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Energy estimates and model order reduction for stochastic
bilinear systems

Martin Redmann

Abstract

In this paper, we investigate a large-scale stochastic system with bilinear drift and
linear diffusion term. Such high dimensional systems appear for example when dis-
cretizing a stochastic partial differential equations in space. We study a particular
model order reduction technique called balanced truncation (BT) to reduce the order
of spatially-discretized systems and hence reduce computational complexity. We intro-
duce suitable Gramians to the system and prove energy estimates that can be used
to identify states which contribute only very little to the system dynamics. When BT
is applied the reduced system is obtained by removing these states from the original
system. The main contribution of this paper is an L2-error bound for BT for stochastic
bilinear systems. This result is new even for deterministic bilinear equations. In order
to achieve it, we develop a new technique which is not available in the literature so far.

1 Introduction

Many phenomena in real life can be described by partial differential equations (PDEs). Fa-
mous examples are the motion of viscous fluids, the description of water or sound waves and
the distribution of heat. For an accurate mathematical modeling of these real world applica-
tions it is often required to take random effects into account. Uncertainties in a PDE model
can, for example, be represented by an additional noise term. This leads to stochastic PDEs
(SPDEs) [10, 16, 29, 30].

It is necessary to discretize a time-dependent SPDE in space and time in order to solve it
numerically. Discretizing in space can be considered as a first step. This can be done for
example by spectral Galerkin [18, 20, 21] or finite element methods [1, 23, 24]. This usually
leads to a high dimensional SDE. Solving such complex SDE systems causes large com-
putational cost. In this context, model order reduction (MOR) is used to save computational
time by replacing large scale systems by systems of low order in which the main information
of the original system should be captured.
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M. Redmann 2

1.1 Setting

We consider a large-scale stochastic control system with bilinear drift that can be interpreted
as a spatially-discretized SPDE. The corresponding noise process is an Rv-valued Lévy
process M = (M1, . . . ,Mv)

T with mean zero and E ‖M(t)‖2
2 = E

[
MT (t)M(t)

]
<∞

for all t ≥ 0. We investigate the system

dx(t) = [Ax(t) +Bu(t) +
m∑
k=1

Nkx(t)uk(t)]dt+
v∑
i=1

Hix(t−)dMi(t), (1a)

y(t) = Cx(t), t ≥ 0. (1b)

We assume that A,Nk, Hi ∈ Rn×n (k ∈ {1, . . . ,m} and i ∈ {1, . . . , v}), B ∈ Rn×m

andC ∈ Rp×n. Moreover, we define x(t−) := lims↑t x(s). The control u = (u1, . . . , um)T

is assumed to be deterministic and square integrable, i.e.,

‖u‖2
L2
T

:=

∫ T

0

‖u(t)‖2
2 dt <∞

for every T > 0. We denote the covariance matrix ofM byK = (kij)i,j=1,...,v. It character-

izes the covariance function ofM , see [29, Theorem 4.44], meaning that E[M(t)MT (t)] =
Kt.

We aim to replace the large scale system (1) by a system of the same structure, but with
a much smaller state dimension r � n. This reduced order model (ROM) is supposed be
chosen, such that the corresponding output yr is close to the original one, i.e., yr ≈ y in
some metric.
In this paper, we consider balanced truncation (BT) for obtaining a ROM. It relies on defining
a reachability Gramian P and an observability Gramian Q. These matrices are selected,
such that P characterizes the states in (1a) and Q the states in (1b) which barely contribute
to the system dynamics (see Section 2 for details). In order to be able to remove both the
unimportant states in (1a) and (1b) simultaneously, the first step of BT is a state space
transformation

(A,B,C,Hi, Nk) 7→ (Ã, B̃, C̃, H̃i, Ñk) := (SAS−1, SB,CS−1, SHiS
−1, SNkS

−1),

where S = LQXΣ−
1
2 and S−1 = LPY Σ−

1
2 . The ingredients of the balancing transfor-

mation are computed by the Cholesky factorizations P = LPL
T
P , Q = LQL

T
Q, and the

singular value decomposition XΣY T = LTQLP . This transformation does not change the
output y of the system, but it guarantees that the new Gramians are diagonal and equal, i.e.,
SPST = S−TQS−1 = Σ = diag(σ1, . . . , σn) with σ1 ≥ . . . ≥ σn being the Hankel
singular values (HSVs) of the system. The ROM is then obtained by selecting the left upper
r × r blocks of Ã, H̃i, Ñk, the first r rows of B̃ and the first r columns of C̃ , such that the
smallest n− r HSVs are removed from the system.
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Energy estimates and model order reduction for stochastic bilinear systems 3

Stochastic linear case (Nk = 0) BT is a method that was developed for deterministic
linear systems (Hi = Nk = 0) [2, 27, 28]. Basically, two ways of extending BT to stochastic
linear systems have been considered so far. The so-called type I approach relies on defining
Gramians based on generalized fundamental solutions of the system [5, 7]. The drawback
of this generalization is that only an H2-error bound is available [7] and an H∞-error bound
cannot be achieved [6, 12]. To overcome this issue the type II ansatz was introduced in [12],
where an H∞-error bound is proved. There, a different reachability Gramian was considered
which is defined as the solution to a matrix inequality. Energy estimates for linear stochastic
systems for both the type I and the type II ansatz have recently been given in [32], such
that MOR based on both approaches can be justified. As an alternative to BT, we want to
refer to the singular perturbation approximation, where the work in [14, 25] was extended to
stochastic linear systems in [32, 33].

Deterministic bilinear case (Hi = 0) Although the bilinear term is a very weak non-
linearity, deterministic bilinear system can be seen as bridge between linear and nonlinear
systems. This is because many deterministic nonlinear systems can be represented by bilin-
ear systems using a so-called Carleman linearization. Applications of these equations can
be found in various fields [9, 26, 34]. Apart from balancing related MOR techniques [5, 19],
various alternative methods have already been studied for the case of Hi = 0 [3, 4, 8, 15].
We, however, only discuss the case of BT below. When considering BT for deterministic
bilinear systems, Gramians have to be chosen properly in order to find suitable character-
izations for the reachability and observability energy of the system. Concerning the choice
of the bilinear Gramians the control components uk that are multiplied with the state x in
(1a) are treated like white noise. Gramians according to the stochastic type I approach were,
e.g., considered in [5, 17]. In both references energy estimates can be found, but they are
only valid for states being in a possibly very small neighborhood of zero. Moreover, no error
bound exists for this approach. Choosing the bilinear Gramian according to the stochastic
type II approach has been considered in [31]. To be more precise, perturbed type II Grami-
ans were used there. This has the advantage of finding global energy estimates under the
assumption of having bounded controls. Furthermore, an H∞-error bound was proved in
[31], again, assuming bounded controls. Depending on the underlying system, the bound on
the controls can be small which is the drawback of this method.

1.2 Outline of the paper and main result

The work in this paper on BT for system (1) can be interpreted as a generalization of the
deterministic bilinear case, where the control u is perturbed by Lévy noise. We see this
extension as a first step to find a bridge between stochastic linear systems and stochas-
tic nonlinear systems to open the field of balancing related MOR to many more stochastic
equations and applications.

In this paper, the main contributions are energy estimates for the stochastic bilinear system
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M. Redmann 4

and an error bound for BT. It is important to notice that these results are not just an extension
of existing theory, they are new even for the deterministic bilinear case (Hi = 0), since in
contrast to [31] no bound on the control is assumed. To be more precise, in Section 2,
we propose Gramians P and Q to system (1). We show that the reachability Gramian P
provides information about the degree of reachability of a state. Moreover, we establish a
bound on the observation energy using the observability Gramian Q. The following result on
an L2-error bound for BT is proved in Section 3. For the proof of this theorem, the existing
methods in the literature cannot be applied. Hence, we also provide a new technique to
achieve this bound.

Theorem 1.1. Let y be the output of the full model (1) with x(0) = 0 and yr be the output
of the ROM by BT with zero initial state. Then, for all T > 0, it holds that(

E ‖y − yr‖2
L2
T

) 1
2 ≤ 2(σr+1 + σr+2 + . . .+ σn) ‖u‖L2

T
exp

(
0.5 ‖u‖2

L2
T

)
,

where σr+1, σr+2, . . . , σn are the smallest n− r HSVs of system (1).

Theorem 1.1 implies that BT works well for stochastic bilinear systems if the truncated HSVs
are small and the control energy is not too large.

2 Energy estimates

BT relies on the idea to create a system (1), in which the dominant reachable and observable
states are the same. Afterwards, the unimportant states are removed to obtain an accurate
approximation to the original model. In order to find the states that are hardly reachable and
observable, a reachability Gramian P and an observability Gramian Q are introduced in this
section. We will see that the definitions of the Gramians are meaningful, since they lead to
estimates, which allow us to find the states that barely contribute to the system dynamics.
This justifies to balance the system based on the proposed Gramians.

2.1 Reachability Gramian

We introduce a reachability Gramian P as a positive definite solution to

ATP−1 + P−1A+
m∑
k=1

NT
k P

−1Nk +
v∑

i,j=1

HT
i P
−1Hjkij ≤ −P−1BBTP−1. (2)

An inequality is considered in (2), since the existence of a positive definite solution is not
ensured when having an equality. The existence of a solution to (2) goes back to [12, 32]
and is given if

λ

(
A⊗ I + I ⊗ A+

m∑
k=1

Nk ⊗Nk +
v∑

i,j=1

Hi ⊗Hjkij

)
⊂ C−, (3)
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Energy estimates and model order reduction for stochastic bilinear systems 5

which we assume to hold througout the remainder of the paper. Here, λ (·) denotes the
spectrum of a matrix. Condition (3) is called mean square asymptotic stability [11, 22, 32].
It means that if the control components uk in the bilinear term of (1a) would truely be white
noise, then the second moment of the solution would tend to zero in the uncontrolled setting
(B = 0) if t→∞.

Let x(t, x0, u) denote the solution to (1a) for t ≥ 0, an initial state x0 ∈ Rn and a control
u ∈ L2

T . We choose (pk)k=1,...,n to be an orthonormal basis of Rn consisting of eigen-
vectors of P . We denote the corresponding eigenvalues by (λk)k=1,...,n. For the Fourier
coefficients of x(t, 0, u), we obtain

〈x(t, 0, u), pk〉22 ≤ λk

n∑
i=1

λ−1
i 〈x(t, 0, u), pi〉22 = λk

∥∥∥∥∥
n∑
i=1

λ
− 1

2
i 〈x(t, 0, u), pi〉2 pi

∥∥∥∥∥
2

2

= λk

∥∥∥P− 1
2x(t, 0, u)

∥∥∥2

2
= λk x

T (t, 0, u)P−1x(t, 0, u). (4)

We use a shorter notation for the state below, i.e., we write x(t) instead of x(t, 0, u) if
required. By Lemma A.1, we have

E
[
xT (t)P−1x(t)

]
=2

∫ t

0

E

[
xT (s)P−1

(
Ax(s) +Bu(s) +

m∑
k=1

Nkx(s)uk(s)

)]
ds

(5)

+

∫ t

0

E

[
xT (s)

v∑
i,j=1

HT
i P
−1Hjkijx(s)

]
ds.

The bilinear term in the above equation can be bounded as follows:

m∑
k=1

2

∫ t

0

xT (s)P−1Nkx(s)uk(s)ds =
m∑
k=1

2

∫ t

0

〈
P−

1
2x(s)uk(s), P

− 1
2Nkx(s)

〉
2
ds

≤
m∑
k=1

(∫ t

0

∥∥∥P− 1
2x(s)uk(s)

∥∥∥2

2
ds+

∫ t

0

∥∥∥P− 1
2Nkx(s)

∥∥∥2

2
ds

)
=

∫ t

0

xT (s)P−1x(s) ‖u(s)‖2
2 ds+

∫ t

0

xT (s)
m∑
k=1

NT
k P

−1Nkx(s)ds. (6)

We insert this inequality into (5), such that

E
[
xT (t)P−1x(t)

]
(7)

≤ E
∫ t

0

xT (s)(ATP−1 + P−1A+
m∑
k=1

NT
k P

−1Nk +
v∑

i,j=1

HT
i P
−1Hjkij)x(s)ds

+ E
∫ t

0

2xT (s)P−1Bu(s)ds+

∫ t

0

E
[
xT (s)P−1x(s)

]
‖u(s)‖2

2 ds.
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We then plug in (2), which yields

E
[
xT (t)P−1x(t)

]
≤− E

∫ t

0

xT (s)P−1BBTP−1x(s)ds

+ E
∫ t

0

2xT (s)P−1Bu(s)ds+

∫ t

0

E
[
xT (s)P−1x(s)

]
‖u(s)‖2

2 ds

=E
∫ t

0

‖u(s)‖2
2 −

∥∥BTP−1x(s)− u(s)
∥∥2

2
ds

+

∫ t

0

E
[
xT (s)P−1x(s)

]
‖u(s)‖2

2 ds

≤
∫ t

0

‖u(s)‖2
2 ds+

∫ t

0

E
[
xT (s)P−1x(s)

]
‖u(s)‖2

2 ds

The Gronwall inequality, see Lemma A.3, provides

E
[
xT (t)P−1x(t)

]
≤
∫ t

0

‖u(s)‖2
2 ds exp

(∫ t

0

‖u(s)‖2
2 ds

)
.

Consequently, by (4), we have

sup
t∈[0,T ]

√
E〈x(t, 0, u), pk〉22 ≤ λ0.5

k ‖u‖L2
T

exp
(

0.5 ‖u‖2
L2
T

)
. (8)

Given a state it is not possible to gain information about the corresponding energy from (8).
However, given a bound on the energy which is not too large, let us say ‖u‖L2

T
≤ 1, we

can conclude how much a state component contributes to the systems dynamics. If λk is
small, (8) implies that the Fourier coefficient 〈x(·, 0, u), pk〉2 is close to zero on [0, T ] for
normalized controls u. This means that the state variable takes only very small values in the
direction of pk such that hardly reachable states have a large component in the eigenspaces
of P belonging to the small eigenvalues. Inequality (8) has already been pointed out in [31,
Remark 1] for the case Hi = 0.

2.2 Observability Gramian

We define the observability Gramian to be the solution to

ATQ+QA+
m∑
k=1

NT
k QNk +

v∑
i,j=1

HT
i QHjkij = −CTC. (9)

Condition (3) guarantees the existence of a positive semidefinite solution [32], but we will
furthermore assume that Q > 0 for the rest of the paper. Again, we use a short notation by
setting xx0(t) := x(t, x0, u). In order to find a suitable estimate for E

[
xTx0(t)Qxx0(t)

]
, it
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is only required to replace P−1 by Q in (7) and take into account the additional term xT0Qx0

that is due to the non-zero initial condition. Hence,

E
[
xTx0(t)Qxx0(t)

]
≤ E

∫ t

0

xTx0(s)(A
TQ+QA+

m∑
k=1

NT
k QNk +

v∑
i,j=1

HT
i QHjkij)xx0(s)ds

+ E
∫ t

0

2xTx0(s)QBu(s)ds+

∫ t

0

E
[
xTx0(s)Qxx0(s)

]
‖u(s)‖2

2 ds+ xT0Qx0.

Applying (9) gives us

E
[
xTx0(t)Qxx0(t)

]
≤− E

∫ t

0

yT (s)y(s)ds+ E
∫ t

0

2xTx0(s)QBu(s)ds+ xT0Qx0

+

∫ t

0

E
[
xTx0(s)Qxx0(s)

]
‖u(s)‖2

2 ds,

where y(t) = y(t, x0, u). Due to Lemma A.3, we find

E
[
xTx0(t)Qxx0(t)

]
≤ α(t) +

∫ t

0

α(s) ‖u(s)‖2
2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds, (10)

where we define α(t) := −E
∫ t

0
‖y(s)‖2

2 ds + E
∫ t

0
2xTx0(s)QBu(s)ds + xT0Qx0. We

analyze this inequality further by looking at the terms depending on x0:

xT0Qx0

∫ t

0

‖u(s)‖2
2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds = xT0Qx0

[
− exp

(∫ t

s

‖u(w)‖2
2 dw

)]t
s=0

= xT0Qx0

(
exp

(∫ t

0

‖u(s)‖2
2 ds

)
− 1

)
.

Using this computation and E
[
xTx0(t)Qxx0(t)

]
≥ 0, we get from (10) that

E
∫ t

0

‖y(s)‖2
2 ds ≤x

T
0Qx0 exp

(∫ t

0

‖u(s)‖2
2 ds

)
(11)

+ fB(t) +

∫ t

0

fB(s) ‖u(s)‖2
2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds,

where the term depending on the input matrix B is fB(t) := E
∫ t

0
2xTx0(s)QBu(s)ds.

In an observation problem an unknown initial condition x0 is aimed to be reconstructed
from the observations y(t, x0, u), t ∈ [0, T ]. Since the control part Bu does not depend
on the unknown initial state, it can be assumed to be known and hence be neglected in
the considerations by setting B = 0. This assumption is also taken in [5, 17], where the
observation energy of deterministic bilinear systems is studied. Now,B = 0 implies fB ≡ 0.
Applying this to (11) leads to the following bound on the observation energy on [0, T ]:

E
∫ T

0

‖y(s, x0, u)‖2
2 ds

∣∣∣∣
B=0

≤ xT0Qx0 exp

(∫ T

0

‖u(s)‖2
2 ds

)
. (12)
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If we the energy of the control is sufficiently small, e.g., ‖u‖L2
T
≤ 1, we can identify states

from (12) producing only little observation energy. We see that the energy that is caused by
the observations of x0 is small if the initial state is close to the kernel of Q. These initial
states are contained in the eigenspaces of Q corresponding to the small eigenvalues.

3 L2-error bound for BT

Let us assume that system (1) has a zero initial condition (x0 = 0) and is already balanced.
Thus, (2) and (9) become

ATΣ−1 + Σ−1A+
m∑
k=1

NT
k Σ−1Nk +

v∑
i,j=1

HT
i Σ−1Hjkij ≤ −Σ−1BBTΣ−1, (13)

ATΣ + ΣA+
m∑
k=1

NT
k ΣNk +

v∑
i,j=1

HT
i ΣHjkij ≤ −CTC, (14)

i.e., P = Q = Σ = diag(σ1, . . . , σn) > 0. We partition the balanced coefficients of (1) as
follows:

A =
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, Nk =

[
Nk,11 Nk,12
Nk,21 Nk,22

]
, Hi =

[
Hi,11 Hi,12
Hi,21 Hi,22

]
, C = [ C1 C2 ] ,

where A11, Nk,11, Hi,11 ∈ Rr×r (k ∈ {1, . . . ,m} and i ∈ {1, . . . , v}), B1 ∈ Rr×m and
C1 ∈ Rp×r etc. Furthermore, we partition the state variable and the Gramian

x = [ x1x2 ] and Σ =
[

Σ1
Σ2

]
,

where x1 takes values in Rr (x2 accordingly), Σ1 is the diagonal matrix of large HSVs and
Σ2 contains the small ones. The reduced system by BT is

dxr = [A11xr +B1u+
m∑
k=1

Nk,11xruk]dt+
v∑
i=1

Hi,11xrdMi, (15a)

yr(t) = C1xr(t), t ≥ 0, (15b)

where xr(0) = 0 and the time dependence in (15a) is omitted to shorten the notation. In
order to find a bound for the approximation through BT, we define

x− = [ x1−xrx2 ] and x+ = [ x1+xr
x2 ] ,

and write down the corresponding equations for these variables. The system for x− is given
by

dx− = [Ax− +
m∑
k=1

Nkx−uk]dt+ [ 0
c0 ] dt+

v∑
i=1

[Hix− + [ 0
ci ]]dMi, (16a)

y−(t) = Cx−(t) = Cx(t)− C1xr(t) = y(t)− yr(t), t ≥ 0, (16b)
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Energy estimates and model order reduction for stochastic bilinear systems 9

where c0(t) := A21xr(t) + B2u(t) +
∑m

k=1Nk,21xr(t)uk(t) and ci(t) := Hi,21xr(t)
for i = 1, . . . , v. We derive (16) by comparing the partitioned system (1) with the reduced
system (15). The equation for x+ looks similarly, the difference lies only in the signs for the
compensation terms c0, . . . , cv and an additional control term:

dx+ = [Ax+ + 2Bu+
m∑
k=1

Nkx+uk]dt− [ 0
c0 ] dt+

v∑
i=1

[Hix+ − [ 0
ci ]]dMi. (17)

We will see that the proof of the error bound can be reduced to the task of finding suitable
estimates for E[xT−(t)Σx−(t)] and E[xT+(t)Σ−1x+(t)]. The next theorem is the main result
of this paper.

Theorem 3.1. Let y be the output of the full model (1) with x(0) = 0 and yr be the output
of the ROM (15) with xr(0) = 0. Then, for all T > 0, it holds that(

E ‖y − yr‖2
L2
T

) 1
2 ≤ 2(σ̃1 + σ̃2 + . . .+ σ̃κ) ‖u‖L2

T
exp

(
0.5 ‖u‖2

L2
T

)
,

where σ̃1, σ̃2, . . . , σ̃κ are the distinct diagonal entries of Σ2 = diag(σr+1, . . . , σn) =
diag(σ̃1I, σ̃2I, . . . , σ̃κI).

Proof. We compute an upper bound for E[xT−(t)Σx−(t)] making use of Lemma A.1. Taking
(16a) into account then yields

E
[
xT−(t)Σx−(t)

]
=2

∫ t

0

E

[
xT−Σ

(
Ax− +

m∑
k=1

(Nkx−uk) + [ 0
c0 ]

)]
ds (18)

+

∫ t

0

v∑
i,j=1

E
[
(Hix− + [ 0

ci ])
T

Σ
(
Hjx− +

[
0
cj

])]
kijds,

where the time dependence of all functions is omitted for a shorter notation. Applying an
estimate as in (6) provides

m∑
k=1

2xT−(s)ΣNkx−(s)uk(s) ≤ xT−(s)Σx−(s) ‖u(s)‖2
2 +

m∑
k=1

xT−(s)NT
k ΣNkx−(s).

Hence, (18) becomes

E
[
xT−(t)Σx−(t)

]
≤E

∫ t

0

xT−

(
ATΣ + ΣA+

m∑
k=1

NT
k ΣNk +

v∑
i,j=1

HT
i ΣHjkij

)
x−ds

+ E
∫ t

0

2xT−Σ [ 0
c0 ] +

v∑
i,j=1

(2Hix− + [ 0
ci ])

T
Σ
[

0
cj

]
kijds (19)

+

∫ t

0

E
[
xT−Σx−

]
‖u‖2

2 ds.
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Using the partition for x− and Σ, we see that xT−Σ [ 0
c0 ] = xT2 Σ2c0. With the partition of Hi,

we additionally obtain

(2Hix− + [ 0
ci ])

T
Σ
[

0
cj

]
= (2Hix− + [ 0

ci ])
T [ 0

Σ2cj

]
= (2 [Hi,21 Hi,22 ] (x− [ xr0 ]) + ci)

T Σ2cj = (2 [Hi,21 Hi,22 ]x− ci)T Σ2cj.

Inserting (14) and (16b) into inequality (19) and taking the above rearrangements into ac-
count leads to

E
[
xT−(t)Σx−(t)

]
≤− E ‖y − yr‖2

L2
t

+

∫ t

0

E
[
xT−Σx−

]
‖u‖2

2 ds

+ E
∫ t

0

2xT2 Σ2c0 +
v∑

i,j=1

(2 [Hi,21 Hi,22 ]x− ci)T Σ2cjkijds.

We define α−(t) := E
∫ t

0
2xT2 Σ2c0 +

∑v
i,j=1 (2 [Hi,21 Hi,22 ]x− ci)T Σ2cjkijds. Then,

Lemma A.3 implies

E
[
xT−(t)Σx−(t)

]
≤α−(t)− E ‖y − yr‖2

L2
t

+

∫ t

0

(α−(s)− E ‖y − yr‖2
L2
s
) ‖u(s)‖2

2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds.

Thus, we find

E ‖y − yr‖2
L2
t
≤ α−(t) +

∫ t

0

α−(s) ‖u(s)‖2
2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds.

We assume for the moment that Σ2 = σI and set
α+(t) := E

∫ t
0

2xT2 Σ−1
2 c0 +

∑v
i,j=1 (2 [Hi,21 Hi,22 ]x− ci)T Σ−1

2 cjkijds. Hence,

E ‖y − yr‖2
L2
t
≤ σ2

[
α+(t) +

∫ t

0

α+(s) ‖u(s)‖2
2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds

]
. (20)

Let us turn our attention to the expression E[xT+(t)Σ−1x+(t)] for the further analysis of (20).
Due to (17) and Lemma A.1 it holds that

E
[
xT+(t)Σ−1x+(t)

]
=2

∫ t

0

E

[
xT+Σ−1

(
Ax+ + 2Bu+

m∑
k=1

(Nkx+uk)− [ 0
c0 ]

)]
ds

(21)

+

∫ t

0

v∑
i,j=1

E
[
(Hix+ − [ 0

ci ])
T

Σ−1
(
Hjx+ −

[
0
cj

])]
kijds.

As above, for the case of x−, we use the estimate

m∑
k=1

2xT+(s)Σ−1Nkx+(s)uk(s) ≤ xT+(s)Σ−1x+(s) ‖u(s)‖2
2 +

m∑
k=1

xT+(s)NT
k Σ−1Nkx+(s),
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which leads to

E
[
xT+(t)Σ−1x+(t)

]
≤ E

∫ t

0

xT+

(
ATΣ−1 + Σ−1A+

m∑
k=1

NT
k Σ−1Nk +

v∑
i,j=1

HT
i Σ−1Hjkij

)
x+ds

− E
∫ t

0

2xT+Σ−1 [ 0
c0 ] +

v∑
i,j=1

(2Hix+ − [ 0
ci ])

T
Σ−1

[
0
cj

]
kijds (22)

+

∫ t

0

E
[
xT+Σ−1x+

]
‖u‖2

2 ds+ 4E
∫ t

0

xT+Σ−1Buds.

From inequality (13) and the Schur complement condition on definiteness it follows that[
ATΣ−1 + Σ−1A+

∑m
k=1N

T
k Σ−1Nk +

∑v
i,j=1H

T
i Σ−1Hjkij Σ−1B

BTΣ−1 −I

]
≤ 0. (23)

We multiply (23) with [ x+2u ]T from the left and with [ x+2u ] from the right. This leads to

4 ‖u‖2
2 ≥

xT+

(
ATΣ−1 + Σ−1A+

m∑
k=1

NT
k Σ−1Nk +

v∑
i,j=1

HT
i Σ−1Hjkij

)
x+ + 4xT+Σ−1Bu.

Applying this result to inequality (22) gives

E
[
xT+(t)Σ−1x+(t)

]
≤4 ‖u‖2

L2
t

+

∫ t

0

E
[
xT+Σ−1x+

]
‖u‖2

2 ds (24)

− E
∫ t

0

2xT+Σ−1 [ 0
c0 ] +

v∑
i,j=1

(2Hix+ − [ 0
ci ])

T
Σ−1

[
0
cj

]
kijds.

We further analyze the terms in (24). We find that xT+Σ−1 [ 0
c0 ] = xT2 Σ−1

2 c0 using the parti-
tions of x+ and Σ. With the partition of Hi, we moreover have

(2Hix+ − [ 0
ci ])

T
Σ−1

[
0
cj

]
= (2Hix+ − [ 0

ci ])
T
[

0
Σ−1

2 cj

]
= (2 [Hi,21 Hi,22 ] (x+ [ xr0 ])− ci)T Σ−1

2 cj = (2 [Hi,21 Hi,22 ]x+ ci)
T Σ2cj.

We plug this into (24), such that

E
[
xT+(t)Σ−1x+(t)

]
≤4 ‖u‖2

L2
t

+

∫ t

0

E
[
xT+Σ−1x+

]
‖u‖2

2 ds (25)

− E
∫ t

0

2xT2 Σ−1
2 c0 +

v∑
i,j=1

(2 [Hi,21 Hi,22 ]x+ ci)
T Σ−1

2 cjkijds.
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Adding 2E
∫ t

0

∑v
i,j=1 c

T
i Σ−1

2 cjkijds to the right side of (25), which is a nonnegative term
due to Lemma A.2, we have

E
[
xT+(t)Σ−1x+(t)

]
≤ 4 ‖u‖2

L2
t
− α+(t) +

∫ t

0

E
[
xT+(s)Σ−1x+(s)

]
‖u(s)‖2

2 ds.

Lemma A.3 yields

E
[
xT+(t)Σ−1x+(t)

]
≤4 ‖u‖2

L2
t
− α+(t) (26)

+

∫ t

0

(4 ‖u‖2
L2
s
− α+(s)) ‖u(s)‖2

2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds.

Moreover, we have∫ t

0

‖u‖2
L2
s
‖u(s)‖2

2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds ≤ ‖u‖2

L2
t

[
− exp

(∫ t

s

‖u(w)‖2
2 dw

)]t
s=0

= ‖u‖2
L2
t

(
exp

(∫ t

0

‖u(s)‖2
2 ds

)
− 1

)
. (27)

Combining (26) with (27), we get

α+(t) +

∫ t

0

α+(s) ‖u(s)‖2
2 exp

(∫ t

s

‖u(w)‖2
2 dw

)
ds ≤ 4 ‖u‖2

L2
t

exp

(∫ t

0

‖u(s)‖2
2 ds

)
.

Comparing this result with (20) implies(
E ‖y − yr‖2

L2
t

) 1
2 ≤ 2σ ‖u‖L2

t
exp

(
0.5 ‖u‖2

L2
t

)
. (28)

For the proof of a general Σ2, we remove the HSVs step by step. We use the triangle in-
equality to bound the error between the outputs y and yr:(

E ‖y − yr‖2
L2
T

) 1
2

≤
(
E ‖y − yrκ‖

2
L2
T

) 1
2

+
(
E
∥∥yrκ − yrκ−1

∥∥2

L2
T

) 1
2

+ . . .+
(
E ‖yr2 − yr‖

2
L2
T

) 1
2
,

where the dimensions ri of the corresponding states are defined by ri+1 = ri + m(σ̃i) for
i = 1, 2 . . . , κ− 1. The number m(σ̃i) denotes the multiplicity of σ̃i and r1 = r. In the first
step only the smallest HSV σ̃κ is removed from the system. By inequality (28), we have(

E ‖y − yrκ‖
2
L2
T

) 1
2 ≤ 2σ̃κ ‖u‖L2

T
exp

(
0.5 ‖u‖2

L2
T

)
.

The same kind of bound can be established when comparing the reduced order outputs yrκ
and yrκ−1 . Again, only one HSV, namely σ̃rκ−1 , is removed. Moreover, the matrix inequalities
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in the ROM have the same structure as (13) and (14). To be more precise, evaluating the left
upper blocks of (13) and (14), we obtain

AT11Σ−1
1 + Σ−1

1 A11 +
m∑
k=1

NT
k,11Σ−1

1 Nk,11 +
v∑

i,j=1

HT
i,11Σ−1

1 Hj,11kij ≤ −Σ−1
1 B1B

T
1 Σ−1

1 ,

AT11Σ1 + Σ1A11 +
m∑
k=1

NT
k,11Σ1Nk,11 +

v∑
i,j=1

HT
i,11Σ1Hj,11kij ≤ −CT

1 C1

applying Lemma A.2. Thus, by repeatedly applying the above arguments, we have(
E
∥∥yrj − yrj−1

∥∥2

L2
T

) 1
2 ≤ 2σ̃rj−1

‖u‖L2
T

exp
(

0.5 ‖u‖2
L2
T

)
for j = 2, . . . , κ. This concludes the proof.

The result in Theorem 3.1 is the first one of that type for deterministic/stochastic systems.
In contrast to [31], we assume no bound on the control u which possibly can be small. We
pay a price for dealing with general L2

T controls, since we obtain an exponential term in
Theorem 3.1 which is due to the bilineararity. However, this result is still very meaningful,
because it tells us that the ROM (15) yields a very good approximation if the truncated HSVs
(diagonal entries of Σ2) are small and, e.g., a normalized control is used. At the same time,
the exponential term in the error bound can be an indicator that BT performs terribly bad if
the control energy is large.

4 Conclusions

In this paper, we investigated a large-scale stochastic bilinear system. In order to reduce
the state space dimension, a model order reduction technique called balanced truncation
was extended to this setting. To do so, we proposed a reachability and an observability
Gramian. We proved energy estimates with the help of these Gramian that allow us to find the
unimportant states within the system. The reduced system was then obtained by removing
these states from the stochastic bilinear system. Finally, we provided a new error bound that
can be used to point out the cases in which the reduced order model by balanced truncation
delivers a good approximation to the original model.

A Supporting Lemmas

In this appendix, we state three important results and the corresponding references that we
frequently use throughout this paper.
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Lemma A.1. Let a, b1, . . . , bv be Rd-valued processes, where a is adapted and almost
surely Lebesgue integrable and the functions bi are integrable with respect to the mean
zero square integrable Lévy process M = (M1, . . . ,Mv)

T with covariance matrix K =
(kij)i,j=1,...,v. If the process x is given by

dx(t) = a(t)dt+
v∑
i=1

bi(t)dMi,

then, we have

d

dt
E
[
xT (t)x(t)

]
= 2E

[
xT (t)a(t)

]
+

v∑
i,j=1

E
[
bTi (t)bj(t)

]
kij.

Proof. We refer to [32, Lemma 5.2] for a proof of this lemma.

Lemma A.2. Let A1, . . . , Av be d1 × d2 matrices and K = (kij)i,j=1,...,v be a positive
semidefinite matrix, then

K̃ :=
v∑

i,j=1

ATi Ajkij

is also positive semidefinite.

Proof. The proof can be found in [32, Proposition 5.3].

Lemma A.3 (Gronwall lemma). Let T > 0, z, α : [0, T ] → R be measurable bounded
functions and β : [0, T ]→ R be a nonnegative integrable function. If

z(t) ≤ α(t) +

∫ t

0

β(s)z(s)ds,

then it holds that

z(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(w)dw

)
ds (29)

for all t ∈ [0, T ]. Moreover, a non-decreasing function α implies that (29) becomes

z(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
for all t ∈ [0, T ].

Proof. The result is shown as in [13, Proposition 2.1].
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