
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Bulk-surface electro-thermodynamics and applications

to electrochemistry

Wolfgang Dreyer, Clemens Guhlke, Rüdiger Müller

submitted: June 4, 2018 (revision: September 28, 2018)

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: wolfgang.dreyer@wias-berlin.de

clemens.guhlke@wias-berlin.de
ruediger.mueller@wias-berlin.de

No. 2511

Berlin 2018

2010 Mathematics Subject Classification. 35Q35, 35Q61, 78A57, 80A17.

Key words and phrases. Bulk-surface electro-thermodynamics, entropy principle, constitutive modeling, electrochemistry.

The authors gratefully acknowledge support by the Einstein Foundation Berlin with in the MATHEON Project CH11 ”Sensing
with Nanopores”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289299339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Bulk-surface electro-thermodynamics and applications
to electrochemistry

Wolfgang Dreyer, Clemens Guhlke, Rüdiger Müller

Abstract

We propose a modeling framework for magnetizable, polarizable, elastic, viscous, heat con-
ducting, reactive mixtures in contact with interfaces. To this end we first introduce bulk and surface
balance equations that contain several constitutive quantities. For further modeling of the constitu-
tive quantities, we formulate constitutive principles. They are based on an axiomatic introduction of
the entropy principle and the postulation of Galilean symmetry. We apply the proposed formalism to
derive constitutive relations in a rather abstract setting. For illustration of the developed procedure,
we state an explicit isothermal material model for liquid electrolyte|metal electrode interfaces in
terms of free energy densities in the bulk and on the surface. Finally we give a survey of recent
advancements in the understanding of electrochemical interfaces that were based on this model.

1 Introduction

The energy transition from fossil fuels to renewable energy sources gives rise to an increasing demand
for more efficient energy storage in stationary and mobile applications, cf. [YZKM+11]. As current
Lithium ion battery technology is expected to reach its theoretical limit soon, several promising future
technologies like metal-sulfur and metal-air systems, as well as polymer electrolyte batteries and differ-
ent other types of solid state batteries, are intensively investigated [JZ16, YMZ+16, LM17, PKDW17].

Because the demand for both portable water and clean water for industry and agriculture is expected to
grow, there is a strong need for better water desalination and water purification technologies. Electrically
driven processes like electrodialysis and capacitive deionization are investigated since they promise to
be commercially competitive and in particular energy efficient, compared to thermal or pressure driven
processes, [Str10, ACP10, SPS+15].

A key ingredient for better understanding of the electrochemical processes in the mentioned technolo-
gies is the development of better mathematical models. Standard models like the Poisson-Nernst-Planck
system, cf. e.g. [BF00, NTA04], suffer from deficiencies that are well known. Within a continuum theory
some of these flaws have already been remedied, see e.g. [BAO97, KBA07] and the literature cited
therein. However, to develop models for the above mentioned applications, there is the more fundamen-
tal problem that additional effects like elastic deformation, stresses or interaction of charge transport
with fluid flow have to be included into the models. However, extension of the standard model to cover
these further effects and other material properties in a consistent way are far from being obvious.

The aim of this work is the formulation of a general modeling framework that allows the derivation
of strictly thermodynamically consistent models for the above applications. We therefore resume
the effort of non-equilibrium thermodynamics containing electromagnetic fields and its extensions to
surfaces [dM84, Mül85, AB87, AH88]. Following [Guh15] and extending [BD15], we build our model
on (i) universally valid balance equations in the bulk and on surfaces on the one hand and (ii) the
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formulation of an entropy principle and the according derivation of constitutive relations on the other
hand. In particular, a chemically reacting mixture with neutral and electrically charged components will
be described. Other phenomena such as diffusion, heat conduction, viscosity, elasticity, polarization
and magnetization are taken into account.

When applying the resulting continuum models to electrochemical systems, typically very different
scales in space and time arise and not all of them are necessary to capture the macroscopic relevant
features of the considered system. Thus, by means of dimensional analysis considerable simplification
of the material model is possible and still allows a – compared to the standard literature – much
more fundamental approach like [DGM13] to overcome deficiencies of the classical Nernst-Planck
model. Thereby, we gain better insight into the internal double layer structure and the electrolyte
transport by diffusive fluxes. Moreover, asymptotic analysis provides a mathematical tool to derive
more simple reduced models. By this procedure it is possible to recover on a macroscopic level the
double layer capacity of electrode|aqueous electrolyte interfaces and some well established relations of
electrochemistry, like Butler-Volmer equations and the Lippmann equation.

Outline. This paper is organized as follows: in the following section we introduce notation and
the geometrical setup. Then, in Sect. 3, we state the universal balance equations in the bulk and
on the surface, containing the balances for the fields of matter and Maxwell’s equations and their
coupling. The transformation properties of the involved fields and the principle of Galilean symmetry
are briefly discussed and stated in Sect. 4. In Sect. 5, we formulate the axioms of the entropy principle
in bulk and surface and describe the general closing procedure based on the exploitation of the
entropy principle. Subsequently we derive in Sect. 6 constitutive relations in bulk and surfaces for
magnetizable, polarizable, viscous and reactive mixtures and discuss in particular the role of polarization
and magnetization. In Sect. 7, we apply the general model to liquid electrolytes, in particular aqueous
electrolytes in contact with metal electodes and give a survey over recent key results. We close with
some concluding remarks in Sect. 8.

2 General setting and basic quantities

2.1 Geometrical setup

We consider a moving orientable surface S(t) dividing a possibly evolving domain Ω ⊂ R3 into two
subdomains Ω±(t) ⊆ R3 with S := ∂Ω+ ∩ ∂Ω−, see Fig. 1. Let θ : [0, tend)× ω → S be a smooth
bijective parametrization of the surface S where ω ⊂ R2 is the open parameter domain. The partial
derivatives of θ define tangential vectors, the surface normal and the metric

τ1/2 = ∂θ(t, U1, U2)
∂U1/2 , ν = τ1 × τ2

|τ1 × τ2|
and g = [τ1, τ2]T [τ1, τ2] . (2.1)

As a convention, we chose the orientation of the surface normal such that ν is the inner normal of Ω+.
Moreover, we indicate the components of vectors and tensors with respect to Cartesian coordinates by
lowercase Latin indices, e.g. i, j, k, whereas we use uppercase Greek indices like e.g. Γ,∆,Σ for the
tangential components. For a vector V defined on the surface, we denote the normal component by Vν
and write V ∆

τ , for ∆ = 1, 2, for the tangential components. For the matrix components of the metric
tensor g we use lower indices g∆Γ and for the components of the invers matrix of the metric we use
upper indices g∆Γ. We apply the convention of implicit summation over indices appearing double.
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Figure 1: Two domains Ω± separated by a moving surface S.

Covariant derivatives. For the definition of the covariant derivatives on a surface we introduce the
curvature tensor b∆Γ and the Christoffel symbols ΓΣ

∆Γ. They are defined by a decomposition of the
derivatives of the tangential vectors into their tangential and normal components,

∂τ∆

∂UΓ = ΓΣ
∆ΓτΣ + b∆Γ ν for Γ,∆ = 1, 2 . (2.2)

Let a : S → R be a scalar and V : S → R3 a vector field. Then the covariant derivatives of the
tangential components are define as

a‖Γ = ∂a

∂UΓ , for Γ = 1, 2 , V ∆
τ‖Γ = ∂V ∆

τ

∂UΓ + Γ∆
ΓΣV

Σ
τ for Γ,∆ = 1, 2 . (2.3)

Let w denote the velocity of the surface S. For a scalar a : [0, tend) × S → R, we define the time
derivative

∂t,νa = ∂ta− a‖∆w∆
τ . (2.4)

Traces, jumps and mean values on surfaces. For a generic function u : [0, tend)× (Ω+∪Ω−)→
Rm we denote for any time t and for each x

s
∈ S the trace on either side of the surface by

u±(t,x
s
) = lim

x∈Ω±→x
s
∈S
u(t,x) . (2.5)

If the function u is not defined in Ω+ or Ω−, we set the corresponding trace to zero, i.e. u+ = 0 if u is
not defined in Ω+ and u− = 0 if u is not defined in Ω−. By

[[u]] = u+ − u− , ū = 1
2(u+ + u−) , (2.6)

we define the jump and the mean value of u at the surface S, respectively. The definition of the jump is
related to the above convention on the orientation of the surface normal to be the inner normal of Ω+,
cf. Fig. 1.

2.2 Description of reacting mixtures

For quantities defined in the domains Ω+ or Ω− there will often be corresponding quantities on the
surfaces S. As a convention the same letters are used for these quantities but the surface variables are
indicated by an underset s. For simplicity of notation, we indicate whether quantities are defined in Ω−
or Ω+ by the signs − or + only if necessary.
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Constituents and chemical reactions. In each of the two domains Ω+ and Ω− and on the surface S,
we consider a mixture of several constituents, usually referenced as Aα. The index set of constituents
in Ω± is denoted by I±. We assume that the sets I± are disjoint1, i.e. I+ ∩ I− = ∅, and set
I = I− ∪ I+. All constituents of the subdomains Ω± are also assumed to be constituents on the
surface S but in addition there may be some constituents that are exclusively present on S. Accordingly,
the constituents on the surface S are represented by the set IS . For the later construction of constitutive
equations we choose in each subdomain one designated constituent as a reference. We denote these
constituents by A0− , A0+ , A0 in Ω−, Ω+ and S, respectively.

For a description on a continuum level (macroscopic level) each of constituent Aα is characterized by
the (atomic) mass mα and its atomic net charge zαe0, where the positive constant e0 is the elementary
charge and zα is the charge number of the constituent. There may be M ≥ 0 chemical reactions
among the bulk constituents and MS ≥ 0 chemical reactions on the surface. These reactions may be
written in the general form

∑
α∈I

akαAα

Rkf−−⇀↽−−
Rkb

∑
α∈I

bkαAα for k ∈ {1, · · · ,M} , (2.7a)

∑
α∈IS

a
s

k
αAα

Rk
f

s−−⇀↽−−
Rk

b
s

∑
α∈IS

b
s

k
αAα for k ∈ {1, · · · ,MS} . (2.7b)

The constants akα, bkα are positive integers and γkα := bkα − akα denote the stoichiometric coefficients of
the reactions. The reaction from left to right is called forward reaction with reaction rate Rk

f > 0. The
reaction in the reverse direction with rate Rk

b > 0 is the backward reaction. The net reaction rate is the
defined as Rk = Rk

f −Rk
b . Since charge and mass have to be conserved by each single reaction in

the bulk and on the surface, we have∑
α∈I

zαγ
k
α = 0 and

∑
α∈IS

zαγ
k
α
s

= 0 for k ∈ {1, · · · ,M} , (2.8a)∑
α∈I

mαγ
k
α = 0 and

∑
α∈IS

mαγ
k
α
s

= 0 for k ∈ {1, · · · ,MS} . (2.8b)

Electro- and thermodynamic state. The thermodynamic state of Ω± at any time t is described
by the number densities nα and the velocities υα for α ∈ I± and the (specific) internal energy u.
Analogously, the thermodynamic state of the surface S is characterized by the number densities of the
surface constituents, n

s
α and the surface velocities υ

s
α for α ∈ IS and the (specific) surface internal

energy u
s
. The electrodynamic state of Ω± and surface S at any time t is described by2 the electric

fieldE and the magnetic fieldB.

Multiplication of the number densities nα by mα gives the partial mass densities

ρα = mαnα , ρ
s
α = mαn

s
α . (2.9)

1This assumption takes into account that even if a certain chemical substance is present in both domains, the functional
dependence of the corresponding chemical potentials in general differs between the subdomains.

2For polarizable and magnetizable matter, the electromagnetic behavior could equally well be characterized by the
vectors of polarization P and magnetizationM , instead ofE andB. Both sets of variables, (E,B) and (P ,M), are
coupled by constitutive equations and for the derivation of these relations it turns out to be favourable to use P andM , for
reasons which are discussed in Sect. (6.4).
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The mass density and the barycentric velocity of the mixture are defined by

ρ =
∑
α∈I±

ρα and υ = 1
ρ

∑
α∈I±

ραυα , (2.10a)

ρ
s

=
∑
α∈IS

ρ
s
α and υ

s
= 1
ρ
s

∑
α∈IS

ρ
s
αυ
s
α . (2.10b)

The free charge density is defined as

nF =
∑
α∈I±

zαe0nα , n
s

F =
∑
α∈IS

zαe0n
s
α . (2.11)

The internal electronic structure of the constituents is not reflected by our macroscopic description, but
it has relevance for the overall electromagnetic field. To represent these microscopic effects on the
more macroscopic level, we introduce the polarization charge density nP, n

s

P in Ω± and S, respectively,

and then define the total charge density by

ne = nF + nP , n
s

e = n
s

F + n
s

P . (2.12)

Deformation gradient. The barycentric velocity causes deformation of bulk and surface. We formally
introduce the deformation gradient F by means of a partial differential equation, viz.

∂F

∂t
+ (υ · ∇)F = F T (∇υ) , (2.13)

where det(F ) > 0 is assumed. For the relation of the so defined F to the deformation of a body under
the velocity υ, we refer to the textbook literature, cf. e.g. [TT60, p.328, eq. 67.4]. From the deformation
gradient, the unimodular deformation gradient F uni is derived as

F uni = det(F )− 1
3F implying det(F uni) = 1 . (2.14)

The temporal changes of the surface parametrization θ describes the deformation of the surface.
Therefore, the tangential vectors τ1/2 are the surface equivalents of the deformation gradients. Similar
to the bulk, the unimodular tangential vectors are defined as

τ uni
1/2 = det(g)− 1

4τ1/2 implying det([τ uni
1 , τ uni

2 ]) = 1 . (2.15)

3 Universal balance equations of electro-thermodynamics

In this section, we introduce a set of balance equations in the bulk and on the surface, that we postulate
to hold universally, i.e. these balances are assumed to hold independent of the considered material. The
surface balances account for the transport in tangential as well as in normal direction. Our approach is
oriented on the classical work of Truesdell and Toupin [TT60] and we apply a notation similar to [Mül85].
In this work, we consider only local balance equations that can be derived from their respective global
counterparts, cf. [Mül85].

The set of balance equations is subdivided into the classical balances of matter on the one hand
and Maxwell’s equations for the electromagnetic field on the other hand. Following [TT60], Maxwell’s
equations in the bulk are formulated with the postulation of universally valid Maxwell-Lorentz-aether
relations. For the surface, there is not such a standard formulation of the equations and in particular,
we here derive surface equations by analogy to the procedure in the bulk. With the later application to
electrochemical systems in mind, we use the classical, i.e. non-relativistic form of the balances for the
fields of matter.
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3.1 Balance equations of matter

We consider partial mass balances for each of the constituents of the mixture, a single momentum
balance of the mixture and an energy balance of matter.3

Balance of mass. In each of the subdomains Ω± as well as on the surface S, the partial mass
balances are written as

∂tρα + div(ραυ + Jα) = rα in Ω± for α ∈ I± ,

(3.1a)

∂t,νρ
s
α +

(
ρ
s
αυ
s

∆
τ + J

s

∆
α,τ

)
‖∆ − 2kMυ

s
ν ρ
s
α = r

s
α − [[ρα(υν − υ

s
ν) + Jα · ν]] on S for α ∈ IS .

(3.1b)

Herein rα and r
s
α denote the mass production rate of constituent Aα. They are defined by the reaction

rates,

rα =
M∑
k=1

mαγ
k
αR

k , r
s
α =

MS∑
k=1

mαγ
s

k
αR
s

k . (3.2)

The bulk and surface diffusion flux Jα and J
s
α with respect to the barycentric velocities are defined as

Jα = ρα(υα − υ) implying
∑
α∈I±

Jα = 0 , (3.3a)

J
s
α = ρ

s
α(υ

s
α − υ

s
) implying

∑
α∈IS

J
s
α = 0 . (3.3b)

The partial mass balances imply two more balance equations, which can be used to substitute one or
two partial mass balances from the system of model equations. From (3.1) together with the constraints
(3.3) and (2.8b) we conclude the conservation of total mass

∂tρ+ div(ρυ) = 0 , in Ω , (3.4a)

∂t,νρ
s

+
(
ρ
s
υ
s

∆
τ

)
‖∆ − 2kMυ

s
ν ρ
s

= −[[ρ(υν − υ
s
ν)]] on S . (3.4b)

Multiplication of the partial mass balances (3.1) by zαe0/mα and summation over all species together
with (2.8a) implies conservation laws for free charge,

∂tn
F + div(nFυ + JF) = 0 , (3.5a)

∂t,νn
s

F +
(
n
s

Fυ
s

∆
τ + J

s

F,∆
τ

)
‖∆ − 2kMυ

s
ν n
s

F = −[[nF(υν − υ
s
ν) + JF

ν ]] , (3.5b)

with the (non-convective) free electric current densities

JF =
∑
α∈I

zαe0
mα
Jα , J

s

F =
∑
α∈IS

zαe0
mα
J
s
α . (3.6)

3Modeling approaches based on different sets of balance equations also exists. For instance, each partial momentum
ραυα can be balanced. An introduction to these kinds of models for the bulk systems without surface balances and without
electrodynamics can be found in [BD15].
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Balance of momentum. The total momentum density ρυ of the mixture in bulk changes due to the
momentum flux, which is given by the (Cauchy) stress tensor σ, as well as by the gravitational force
density ρf and the Lorentz force k. Accordingly, the surface momentum density ρ

s
υ
s

changes due to

the momentum flux σ
s

, the gravitational force density ρ
s
f
s

and the Lorentz force k
s
. The balances of

momentum for bulk and surface read

∂tρυ + div
(
ρυ ⊗ υ − σ

)
= ρf + k , in Ω± ,

(3.7a)

∂t,ν(ρ
s
υ
s

i) +
(
ρ
s
υ
s

iυ
s

∆
τ − σ

s

i∆)
‖∆ − 2kMυ

s
ν ρ
s
υ
s

i = ρ
s
f
s

i + k
s

i − [[ρυi(υν − υ
s
ν)− σijνj]] on S .

(3.7b)

The momentum flux σ
s

is decomposed into its normal and tangential components

σ
s

i∆ = SΓ∆τ iΓ + S∆νi . (3.8)

The tensor SΓ∆ is denoted as surface stress tensor and the vector S∆ is the normal stress vector.

We neglect internal spin, this implies symmetry of the stress tensors and vanishing of the normal stress
[Mül85],

σij = σji , SΓ∆ = S∆Γ and S∆ = 0 . (3.9)

Balance of energy. The energy density of matter can be split4 into the internal energy density ρu
and the kinetic energy density 1

2ρ|υ|
2. This decomposition also implies a decomposition of the fluxes

and the external sources into internal and kinetic contributions. The energy balance in the bulk and on
the surface read

∂t(ρu+ 1
2ρ|υ|

2) + div
(
(ρu+ 1

2ρ|υ|
2)υ + q − υσ

)
= π + ρf · υ in Ω± ,

(3.10a)

∂t,ν
(
ρ
s
u
s

+ 1
2ρ
s
|υ
s
|2
)

+
(
(ρ
s
u
s

+ 1
2ρ
s
|υ
s
|2)υ

s

∆
τ + q

s

∆ − σ
s

i∆υ
s
i

)
‖∆ − 2kMυ

s
ν

(
ρ
s
u
s

+ 1
2ρ
s
|υ
s
|2
)

= π
s

+ ρ
s
f
s
· υ
s
− [[(ρu+ 1

2ρ|υ|
2)(υν − υ

s
ν) + (q − υσ) · ν]] on S,

(3.10b)

Here q, q
s

denote the heat fluxes and π, π
s

are the Joule heats for bulk and surface.

3.2 Electromagnetic fields

Maxwell’s equations for the electromagnetic field are based on two conservation laws: conservation of
electric charge and conservation of magnetic flux, cf. [TT60, Mül85].

4The splitting originates from the observation that the kinetic part of the energy can, and the internal energy can not be
eliminated by a suitable coordinate transformation.
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Conservation of electric charge. The conservation equations of the total electric charge densities
ne and n

s

e in the bulk and on the surface read

∂tn
e + div(neυ + J e) = 0 , (3.11a)

∂t,νn
s

e +
(
n
s

eυ
s

∆
τ + J

s

e,∆
τ

)
‖∆ − 2kMυ

s
ν n
s

e = −[[ne(υν − υ
s
ν) + J e

ν ]] . (3.11b)

Here, the total electric current flux densities are split into a convective and non-convective part, i.e.
je = neυ + J e and j

s

e = n
s

eυ
s

+ J
s

e. Then, we introduce the charge potential D and the current

potential H as formal solutions of these charge balances,5

ne = divD , J e = −∂tD − υ divD + curlH , (3.12a)

n
s

e = [[D · ν]] , J
s

e = ν × [[H − υ
s
×D]] . (3.12b)

In contrast to e.g. [CA65] our derivation of (3.12b) in Appendix A does not base on some averaging
technique for the bulk equations.

Conservation of magnetic flux. The volume- and surface equations for the electric field E and the
magnetic flux density B are derived form the conservation law of magnetic flux,

divB = 0 , ∂tB + curlE = 0 , (3.13a)

[[B · ν]] = 0 , ν × [[E + υ
s
×B]] = 0 . (3.13b)

Due to its importance in electrodynamics and for the upcoming constitutive modelling we introduce the
electromotive intensity

E = E + υ ×B . (3.14)

Maxwell-Lorentz-aether-relation. The equation system (3.12) and (3.13) together constitute the
system of Maxwell’s equations and boundary conditions. The system is underdetermined such that
additional relations between (B,E) and (D,H) are needed. Since all material dependence is
incorporated into the total charge density ne, n

s

e, we can postulate universal valid Maxwell-Lorentz-

aether relations [TT60, Mül85, Kov00],

D = ε0E and H = 1
µ0
B . (3.15)

Here, ε0 is the dielectric constant and µ0 is the magnetic constant. They are related to the speed of
light by ε0µ0 = c−2

0 .

3.3 Coupling of equations for matter and electrodynamics

The coupling of the equations of matter in Sect. 3.1 and Maxwell’s equations according to Sect. 3.2
is done in the following two steps. First, we identify the balances for polarization and magnetization.
Second, by requiring conservation of total energy and total momentum, we identify the Lorentz force
and Joule heat as functions of the electromagnetic fields.

5When considering the conservation of the free charge nF, the same argumentation leads to a formulation of Maxwell’s
equations in terms of the electric displacement field D = ε0E + P and the magnetic field density H = 1

µ0
B −M ,

instead ofD andH . Here P andM are the polarization and magnetization, respectively, that are introduced in Sect. 3.3.
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3.3.1 Polarization and magnetization

The conservation laws (3.11) for the total charge and (3.5) for the free charge imply also conservation
of the polarization charge nP = ne − nF, n

s

P = n
s

e − n
s

F, i.e.

∂tn
P + div(nPυ + JP) = 0 , (3.16a)

∂t,νn
s

P +
(
n
s

Pυ
s

∆
τ + J

s

P,∆
τ

)
‖∆ − 2kMυ

s
ν n
s

P = −[[nP(υν − υ
s
ν)]]− [[JP

ν ]] . (3.16b)

with the polarization current density

J e = JF + JP , J
s

e = J
s

F + J
s

P . (3.17)

Motivated by the introduction ofD andH in (3.12) as formal solution of (3.11), we use an analogous
approach to introduce polarization P and Lorentz magnetization M by formal solution of (3.16)
according to Appendix A. We get

nP = − div(P ) , JP = ∂tP + υ divP + curlM , (3.18a)

n
s

P = −[[P ]] · ν , J
s

P = ν × [[M + υ
s
× P ]] . (3.18b)

This introduction of the fields P and M differs from the classical textbook literature, where often
microscopic models are used, e.g. P is introduced by considering microscopic electric dipoles andM
is derived from microscopic circular currents. Then the polarization charge nP and polarization currents
JP are formally introduced to couple P andM to the Maxwell’s equations, cf. [LL85, BS73, Mül85,
Kov00, HP74, HvdVU06]. Our approach leads to the same relations between (nP, JP) and (P ,M ),
but it has the advantages that it is independent of any microscopic model and, most notably, its ability to
transfer the concept of polarization and magnetization to the surface. The relation of the fields (P ,M )
to (E,B) is left to a subsequent material modeling.

For the later derivation of the constitutive equations it is useful to introduce the magnetization

M = M + υ × P . (3.19)

3.3.2 Lorentz force and Joule heat

From the Maxwell’s equations (3.12)–(3.13) two more balance equation can be derived: the balance of
the electromagnetic momentum and the balance of the energy of the electromagnetic field.

Balance of electromagnetic energy. The electromagnetic energy density in the bulk is defined as
1
2(E ·D +B ·H). From Maxwell’s equations we get the balance equations, [Mül85, CA65]:

1
2∂t
(
E ·D +B ·H

)
+ div

(
E ×H

)
= −(neυ + J e) ·E , (3.20a)

−[[1
2(E ·D +B ·H)υ

s
ν ]] + [[(E ×H) · ν]] = −

(
n
s

eυ
s

+ J
s

e
)
· Ē . (3.20b)

Here, E ×H is the electromagnetic energy flux density (Poynting vector) and (neυ + J e) · E is
the energy gained by the matter due to the electromagnetic field. On the surface there is no additional
electromagnetic surface energy density/flux implied by Maxwell’s equations. Thus, the influxes from the
bulk are solely balanced by the surface production

(
n
s

eυ
s

+ J
s

e
)
· Ē.
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Balance of electromagnetic momentum. The electromagnetic momentum density is defined as
D ×B. Maxwell’s equations imply in bulk and surface the balances for electromagnetic momentum
[Mül85, CA65]:

∂t(D ×B)− div
(
H ⊗B +E ⊗D − 1

2
(
H ·B +D ·E

)
I
)

= −neE − (neυ + J e)×B
(3.21a)

−[[(D ×B)υ
s
ν ]] + [[HBν +EDν + 1

2(H ·B +E ·D)ν]] = −n
s

eĒ − (n
s

eυ
s

+ J
s

e)× B̄ .

(3.21b)

The electromagnetic momentum flux density (H ⊗B +E ⊗D)− 1
2(H ·B +E ·D)I is called

the Maxwell stress tensor. On the right hand sides of (3.21), the productions neE + (neυ + J e)×B
and n

s

eĒ + (n
s

eυ
s

+ J
s

e)× B̄ define the force densities due to the electromagnetic field. Like before in

(3.20), Maxwell’s equations (3.12)–(3.13) do not imply surface momentum density/flux, such that the
bulk influxes are balanced by the surface production.

Identification of external forces. We postulate that in the absence of gravitation, i.e. for f = f
s

= 0,

the total momentum ρυ + (D ×B) and the total energy ρ(u + 1
2 |υ|

2) + 1
2(E ·D +B ·H) of

matter and electromagnetic field are conserved quantities, cf. [Mül85, CA65]. Then, the production in
the balance equations of matter have to be canceled by the electromagnetic productions. This implies
for the Lorentz force k,k

s
and the Joule heat π, π

s

π = (neυ + J e) ·E , k = neE + (neυ + J e)×B , (3.22a)

π
s

=
(
n
s

eυ
s

+ J
s

e
)
· Ē , k

s
= n

s

eĒ + (n
s

eυ
s

+ J
s

e)× B̄ . (3.22b)

Balance of total momentum. The total momentum balance reads

∂t(ρυ +D ×B) + div
(
ρυ ⊗ υ −Σ

)
= ρf , in Ω± ,

(3.23a)

∂t,ν(ρ
s
υ
s

i) +
(
ρ
s
υ
s

iυ
s

∆
τ − σ

s

i∆)
‖∆ − 2kMυ

s
ν ρ
s
υ
s

i = ρ
s
f
s

i − [[ρυi(υν − υ
s
ν)− Σijνj]] , on S ,

(3.23b)

where the total stress tensor consisting of Cauchy and Maxwell stress is given by

Σ = σ +H ⊗B +E ⊗D − 1
2
(
H ·B +D ·E

)
I . (3.24)

In equilibrium the total momentum balances reduces in the absence of the gravitational force to

Equilibrium: div Σ = 0 , [[Σν]] = −σ
s

i∆
‖∆ . (3.25)

In particular, if the surface stress vanishes, then the total stress is continuous at the surface. Therefore,
on can only measure the total stress, but not separately the Cauchy stress or the Maxwell stress. This
fact can be nicely studied in an experiment with two capacitor plates dipped into a liquid, cf. [BS73,
Sect. 3.6].
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Balance of internal energy. For the later exploitation of the entropy principle, we derive an appropri-
ate form of the balance of internal energy. The internal energy balance is derived in three steps: First,
the kinetic energy is eliminated in the energy balance (3.10) by means of the momentum balance (3.7).
Second, the electromagnetic contributions is split into a free and polarization part. Third, the polarization
current is replaced by using the identities for the polarization vector and Lorentz magnetization (3.18b).

∂(ρu+M ·B)
∂t

+ div
(
(ρu+M ·B)υ + q + (E ×M)

)
=
(
σ +M⊗B − E ⊗ P + (E · P )1

)
: ∇υ

+ E · JF +
(
∂P

∂t
+ (υ · ∇)P

)
· E +

(
∂M
∂t

+ (υ · ∇)M
)
·B ,

(3.26a)

∂t,ν
(
ρ
s
u
s

)
+
(
ρ
s
u
s
υ
s

∆
τ + q

s

∆)
‖∆ − 2kMυ

s
ν ρ
s
u
s

= σ
s

i∆υ
s

i
‖∆ +

(
Ē + υ

s
× B̄

)
· J
s

F

−
[[(
u+ 1

2 |υs − υ|
2)ρ(υν − υ

s
ν)− (υ − υ

s
)Tσν + (q + E ×M) · ν

]]
+
[[(
P (υν − υ

s
ν)− Pν(υ − υ

s
)
)
· E
]]

+ (P ×B) · (υ − υ
s
)(υν − υ

s
ν)

−
[[(
B(υν − υ

s
ν)−Bν(υ − υ

s
)
)
·M

]]
. (3.26b)

4 Symmetry principles for observer transformations

In this section we study changes of space and time coordinates of the observer frame of reference,
shortly called observer transformations. Their application to the fields of thermodynamics and electrody-
namics show diverse transformation properties leading to symmetry principles that particularly restrict
the generality of the admissible constitutive functions.

In the previous Section, the equations of balance for matter, the conservation law of charge, the
magnetic flux conservation and the Maxwell-Lorentz aether relations were formulated with respect to an
inertial frame of reference. Time and spatial coordinates refer to an inertial frame if two conditions are
met: 1. The mass center of a material body that is not subjected to external forces moves with constant
(barycentric) velocity along a straight line, 2. The Maxwell-Lorentz aether relations hold.

Symmetry principles. The most fundamental symmetry principle is the Principle of Relativity. It
restricts balance equations as well as constitutive equations by stating invariance with respect to
arbitrary observer transformations. However, this principle can only be maintained if time and space
and all involved equations are properly combined to four dimensional objects.

We will not touch the four dimensional case further and restrict ourselves to a less general symmetry
principle suitable for the 1+3 dimensional case. In the following we introduce and exploit the Galilean
symmetry principle stating invariance of the involved equations with respect to Galilean transformations.
It is well known that the balance equations of matter (3.1)-(3.10) are invariant with respect to Galilean
transformations. On the other hand, the Maxwell equations are invariant with respect to arbitrary
transformations, including Galilean transformations as well. However, the 1+3 dimensional Maxwell-
Lorentz aether relations are only invariant with respect to Lorentz transformations. Nevertheless, in the
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limit of vanishing barycentric velocity, i.e. v/c→ 0, the Galilean transformation is a good approximation
of the Lorentz transformation. But even in this case one should be aware that by applying the Galilean
symmetry principle, important classical effects are ignored. Two examples are: 1. Galilean invariance
is intimately linked to the conservation of mass in a chemical reaction, thus we cannot describe the
case of atomic fusion in this setting. 2. The classical unipolar generator cannot be explained with
models restricted by the Galilean symmetry principle. A relativistic explanation is needed. For the
electrochemical applications we have in mind, these inconsistencies between the Maxwell-Lorentz
aether relations and the Galilean symmetry principle are not relevant and are not further discussed
here.

Finally, we mention the Euclidean transformation, which is another classical transformation that gener-
alizes the Galilean transformation. For these transformation, often invariance is proposed with respect
to constitutive functions only, and the corresponding symmetry principle is called material frame
indifference. In this paper, we do not consider that concept any further.

In summary we may say that the general essentials of symmetry principles for observer transformation
consist of three steps: (i) We choose a class of space-time transformation. (ii) We investigate the
transformation properties of the involved quantities under that transformation. (iii) We propose a
corresponding symmetry principle stating invariance of certain equations, for example invariance of the
constitutive equations.

Galilean symmetry principle. For a Galilean transformation, the transformed coordinates are give
by

t̄ = t, x̄ = Ox−W t with OTO = I , (4.1)

where the orthogonal matrixO and the velocityW are time independent.

We now introduce the principle of Galilean symmetry that states: The equations of balance for matter,
Maxwell’s equations and the constitutive functions must be invariant with respect to the Galilean
transformation (4.1).

The fields Ti1,i2,...,iN are identified as the components of a Galilean tenor (of rank N ) if they transform
under Galilean transformations according to

T̄ i1,i2,...,iN = det(O)pOi1j1Oi2j2 ...OiN jNT
j1,j2,...,jN . (4.2)

For p = 1, T is called an axial Galilean tensor while p = 0 indicates an absolute Galilean tensor. The
special cases N = 0, 1 refer to Galilean scalars and Galilean vectors, respectively.

Classification of the involved fields. For the velocity, the deformation and the tangential vectors of
the surface it is possible to derive the transformation properties with respect to Galilean transformations
as

υ, υ
s
, F , τ∆ absolute vectors (4.3a)

∇v + (∇v)T absolute tensor (4.3b)

DOI 10.20347/WIAS.PREPRINT.2511 Berlin, June 4, 2018/rev. September 28, 2018



Bulk-surface electro-thermodynamics and applications to electrochemistry 13

Next we classify the involved fields in the balance equations for matter, such that these remain invariant
under Galilean transformations.

ρα, ρ
s
α, ρu, ρ

s
u
s
, Rk, R

s

k absolute scalars (4.4a)

Jα, J
s
α, q, q

s
absolute vectors (4.4b)

σ,Σ absolute tensor (4.4c)

In the four dimensional formulation Maxwell’s equations are invariant under arbitrary observer transfor-
mation. From this the transformation properties of the electromagnetic fields in the 1+3 dimensional
setting can be derived. The electromagnetic fields E,H and M are not vectors under a Galilean
transformation, but specific combinations of this,

ne, n
s

e absolute scalars

(4.5a)

J e, J
s

e, (E + v ×B), (E + v
s
×B), D, P absolute vectors

(4.5b)

B, (H − v ×D), (H − v
s
×D), (M + v × P ), (M + v

s
× P ) axial vectors (4.5c)

5 The entropy principle

The system of balance equations from Sect. 3 has to be closed by constitutive equations in the bulk and
on the surface. The – thus far undetermined – constitutive quantities are the partial mass fluxes Jα,Jα

s
,

reaction rates Rk, R
s

k, heat fluxes q, q
s

stress tensors σ,S, polarization P and magnetizationM.

The constitutive equations are not uniquely determined, but they are restricted by the second law of
thermodynamics, which is here expressed in terms of the entropy principle, and the principle of Galilean
symmetry. We here follow the strictly axiomatic approach of [BD15] where also slightly different forms
in the literature are reviewed, cf. e.g. [MR59, dM84, Mül68, Mül85]. The formulation of the entropy
principle is largely analogous in the bulk and on the surface, and therefore done simultaneously.

5.1 Formulation of the entropy principle

The entropy principle consist of five axioms, of which the first part consisting of the axiom I–III is
universal, i.e. independent of the considered material. The second part with the axioms IV-V is material
dependent, although in a very general and abstract way, because an appropriate set of independent
variables has to be chosen for the considered material. Here, we consider elastic, viscous, magnetizable,
polarizable, heat conducting and reactive mixtures.

The entropy principle

I. The entropy densities ρη, ρ
s
η
s
, entropy fluxes φ,φ

s
and entropy productions ξ, ξ

s
satisfy the
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balance equations

∂tρη + div(ρηυ + φ) = ξ , (5.1a)

∂t,ν(ρ
s
η
s
) + (ρ

s
η
s
υ
s

∆
τ + φ

s

∆
τ )‖∆ − 2kMυ

s
νρ
s
η
s

= ξ
s
− [[ρη(υν − υ

s
ν) + φν ]] . (5.1b)

II. ρη, ρ
s
η
s

and ξ, ξ
s

are absolute scalars and φ,φ
s

are absolute vectors with respect to Galilean

transformations.

III. The entropy productions ξ, ξ
s

satisfy

(i) the entropy productions ξ, ξ
s

are non-negative for each solution of the balance equations

and Maxwell’s equations.

(ii) the entropy productions have a representation as the sum of binary products

0
!
≤ ξ =

∑
A

NAPA , 0
!
≤ ξ

s
=
∑
A

N
s
AP
s
A . (5.2)

The factors of each product are either scalars, vectors or tensors with respect to Galilean
transformations. Each product NAPA resp. N

s
AP
s
A can be associated with exactly one

dissipation mechanism.

(iii) The entropy productions vanish in equilibrium.

IV. The entropy densities ρη, ρ
s
η
s

have representations as concave functions ρη̃, ρ
s
η̃
s

of the indepen-

dent variables6. For elastic, viscous, magnetizable, polarizable, heat conducting and reactive
mixtures the independent variables are ρu +M ·B, (ρα)α∈I ,F uni,P ,M in the bulk and
ρ
s
u
s
, (ρ
s
α)α∈IS , τ uni

1 , τ uni
2 on the surface

ρη = ρη̃(ρu+M ·B, (ρα)α∈I ,F uni,P ,M) , (5.3a)

ρ
s
η
s

= ρ
s
η̃
s
(ρ
s
u
s
, (ρ
s
α)α∈IS , τ uni

1 , τ uni
2 ) . (5.3b)

V. The (absolute) temperature T, T
s

and the chemical potentials µα, µ
s
α are defined as

1
T

= ∂ρη̃

∂(ρu+M ·B) ,
µα
T

= −∂ρη̃
∂ρα

, (5.4a)

1
T
s

=
∂ρ
s
η̃
s

∂ρ
s
u
s

,

µ
s
α

T
s

= −
∂ρ
s
η̃
s

∂ρ
s
α

. (5.4b)

Remarks. Axiom IV contains a specific set of variables. The entropy principle can be formulated
with different sets of variables as well, and these different choices will in general lead to different
constitutive equations. In particular, we assume that the bulk entropy density depends on the internal
energy ρu+M ·B instead of ρu. This internal energy allows us to derive a entropy production, which

6Fields are independent if there exists no algebraic relation between them, which can be derived form the balance
equations itself.
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satisfies Axiom III in particular the representation (5.2). Other different choices for the internal energy
that allow a respective formulation of an according formulation of the entropy principle can be found in
[HvdVU06]. In Sec. 6.4 we show that not every choice of constitutive functions, that satisfies Axiom III,
automatically admits relaxation to the equilibrium.

Axiom IV requires that the set variables for the entropy densities are independent of each other. This is
not the case for the deformation gradients and the tangential vectors, since the mass balances (3.4)
are solved by7

ρ = ρref

det(F ) , ρ
s

=
ρ
s

ref√
det(g)

, (5.5)

where ρref , ρ
s

ref are time-independent constants. Therefore, the deformation gradients and tangential

vectors can not be used and they are replaced by their unimodular counterparts.

There is a difference between the constitutive equations of the entropy density for bulk and surface. For
the fields P andM in the bulk, there are no according counterparts on the surface in our approach.
An extension of the theory seems to be possible. For instance in [ABV80], surface polarization and
magnetization are derived from the bulk Maxwell’s equation by integration over a singularity and thus
for each bulk quantity there exists a corresponding surface quantity. While in our approach P andM
are introduced as a particular formal solution of the balance equation for polarization charge, there
may be a further formal solution of the surface balance equation that allows the introduction of surface
polarization vector and surface magnetization. Although we did not introduce a surface polarization
vector or surface magnetization, there exists surface polarization charge n

s

P and surface flux densities

J
s

P due to polarization and magnetization, cf. (3.18b).

5.2 Exploitation of the entropy principle – general approach

The general strategy for the design of constitutive relations can be outlined in a material independent
way. Using only the structure (5.2) of the entropy production, we derive thermodynamic consistent
constitutive equations from either linear or non-linear relations between the factors NA and PA, such
that the entropy production is non-negative.

For the ease of presentation, we restrict ourselves to the case that the factors of each binary product
are scalars. A generalization to vectors and tensors can easily be done.

Linear relations. To account for cross effects, we consider a regular matrix M and set Q = M−1.
Then, the entropy production (5.2) is rewritten as

0
!
≤ ξ =

∑
A

NAPA =
∑
A,B,C

(NAQAB)(MBCPC) . (5.6)

To have
∑

ANAQAB proportional to
∑

CMBCPC , we choose positive phenomenological coefficients
LB > 0 and set

K = MT diag(LB)M and NA =
∑
C

KACPC , (5.7)

7Relation (5.5)right only solves the surface mass balance in the absence of total mass flux from the bulk, i.e. [[ρ(υ−υ
s
)]] =

0.
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where the coefficient matrix K is symmetric and positive definite by construction. The coefficients of the
matrix M and LB in general may be functions of the independent variables as long as absolute scalars
with respect to Galilean transformations. We want to stress here, that the entropy principle provides
no information about this dependencies on the independent variables apart from the requirements
that LB ≥ 0 and M regular. Instead, theories of different nature are needed to derive this functional
dependencies.

Non-linear relations. Another possibility to derive thermodynamically consistent relations based on
(5.6) is

NA = −
∑
B

MBALB

(
1− exp

(
KB

∑
C

MBCPC

))
, (5.8)

where the phenomenological coefficients LB and KB are positive. For a system close to equilibrium,
such that 0 ≤ |KB

∑
CMBCPC | � 1, the exponential function in (5.8) may be linearized and the

non-linear closure relations (5.8) then approach the linear ones in (5.7).

Galilean symmetry principle. The constitutive relations that result from the above closure relations
automatically satisfy the Galilean symmetry principle, since the factors of the binary products are
scalars, vectors or tensors with respected to Galilean transformations according Axiom III (ii) and for
the phenomenological coefficients only absolute scalars according to Sect. 4 are chosen.

Remark on cross diffusion and symmetry of the phenomenological coefficient matrix. The
well known Onsager-Casimir reciprocal relations postulate the symmetry of the matrix K that appears
in (5.7). They are motivated by experimental observations of thermo-electrical effects by Thomson
[Tho82, pp. 237-241] and have been proven for systems of ordinary differential equations describing
homogeneous processes in a statistical mechanics by Onsager and Casimir [Ons31a, Ons31b, Cas45,
MR59].

By the construction based on the matrix M , the symmetry of K is automatically guaranteed. Moreover,
the introduction ofM in (5.6) allows in a very simple way the realization of cross effects in the non-linear
case. However, one should note that as long as the factors NA and PA have not been specified, it
is also possible to construct in an analogous manner to (5.7) different linear closure relations such
that the coefficient matrix is positive definite, but anti-symmetric(!), cf. [BD15]. There, the concept of
parity is introduced to solve these problems by further characterization of the factors NA and PA. If the
quantities NA exclusively consists of objects with physical units containing uneven powers of the time
unit and all objects of PA have units with even power the second, then we have symmetry of K by our
construction. Now it is easy to observe that an exchange of some NA objects with PA objects then
yields antisymmetry of K .
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6 Constitutive equations for magnetizable, polarizable, viscous
and reactive mixtures

6.1 Constitutive relations for the bulk

To derive the bulk constitutive equations for the mass fluxes Jα, reaction rates Rk, heat flux q, stress
tensor σ, polarization P and magnetizationM, we first identify the entropy production. To do so, we
insert the entropy density (5.3a) into the entropy balance (5.1a) and apply the chain rule of differentiation.
Then, the occurring time derivatives are substituted by means of the balance equations, where in
particular we apply the balance of the internal energy (3.26a), see Sect. 3.3.2. At this stage, it is still
possible to rearrange the terms in several ways. Once the entropy flux is fixed, the entropy production
is uniquely determined. In order to get the structure (5.2) we choose

φ = q + E ×M
T

−
∑
α∈I

µα
T
Jα . (6.1)

Other constitutive equations for the entropy flux different from (6.1) can be admissible as well. In general
such alternative choices will lead to different constitutive equation for the entropy production. For a
discussion of alternative choices of the electro magnetic contributions to the entropy density, we refer to
Sect. 6.4 and in [DG17] a non-trivial example of generalized entropy fluxes in the context of viscous
Cahn-Hilliard equations is discussed.

With the choice of (6.1), the entropy production is given by a sum of six binary products. We can identify
six dissipation mechanism related to their specific entropy production: shear viscosity ξSV , volume
viscosity ξV V , (bulk-)reactions ξR, thermodiffusion ξTD, polarization ξP and magnetization ξM . The
entropy production is then given by the constitutive equation

ξ = 1
T

(
T − 1

3 trace(T )1
)

:
(
D − 1

3 trace(D)1
)︸ ︷︷ ︸

=ξSV

+ 1
3

1
T

trace(T ) trace(D)︸ ︷︷ ︸
ξV V

+ 1
T

M∑
k=1

(
−
∑
α∈I

γkαmαµα

)
Rk

︸ ︷︷ ︸
ξR

+
(
q + (E ×M)

)
· ∇
(

1
T

)
−

∑
α∈I\{A0}

Jα ·
(
∇
(µα
T
− µ0

T

)
− 1
T

(
zαe0

mα

− z0e0

m0

)
E
)

︸ ︷︷ ︸
=ξTD

+
(
∂ρη̃

∂P
+ 1
T
E
)
·
(
∂tP + (υ · ∇)P − 1

2

(
∇υ −∇υT

)
P

)
︸ ︷︷ ︸

ξP

+
(
∂ρη̃

∂M + 1
T
B

)
·
(
∂tM+ (υ · ∇)M− 1

2

(
∇υ −∇υT

)
M
)

︸ ︷︷ ︸
ξM

. (6.2)
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Here we defined

T = σ + T

2

(
∂ρη̃

∂F uni
F uni + (F uni)T ∂ρη̃

∂F uni

T)
−
(
ρu− Tρη̃ −

∑
α∈I

ραµα + T

3 trace( ∂ρη̃
∂F uni

F uni)
)
1

+ 1
2(M⊗B +B ⊗M)− 1

2(E ⊗ P + P ⊗ E)− (E · P +M ·B)1 , (6.3)

D = 1
2
(
∇υ +∇υT

)
. (6.4)

In the derivation of the entropy production we used the constraint (3.3a) to eliminate the flux of the
speciesA0, such that only linearly independent mass fluxes appear in the entropy production. Moreover
we used a symmetry condition which originates from the transformation properties of the thermodynamic
fields, cf. Appx. B,

∂ρη̃

∂F uni
ik

F uni
jk + ∂ρη̃

∂Mi
Mj + ∂ρη̃

∂P i
P j = ∂ρη̃

∂F uni
jk

F uni
ik + ∂ρη̃

∂Mj
Mi + ∂ρη̃

∂P j
P i for i, j = 1, 2, 3 .

(6.5)

Furthermore the binary products of the entropy production (6.3) are formulated such that the transfor-
mation properties required by Axiom III (ii) are guaranteed.

The binary product due to shear viscosity is formulated in such a way that the matrices are symmetrically.
Thus, the anti-symmetric part of (E ⊗ P )∇υ and (M⊗B)∇υ is shifted to the entropy production
of polarization and magnetization, respectively.

To derive constitutive equations from (6.2), we combine the approaches of Sect. 5.2. In general,
the different dissipation mechanism can be coupled, e.g. volume viscosity can be coupled with bulk
reactions. To reduce the complexity of the constitutive equations, we only consider cross effects related
to thermodiffusion.

Thermodiffusion. For the mass fluxes, we choose a linear relation with cross effects, viz.

q + (E ×M) = − κ

T 2∇T −
∑

β∈I\{A0}
Lβ

(
∇
(µβ
T
− µ0

T

)
− 1
T

(zβe0

mβ

− z0e0

m0

)
E
)
, (6.6)

Jα = − Lα
T 2∇T −

∑
β∈I\{A0}

Mαβ

(
∇
(µβ
T
− µ0

T

)
− 1
T

(zβe0

mβ

− z0e0

m0

)
E
)

α ∈ I \ {A0} . (6.7)

The coefficient matrix

(
κ L
LT M

)
is symmetric and positive definite. In particular, the heat conduc-

tivity κ and the mobility matrix M are symmetric and positive definite.

Reactions. For chemical reactions, often an exponential Arrhenius-type dependence on the tem-
perature and some activation energy is expected. Therefore, we choose a non-linear relation for the
chemical reactions,

Rk = Rk
0

(
1− exp

( Ak

kBT

∑
α∈I

γkαmαµα

))
for k ∈ {1, · · · ,M} , (6.8)

with positive coefficients Ak, Rk
0 . For simplicity, we neglected cross effects between the different

reactions.
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Viscosity. We choose linear relations for the volume viscosity and for the shear viscosity, viz.

1
3 trace(T ) =

(
λ+ 2

3η
)

trace(D) , (6.9a)

T − 1
3 trace(T )1 = 2η

(
D − 1

3 trace(D)1
)
, (6.9b)

where the phenomenological coefficients satisfy (λ+ 2
3η) > 0 and η > 0. The constitutive equations

(6.9a) and (6.9b) imply a constitutive equation for the symmetric stress tensor σ, viz.

σ = −T
2

(
∂ρη̃

∂F uni
F uni + (F uni)T ∂ρη̃

∂F uni

T)
+
(
ρu− Tρη̃ −

∑
α∈I

ραµα + T
3 trace

( ∂ρη̃
∂F uni

F uni
))

1

+ 1
2(E ⊗ P + P ⊗ E)− 1

2(M⊗B +B ⊗M)− (E · P −M ·B)1

+ λ div(υ)1 + η
(
∇υ + (∇υ)T

)
. (6.10)

Polarization and magnetization. For the vector of polarization P and the magnetizationM we
choose linear relations without cross effects,

τP

ε0

(
∂tP + (∇P )υ − 1

2

(
∇υ −∇υT

)
P

)
=T ∂ρη̃

∂P
+ E , (6.11)

τMµ0

(
∂tM+ (∇M)υ − 1

2

(
∇υ −∇υT

)
M
)

=T ∂ρη̃

∂M +B . (6.12)

Here, the phenomenological coefficients τP > 0 and τM > 0 are the relaxation times of polarization
and magnetization.

6.2 Constitutive relations for the surface

The exploitation of the entropy principle for the surface is analogous to the bulk. On the surface, we have
to determine the heat flux q

s
, mass fluxes J

s
α, the stress tensor S and reaction rates R

s

k. Moreover, we

have to determine the normal components of the heat flux q±ν , of the mass fluxes J±ν,α and of the stress
tensor σ± · ν.

First, we substitute the entropy density (5.3b) into the entropy balance (5.1a) and choose the entropy
flux in a way that allows for the structure (5.2) of the entropy production, viz.

φ
s

=
q
s

T
s

−
∑
α∈IS

µ
s
α

T
s

J
s
α . (6.13)

Then, we identify six dissipation mechanism: surface viscosity ξ
s

τ
V , surface thermo-diffusion ξ

s

τ
TD,

surface reactions ξ
s
R, heat transport normal to the surface ξ

s

ν
H , mass transport normal to the surface
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ξ
s

ν
MT , viscosity normal to the surface ξ

s

ν
V . The entropy production on the surface is then

ξ
s

= 1
T
s

[
SΓ∆ + T

s

∂ρ
s
η̃
s

∂τ uni,i
∆

τ uni,i
Σ gΣΓ −

(
ρ
s
u
s
− T

s
ρ
s
η̃
s
−
∑
α∈IS

µ
s
αρ
s
α + 1

2Ts

∂ρ
s
η̃
s

∂τ uni,i
Σ

τ uni,i
Σ

)
g∆Γ
]

·
(

1
2
(
gΓΛυ

s

Λ
τ‖∆ + g∆Λυ

s

Λ
τ‖Γ
)
− bΓ∆υ

s
ν

)
︸ ︷︷ ︸

=ξ
s

τ
V

+q
s

∆
( 1
T
s

)
‖∆
−

∑
α∈IS\{A0}

J
s

∆
α,τ

((µ
s
α

T
s

−
µ
s

0

T
s

)
‖∆
− 1
T
s

(zαe0

mα

− z0e0

m0

)
g∆Γ

(
Ē + υ

s
× B̄

)Γ

τ

)
︸ ︷︷ ︸

=ξ
s

τ
TD

− 1
T
s

Ms∑
k=1

( ∑
β∈IS

γ
s

k
βmβµ

s
β

)
R
s

k

︸ ︷︷ ︸
ξ
s
R

+
[[(
qν + (E ×M)ν +

(
Tρη̃ +

∑
α∈I

µαρα
)(
υν − υ

s
ν

))( 1
T
− 1
T
s

)]]
︸ ︷︷ ︸

=ξ
s

ν
H

−
[[ ∑
α∈I±\{A0±}

(
Jα,ν + ρα(υν − υ

s
ν)
)( 1

T

(
µα − µ0±

)
− 1
T
s

(
µ
s
α − µ

s
0±
))]]

︸ ︷︷ ︸
=ξ
s

ν
MT

+ 1
T
s

[[
(υ − υ

s
)T
(
σ − E ⊗ P +M⊗B −

(
ρu− Tρη̃ −

∑
α∈I

µαρα − E · P +M ·B
)
1

+(P ×B)⊗ (υ − υ
s
)−

(
1
2ρ|υs − υ|

2 + T
s
ρ
(µ0±
T
−
µ
s

0±

T
s

))
1
)
ν
]]

︸ ︷︷ ︸
=ξ
s

ν
V

. (6.14)

As in the bulk, the entropy production is formulated such that the factors of the binary products are
Galilean scalars, vectors or tensors, respectively. Furthermore the transformation properties of the
thermodynamic fields restricts the entropy density, see Appx. B, and yields a symmetry condition,

∂ρ
s
η̃
s

∂τ uni,i
∆

τ uni,i
Σ gΣΓ =

∂ρ
s
η̃
s

∂τ uni,i
Γ

τ uni,i
Σ gΣ∆ and

∂ρ
s
η̃
s

∂τ uni,i
∆

νi = 0 . (6.15)

The surface entropy production (6.14) shows some similarities to the bulk entropy production (5.8), but
also some differences. While the bulk entropy production contains two dissipation mechanism due to
polarization and magnetization, there are no similar contributions on the surface, because we restricted
the constitutive functions ρ

s
η̃
s

on a singular surface to be independent of the electromagnetic fields.

Moreover, there are on the surface dissipation mechanism of different type: while the one class contains
only fluxes that are tangential to the surface, the second class consists of those related to the fluxes
normal to the surface. In general, it is possible to introduce cross effects between these two different
classes, cf. [Bed86]. For simplicity, we do not discuss these kind of cross effects here.
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Thermo diffusion. As in the bulk, we chose a linear relation with cross effects between the heat flux
q
s

and and the mass fluxes J
s
α,

q
s

∆
τ = −

κ
s

T
s

2 g
∆Γ(T

s
)‖Γ

−
∑

β∈IS\{A0}
L
s
β

[
g∆Γ
(µ

s
β

T
s

−
µ
s

0

T
s

)
‖Γ
− 1
T
s

(zβe0

mβ

− z0e0

m0

)(
Ē + υ

s
× B̄

)∆

τ

]
,

(6.16)

J
s

∆
α,τ = −

L
s
α

T
s

2 g
∆Γ(T

s
)‖Γ

−
∑

β∈IS\{A0}
M
s
αβ

[
g∆Γ
(µ

s
β

T
s

−
µ
s

0

T
s

)
‖Γ
− 1
T
s

(zβe0

mβ

− z0e0

m0

)(
Ē + υ

s
× B̄

)∆

τ

]
,

(6.17)

for α ∈ IS \ {A0}. The phenomenological matrix

(
κ
s

L
s

L
s

T M
s

)
is symmetric and positive definite.

Surface reactions. The exponential form of the Butler-Volmer equations for the surface reaction
rates, cf. e.g. [NTA04], suggests to apply the non-linear closure. Similar to the bulk and neglecting cross
effects between the different reactions, we choose the exponential relations

R
s

k = R
s

k
0

(
1− exp

( A
s

k

kBT
s

∑
α∈IS

γ
s

k
αmαµ

s
α

))
for k ∈ {1, · · · ,M} , (6.18)

with positive phenomenological coefficients A
s

k, R
s

k
0 .

Surface viscosity. In analogy to the bulk, we define the shorthand notation

T
s

∆Γ = SΓ∆ + T
s

∂ρ
s
η̃
s

∂τ uni,i
∆

τ uni,i
Σ gΣΓ −

(
ρ
s
u
s
− T

s
ρ
s
η̃
s
−
∑
α∈IS

µ
s
αρ
s
α + 1

2Ts

∂ρ
s
η̃
s

∂τ uni,i
Σ

τ uni,i
Σ

)
g∆Γ , (6.19)

D
s

∆Γ = 1
2
(
gΓΛ υ

s

Λ
τ‖∆ + g∆Λ υ

s

Λ
τ‖Γ
)
− bΓ∆ υ

s
ν . (6.20)

The linear closure yields for the trace and and for the deviatoric part of the surface stress tensor T
s

the

constitutive equations:

1
2 trace(T

s
g) = (λ

s
+ η

s
) trace(D

s
g−1) (6.21)

T
s
− 1

2 trace(T
s
g) g−1 = 2η

s

(
g−1D

s
g−T − 1

2 trace(D
s
g−1)g−1

)
. (6.22)

The phenomenological coefficients satisfy λ
s

+ η
s
≥ 0 and η

s
≥ 0. Substituting the definition of T

s
into

the constitutive equations (6.22) and (6.21) yields the constitutive equation for the symmetric surface
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stress tensor:

SΓ∆ =− T
s

∂ρ
s
η̃
s

∂τ uni,i
∆

τ uni,i
Σ gΣΓ +

(
ρ
s
u
s
− T

s
ρ
s
η̃
s
−
∑
α∈IS

µ
s
αρ
s
α + 1

2Ts

∂ρ
s
η̃
s

∂τ uni,i
Σ

τ uni,i
Σ

)
g∆Γ

+ 1
2(λ

s
+ η

s
) trace(D

s
g−1) + 2η

s

(
g−1D

s
g−T − 1

2 trace(D
s
g−1)g−1

)
. (6.23)

Mass flux and stress normal to the surface. For the entropy contributions coming from the bulk,
we choose the linear relations on S(

qν + (E ×M)ν +
(
Tρη̃ +

∑
α∈I

µαρα
)(
υν − υ

s
ν

))±
= ±κ

s

±
( 1
T
− 1
T
s

)±
,

(6.24a)(
Jα,ν + ρα(υν − υ

s
ν)
)±

= ∓M
s

±
α

( 1
T

(
µα − µ0±

)
− 1
T
s

(
µ
s
α − µ

s
0±
))±

for α ∈ I± \ {A0±} .
(6.24b)(

σijνjg
Γ∆τ iΓ − E∆

τ Pν +M∆
τ Bν + (P ×B)∆

τ (υν − υ
s
ν)
)±

= ±η
s

±(υ∆
τ − υ

s

∆
τ )± ,

(6.24c)(
νT (σ−E ⊗ P +M⊗B)ν −

(
ρu− Tρη̃ −

∑
α∈I±

µαρα − EkP k +MkBk
)

+(P ×B)ν(υν − υ
s
ν)−

(
1
2ρ|υs − υ|

2 + T
s
ρ
(µ0±
T
−
µ
s

0±

T
s

)))±
= ±λ

s

±ρ±
(
ρ(υν − υ

s
ν)
)±

.

(6.24d)

The coefficients κ
s

±, η
s

± and λ
s

± are positive and the matrices M
s

± are symmetric and positive definite.

6.3 Remarks on the constitutive relations

Comparison of bulk and surface equations. Comparison of the constitutive equations for bulk and
surface reveals that in the case of vanishing polarization and magnetization the bulk and surface
equations have an analogous mathematical structure. The differences are due to the fact that we
do not consider surface polarization and surface magnetization in constitutive equation (5.3b) for
the surface entropy density. For vanishing polarization and magnetization, the electromagnetic field
solely contributes to the mass flux and heat flux in form of the electromotive intensity E . Although a
contribution of the electromagnetic field to the surface mass fluxes, which results from the linear closure
we applied here, has to be expected due to the symmetry properties between bulk and surface, it is not
present in literature [Mül85, AB87, KB08].

Free energy density. The temperature T is a quantity of central interest in thermodynamics. It is
here defined according to (5.4) as the derivative of the entropy density with respect to the internal
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energy density. For the construction of constitutive equations it is often beneficial to use the temperature
T resp. T

s
as an independent variable, instead of the internal energy density. To replace the internal

energy density as an independent variable by the temperature, the free energy density ρψ is introduced
by means of Legendre transformation of the entropy density ρη, viz.

ρψ = ρu+M ·B − Tρη , ρ
s
ψ
s

= ρ
s
u
s
− T

s
ρ
s
η
s
. (6.25)

For the free energy density we thus have representations as functions of the temperature

ρψ = ρψ̂(T, (ρα)α∈I ,F uni,P ,M) , ρ
s
ψ
s

= ρ
s
ψ̂
s
(T
s
, (ρ
s
α)α∈I , τ uni

1 , τ uni
2 ) . (6.26)

Moreover, the Legendre transformation implies relations between the constitutive functions of the free
energy density and the entropy density 8:

∂ρψ̂

∂T
= −ρη̂ and

∂ρψ̂

∂X
= − 1

T

∂ρη̂

∂X
for X ∈ {ρα}α∈I ∪ {F uni,P ,M} , (6.27a)

∂ρ
s
ψ̂
s

∂T
s

= −ρ
s
η̂
s

and
∂ρ
s
ψ̂
s

∂X
s

= − 1
T
s

∂ρ
s
η̂
s

∂X
s

for X
s
∈ {ρ

s
α}α∈IS ∪ {τ uni

1 , τ uni
2 } . (6.27b)

From the definition (6.25) and using the transformation properties (6.27) we get relations between the
internal energy density and the free energy density:

∂

∂T

(ρψ̂
T

)
= −ρû+M ·B

T 2 ,
∂

∂T
s

(ρ
s
ψ̂
s

T
s

)
= −

ρ
s
û
s

T
s

2 . (6.28)

Pressure, surface tension and Gibbs-Duhem equation. Further important thermodynamic quanti-
ties are the pressure p and the surface tension γ

s
. Their definition is not unique and different approaches

can be found in the literature, in particular in the presence of electromagnetic fields. Here, we define
pressure and surface tension as the trace of the stress tensors, i.e.

p = −1
3 trace(σ) , γ

s
= 1

2 trace(S g) . (6.29)

The constitutive equations (6.10) and (6.23) then imply that pressure and surface tension depend on
deformation, viscosity, polarization and magnetization.

In the case of vanishing electromagnetic fields and vanishing viscosity, the constitutive equations for
pressure and surface tension simplify to

p = −ρψ +
∑
α∈I

ραµα , γ
s

= ρ
s
ψ
s
−
∑
α∈IS

µ
s
αρ
s
α . (6.30)

These equations are the well known Gibbs-Duhem relation and its counterpart on the surface, cf. [dM84,
Mül85]. If the velocities can be neglected, i.e. υ = 0 and υ

s
= 0, then the normal component of the

surface momentum balance (3.7b) simplifies to the Young-Laplace equation

[[p]] = 2γ
s
kM , (6.31)

where kM = 1
2bΓ∆g

Γ∆ is the mean curvature.

8ρη̂ and ρ
s
η̂
s

here denote the constitutive functions depending on the temperature T respective T
s

.
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Adsorption. In chemistry an adsorption process is often described as a reaction that contributes
to the mass production r

s
α for α ∈ IS . A similar approach is not possible in the context of electro-

thermodynamics, because the constitutive equations for the surface reactions can not directly couple
bulk and surface species. Thus, adsorption of species is here determined by the constitutive equations
(6.24d) and (6.24b) for the mass fluxes in normal direction onto the surface. The driving forces for the
mass fluxes are the differences of chemical potentials between bulk and surface. The adsorption rate of
a species Aα is thus determined by a kinetic coefficient M

s

±
α in (6.24b). If species Aα is non-adsorbing,

then M
s

±
α = 0.

In addition, the total mass flux ρ(υν − υ
s
ν)± in normal direction onto the surface is determined by

the constitutive equation (6.24d). In particular, it depends on the Cauchy stress tensor. Under the
assumption that the viscosity in the bulk are small and the free energy density in the bulk is independent
of the deformation gradient, i.e. ρψ = ρψ̂(T, (ρα)α∈I ,P ,M), then (6.24d) simplifies to (due to
(6.10) for σ)(

(P ×B)ν(υν − υ
s
ν)−

(
1
2ρ|υs − υ|

2 + T
s
ρ
(µ0

T
−
µ
s

0

T
s

)))±
= ±λ

s

±ρ±
(
ρ(υν − υ

s
ν)
)±

.

(6.32)

If the electromagnetic contribution (P ×B)ν(υν − υ
s
ν) as well as kinetic contribution 1

2ρ|υs − υ|
2

vanishes, then the total mass flux is determined by the adsorption of species A0.

6.4 Discussion on polarization and Debye-equation for dielectric relaxation

The constitutive equations of this section are consequences of the choice of the variables for the entropy
density (5.3a). Various different sets of variables can be compatible with the axioms I-III of the entropy
principle. In particular, the choice of P andM in (5.3a) is not mandatory, and using E andB instead
might seem more natural.

In local equilibrium, i.e. ξP = 0 and ξM = 0, there is no preference for either choice. The constitutive
equations (6.11)–(6.12) then imply

E = ∂ρψ̃

∂P
, B = ∂ρψ̃

∂M . (6.33)

By the Legendre transformation, variables (P ,M) can be replaced by (E ,B), cf. e.g. the discussion
of the different sets of variables in [HvdVU06].

Relaxation. The situation changes decisively in non-equilibrium. For simplicity, let us consider a
system with only one species and two different constitutive functions for the entropy density

ρη = ρη̃PM(ρu+M ·B, ρ,P ,M) , ρη = ρη̃EB(ρu− E · P , ρ,E ,B) . (6.34)

In each setting an according temperature is then defined as

1
T PM

= ∂ρη̃PM

∂ρu+M ·B
,

1
T EB

= ∂ρη̃EB

∂ρu− E · P . (6.35)
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The corresponding free energy densities that follow from (6.34) and (6.35) are

ρψPM := ρu− T PMρη̃PM +M ·B , ρψEB := ρu− T EBρη̃EB − P · E . (6.36)

This coincides with the cases a) and case c) in [HvdVU06, Sect. 3.3], if the internal energy density is
defined as ρu+M ·B, as we did in axiom IV of the entropy principle. The corresponding constitutive
functions of the free energy densities are

ρψPM = ρψ̂PM(T PM, ρ,P ,M) , ρψEB = ρψ̂EB(T EB, ρ,E ,B) . (6.37)

Then, exploitation of the entropy principle yields for the two cases the respective entropy productions
due to polarization

ξPMP = + 1
T PM

(
E − ∂ρψ̂PM

∂P

)(
∂tP +∇P υ − 1

2P
(
∇υ −∇υT

))
, (6.38a)

ξEBP = − 1
T EB

(
P + ∂ρψ̂EB

∂E

)(
∂tE +∇E υ − 1

2E
(
∇υ −∇υT

))
. (6.38b)

Both, ξPMP and ξEBP , are compatible with the structure of (5.2) in the axiom III(ii). Comparing (6.38a)
and (6.38b), we observe that upon an interchange of the variables P and E the two relations are
almost identical. But, while the entropy production ξPMP begins with a positive sign, there is a negative
in ξEBP .

For further analysis, it is necessary to specify the dependence of free energy density on (P ,M)
respective (E ,B). We choose

ρψPM = ρ̂̂ψPM(T PM, ρ,M) + 1
2ε0χ |P |

2 , ρψEB = ρ̂̂ψEB(T EB, ρ,B)− ε0
2 χ|E|

2 , (6.39)

with a constant electric susceptibility χ. When now applying the linear closure to derive the constitutive
equations, we get in the case of vanishing velocity, i.e. υ = 0 the constitutive equations

1
ε0
τPM∂tP = +

(
E − 1

ε0χ
P
)
, (6.40a)

ε0τ
EB∂tE = −

(
P − ε0χE

)
. (6.40b)

where the relaxations constants τPM, τEB > 0 are positive. We conclude from (6.38)

E = ∂ρψPM

∂P
and P = −∂ρψ

EB

∂E in equilibrium, (6.41)

such that in both cases the polarization is proportional to the electro-motoric intensity, i.e.

P = ε0χE in equilibrium. (6.42)

In non-equilibrium the situation is different. For simplicity let us assume that the magnetization is in
local equilibrium, i.e. ξM = 0, and the free energy densities (6.37) are independent ofM and B
respectively. Under this simplificationM = 0,B = 0 and E = E, and Maxwell’s equations simplify
to

div(ε0E + P ) = 0 , curlE = 0 . (6.43)
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Then, the divergence of the consitutive equations (6.40) simplify to

(6.40a) & (6.43) =⇒ τPM∂t div(P ) = −(1 + 1
χ
) div(P ) , (6.44a)

(6.40b) & (6.43) =⇒ τEB∂t div(E) = +(1 + χ) div(E) . (6.44b)

Now we see that (6.44a) div(P ) vanishes for t→∞. In contrast, (6.44b) implies that div(E) blows
up in time with an exponential growth.

We conclude that although both choices of independent variables, (P ,M) and (E , B), yield the
same equilibrium relation (6.42), and in both cases the entropy production is non-negative due to the
linear closure (6.40), that the latter choice of the relaxation equation (6.44b) is incompatible with the
equilibrium relations. Therefore, the approach based on the independent variables P ,M should be
strongly preferred.

An analogous argumentation also holds for the magnetization.

We may recapitulate the described problem by stating: The entropy principle does not necessarily
prevent instability of the resulting system of field equations. This phenomenon is already known in
a different field. The modelling of non-newtonian fluids with differential type constitutive functions for
the stress with the symmetric part of the velocity gradient and its time derivatives as variables leads
likewise to exponential growth in a situation where the fluid is expected to approach equilibrium. Here
the problem is removed by changing the velocity gradient and the stress as variable and constitutive
quantity. The details are carefuly described in [MW86] and in [MR98].

Debye-equation. The Debye-equation is used to describe for ideal systems the dielectric relaxation,
i.e. the response of the electric field inside a dielectric material to the excitation by an oscillatory outer
electric field, cf. e.g. [dM84, BM05]. In our setting, the Debye-equation is given by (6.40a) and its
derivation is an immediate consequence of the entropy principle of Sect. 5.2. Our equation (6.40a) is
identical to the Debye-equation found by deGroot and Mazur in [dM84, pp. 400] for matter at rest. In the
case of non-vanishing velocities, i.e. υ 6= 0, the Debye-equation found by deGroot and Mazur is not
identical to equation (6.40a) in this paper.

7 Application to electrochemical systems

The constitutive equations of Sect. 6 have been derived without making use of any particular material
specific properties. They only rely on the universal balance equations and the entropy principle.
All material properties of a specific electrochemical system thus have to be incorporated into the
constitutive functions of the entropy and the phenomenological coefficients. In this section we illustrate
the application of the developed theoretical framework for the example of liquid electrolytes in contact
with metal electrodes.

Our main interest is the accurate description of the charge transport in electrolytes and electrochemical
processes at the electrode-electrolyte interface. By interface we always mean the compound con-
sisting of surface and the adjacent boundary layers from both sides. We summarize recent results
[DGM13, DGL14, DGM15, DGM16, LGD16, DGLM17], which are related to an improved understand-
ing of the double layer structure that in particular allows quantitative and qualitative prediction of
the differential double layer capacity, and enables a better understanding of electrocapillarity effects.
Moreover, the above developed framework allows the formulation of extended Nernst-Planck fluxes
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and constitutive equations for surface electron transfer reactions that allow to recover generalized
Butler-Volmer equations.

A particular difficulty for the development of mathematical models for batteries, fuel cells, electrolyzers
or other electrochemical systems is due to the complexity that results from very different scales
in space and time, the coupling of bulk and surface processes and the interplay between different
physical phenomena like electrical and mechanical phenomena. Therefore, we first identify simplifying
assumptions that are appropriate to adapt the most general theory developed above to the description
of liquid electrolytes and metal-electrolyte interfaces.

7.1 Dimensional analysis of Maxwell’s equations

To write Maxwell’s equations in non-dimensional form, we introduce characteristic reference values
tref , xref for the time and space coordinates, nref

α for the number densities, and Eref , Bref for the
electromagnetic field. The velocity, polarization and magnetization are scaled by reference values
derived from those above, i.e. vref = xref /tref , P ref = ε0E

ref ,Mref = 1
µ0
Bref . Upon introduction

of the dimensionless quantities

λ =

√
ε0Eref

e0nrefxref , β =
√
Bref vref

Eref , δ = βλ
c0

υref , (7.1)

we get the following dimension less form of Maxwell’s equations in the bulk

β2∂B̆

∂t
+ curl Ĕ = 0 , (7.2a)

div B̆ = 0 , (7.2b)

−λ2∂(Ĕ + P̆ )
∂t

+ δ2 curl(B̆ − M̆) = n̆Fῠ + J̆F , (7.2c)

λ2 div(Ĕ + P̆ ) = n̆F . (7.2d)

The non-dimensional bulk definitions of electromotive intensity and magnetization read

Ĕ = Ĕ + β2(ῠ × B̆) , M̆ = M̆ + λ2

δ2 (ῠ × P̆ ) . (7.3)

Depending on the chosen characteristic reference values, the size of the dimensionless quantities may
differ by several orders of magnitude, allowing considerable simplifications of the system.

Magnetostatics: λ → 0. Under the assumption that the derivatives of Ĕ + P̆ remain bounded,
Maxwell’s equations simplify in the asymptotic limit λ→ 0. Rescaled to dimensional quantities we get
the equations of magnetostatics for the magnetic flux densityB,

divB = 0 , (7.4a)

curl( 1
µ0
B −M ) = JF (7.4b)

and the magnetization is identical to the Lorentz magnetization, i.e. M =M. The two remaining
Maxwell’s equations are

∂B

∂t
+ curlE = 0 , 0 = nF , (7.5)

which, in conjunction with the equation of matter, determine the electric fieldE.
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Electrostatics: β, 1/δ → 0. In this limit, the equations of electrostatics for the electric field are in
dimensional form

curlE = 0 , (7.6a)

div(ε0E + P ) = nF (7.6b)

and the electromotive intensity is identical to the electric field, i.e. E = E. The remaining Maxwell’s
equations determine the magnetic flux densityB, i.e.

divB = 0 , curl( 1
µ0
B −M) = 0 . (7.7)

The equation (7.6a) implies the existence of a potential, which is called electrostatic potential ϕ,

E = −∇ϕ . (7.8)

Assuming a simple constitutive equation for the polarization P = χε0E, where χ is the electric
susceptibility, we get from (7.6b) Poisson’s equation for the electrostatic potential,

−(1 + χ)ε0∆ϕ = nF . (7.9)

The dimensional analysis can be performed in analogue manner for the surface equations, cf. [Guh15].
In the limit β → 0 and 1/δ → 0 Maxwell’s surface equations yield two boundary conditions for the
electrostatic potential,

n
s

F = −ε0[[(1 + χ)∇ϕ]] , 0 = ν × [[∇ϕ]] , (7.10)

where the susceptibility χ can have different values on both sides of the surface. Due to the second
condition in (7.10), the jump of the potential [[ϕ]] is determined up to a constant and in particular, this
constant is independent of the material. Since the equations for the electrostatic potential allow a
normalization, we can set this constant to zero. Thus, the electrostatic potential is continuous at the
surface, which allows to define the electrostatic potential of the surface as

ϕ
s

= ϕ|+S = ϕ|−S on S . (7.11)

Application to electrochemical systems. We consider a system that is varying moderately in time,
has a number density in a typical range for solids and liquids, and a magnetic field strength that does
not significantly exceed the field of common permanent magnets, viz.

tref = 1s , nref = 1028m−3 , Bref = 10−1 As
m2 . (7.12)

An important feature of electrochemical systems is the formation of narrow double layers at the contact
of different materials. The double layer is characterized by a typical width in the range of nanometers
and a strong electric field in the range of 1 V

nm . We thus choose the reference values

xref = 10−9m , Eref = 109 V
m , (7.13)

implying for the dimensionless quantities

λ2 ≈ 10−2 , β2 ≈ 10−19 , δ2 ≈ 1014 . (7.14)

The smallness of β2 and 1/δ2 compared to λ suggest for the determination of E the use of the
electrostatic limit equations (7.6), or (7.9) and (7.10), respectively. In conclusion, for electrochemical
system the electrostatic approximation is valid, as long as the characteristic values of the system at
hand are in the order of magnitude defined in (7.12) and (7.13). In particular in systems where the
characteristic time scale is smaller, for instance for impedance measurements, the application of the
electrostatic approximation is not appropriate.
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7.2 Free energy models for liquid electrolytes and metal-electrolyte interfaces

To develop a complete mathematical model for liquid electrolytes and metal-electrolyte interfaces, we
start with some simplifying assumptions. For the description of polarizable liquid electrolytes, it is
reasonable to neglect the bulk and surface deformation gradients F uni and τ uni

1/2 and, in particular based
on the previous dimensional analysis, the dependency of the free energy function on the magnetization
M. The constitutive function for the free energy densities simplify to

ρψ = ρψ̂(T, (ρα)α∈I ,P ) , ρ
s
ψ
s

= ρ
s
ψ̂
s
(T
s
, (ρ
s
α)α∈I) . (7.15)

We consider isothermal processes only. Thus the temperature in the bulk and on surface is given by an
appropriate reference temperature T ref that usually be the room temperature.

T = T
s

= T ref . (7.16)

The energy balances (3.10) then only serve to determine the heat fluxes that are necessary to enable
an isothermal process.

In the following, free energy functions for bulk and surface are developed. We only sketch the main
ideas of the derivation and refer for more details to [DGM13, DGL14, Guh15, LGD16]. In particular, we
illustrate here how elasticity contributes to the free energy function and how finite ion sizes can be
incorporated into the electrolyte model.

Bulk free energy density. The free energy density is not directly measurable, such that a derivation
of a free energy density must be based on constitutive relations that are in simple equilibrium situations
backed by sufficient empirical evidence or that are derived from a microscopic theory. For liquid
electrolytes we consider free energy functions which consist of four contributions that are related to
polarization, mechanical stresses, mixing entropy and a temperature dependent reference contribution,
i.e.

ρψ = ρψpol + ρψmech + ρψmix + ρψref . (7.17)

For the derivation of the individual contributions of the free energy it is convenient to introduce the total
mole density of particles n and the mole fractions yα by

n =
∑
α∈I

nα and yα = nα
n

with
∑
α∈I

yα = 1 . (7.18)

The entropy of mixing accounts for the number of possible arrangements of ions and solvent molecules
for a give macroscopic state. It is determined by statistical thermodynamics by means of the Boltzmann
formula. Thus, the corresponding free energy contribution reads

ρψmix(T, (ρα)α∈I) = kBT
∑
α∈I

nα ln(yα) . (7.19)

The mechanical part of the free energy density function is derived by integration of the identity

p = ρ2 ∂
∂ρ

(ρψ̂
ρ

), which in turn is derived from a generalization 9 of (6.30), cf. [DGG+10, Guh15]. We

9Equation (6.30) is defined originally for a non-polarizable materials. Since the polarization (7.24) is independent of the
number densities, the definition of the Gibbs-Duhem equation (6.30) can be easily extended to the case handled here, see
[DGM13, DGL14].
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assume a simple linear constitutive relation for the pressure p,

p = pR +K(nH − 1) with H =
∑
α∈I

vref
α yα . (7.20)

Herein pref is the pressure of the reference state and K denotes the bulk modulus of the electrolyte.
The vref

α is the partial specific volume of the constituent Aα under the pressure pref and temperature
T ref . The function H is the mean specific volume of the mixture and accounts for volume changes due
to a local variation of the mixtures composition. The mechanical contribution to the free energy density
is derived from (7.20) as

ρψmech(T, (ρα)α∈I) = (pref −K)(nH − 1) +K nH ln(nH) . (7.21)

The reference contribution to the free energy is assumed to be

ρψref(T, (ρα)α∈I) =
∑
α∈I

ραψ
ref
α , (7.22)

whereψref
α denotes the reference free energy of each individual constituent. In the reference valuesψref

α

the specific heat is encoded, but not further outlined due to the assumption of isothermal processes.

In equilibrium, we want to maintain the simple constitutive relation between electric field and polariziation

P = χε0E . (7.23)

Thus, the corresponding contribution due to polarization to the free energy density that results by
integration from relation (6.11), is

ρψpol(T,P ) = 1
2ε0χ |P

2| . (7.24)

Here the susceptibility χ is assumed to be independent of the number densities10, but may dependent
on the temperature.

From the free energy contributions (7.17)–(7.22) and the definition (5.4a) we get the chemical potentials

µα = 1
mα
ψref
α + vref

α

mα

(
pref +K ln

(
1 + p−pref

K

))
+ kBT

mα
ln yα for α ∈ I . (7.25)

Here, we used the constitutive relation (7.20) to express the pressure dependency of the chemical
potentials.

Surface free energy density. A simple surface free energy model of a metal-electrolyte-interface
was proposed in [LGD16] that we will summarize here. On the surface there is no contribution from the
electric field, but, as in the volume, we assume additive mechanical, entropic and constant contributions,
i.e.

ρ
s
ψ
s

= ρ
s
ψ
s

mech + ρ
s
ψ
s

mix + ρ
s
ψ
s

ref , (7.26)

where the reference contributions are of the form

ρ
s
ψ
s

ref =
∑
α∈IS

ρ
s
αψ
s

ref
α . (7.27)

10The assumption that the susceptibility is independent of number densities is not necessary, but this leads to simplified
constitutive relations, in particular the chemical potentials are independent of polarization.
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The reference values may depend on the temperature and in general also on the crystallographic
orientation of the surface. The set of constituents IS on the surfaces contains all electrolytic bulk
species, the metal bulk constituents, which are the electrons e and metal ions M, and in addition a
certain number of reaction products of the bulk species. We assume that electrons interact neither in
entropic nor in elastic manner with the other surface species and thus only contribute to the reference
energy.11

Let aref
M and aref

α denote the specific area of a metal ion and the adsorbates, respectively. We assume
that the surface is build from an one atomic layer of metal ions that offers adsorption sites to the
electrolyte species and the reaction products. Since some of the sites may be empty, we introduce
the surface density of vacancies with a corresponding specific area aref

V . Then the surface density of
vacancies is given by 12

aref
V n

s
V = aref

M n
s
M −

∑
α∈IS\{e,M}

aref
α n

s
α . (7.28)

For the formulation of the free energy contributions it is useful to introduce total mole densities n
s

of

adsorbates and the surface fractions y
s
α of adsorbates and vacancies, respectively,

n
s

=
∑

α∈IS\{e,M}
n
s
α + n

s
V and y

s
α =

n
s
α

n
s

with
∑

α∈IS\{e,M}
y
s
α + y

s
V = 1 . (7.29)

The entropic contribution to the surface free energy is determined by statistical thermodynamics as in
the bulk and takes into account the mixing entropy of the adsorbates and reaction products,

ρ
s
ψ
s

mix = kBT
∑

α∈IS\{e,M}

(
n
s
α ln(y

s
α)− n

s
V ln(y

s
V )
)
. (7.30)

The mechanical contribution of the free surface energy is based on a simple constitutive model for the
surface tension. Let γ

s

ref be a reference surface tension and K
s

the surface modulus. Then we set

γ
s

= γ
s

ref +K
s

(
aref
M n

s
M − 1

)
. (7.31)

Here, the surface tension is assumed to be a function of the metal ion density n
s
M only. But, in general,

adsorption and surface reaction may change the metal density and therefore the surface tension. Since
in general K

s
is large for metals, small changes in n

s
M lead to significant changes in the surface tension.

Thus the surface tension is also indirectly related to the surface coverage with adsorbates. Insertion of
(7.31) into (6.30)right and integration 13 yields for the mechanical contribution to the free energy,

ρ
s
ψ
s

mech = ρ
s
ψ
s

ref
M − (γ

s
−K

s
)(aref

M n
s
M − 1)−K

s
aref
M n

s
M ln(aref

M n
s
M) . (7.32)

The resulting chemical potentials are

µ
s
α = 1

mα
ψ
s

ref
α + kBT

mα
ln(y

s
α)− kBT

mα

aref
α

aref
V

ln(y
s
V ) , α ∈ IS \ {e,M} , (7.33a)

µ
s
M = 1

mM
ψ
s

ref
M + kBT

mM

aref
M

aref
V

ln(y
s
V )− aref

M

mα

(
γ
s

ref +K
s

ln
(γ
s
−γ
s

ref

K
s

+ 1
))

, (7.33b)

µ
s
e = 1

me
ψ
s

ref
e . (7.33c)

11This assumption allows to consider the specific volume of the electrons to vanish.
12The specific area of the electrons can be considered to vanish.
13For the integration the constitutive relation (6.30)right has to be rewritten by variable transformation to appropriate form.

The details are figured out in [LGD16, Appendix A].
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Figure 2: Sketch of the mixture constituents in the volume and on the surface. Anions and cations
consist of a center ion and a surrounding solvation shell of bounded and oriented solvent molecules.
In addition there may be free solvent molecules and unoccupied sites on the surface. Figure from
[DGLM17].

In contrast to the bulk the surface chemical potentials of the adsorbates are independent of the stress
tensor, i.e. surface tension, but we have contributions from the vacancies of the underlying lattice.

The incompressible limit. For liquid electrolytes, in particular for aqueous electrolytes, we expect
that the volume does not change significantly if the pressure is varied. We can incorporate this behavior
by means of the asymptotic limit K/pref →∞. In analogous way, we consider on the surface the limit
K
s
/γ
s

ref → ∞. In the incompressible limit the relations (7.20) and (7.31) can not be used anymore

to determine the pressure p and the surface tension γ
s
, respectively. Therefore, p and γ

s
become new

independent unknowns of the system and instead of the constitutive equations (7.20) and (7.31) there
are the so-called incompressiblitiy constraints

K/pref →∞ :
∑
α∈I

vref
α nα = 1 , (7.34a)

K
s
/γ
s

ref →∞ : aref
M n

s
M = 1 . (7.34b)

The chemical potentials become linear in the pressure respective surface tension, i.e.

K/pref →∞ : µα = 1
mα
ψref
α + vref

α

mα
p+ kBT

mα
ln yα . (7.35a)

K
s
/γ
s

ref →∞ : µ
s
M = 1

mM
ψ
s

ref
M + kBT

mα

aref
M

aref
V

ln y
s
V −

aref
M

mα
γ
s
. (7.35b)

In case of a constant chemical potential µ
s
M we get a relation between surface tension and mole

fractions of vacancies y
s
V . We can thus get an explicit dependence of the chemical potentials of

adsorbates on the surface tension by replacing the mole fraction y
s
V by the surface tension γ

s
.

Solvation. In polar solvents, in particular in water, the microscopic dipoles of the solvent molecules
give rise to a microscopic electrostatic interaction between solvent and ionic species. This interaction
leads to clustering of a finite number of solvent molecules around an ion, which is known as solvation.
In Fig. 2left the solvation of ions is illustrated. The solvation concept can be easily transferred to the
surface as illustrated in Figure 2right. The solvation has a profound impact on the mixing entropy and the
specific volume of the ions within the electrolyte model: Solvent molecules that are bounded by the
ions do not participate in the entropic interaction with the other constituents of the electrolytic mixture.
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Therefore we handle a ion and its solvation shell as a solvated ion. The ions bound a part of the solvent
molecules, and this decreases the amount of free solvent molecules in the electrolyte.

Let vref
0 denote the specific volume of a solvent. The partial specific volume vref

α of a solvated ion is
considerably greater than vref

0 as well as it is much greater than the specific volume of un-solvated ions.
We assume that the specific volume of the un-solvated ions is equal to vref

0 and apply the very simple
approximation vref

α = (κα + 1)vref
0 . Here κα is the number of solvent molecules bounded by the ion

and κα is called the solvation number.

7.3 The electrochemical double layer in equilibrium

At the electrode-electrolyte interface, ionic as well as electronic species can accumulate, forming
boundary layers of only few nanometer thickness on both sides of the surface. This structure is
commonly known as electric double layer [NTA04, BRGA00]. It is a key feature of many electrochemical
applications. For the theory presented here, the double layer is of particular interest because it allows
valuable insight into the free energy which is not directly accessible to measurements. Since the
width of the double layer is often much smaller than the macroscopic length scales of electrochemical
components or cells, it can be asymptotically approximated by planar or radially symmetric (semi-)infinite
systems.

Boundary layer structure. We consider a half space problem, where the domain x > 0 is occupied
by an incompressible liquid electrolyte. The region near to the boundary surface at x = 0 represents the
boundary layer. A potential difference is prescribed between x = 0 and x→∞. From the constitutive
relations derived in Sect. 6.1 we deduce that the equilibrium equations in the bulk are14

∇(mαµα + zαe0ϕ) = 0 for α ∈ I , (7.36a)

−(1 + χ)ε0∆ϕ = nF . (7.36b)

Integration of (7.36a) and using the constitutive functions (7.35a) for the chemical potentials provides
an implicit representation of the mole fractions, viz.

yα = y∞α exp
(
− zα e0

kBT
(ϕ− ϕ∞)− vref

α

kBT
(p− p∞)

)
for α ∈ I , (7.37)

where the mole fractions y∞α and pressure p∞ at infinity are specified by bulk values of the electrolyte.
Using the icompressiblity constraint (7.34a), nF on the right hand side of (7.36b) can be expressed as
a function nF(ϕ, p). For given boundary values of ϕ and p the equilibrium state of the double layer is
determined by the coupled system

−(1 + χ)ε0∆ϕ = nF(ϕ, p) ,
∑
α∈I

yα(ϕ, p) = 1 . (7.38)

The solution of (7.38) provides the spatial profiles of the ionic number densities in the double layer,
cf. Fig. 3. We observe that in front of an electrode with a potential larger than in the electrolyte bulk,
anions accumulate and the anion concentration saturates at a certain level that is related to the specific
volume of the anions. Assuming that the anions have the same volume as the solvent, the saturation
level is given by the number density of the pure solvent. In comparison, solvated ions are much larger

14The equations (7.36a) result from the mass and momentum balance, cf. [DGM13].
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Figure 3: Comparison of models for an electrolyte with 0.5 Mol/L salt concentration in bulk and electrode
potential 0.6V larger than in bulk: standard Poisson-Boltzmann (dash-dotted line), ideal mixture of
solvent and ions with equal specific volume (dashed line), and solvated ions with solvation number
κ = 8 (solid line). Pure solvent (water) has number density of 55.4 Mol/L (black pointed line). Left:
concentration profiles of anions (blue) and cations (red). Right: profile of the potential (more blue colors)
and corresponding pressure (more red colors).

then the pure solvent molecules and thus the saturation level is much lower and the saturated zone is
much wider. Accordingly, the region where the cations are depleted is much wider for the solvated ions.

In contrast classical Nernst-Planck/Poisson-Boltzmann theory is based on the assumptions of a dilute
solution and representations of the number densities as

Poisson-Boltzmann: nα = n∞α exp
(
− zα e0

kBT
(ϕ− ϕ∞)

)
for α ∈ I \ {S} , (7.39)

where S denotes the solvent. Compared to (7.37), here the dependence on the local pressure is
missing and instead of the coupled system (7.38), only the single Poisson-Boltzmann equation −(1 +
χ)ε0∆ϕ = nF(ϕ) needs to be solved. But, Fig. 3 demonstrates that already for moderate or even
small applied voltages, classical Poisson-Boltzmann theory leads to unphysical, almost unlimited
accumulation of ions, far beyond the number density of the pure solvent and thereby violating the
underlying strong dilution assumption. These limitations and inconsistencies of classical Poisson-
Boltzmann theory are well known and we refer to [KBA07] for a review of the extensions made in the
literature.

Our approach based on non-equilibrium thermodynamics provides an additional major advantage over
the classical theory and its extensions in the literature. From (7.36) and the Gibbs-Duhem relation
(6.30) we recover the momentum balance in equilibrium

∇p = −nF∇ϕ . (7.40)

The Lorentz force k = −nF∇ϕ is balanced by the pressure gradient. Thus, pronounced pressure
gradients have to be expected in charged boundary layers that screen the electric field. Fig. 3 depicts
the spacial profiles of potential and pressure in the boundary layer. We observe drastic increase of
the pressure towards the electrode surface, where p grows up to several GPa. Although the solvated
ion case shows considerably smaller pressure than the case of all particles having the same size, the
pressure at the electrode is still orders of magnitude larger than atmospheric pressure of 0.1MPa. But
one has to keep in mind that the mechanical stress, which is controlled in experiments, and which
can be measured, is the total stress (3.24). In the computations above, this total stress equals the
outer pressure of 0.1MPa everywhere in space. Also for the classical Poisson-Boltzmann model, the
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quency effects have been observed with the other electrolytes. 
The curves in Fig. 2 show the concentrat ion effect on C in F-  (a) and CLOY, 

(b) solutions. The diffuse layer contr ibut ion is easily verified by the well- 
pronounced minimum. For both electrolytes, the minimum potential  Em is 
dependent  on concentrat ion.  In the concentrat ion range from 0.005 to 0.1 M 
the shifts AEm are equal to +18 and +32 mV for NaC104 and NaF (Table 1); 
they characterize an anionic specific adsorption, and a stronger specific adsorp- 
tion of F- than that  of ClOy, may be asserted. On mercury the inverse order 
is given [ 5], but  on gold [6], the same order as found here is observed. An 
a t tempt  to explain the different behaviour between mercury and solid surfaces 
is given in the discussion section. 

An interesting observation may be made on Fig. 2, if the C values of the 
two maxima sm~ounding the minimum axe compared.  At the negative maxi- 
mum the height is identical for F- and CLOY,, and no specific adsorption can be 
assumed. At the positive maximum C is higher with F-;  this can be explained 
by the assumption that  there is weak anionic specific adsorption in this poten- 
tial range and that  F- is more strongly adsorbed than CLOY,. The total capacity 
is given by [7] 
( C )  - 1  = (c i )  -1 + ( c d )  - 1  (1 + 0oi/()O) (1) 

where C, C i and C d are the capacities of the double layer, inner layer and dif- 
fuse layer, and a and o i are the electrode charge and that  of the specifically 
adsorbed ions. 

As specific adsorption becomes stronger, 30 i/ao decreases from zero, and the 
factor multiplying (C d)-~ decreases, so C increases and tends towards C i, at a 
given electrode charge. On the other hand, o d remains opposite to a, because 
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local pressure can be calculated from (7.40). We observe in Fig. 3 for the so computed pressure a
growth near the interface that is orders of magnitude stronger than in our model. In the one dimensional
setting we use here, a combination of (7.36b) and (7.40) yields the relation p− p∞ = 1+χ

2 ε0|∂xϕ|2.
This reveals that in the Poisson-Boltzmann case, the almost unlimited accumulation of ions that shield
the electric field at the surface leads to a steeper slope of the potential and thus to higher pressure,
compared to our model with the solvated ions.

The electric charge of the boundary layer can be defined in the one dimensional setting as

QBL =
∫ ∞

0
nF dx . (7.41)

A remarkable relation from [LGD16, eq. (150)] states

QBL = sgn(ϕ(0)− ϕ∞)
√

2(1 + χ)ε0(p(0)− p∞) , (7.42)

This directly shows that classical Poisson-Boltzmann theory predicts the storage of an unrealistic huge
charge in the boundary layer while our modified models considerably reduce the stored charge and the
solvated ions approach can provide quantitatively meaningful results.

Double layer capacity. In addition to the charge accumulation in the double layer, also adsorption
from the electrolyte to the surface and electron transfer reactions may take place, depending on the
electrode metal and the ionic species. In a similar way like above, a surface charge QS can be defined
as function of the surface particle densities n

s
α. The double layer charge is then Q = QBL +QS.

In equilibrium, the solution of boundary value problem for the double layer, in particular the double layer
charge, becomes a function of the applied voltage U between electrode and electrolyte. This allows us
to introduce the differential capacity or double layer-capacity [BF00, BRGA00, NTA04] as

C = d

dU
Q(U) . (7.43)
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As the charge Q, also C depends on the salt concentration, the temperature and the parameters of the
free energy like specific volumes and adsorption energies.

The double layer capacity can measured directly and allows to study the specific characteristics of the
electrolyte and electrode-electrolyte interface at hand [Val81, Val82, Val89]. In Fig. 4 measured and
calculated double layer capacities are depicted for different salt concentrations. All simulation are done
with the same set of parameters, which are independent of the salt concentration. For further details we
refer to [LGD16]. The simulation shows the typical camel shape of the double layer capacity of aqueous
electrolytes and a transition from a two-maximum curve for low salt concentrations to a one-maximum
curve at high salt concentrations. Altogether, remarkable agreement between simulated and measured
double layer capacities are reached.

Electrocapillarity – Lippmann equation. Electrocapillarity describes the relationship between the
interfacial tension γ and the applied voltage U . In a thin capillary tube, it can be observed that when
a potential difference U is applied, a mercury - aqueous electrolyte interface moves according to the
pressure difference while the curvature kM of the interface remains almost constant. The interfacial
tension γ can be determined by the Young-Laplace equation,

p+ − p− = 2kM γ . (7.44)

Moreover, the Lippmann equation [BF00, BRGA00, NTA04]

d

dU
γ = −Q (7.45)

relates the slope of the surface tension with respect to the applied voltage to the double layer charge.

When discussing electrocapillarity in the context of our model, some subtle differentiation is necessary.
The interfacial tension γ in (7.44) and (7.45) must not be identified with the surface tension γ

s
of (6.30)

or (7.31). In the context of non-equilibrium electro-thermodynamics the surface balance of momentum
(3.7b) does not simplify to the Young-Laplace equation (7.44) due to the non-zero electromagnetic field.

In [DGLM17], we showed that in the asymptotic limit of thin double layers the Young-Laplace-equation
as well as the Lippmann-equation can be derived. But instead of the surface tension γ

s
, these equations
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contain the newly defined interfacial tension

γ = γ
s
− γ+

BL − γ−BL with γ±BL = ±
∫ ±∞

0
(1 + χ)ε0|∂rϕ|2 dr . (7.46)

Here, the two boundary layer contributions γ±BL of the corresponding electrode and electrolyte phase
are non-negative functions of the electric field in the space charge layers. Thus, charging of the double
layer always causes non-negative contributions γ±BL which lower the interfacial tension. This directly
explains the U- or parabola-shaped electrocapillary curves which are observed in experiments, Fig. 5.

7.4 Electrochemical systems in non-equilibrium.

Generalized Nernst-Planck flux. To derive an explicit representation of the partial mass fluxes we
substitute the chemical potentials (7.25) into the constitutive equations (6.7). With the simplifying choice
of a diagonal mobility matrix, where the diagonal elements are of the form Mαα = Mα Tmαρα, we
get generalized Nernst–Planck fluxes. Denoting the solvent in Ω− by the index 0, they read in the
incompressible case for the ionic species α ∈ I− \ {0},

Jα = −MαmαkBT

(
∇nα+nα

zαe0

kBT
∇ϕ−nα

n0

mα

m0
∇n0−

nα
n

(1−mα

m0
)∇n+ nα

kBT

(
vref
α −

mα

m0
vref

0

)
∇p
)
.

(7.47)
Compared to the standard Nernst–Planck model, cf. [BF00, NTA04], there are three additional terms
highlighted here in blue. The first of these two terms is due to the solvent-ion interaction. It originates from
the construction of the entropy production in (6.2) where we incorporated the constraint

∑
α∈I Jα =

0. The second term results from the incompressibility constraint and the possibly different specific
volume of the constituents. The third one contains the pressure contribution that is required for
thermodynamically consistent fluxes. The pressure contribution only vanishes if the atomic masses
and specific volumes of all species are equal. The classical Nernst–Planck equations are derived
under the dilute solution assumption, cf. [BFS14] and sometimes the additional assumption of locally
electroneutral solution, cf. [TK93]. The validity of both assumptions can not be guaranteed inside the
double layer, as we have seen above. For a dilute solution, i.e. nα � n0, the first two additional
terms in (7.47) can be neglected. Moreover, we will discuss next that outside of the double layers, the
electrolyte bulk can be considered locally electroneutral and in particular isobaric, causing also the third
additional term in (7.47) to vanish. Thus, the generalized Nernst–Planck flux in a dilute electrolyte bulk
reduces to the classical one. But in the double layer the difference in general is significant and even
might dominate the overall behaviour of the considered system.

Asymptotic analysis and reduced models. The partial mass balance equations with the fluxes
(7.47) have to be coupled to the total mass and momentum balance, the Poisson equation and the
surface (jump) conditions, leading to a rather complex system that contains several strongly different
scales. In order to derive simpler models, formal asymptotic analysis can be applied, cf. [DGM15]
and [BTA04] for a survey of the literature. An important characteristic parameter is λ according to

(7.1). It relates the Debye length λ2xref =
√

kBT ε0
e20 n

ref , that describes the width of the double layer, to

characteristic macroscopic length xref of the system. For the asymptotic analysis, all dimensionless
parameters are related to powers of λ. Then, any function is approximated by two different formal
expansions with respect to λ, the outer expansion in the bulk and an inner expansion near the surface.
For the inner expansion, the space coordinate is rescaled by λ. Fig. 6 illustrates the asymptotic method.
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equations and decomposition of u in bulk uλ and boundary layer part ũλ (middle). In a simplified model
for λ → 0, modified jump conditions contain the relevant information of the double layer that is not
resolved any more. Figure form [DGM15].

For each polynomial power in the parameter λ, the corresponding terms in the model equations are
collected. Finally both expansions are connected by matching conditions relating the boundary values
of the outer expansion to the far field of the inner expansion. In [DGM13, DGM15, DGLM17], reduced
models for our generalized Poisson-Nernst-Planck system are derived. They are characterized by

� In leading order the bulk domain is locally electroneutral and pressure is constant in the bulk.

� The double layer is globally electroneutral and is in quasi-equilibrium such that the results of the
preceding section can be applied.

� Boundary layer charge and surface charge are both quantities of first higher order in λ.

� Analysis of the inner equations allows the formulation of new boundary conditions in terms of the
outer variables.

Surface reactions – Butler-Volmer equation. Surface reactions, e.g. electron transfer reactions,
have been intensely studied by experiments and there is a strong empirical basis for a macroscopic
relation where the surface reaction rate R

s
is driven by a potential difference at the interface, which is

called surface overpotential ηS . This relation is known as the Butler-Volmer equation and is considered
to be “the central equation in phenomenological electrode kinetics” [BRGA00, p. 1053]. It can be written
as [BF00, BRGA00, NTA04],

R
s

= Rf exp
(
− αf e0

kBT
ηS

)
−Rb exp

(
+ αb e0

kBT
ηS

)
, (7.48)

where ηS denotes the surface overpotential and Rf/b are the forward and backward exchange rates,
which may depend on the temperature T and bulk number densities nα. The transfer coefficients αf
and αb are considered as constant phenomenological coefficients.

In non-equilibrium electro-thermodynamics, we are confronted with the observation that the surface
Maxwell equations (7.10) require the electric potential ϕ to be continuous at an interface, at least in the
electrostatic setting. Therefore, no natural potential difference exists, which could be used to define an
overpotential ηS .

By means of the asymptotic analysis above, we are able to derive a general Butler-Volmer equation in
the context of electro-thermodynamics [DGM16]. The derivation relies on two necessary conditions:
i) the boundary layers behave quasi-static such that the electrochemical potentials µα + zαe0

mα
ϕ are
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constant and ii) all adsorption processes are fast compared to the surface reactions, i.e. it holds
M
s
α →∞ in (6.24b).

Rather simple representations of the quantities defined in (7.48) in terms of the electro-thermodynamic
quantities can be found in the case of a single surface reaction where set of relevant surface constituents
can be restricted to the constituents of the bulk phases, i.e. IS \ I = ∅. In the thin double layer limit
λ→ 0, we have 15

ηS = −
(
(ϕ|+I − ϕ|−I )− (ϕ̄|+I − ϕ̄|−I )

)
, (7.49)

Rf = R
s

exp
(
− β

kBT

∑
α∈I

γ
s
αmα

(
µα − µ̄α

)∣∣±
I

)
, (7.50)

Rb = R
s

exp
(

(1− β)
kBT

∑
α∈I

γ
s
αmα

(
µα − µ̄α

)∣∣±
I

)
. (7.51)

The constant β ∈ (0, 1) is known as the symmetry factor, which fosters either the forward or backward
reaction. The transfer coefficients αf/b depend on β and the stoichiometric coefficients γ

s
α. The

quantities supplied with an overbar represent equilibrium quantities that are defined by the Nernst
equation

∑
α∈I γ

s
αmα

(
µ̄α + zαe0

mα
ϕ̄
)∣∣±
I

= 0.

In accordance with usual definitions in electrochemistry [BRGA00, NTA04], the overpotential ηS de-
scribes the deviation of the actual potential difference from the equilibrium voltage of the bulk phases.
The exchange ratesRf/b depend on temperature and in an indirect way via the bulk chemical potentials
µα on the bulk number densities.

To summarize: there exists a thermodynamic consistent basis of the Butler-Volmer equation and the
thermodynamic origin is the constitutive relation (6.18) for arbitrary surface reactions. In contrast to
the Butler-Volmer equation of electrokinetics the general constitutive relation for surface reaction rates
(6.18) can be applied to electrochemical systems where it is necessary to spatially resolve the electrical
double layer and where rate limiting adsorption processes are involved. For a detailed derivation and
analysis of general Butler-Volmer equations we refer to [DGM15, DGM16].

8 Conclusion

Better theoretical understanding of many modern electrochemical applications demands extensions
of classical continuum models. However, deriving such extensions in a thermodynamically consistent
way is a non-trivial task, due to the coupled physical phenomena and the multi-scale nature of the
considered systems. The derivation of the mathematical models greatly profits from the application of
an entropy principle that restricts the modeling freedom. In the literature, several different variants or
flavours of entropy principles can be found, that often only differ in details. We chose an entropy principle
oriented on [BD15] with the postulation of a specific structure of the entropy production as the sum of
binary products. In this work we focused on the coupling of electrodynamics and thermodynamics and
the coupling of bulk and surface equations. We introduced classical balance equations for matter and
Maxwell’s equations for the electromagnetic field with emphasis on the analogies between bulk and
surface.

15Note, we denote in the asymptotic limit λ→ 0 the thin double layer interface with its internal structure by I , to distinguish
from the physical surface S in the complete model, see Fig. 6.
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We restrict the constitutive modeling by a symmetry principle. Due to the different transformation
properties of the (non-relativistic) balance equations of matter and Maxwell’s equations with the (1+3
dimensional) Maxwell-Lorentz aether relations for the electromagnetic field, the Galilean symmetry
principle is chosen. By this choice some relativistic effects are excluded, but typically these effects are
negligible in electrochemical applications.

Another point one should draw attention on is the choice of independent variables for a specific
considered material. This set of independent variables is not uniquely determined and different choices
are possible. However, different choices imply different definitions of temperature, and even more they
may lead to different stability properties, even though the entropy principle is satisfied, as we illustrated
in Sect. 6.4. So how to choose the appropriate set of independent variables? Typically, the choice
is guided by experience and justified a-posteriori by the derivation of the entropy production and the
additional conditions for the relaxation to equilibrium.

Exploitation of the entropy principle reveals numerous cross relations between the derived constitutive
equations. This is a consequence of having one pivotal ingredient to encode material behavior, i.e.
the entropy density or the free energy density, respectively. In particular, bulk chemical potentials are
defined as derivatives of the bulk entropy density and they appear e.g. in the bulk mass fluxes as well
as in the adsorption conditions. Thus, these phenomena of very different nature can not be modeled
independently.

How does the existing theory for charge transport in electrolytes and electrochemical processes at the
electrode|electrolyte interfaces relate to the described general framework? As a first step to establish
such relations, a dimensional analysis of general model is used to identify the relevant time and space
scales for the application to electrolytes. This justifies substantial simplifications of the general model,
in particular with respect to Maxwell’s equations. Next, an explicit model for the free energy density for
liquid electrolyte is derived. The resulting liquid electrolyte model generalizes already existing improved
Nernst-Planck models with finite ion size effects such as e.g. [BAO97, KBA07]. Finally, by applying
formal asymptotic analysis to the charged boundary layer at the electrode, it is possible to recover
fundamental equations of electrochemistry like Butler-Volmer equations or the Lippmann equation.

While in principle it is possible, to extend classical models by constitutive equations different from the
ones derived here, it is in general not trivial to prove or disprove thermodynamic consistency of the
obtained models. To the contrary, by applying the framework developed in this paper, the resulting
models are guaranteed to be thermodynamically consistent. Moreover, starting from the more general
framework, we gain deeper insights into the structure of electrochemical interfaces and the coupling of
different phenomena.

Outlook. Now that this very general modeling framework is developed, we are ready to apply it to
many different electrochemical systems other than liquid electrolytes. To model e.g. solids and polymer
electrolytes, appropriate material models have to be formulated in terms of a free energy density. In
solids, one has to abstain from the simplifying assumption of the free energy being independent of
the unimodular deformation gradient F uni and one has to incorporate lattice velocities which generate
further side conditions on the mass fluxes. For polymers, one has to incorporate the chain length of the
polymers into the entropy of mixing and their impact on the elasticity.

With the introduction of the Galilean symmetry principle the 1+3 dimensional Maxwell-Lorenz aether
relations can not be satisfied but Lorenz invariance would be needed instead. The remedy is the
consequent application of a relativistic setting for the equations of matter.
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A Formal solution of surface balances

Let I be some time interval and Ω an evolving domain that is intersected by the moving (singular)
surface S into Ω+ and Ω−. By υ and υ

s
, we denote the barycentric velocity in the bulk and on the

surface, respectively. Given the vector fieldsF ,G : I×Ω± → R3, define the density n : I×Ω± → R
and the flux J : I × Ω± → R3 by

n = div(F ) and J + nυ = −∂tF + curl(G) in Ω± . (A.1)

Moreover, assume that n
s

: I × S → R and the tangential surface flux J
s

: I × S → R3 satisfy the

surface balance

∂t,νn
s

+ (n
s
υ
s

∆
τ + J

s

∆)‖∆ − 2kMn
s
υ
s
ν = −[[J · ν + n (υν − υ

s
ν)]] on S . (A.2)

Then, n is a conserved quantity under the flux J by construction and a formal solution of the surface
balance (A.2) is given by

n
s

= [[F · ν]] and (n
s
υ
s

∆
τ + J

s

∆)τ∆ = ν × [[G]] + [[F ]]υ
s
ν − n

s
υ
s
νν (A.3)

To show the assertion, three identities are derived from (A.3): First, (A.3)1 is differentiated with respect
to time t. With the definition (2.4) we infer

∂t,νn
s

+ n
s
‖∆υ

s

∆
τ = [[∂tF iνi + ∂mF

iυ
s

mνi − F i(υ
s
ν;Γ + υ

s

Σ
τ bΣΓ)gΓ∆τ i∆]]

(A.1)= − [[Jν + nυν ]] + [[curliG]]νi + [[∂mF i]]υ
s

mνi

− [[F i]]υ
s
ν‖Γg

Γ∆τ i∆ − [[F i]]υ
s

Σ
τ bΣΓg

Γ∆τ i∆ (A.4)

For the second identity, we define

εijk =


+1 if ijk is an even permutation of 123,

−1 if ijk is an odd permutation of 123,

0 else.

(A.5)

Then, we differentiate (A.3)2 with respect to the surface parameter uΣ

− gΣΓbΣΓ(τΣ × [[G]])i + εiklνk[[∂mGlτmΣ ]] + [[∂mF iτmΣ ]]υ
s
ν + [[F i]]υ

s
ν‖Σ

= J
s

∆
‖Στ

i
∆ + J

s

∆b∆Σν
i + (n

s
υ
s

∆
τ )‖Στ i∆ + (n

s
υ
s
ν)‖Σνi − n

s
υ
s
νg

ΣΓbΣΓτ
i
Σ

·τ iΓ=⇒ − gΣΓbΣΓ[[Gl]](τΣ × τΓ)l + τ iΓε
iklνk[[∂mGlτmΣ ]] + [[∂mF iτmΣ τ

i
Γ]]υ

s
ν + [[F iτ iΓ]]υ

s
ν‖Σ

= J
s

∆
‖Σg∆Γ + (n

s
υ
s

∆
τ )‖Σg∆Γ − n

s
υ
s
νg

ΣΓbΣΓgΣΓ

·gΓΣ
=⇒ εiklνkgΓΣτ iΓ[[∂mGlτmΣ ]] + [[∂mF iτmΣ τ

i
Γ]]gΓΣυ

s
ν + [[F iτ iΓ]]gΓΣυ

s
ν‖Σ

= J
s

∆
‖∆ + (n

s
υ
s

∆
τ )‖∆ − 2kMn

s
υ
s
ν

=⇒ εiklνk(δim − νiνm)[[∂mGl]] + [[∂mF i]](δim − νiνm)υ
s
ν + [[F iτ iΓ]]gΓΣυ

s
ν‖Σ

= J
s

∆
‖∆ + (n

s
υ
s

∆
τ )‖∆ − 2kMn

s
υ
s
ν

(A.1)=⇒ − [[curlkG]]νk + [[n]]υ
s
ν − [[∂mF i]]νiνmυ

s
ν + [[F i]]τ iΓgΓΣυ

s
ν‖Σ

= J
s

∆
‖∆ + (n

s
υ
s

∆
τ )‖∆ − 2kMn

s
υ
s
ν (A.6)
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Finally, (A.3)1 is differentiated with respect to the surface parameter u∆,

[[∂mF i]]τm∆ νi − [[F igΣΓb∆Γτ
i
Σ]] = n

s
‖∆

·υ
s

∆
τ

=⇒ [[∂mF i]]τm∆ υ
s

∆
τ ν

i − [[F igΣΓb∆Γτ
i
Σ]]υ

s

∆
τ = n

s
‖∆υ

s

∆
τ (A.7)

B Symmetry properties of the entropy density

Let ρu+M ·B, ρ
s
u
s

(ρα)α∈I±, (ρ
s
α)α∈IS scalarsP ,M vectors F uni a tensor with respect to Galilean

transformation.

Bulk. Let h be an (absolute) scalar, i.e. h is invariant with respect to Galilean transformations
according to Sect. 4. Moreover, let h̃ be a constitutive function such that

h = h̃(ρu+M ·B, ρ1, ρ2, . . . , ρN ,F
uni,P ,M) . (B.1)

Then, there holds the following symmetry relation for i, j = 1, 2, 3

∂h̃

∂F uni
ik

F uni
jk + ∂h̃

∂P i
P j + ∂h̃

∂Mi
Mj = ∂h̃

∂F uni
jk

F uni
ik + ∂h̃

∂P j
P i + ∂h̃

∂Mj
Mi . (B.2)

To derive this relations, we use the transformation properties of all arguments of h̃ and the Galilean
symmetry principle. Then for any orthogonal matrixO follows

h̃(ρu+M ·B, ρ1, . . . , ρN , F
uni
ik ,P ,M)

= h̃(ρu+M ·B, ρ1, . . . , ρN , det(O)− 1
3OF uni,OP , det(O)OM) . (B.3)

In particular it is valid for rotations around the coordinate axes, which are characterized by the transfor-
mation matrices

Rx=

 1 0 0
0 cosα − sinα
0 sinα cosα

,Ry=

 cos β 0 − sin β
0 1 0

sin β 0 cos β

,Rz=

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 .

(B.4)
Here α, β and γ are the respective angles of rotation. Substituting O = Rx into (B.3) followed by
differentiation with respect to α yields

∂h̃

∂F uni
ik

dRij
x

dα
F uni
jk + ∂h̃

∂P i

dRij
x

dα
P j + ∂h̃

∂Mi

dRij
x

dα
Mj = 0 . (B.5)

Then we conclude for α = 0 that

∂h̃

∂F uni
2k
F uni

3k + ∂h̃

∂P 2P
3 + ∂h̃

∂M2M
3 = ∂h̃

∂F uni
3k
F uni

2k + ∂h̃

∂P 3P
2 + ∂h̃

∂M3M
2 . (B.6)

Applying the same arguments with the matricesRy andRz yields the assertion.
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Surface. Let h
s

be a scalar with respect to Galilean transformations, Sect. 4. Moreover let h̃
s

be a

constitutive function
h
s

= h̃
s
(ρ
s
u
s
, ρ
s

1, ρ
s

2, . . . , ρ
s
N , τ

uni
1 , τ uni

2 ) . (B.7)

Then, the following symmetry properties hold

∂h̃
s

∂τ uni,i
∆

τ uni,i
Σ gΣΓ =

∂h̃
s

∂τ uni,i
Γ

τ uni,i
Σ gΣ∆ for Γ,∆ = 1, 2 (B.8a)

∂h̃
s

∂τ uni,i
∆

νi = 0 for ∆ = 1, 2 (B.8b)

Similar to the volume, the Galilean symmetry principle claim that for any orthogonal matrixO holds

h̃
s
(ρ
s
u
s
, ρ
s

1, ρ
s

2, . . . , ρ
s
N , τ

uni
1 , τ uni

2 ) = h̃
s
(ρ
s
u
s
, ρ
s

1, ρ
s

2, . . . , ρ
s
N ,Oτ

uni
1 ,Oτ uni

2 ) . (B.9)

Applying the same arguments as above for the rotations given by (B.4) we get

∂h̃
s

∂τ uni
∆
× τ uni

∆ = 0 . (B.10)

Moreover we easily conclude

g2∆τ uni
∆ = ν × τ uni

1 and g1∆τ uni
∆ = −ν × τ uni

2 . (B.11)

Multiplication of (B.10) with ν and using (B.11) yields (B.8a) and (B.8b) follows from (B.10) after
multiplication of (B.10) by τ uni

∆ .
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