurcations (b =
0.98692). The remaining parameters are (ε, c) = (0.1,−0.01). Colors as in Fig. 4.
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Figure 6: (Color online) Sampled return times between consecutive crossings of the hyperplane w1 =
−2/3 for varying b and (c, ε) = (−0.01, 0.1). Red and blue points correspond to different sweeping
directions in b.
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Figure 7: (Color online) Time traces and phase portraits of selected trajectories from regions V and
VI in Fig. 6: Simple leap frogging in (a); periodic orbits with space-time symmetry in (b) and (d);
asymmetric periodic orbit with several subthreshold oscillations in between successive spikes in (c);
chaotic regimes in (e) and (f). Other parameters and colors as in Fig. 4.
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Figure 8: (Color online) (a) Branch of simple leap-frog solutions for varying b and fixed c = −0.01,
ε = 0.1. The stability region (solid curve) is bounded by two folds of limit cycles (yellow and red
crosses). At all other folds (e.g. green circle) both branches are unstable (dashed curves). (b) Phase
portraits of limit cycles at the folds are indicated by a symbol of corresponding color from panel (a).

due to the space-time symmetry (4), the phase portraits of the trajectories of both units in the (v, w)-
plane coincide. This periodic regime can be characterized as follows. Within one period, each unit
performs two round trips along the relaxation oscillation orbit and one round trip along a subthreshold
oscillation orbit. The spikes of the two units again occur with a phase shift as in the successive spiking
regime. However, as a result of the inlaid subthreshold oscillations, the spiking order gets reversed for
every pair of successive relaxation oscillations. This regime of alternating spiking order with a single
subthreshold oscillation performed between each pair of successive spikes is referred to as simple
leap-frogging. We shall discuss the underlying bifurcation scenario and its dependence on the slow-
fast structure of the system in the following section.

In region VI, one observes chaotic behavior, interrupted by some small parameter intervals of more
complicated periodic behavior. Examples of chaotic orbits are shown in Fig. 7(e) and Fig. 7(f). More
complicated periodic orbits from some of the periodic windows in region VI are provided in Fig. 7(b)–
(d). The periodic orbits in panels (b) and (d) carry the space-time symmetry (4), which leads to a similar
exchange in the spiking order as the leap-frog orbit in panel (a). The periodic solution in panel (c) is
asymmetric, displaying successive spikes with fixed spiking order similar to Fig. 4(a), but interspersed
with several almost anti-phase subthreshold oscillations.

3.1 Simple leap-frogging

The dynamical regime of leap-frogging illustrated in Fig. 7(a) is a periodic regime where successive
spikes occur with an alternating spiking order. The alternation is induced by a subthreshold oscillation
of the leading unit, whereby the lagging unit, passing without such a small loop, can overtake the
current leader and spike the next time first. During the next spiking event, the units follow an analogous
scenario but with interchanged roles, which results in the space-time symmetry (4). In Fig. 8(a) is
provided the branch of leap-frogging solutions for varying b and fixed (c, ε) = (−0.01, 0.1). The
branch has the shape of a closed curve and is stable only within a small region bounded by two folds
of limit cycles. A continuation of these folds in the two parameters (b, c), shown as black curves,
provides the purple stability region shown in Fig. 9(a). The latter has the shape of a linear cone and
points to the canard transition of the uncoupled periodic regime at (b, c) = (bc, 0). However, for the
chosen value of ε = 0.1, the exact bifurcation structure in the vicinity of this point could not be reliably
resolved numerically. Therefore, in order to gain a better understanding of the bifurcation structure at
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Figure 9: (Color online) (a) Stability regions of the simple leap-frog solutions in the (b, c)-plane for fixed
ε ∈ {0.2, 0.15, 0.1} are shown in blue, green and purple, respectively. The vertical dashed lines of
corresponding color indicate the location bc(ε) of the canard transition of the synchronous oscillations.
(b) Stability regions of the simple leap-frog solutions in the (b, ε)-plane for fixed c = 0.012. In both
panels, the stability regions are bounded by curves of fold bifurcations (solid black lines) and curves
of pitchfork bifurcations (shown by red color). Triangles and squares indicate pitchfork-fold interaction
and cusp points.
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Figure 10: (Color online) (a) Bifurcations of the simple leap-frogging solutions in the (b, c)-plane for
ε = 0.2. (b) Enlarged view of the region where the complexity of the bubble increases. Bifurcation
curves: folds of limit cycles (black), pitchfork bifurcations (red), torus bifurcations (green). Solid curves
indicate bifurcations delimiting the stability region; Dashed bifurcation curves involve only unstable
states. Codimension-two bifurcations: cusps of limit cycles (squares), pitchfork-fold (triangles), torus
(green circles). (I)–(III) Solid/dashed curves indicate stabe/unstable branches of leap-frogging solu-
tions with folds points (stars) and pitchfork bifurcations (circles). Asymmetric branches emerging from
pitchfork bifurcations (red circles) are shown in red. The chosen values of c are indicated in panels (a)
and (b).
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Figure 11: (Color online) Sampled return times between consecutive Poincaré events of v1 = −b
(red) or v2 = −b (blue) for varying b and fixed (c, ε) = (−0.1, 0.1).

the tip of the stability cone, we increased the value of ε. In Fig. 9(b) is shown the associated stability
region in the (b, ε)-plane. For the fixed values of ε = 0.15 and ε = 0.2, we calculated again the
stability cones in the (b, c)-plane, see the green and blue regions in Fig. 9(a). For these larger values
of ε, it becomes apparent that the cones are clearly detached from the line c = 0, and that the
sharp tip of the cone is actually formed by a single smooth curve of fold bifurcations. However, there
is a codimension-two point close to the tip where a curve of symmetry-breaking pitchfork bifurcations
crosses through the fold and becomes the stability boundary of the leap-frogging regime. The pitchfork
curves are plotted red in Fig. 9. For larger ε = 0.15 (see the green stability cone in Fig. 9(a)), we
observe another cusp point where the branch of stable leap-frogging folds over, such that its stability
region is again delineated by a fold (black curves in Fig. 9).

For ε = 0.2 we were able to completely resolve the bifurcation scenario in the vicinity of the tip, see
Fig. 10. At small coupling c = −0.00195 the branch of leap-frogging solutions emerges as a small
bubble (panel (I)). For stronger coupling, this closed branch folds over and a further pair of folds em-
anates from a cusp point. Moreover, through symmetry-breaking pitchfork bifurcations, there appears a
branch of asymmetric leap-frogging solutions, which is also folded in an increasingly complex fashion,
sometimes even featuring a small region of stability (see panel (II)). Another type of codimension-
two bifurcation points are 1:1-resonances, which give rise to branches of torus bifurcations. Figure 9
shows that for smaller ε, this complicated bifurcation scenario is contracted to a small vicinity of the
canard transition of the uncoupled periodic regime at (b, c) = (bc, 0). The presumably exponential
scaling of this contraction would clarify why already for ε = 0.1 the bifurcations at the tip of the cone
could not be reliably resolved by our numerics.

3.2 Multiple leap-frogging

We have observed that the stable simple leap-frog solutions emerge already at very weak nega-
tive coupling and are accompanied with a regime of complicated or chaotic mixed-mode oscillations.
However, for stronger negative coupling, one finds a different scenario. In Fig. 11 we show different
dynamical regimes for varying parameter b, now with c = −0.1, while ε is fixed again to 0.1. Similar
to Fig. 6, we have for each b value sampled the return times between consecutive Poincaré events
where one of the units crosses vj = −b in increasing direction. For this stronger repulsive coupling we
find a sequence of periodic patterns with a gradually increasing number of subthreshold oscillations
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Figure 12: (Color online) Time traces and phase portraits of double leap-frogging at b = 1.05 (a) and
triple leap-frogging at b = 1.065 (b). Other parameters are (ε, c) = (0.1,−0.1). Colors as in Fig. 4.

between two subsequent relaxation oscillations. Beginning from the regime of successive spiking at
the left edge of the diagram, the system switches to the simple leap-frogging regime, characterized by
two sightly different return times Tn ≈ 50 corresponding to round trips along the relaxation oscillation
orbit and a single return time Tn < 30 corresponding to the subthreshold oscillation following only
after every second spike. Due to the symmetry (4) and the alternating spiking order, the units leave
an identical trace in the respective return times. The time traces typical for the subsequent dynamical
regime at larger b are shown in Fig. 12(a). Here, the subthreshold oscillations follow after each spike,
which results in an asymmetric solution with fixed leader and laggard unit, distinguished by slightly
different return times for the small loop and the relaxation oscillation. Note that the subthreshold oscil-
lations, performed almost in anti-phase, allow for the units to interchange the leadership twice. This is
why we call this regime double leap-frogging. Increasing b further, we find another regime, again with
the space-time symmetry (4) and an alternating spiking order, now caused by a triple interchange of
leadership while performing the small loops, see Fig. 12(b). The following periodic regimes for larger
b exhibit a further increasing number of subthreshold oscillations and are successively either of the
asymmetric type with fixed spiking order or of the type with the space-time symmetry and an alternat-
ing order of spiking, characterized by an even and odd number of leadership exchanges, respectively.

We have examined the stability regions of the double leap-frogging regime for varying c and different
values of ε, see Fig. 13. In contrast to the case of simple leap-frogging, these regions do not extend
to a close vicinity of the degeneracy at c = 0. Under varying ε, their position with respect to the
parameter b does not adapt to the canard transition bc(ε) of the symmetric oscillations, as in case of
the simple leap-frogging. The stability boundaries are outlined by curves of period doubling (orange)
and curves of fold bifurcations (black), and do not involve any codimension-two bifurcations. This
scenario for larger negative coupling, which is characterized by subsequent periodic patterns with
different numbers of large relaxation oscillations and small loops, conforms, except for the different
symmetry types, to the results of the asymptotic theory of mixed-mode oscillations at a folded node
singularity.

4 Discussion and outlook

In the present study, we have demonstrated that a variety of complex leap-frog patterns may emerge
in a simple system comprised of two FitzHugh-Nagumo units with linear repulsive coupling in the fast
variables. This complex dynamical scenario appears for parameter values in a vicinity of the canard
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Figure 13: (Color online) Stability regions of the double leap-frog solutions in the (b, c)-plane for fixed
ε ∈ {0.2, 0.15, 0.1} are presented in blue, green and purple, respectively. The left boundary of each
region is given by a curve of period doubling bifurcations (orange), whereas the right one is provided
by a fold curve (black).

transition of the uncoupled system and involves periodic solutions of different symmetry types. For
larger repulsive coupling we obtain periodic regimes combining different numbers of small subthresh-
old and large relaxation oscillations, which resemble the general results for mixed-mode oscillations in
slow-fast systems. For almost vanishing coupling, where the system gains an additional degeneracy,
the situation is different. The stability region of the regime of simple leap frogging has the shape sim-
ilar to a locking cone that approaches extremely close to the canard transition at vanishing coupling.
Close to the tip of the cone, we have found a complex bifurcation scenario, which for decreasing ε is
contracted to a close vicinity of the degenerate canard. This contraction happens at a very fast and
presumably exponential rate, such that already for moderately small values of ε a reliable numerical
treatment became unfeasible and it would be a challenging task to perform an analytically study of this
scenario in the singular limit ε→ 0.

Qualitatively, the onset of the leap-frog patterns may be explained as a result of a strong sensitivity
to perturbations of the relaxation oscillation of a single FitzHugh-Nagumo unit just above the canard
transition. There, already very small perturbations applied during the passage near the fold singularity
of the slow manifold can deviate the trajectory away from the relaxation oscillation, giving rise to one or
several loops conforming to subthreshold oscillations. Such a behavior of phase-sensitive excitability
and the resulting response to excitations by noise of a single FitzHugh-Nagumo unit has been studied
in [18]. Similar phenomena where the excitations arise from interactions in more complex networks
have been studied in [19].

So far, the conditions relevant for the emergence of leap-frog patterns have mostly been considered
within the context of neuroscience, especially in terms of relation to synchronized states. It has been
known that such patterns cannot be obtained within the framework of weak-coupling theory for a pair
of phase oscillators, because alternating order of firing cannot be described by reduction to an au-
tonomous flow on the corresponding torus [21, 22, 23]. Thus, it was first believed that in order to
observe the leap-frog solutions, one has to complement the phase oscillator dynamics by a complex
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synaptic coupling involving a finite synaptic time constant [24]. The suggested alternative has been
to augment the simple phase dynamics by an additional negative phase branch corresponding to
strong hyperpolarization after the spiking event, as in case of the quadratic integrate-and-fire neuron
model [24]. With regard to relaxation oscillators, the leap-frog patterns have first been observed as
near-synchronous states where the complete phase synchronization is perturbed by strong inhibitory
or excitatory coupling [25, 26]. Later research focused on class I neural oscillators represented by
Wang-Buszáki [27] or Morris-Lecar model [24, 28]. In both instances, it has been found that the appro-
priate inhibitory non-instantaneous synaptic dynamics is crucial for the onset of leap-frog dynamics. In
particular, in case of Morris-Lecar oscillators, such patterns are facilitated by the fact that the strong
coupling causes the neurons to become transiently trapped in the subthreshold (excitable) state during
a certain interval of the oscillation cycle, which allows for the exchange of the spiking order between
the units [24]. Our findings are different from the above studies in two aspects: (i) the onset of leap-
frog patterns is reported for the first time in a system of weakly coupled excitable units, and (ii) the
mechanism behind the exchange of leadership involves subthreshold oscillations, typically observed
in class II excitable systems [11, 12, 13].
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