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Reduced-order unscented Kalman filter in the frequency domain:
Application to computational hemodynamics

Lucas O. Müller, Alfonso Caiazzo, Pablo J. Blanco

Abstract

Objective: The aim of this work is to assess the potential of the reduced order unscented
Kalman filter (ROUKF) in the context of computational hemodynamics, in order to estimate car-
diovascular model parameters when employing real patient-specific data. Methods: The approach
combines an efficient blood flow solver for one-dimensional networks (for the forward problem)
with the parameter estimation problem cast in the frequency space. Namely, the ROUKF is used
to correct model parameter after each cardiac cycle, depending on the discrepancies of model
outputs with respect to available observations properly mapped into the frequency space. Results:
First we validate the filter in frequency domain applying it in the context of a set of experimental
measurements for an in vitro model. Second, we perform different numerical experiments aiming
at parameter estimation using patient-specific data. Conclusion: Our results demonstrate that the
filter in frequency domain allows a faster and more robust parameter estimation, when compared
to its time domain counterpart. Moreover, the proposed approach allows to estimate parameters
that are not directly related to the network but are crucial for targeting inter-individual parameter
variability (e.g., parameters that characterize the cardiac output). Significance: The ROUKF in
frequency domain provides a robust and flexible tool for estimating parameters related to cardio-
vascular mathematical models using in vivo data.

1 Introduction

One-dimensional hemodynamic models provide a powerful tool for the computational simulation of
blood flow in the cardiovascular system. These models have been used for providing useful insight in
the understanding of cardiovascular physiology and pathology (see, e.g., [13, 8, 21, 17, 3]) and they
have been deeply validated versus in vitro experiments (see, e.g., [15]) and in vivo measurements
(see, e.g., [4, 22, 20]).

In order to enhance the predictive and descriptive capabilities of one-dimensional (1D) models in clin-
ically relevant applications, it is highly desirable to have a framework that allows to tune geometrical
and physical parameters of the mathematical model in order to achieve patient-specific simulations,
i.e., to be able to accurately predict the hemodynamics in specific subjects. This is the focus of data
assimilation and parameter estimation methods, that is, algorithms that combine available measure-
ments with mathematical models in order to improve the accuracy of model predictions.

In particular, the reduced-order unscented Kalman filter (ROUKF) (see, e.g., [11, 10, 16]) is a sequen-
tial data assimilation approach in which the computed state and the estimates for model parameters
are corrected at each time step of the simulation, taking into account the error between the available
measurements and the current numerical predictions. One of the main advantages of the ROUKF is
that it does not require the solution of a tangent problem in order to compute the optimal estimates, as
it is based on an efficient sampling of the parameter space.
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L. O. Müller, A. Caiazzo, P. J. Blanco 2

The ROUKF applied to 1D computational hemodynamics was reported for the first time in [14], using
only synthetic data, i.e., where full field (pressure and flow rate) measurements along the definition
of the whole continuum were generated by the same mathematical model and employed as observa-
tions. An assessment considering more realistic (in vitro) observational data was discussed in [6], from
where it was concluded about the real potential of the ROUKF in clinically relevant scenarios, iden-
tifying, at the same time, the high sensitivity of results with respect to the quality of measurements.
Recently, an approach based on the so-called ensemble Kalman filter, in combination with lumped
(0D) cardiovascular models, has been investigated in [12]. Up to our knowledge, parameter estimation
for one-dimensional models and using in vivo data has not been addressed yet.

Naturally, the ROUKF is formulated in the time domain. The main goal of the present work is to present
a reformulation of the ROUKF to be applied to hemodynamic problems in which available measure-
ments belong to the frequency domain. The approach is motivated by the fact that clinical measure-
ments are often related to maximum/minimum values, average values, frequency spectra or any other
features retrieved from signals (e.g. pressure and flow rate signatures) throughout the cardiac cycle.
We assume quasi-periodicity of data, which is reasonable because most acquisition techniques are
based on averaging the data through several cardiac cycles. Hence, we will show that the formula-
tion in frequency space provides a more robust data assimilation with respect to the classical time
domain counterpart, suitable for parameter estimation utilizing in vivo patient data. To this aim, we use
the ROUKF in combination with an efficient parallel explicit solver for blood flow in one-dimensional
networks [18] that allows for extremely fast forward simulations, and, consequently, for reasonable
computational times when considering parameter estimation taking up to several hundreds of cardiac
cycles.

Moreover, to validate the filter in the frequency domain, we first consider an estimation experiment
based on in vitro data, using the arterial network model described in [15, 1], for which parameter values
have been carefully measured, and, at the same time, experimental flow and pressure measurements
are available at selected points over the network (at most one measurement location per vessel). For
this setting, the results are compared with the results of the time-domain ROUKF as reported in [6].
Next, we employ in vivo patient data reported by [22] to perform the estimation of parameters for the
underlying one-dimensional model.

In both cases (in vitro and in vivo), we present different sets of numerical tests to investigate the accu-
racy and robustness of the proposed strategy, comparing the results with the classical ROUKF in the
time domain. In the in vitro case, we focus on the estimation of terminal resistances used for impos-
ing boundary conditions and on the estimation of arterial wall parameters (such as Young’s modulus
and vessel wall thickness). When considering in vivo measurements, we address the estimation of
vessel compliances and parameters that shape the cardiac output inflow waveform. Noteworthy, and
unlike the time domain ROUKF, the latter case can straightforwardly be implemented in the frequency
domain.

2 Methods

2.1 One-dimensional blood flow model

One-dimensional models are a suitable approach to investigate wave propagation phenomena in large
arterial and venous networks. These models deliver valuable information on pressure and flow wave-
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Kalman filter in frequency domain for computational hemodynamics 3

forms, while keeping the computational cost reasonably low. The set of equations under study is
∂A

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

A

)
+
A

ρ

∂p

∂x
= f,

(1)

where A(x, t) is the cross-sectional area, q(x, t) is the mass flow rate, p(x, t) the average blood
pressure over the cross section, f(x, t) stands for the friction force per unit length and ρ denotes
the blood density. We close system (1) taking f = −8πµ

ρ
q
A

(µ the dynamic viscosity of blood), and
introducing a constitutive law (usually called tube law) that relates the strain and strain rate of the
vessel wall to the internal pressure [1] via the following relation
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√
πΦh, (3)

where Φ is the viscosity of the vessel wall, E is its Young’s modulus, h is the wall thickness and A0 is
a reference cross-sectional area of the vessel.

Boundary conditions at vessels ends can be of different nature. One can prescribe boundary condi-
tions, for example a pressure or flow rate waveform prescribed at the inlet of the network. Also, vessels
can be coupled to other vessels via appropriate junction conditions. In addition, at terminal sites, ves-
sels can be coupled to lumped parameter models representing the peripheral circulation (see, e.g.,
[7]).

The parameter identification technique used in this paper requires the approximate solution of the di-
rect problem, i.e., equations (1) and (2). Therefore, the numerical method used for this application must
be efficient and robust, as well as numerically consistent and stable. Efficiency is mandatory since the
solution of inverse problems requires multiple solutions (e.g., several cardiac cycles for several in-
stances) of the forward model. Robustness is necessary in the sense that the numerical scheme must
be able to admit sudden and large variations of parameters, induced by the filter correction at each it-
eration (see Section 2.2 for details). Here we use a local time stepping finite volume numerical scheme
[18], which has shown to possess the above mentioned features. This scheme is based on the ADER
(Arbitrary high-order DERivative Riemann problem) methodology, which allows for arbitrary accuracy
in space and time (see [25, 24] for a detailed introduction). However, any other numerical scheme for
one-dimensional blood flow models satisfying such requirements could equally be employed.

2.2 The reduced-order unscented Kalman filter

The Kalman filter is a widely used tool for data assimilation applications, improving of model predictions
by estimating the values of unknown parameters, taking into account available measurements on a
given system (see, e.g., [16]).

The purpose of this section is to provide a short derivation of the method, focusing on the most relevant
practical aspects concerning the application to one dimensional blood flow models. We refer, e.g., to
[27] for a more detailed description.

Let us write the discretized counterpart of the one-dimensional evolution model described in Sec-
tion 2.1 in the form of a dynamical system

Xn+1 = F(Xn, θ) (4)

DOI 10.20347/WIAS.PREPRINT.2484 Berlin 2018



L. O. Müller, A. Caiazzo, P. J. Blanco 4

(equipped with a proper initial condition), whereXn contains the state variables at time step tn (values
of flow, pressure and cross-sectional area at each discretization node along the network and state
variables of the lumped parameter models), F is an operator which depends on equations (1) and
on their particular discretization, and θ is a vector of parameters, whose values are to be estimated.
For instance, these unknown parameters might comprise the Young’s modulus of selected vessel
segments or the terminal resistances of lumped parameter models.

Let us now assume that a measurement vector Zn ∈ RM , for M measurements, is available at
n = 1, . . . , N selected time instants, obtained by observing the state X through an observation
operatorHn(Xn), such that

Zn = Hn(Xn) + ξZ , (5)

affected by a noise ξZ , usually assumed to be independent at all times and Gaussian with zero-mean.
For simplicity, let us assume that the observation operator is linear, i.e.,Hn(Xn) = HnXn. In a clinical
setting, the main contribution to the observation noise is given by error statistics of measurement
devices.

2.2.1 The least-squares approach

The goal of data assimilation is to find, in the least-squares sense, the best guess of the true value
of the unknown state. In what follows, the state computed through the computational model will be
denoted with X , while the corrected state will be denoted with X̂ .

This state can be defined introducing the scalar cost-function

J(X̂) = ξZW−1ξZ = [Z −HX̂]W−1[Z −HX̂] , (6)

which depends on the difference between the measurements and the output of the observation oper-
ator applied to the estimate and on a weighting matrix W , which can be related to the confidence on
the measurements Z . The optimal state can be computed as X̂ =

(
HTW−1H

)−1
HTW−1Z .

The solution X̂ is usually called the estimator. However, when the number of measurements becomes
large, e.g., for time dependent problems, the previous optimal least-squares formula becomes rather
inefficient from the computational point of view.

In these cases, a suitable alternative consists in a sequential approach, i.e., an iterative strategy that
computes the optimal state X̂n at time step n based on the previously computed estimates and on
the latest measurement errors. This approach can be written in the general form

Zn = HnXn + ξn,

X̂n = Xn +Kn (Zn −HnXn) ,
(7)

where the matrix Kn, referred to as the filter (or gain), should be designed in such a way to reduce
the error εX,n = X − X̂n (in a given norm) when taking into account Zn.

Let us now introduce the matrix Pk = E
[
εX,k ε

T
X,k

]
representing estimation error covariance and a

time dependent confidence matrix Wk. The following proposition holds:

Proposition 1: Let X̂0 = X and let us assume that the measurement noise has zero mean, i.e. that
it holds E[ξk] = 0. Then the filter can be defined at each step as

Kk = Pk−1H
T
k

(
HkPk−1H

T
k +Wk

)−1
.
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See [27] for a detailed proof.

The idea behind the Kalman filter is to consider an augmented state (Xn, θn), including a trivial
dynamics for the parameters, i.e., assuming that they do not change in time. Namely, a prediction is
obtained via a forward propagation

X−
n+1 = F(X+

n , θn) ,

θ−n+1 = θn ,
(8)

while the correction takes into account the discrepancies between observations and measurements

X+
n+1 = X−

n+1 +KX

(
Zn+1 −Hn+1X

−
n+1

)
,

θ+
n+1 = θ−n+1 +Kθ

(
Zn+1 −Hn+1X

−
n+1

)
.

(9)

The Kalman matricesKX andKθ are defined in order to minimize the distance between observations
and measurements in a proper norm, which depends on the confidences in both the measures and
the model.

2.2.2 The unscented Kalman filter

It can be shown that, in the case of linear dynamics with white noise, the Kalman filter provides an
optimal estimate [16]. For non-linear systems, different extensions of the Kalman filter are available.
Among these, the unscented Kalman filter (UKF) achieves second order accuracy employing a minimal
set of deterministically chosen points in the state space for forward propagation [26].

In this case, the prediction-correction strategy for the filtering consists in (i) a forward propagation of
the mean (current estimate) and covariance of the state, based on the dynamics of selected points in
the state space, and in (ii) a correction of the propagated statistics, computed taking into account the
noisy observations. In particular, the UKF computes state and parameter estimates at all time steps,
as well as estimators for state and parameter covariance matrices, based on the current iteration and
on the observation noise covariance W .

The UKF might involve costly operations on large matrices (dimension of the state vector). However,
neglecting the uncertainty on the state (i.e. on the initial conditions) allows to formulate the so-called
reduced-order unscented Kalman filter (ROUKF) [16], for which inversion is only required for matrices
of the size of the unknown parameter space. Moreover, the estimation of p parameters can be effi-
ciently performed with a discretization containing only p+1 points for the state-parameter space (see,
e.g., [16, 9] for details), which is also called simplex sigma-points. For simplicity of notation, in what
follows the p + 1 sigma-points will be grouped in a matrix I ∈ R(p+1)×p, while the weights will be
collected in a diagonal matrix D.

The estimation via ROUKF can be summarized by the following steps (see, e.g., [16, 27, 2] for further
details):

� Initialization: Assume that the initial estimates X0 and θ0, are given, and initialize the matrix

U0 = (P θ)−1 = diag

{
1

σ2
par,1

,
1

σ2
par,2

, . . . ,
1

σ2
par,p

}
as the inverse of the diagonal covariances for each parameter. The values σpar,1, . . . , σpar,p con-
trol the confidence in the initial guess for the parameters (larger values indicate less confidence
in the initial estimates). Set the initial error covariance estimator as

Lθ0 = Ip×p, LX0 = 0nx×p,
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where Ip×p denotes the p×p identity matrix and 0nx×p is a vanishing matrix of the size of state
vector. Set n = 0.

� Until convergence, do

� Sampling: generate the new sigma-points using the current estimates and error covari-
ance estimators:

X+
n,(i) = X+

n + LXn C
T
n I(i), i = 1, . . . , p+ 1

θ+
n,(i) = θ+

n + LθnC
T
n I(i), i = 1, . . . , p+ 1

(10)

where Cn =
√
U−1
n (Cholesky factorization).

� Forward propagation:

X−
n+1,(i) = F(X+

n,(i), θ
+
n,(i)), i = 1, . . . , p+ 1

θ−n+1,(i) = θ+
n,(i), i = 1, . . . , p+ 1

X−
n+1 = E

[
X−
n+1,(1,...,p+1)

]
θ−n+1 = E

[
θ−n+1,(1,...,p+1)

] (11)

� Compute
Γn+1 = Zn+1 −Hn+1X

−
n+1 (12)

� Update error covariance estimators:

LXn+1 = X−
n+1D IT

Lθn+1 = θ−n+1D IT

LΓ
n+1 = Γn+1D IT

Un+1 = IDIT +
(
LΓ
n+1

)T
W−1
n+1L

Γ
n+1

� Correction:
X+
n+1 = X−

n+1

− LXn+1U
−1
n+1

(
LΓ
n+1

)T
W−1
n+1 E [Γn+1]

θ+
n+1 = θ−n+1

− Lθn+1U
−1
n+1

(
LΓ
n+1

)T
W−1
n+1 E [Γn+1] ,

where Wn+1 denotes the covariance matrix of the measurements. In the numerical stud-
ies presented in this paper, Wn was assumed to be diagonal at each measurement time.

The stopping criterion can be defined, e.g., monitoring the RMS deviation of parameters over a cardiac
cycle.

2.3 ROUKF in the frequency domain

The goal of this paper is the parameter estimation via Kalman filtering, applied in frequency domain. In
order to apply the framework and the algorithm introduced in Section 2.2.2, this approach corresponds
to sampling the dynamics with a time step equal to the period of the cardiac cycle and to define the
observation operatorH as the magnitude of the discrete Fourier transform (DFT) of selected variables.
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The main difference is that, observing the magnitude of the modes in frequency domain, also the
measurement noise must be transformed. Let us assume that measurement errors are described by
Gaussian, independent random variables at each observation time tn, i.e., ξ(tn) ∼ N (0, σ2) for a
given variance σ2. In this case, the Fourier coefficients of DFT (ξ(tn)) are also normally distributed

in frequency space, i.e., a(k) = N (0, σ2
DFT), b(k) = N (0, σ2

DFT), with variance σDFT = σ
√

N
2

,

depending on the size of the sampleN (in this case, the number of time steps at which measurements
are available).

As a consequence, one obtains that the magnitude of the mode related to a frequency k, i.e.,m(k) =√
a(k)2 + b(k)2, follows the so-called Rayleigh distribution, for which the expected value and the

variance depend on σ2 (variance of the measurement noise) through

E[m] =
σ√
2

√
π

2
, Var[m] =

4− π
2

σ2

2
. (13)

In view of this fact, we redefine the observation as

Ẑj
n = DFTj(HnXn) + ξ̂jn, (14)

where j denotes the j-th mode, and

ξ̂jn := DFTj(ξn)− E[DFTj(ξn)] , (15)

where E[DFTj(ξn)] is given by (13). This implies that each measurement in time domain results in
Nharm observations in the frequency domain, whereNharm is the number of harmonics that we choose
to analyze. This allows for additional flexibility when setting up the filter procedure, e.g., concentrating
on average values or on specific modes, depending on the type of observation and on the target
parameters.

It is important to note that in (15) we explicitly subtracted the expected value of the resulting distribution
for magnitudes. Notice that this value is known, if the variance of the measurement noise is assumed
to be known. By construction, one obtains that E[ξ̂jn] = 0, for any j. As a consequence, the derivation
of the iterative procedure and the optimal filter discussed in Proposition 1 for the time domain can be
applied analogously also to the frequency domain.

Notice that in this case the entries of diagonal covariance matrix Wn should be defined using the
variance relations specified in (13).

3 Validation: in silico and in vitro data

We consider the in vitro model of the human arterial network described in [15, 1]. Figure 1 shows the
vessel network, which is composed of 37 silicone tubes. The network inlet is connected to a pump,
mimicking the action of the heart, while terminal vessels are coupled to purely resistive elements, i.e.,

qt =
pt − Pres

Rpher

, (16)

where qt is the flow rate at the terminal site coming from the 1D model, pt is the pressure in the 1D
model at the terminal site, Pres is the residual pressure, which normally models the pressure of the
venous system, and Rpher is the peripheral resistance.
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Figure 1: Schematic representation of the in vitro model of the human arterial network presented in
[15, 1], reproduced with permission.

This model has been extensively used for validation of numerical approaches (see, e.g., [1, 19]) and
to compare results obtained by different numerical methods [5]. This model and the corresponding
available data offer the possibility of assessing the Kalman filter in a realistic in vitro setting, in which,
at the same time, the uncertainty on model parameters is very low as mechanical and geometrical
properties of the vessels that compose the network were carefully measured and reported in the
above cited references. The detailed equations and parameters defining the mathematical model, as
well as the setup of the considered numerical tests, have been provided as supplementary material to
this article.

3.1 Test (E)

Here we consider the estimation of the stiffness of the eight segments describing the aorta (i.e. a
single model parameter), comparing the results performing the estimation in frequency and in time
domain, and considering available in vitro observation or synthetic data (e.g., data generated by the
mathematical model itself). The parameter to be estimated is initialized with a value equal to twice
the reference value. It is evident that for the in silico case we expect to retrieve the reference value.
The results reported in Figure 2 show that the estimated value E = 1.28 MPa - when the filter is
applied in frequency domain - is very close to the result of [6] obtained with the estimation in time
domain (E = 1.31 MPa, less than 3% difference). However, filtering in frequency domain shows a
faster convergence.

Figure 2: Test (E). Values of the aorta Young modulus during the filter iteration (w.r.t. the reference
values provided in [15]) comparing the ROUKF in time and frequency domains, and using synthetic or
experimental measurements.

3.2 Test (E+R)

As next, we estimate the stiffness of the eight segments describing the aorta (as a single parameter)
and the value of the total resistance of the terminals used for defining the boundary conditions. For
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Kalman filter in frequency domain for computational hemodynamics 9

the resistance, the estimation problem has been formulated in terms of an unknown parameter a such
that the terminal resistance of vessel i can be written asRi = aRref

i , whereRref
i is the value provided

in [1]. In both cases, the filter is fed with flow measurements in the aortic arch (vessel 10) , thoracic
aorta (17), right iliac femoral artery (30), and right carotid artery (3), and one pressure measurement
in the right ulnar artery (7). As in the previous case, the parameters to be estimated are initialized with
a value equal to twice the reference value.

Figure 3 shows the variation of the two parameters over time. As in the previous test, the estimated
parameters applying the filter in frequency domain (E = 1.30 MPa, a = 1.02) are very close to the
ones obtained with the standard estimation in time domain (E = 1.32 MPa, a = 1.02). Notice as well
that the estimation in frequency domain needs slightly less iterations to converge.

Figure 3: Test (E+R). Top: Values of the aorta Young modulus during the filter iteration (w.r.t. the
reference values provided in [15]) comparing the ROUKF in time and frequency domains, and using
synthetic or experimental measurements. Bottom: Values of the factor multiplying the terminal resis-
tances during the filter iteration (the unitary value is the reference value).

4 Tests with in vivo measurements

This section focuses on the parameter estimation using real patient measurements. Namely, we con-
sider the ADAN86 arterial circulation model (described in [23]), including the main 86 arteries (see
Figure 4, left) and the experimental measures reported in [22]1. The detailed equations and param-
eters defining the mathematical model, as well as the setup of the considered numerical tests, have
been provided as supplementary material to this article.

In order to show the relevance of filtering parameters in frequency domain, we focus on two sets of
parameters that are more relevant for the shape of the pulse wave.

For the different cases, we show the variation of the estimated parameters in time and the errors in
frequency space with respect to the observations obtained running a simulation with the new param-
eters. These errors are computed as the sum of the difference in the k-th harmonic weighted by k2:

eFD =

√√√√ Nh∑
k=1

1

k2
‖DFT(Zk)−DFT (HnXn)k‖

2 , (17)

Notice that (17) neglects the contribution of the discrepancy in the mean value (k = 0).

1Original data has been kindly provided by Dr. P. Reymond.
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TS

TB

AS

AB

Figure 4: Left. Schematic representation of the ADAN model. This model has been designed in order
to reproduce, within reasonable limits, the predictions of the more complex ADAN model [4] (containing
more than 4000 arteries) in terms of main hemodynamic indexes, e.g., flow distribution among organs,
mean and pulse pressure values. Right. Inflow profile prescribed at the aortic root, parametrized by
systole and backflow amplitudes (AS and AB) and durations (TS and TB).

4.1 Test (E+C)

In this test we aim at estimating the Young modulus of minor abdominal arteries (Eabd), the compliance
of the corresponding terminal lumped models (Cabd), the Young modulus of lower limbs arteries (Elwl)
and the compliance of the corresponding terminal lumped models (Clwl). This amounts to a total
of four parameters, using two flow measurements (abdominal and thoracic aorta). In this case, we
parametrize the Young modulus of the abdominal and lower limb arteries as Ei = 2αiEorig, where
Eorig is the unfiltered parameter value (initial guess), and αi (i ∈ {abd, lwl}) have to be estimated.
The compliance of lumped models for the two different vessel groups are parametrized as Ci =
2βiCorig, where Corig is the unfiltered parameter value (initial guess), and βi (i ∈ {abd, lwl}) have
to be estimated. Notice that, for the estimation, we excluded the first harmonic of the Fourier transform
(mean value of the measured signal).

Figure 5 shows the values of the capacitances during the estimation algorithm. In particular, the algo-
rithm converges in a relatively short time (less than 50 iterations), yielding a decrease in the capaci-
tance of the abdominal vessels, and an increase in the lower limb region.

Figure 5: Test (E+C). Values of the estimated parameters during the filter iteration.

As next, we perform a numerical simulation using the filtered parameters. Figure 6 compares the
spectrum of the measurements of the original (unfiltered) and filtered settings, showing a considerable
improvement in the dominant harmonics. Moreover, it shall be observed that the error in the mean
value (0-th harmonic) does not improve, consistently with the fact that this part of the measurement
has not been included in the estimation. It is worth mentioning that, in the same setting, the estimation
in the time domain failed because, due to large discrepancies between model and data, the filter
imposed very large changes to state yielding instability in the one-dimensional blood flow solver.

DOI 10.20347/WIAS.PREPRINT.2484 Berlin 2018



Kalman filter in frequency domain for computational hemodynamics 11

Figure 6: Test (C). Left: Errors in frequency space for the considered measurements. Averaged errors
(17) are reported in the legend. The first bar is filled in white in order to highlight that the 0-th harmonic
was not used for the estimation. Right: Comparison (in time domain) of measurements with simulation
results after filtering. The top row corresponds to the abdominal aorta, while the bottom row refers to
the thoracic aorta.

4.2 Test (CERQ)

The second test focuses on estimating systemic variables to improve the agreement of model predic-
tions with measurements in terms of waveforms.

We consider up to seven parameters: one parameter for the whole network, parameterizing the Young
modulus of each vessel as E = θEEorig; peripheral compliance and resistance (two parameters for
the whole network); four parameters related the inflow profile (systolic and backflow amplitudes, and
systolic and backflow durations), see Figure 4, right.

Only two observational data are taken into account: flow at the thoracic aorta and pressure at the
left radial artery. In order to assess the performance of the filter, and to compare with the estimation
performed in time domain, we define the following estimation problems:

� (TD-CE), (FD-CE) Filter in time domain (TD) and in frequency domain (FD), only peripheral com-
pliance and network Young modulus are estimated (filter in time domain and in frequency do-
main).

� (TD-CER) Filter in TD, peripheral compliance, network Young modulus and peripheral resistance
are estimated.

� (FD-CE>0) Filter in FD removing the first harmonic of measurements, peripheral compliance and
network Young modulus are estimated.

� (FD-CEQ) Filter in FD, peripheral compliance, network Young modulus and inflow parameters
are estimated.

� (FD-CEQ>0) Filter in FD removing the first harmonic of measurements, peripheral compliance,
network Young modulus and inflow parameters are estimated.

� (FD-CERQ) Filter in FD estimating the whole set of parameter.

� (FD-CERQ>0) Filter in FD removing the first harmonic of measurements, peripheral compliance,
network Young modulus, inflow parameters and peripheral resistance are estimated.
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It is important to note that applying the filter in time domain does not allow to estimate parameters of
the inflow curve, nor to exclude selected harmonics (i.e., the mean value) from the observations. Thus,
these cases were not even considered.

Table 1 shows the effect of the filtered parameters for the different estimation settings in the error for
the entire set of available measurements [22]. This investigation allows to assess to which extent the
estimation, which is driven by minimizing the errors in two selected locations (bold columns in Table 1),
influences the agreement of model prediction with measurements taken elsewhere in the network.

Case lMCA-Q lCCA-Q lICA-Q rECA-Q abdAor-Q thoAor-Q lRA-P

Unfiltered 45.07 20.62 11.51 16.43 25.87 10.71 18.70
TD-CE 84.77 25.51 31.58 30.10 24.76 10.70 19.16
TD-CER 84.77 25.50 31.58 30.10 24.76 10.70 29.16
FD-CE>0 57.59 19.19 16.22 16.68 23.90 8.44 20.92
FD-CE 57.38 19.19 16.11 16.65 23.91 8.45 20.84
FD-CEQ>0 69.85 30.59 26.07 19.27 20.13 0.72 14.29
FD-CEQ 28.10 24.26 12.39 24.63 26.71 1.30 15.81
FD-CERQ>0 43.43 26.72 17.67 17.18 22.28 0.58 15.42
FD-CERQ 54.11 28.15 20.90 16.52 20.21 1.01 17.90

Table 1: Average errors (Q: flow, P: pressure) in frequency domain for all available measurement points
[22]. lMCA: left Middle Cerebral Artery; lCCA: left Common Carotid Artery; lICA: left Internal Carotid
Artery; rECA: right External Carotid Artery; abdAor: abdominal Aorta; thoAor: thoracic Aorta; lRA: left
Radial Artery.

The best results for the whole set of parameters are obtained in the setting FD-CERQ>0. For this
case, Figure 7 shows the variation of the seven parameters over time. One can see that the main
changes are related to the inflow parameters, which appear to be the ones that influence the most the
conformation of the pressure contour. The remaining parameters (network stiffness, capacitance and
resistance of terminal vessels) remain almost unchanged. As in the previous test, most parameters
converge after 50 iterations.

Figure 7: Test (FD-CERQ>0). Values of the estimated parameters during the filter iteration (w.r.t. to
the initial guesses).

Finally, Figure 8 shows that using the filtered parameters yields a considerable error reduction (with
respect to unfiltered parameters) compared to the observation in the thoracic aorta, while the error
reduction in the radial artery is smaller.

4.3 Discussion

The results of estimation based on in vivo measurements show that estimating the parameters in
frequency domain leads to a more robust and more general procedure with respect to the estima-
tion performed in the time domain. In our experience, the better performance (enhanced robustness
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Figure 8: Test (FD-CERQ>0). Left: Comparison of measurement, prediction before parameter esti-
mation (unfiltered) and prediction after parameter estimation in frequency domain (error (17) shown in
round brackets in the legend). Right: Comparison (in time domain) of measurements with simulation
results using estimated parameters. The top row corresponds to the thoracic aorta, while the bottom
row refers to the left radial artery.

and speed of convergence) of the estimation in frequency domain are due to the global information
encoded in the different modes of cardiovascular signals. Hence, considering the measurements in
frequency space provides the filter with information about the influence of parameters over the cardio-
vascular signals as whole inextricable unities. On the contrary, in time domain, the filter is influenced by
the agreement (or disagreement) between the predicted variable and its measured value at particular
instants in time.

A major drawback of the ROUKF in time domain is that it does not allow to consider tuning of inflow
parameters (or, in general, any variable that parametrizes the time profile of boundary conditions). In
fact, these parameters are highly variable in a patient-specific setting and they impact considerably the
solution in the entire network, as reported in Table 1, which features a greater error reduction when
inflow curve parameters were estimated. From the quantitative point of view, although the experimen-
tal setting is very challenging (few measurements, high uncertainty due to the unknown geometrical
setting), the numerical results show that using the filtered parameters considerably reduces the error
in frequency space in most vascular locations.

Furthermore, the robustness of the algorithm in frequency domain is enhanced by the possibility of
pre-selecting the harmonics to be used for the estimation. Besides focusing on low frequencies (i.e.,
filtering the measurement data), this feature allows more robust estimation of parameters (such as
the ones related to stiffnesses) mainly influencing the shape of the wave and not the average value
(compare the errors for the settings FD-CERQ>0 and FD-CERQ reported in Table 1).

5 Conclusion

We assessed the potential of the ROUKF in the frequency domain for parameter estimation in the
context of one-dimensional blood flow models, considering real measurement data. Employing in vitro
data, which implies reduced measurements and model uncertainty with respect to the real setting,
the filtering in time and frequency domains have comparable accuracy. However, filtering in frequency
space showed a faster convergence. In the case of in vivo measurements, the proposed algorithm
broadens the possibilities of estimating model parameters that better characterize the observational
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data. Indeed, our tests suggest that the estimation in frequency space offers advantages over the
time domain counterpart, as it allows to focus on relevant harmonics, to eliminate errors due to gating
of measurements and to estimate parameters related to boundary conditions, such as the ones that
describe the waveform of a prescribed cardiac output.

The proposed strategy facilitates the translation of this kind of model inversion to realistic problems
encountered in the clinic by focusing on global patient-specific features that better characterize car-
diovascular signals.
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